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Abstract

The introduction of the combined PET/CT has been one of the major
achievements in the last decade in cancer diagnose. The hybrid PET/CT,
being two separate detectors connected in conjunction and sharing the same
bed, can hence acquire CT images pre- or post acquisition of the PET data,
but suffers from the fact that the acquisitions are not done fully simultane-
ously. Furthermore, while the acquisition of CT is done in a fraction of sec-
ond, the PET acquisition is done over a period of approximately 20 minutes,
during which the patient breathes, resulting in a certain diaphragmatic mo-
tion and hence image blurring. If the obtained images are then fused, they
are not fully co-registered.

The purpose of this master’s thesis is to evaluate a novel method for
correcting of this unwanted blurring by means of a software correction. CT
images are acquired for several respiratory phases and co-registered using
the deformable “demons” algorithm. The PET data is also gated, and the
contribution from every phase to the image is modified with transforms cal-
culated from the CT images so that they are all referred to the same phase
(an “optimal” one, in which with most injury to the tumor and least to the
healthy tissue might be achieved when applying radiotherapy).

A superposition of gated PET images transformed to a reference phase
according to parameters extracted from CT data, and an uncorrected version,
estimated as the average of the gated images, were compared. Not that
many sample images were available, though, and they needed to be aligned
by software (as the CT and PET were acquired by different machines).

The results show that the method partially corrects the tumor motion.
The lesion’s center of gravity position error is reduced between a 60% and
a 70% and the lesion’s volume increment in a 33%, approximately. The
maximum voxel value (proportional to the standard uptake value, SUV) is
also partially corrected, as the a tumor’s maximum comes back to around
4300 after having fallen from 4500 in the gated, sharp images to around 4000
in the blurry ones. The results are expected to improve when the images are
acquired by a combined PET/CT scanner and thus, “hardware” aligned.
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Chapter 1

Introduction

This chapter relates this master’s thesis’s topic to the current medical imag-
ing background. The basics of the image types used in this work are in-
troduced and discussed. The concept of “image resgistration”, which is one
of the most important tools used in this work, will be introduced as well.
Special care will be taken when using medicine concepts, as this thesis is also
meant to be read by non-medicine-specialized engineers.

1.1 Background

Cancer is one of the main death causes in industrialized countries. According
to the US’s Centers for Disease Control and Prevention [1], cancer ranks
second only behind heart diseases in death causes in that country. These
two death causes (cancer and heart diseases), with 685000 and 555000 deaths,
lead with a big difference against those that come next: cerebrovascular and
respiratory diseases, with 158000 and 126000 deaths respectively.

Just within cancer, this year’s American Cancer Society’s statistics [2]
reveal that lung and bronchus cancers represent 31% of the cases among
men in the US, and 27% among women, being by far the most usual kind of
cancer case, well ahead of breast cancer in women (15%).

It is thus a matter of capital importance to improve all the ways of fighting
against this disease. Medical images of the thorax let physicians diagnose this
type of cancer and are also very useful in dose planning in case of external
radiation therapy being applied as a treatment. Radiotherapy is the typical
option when surgery is not feasible in order to remove a tumor, usually
because of the proximity to other vital-importance organs [3].

Conformal radiotherapy is a complex process that begins with the cre-
ation of an individualized, digital data set of a patient’s tumors and normal
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2 CHAPTER 1. INTRODUCTION

adjacent anatomy. This data set is then used to generate computer images
and to develop complex plans to deliver highly conformed (focused) radiation
to the tumors while sparing normal adjacent tissue. Because higher doses
of radiation can be delivered to cancer cells while significantly reducing the
amount of radiation received by surrounding healthy tissues, the technique
should increase the rate of tumor control while decreasing side effects.

Sharp, high resolution images help the physicians delineating the tumor
more precisely and hence taking the best decision for the patient in terms
of which treatment should be applied. They also let the specialists design a
very efficient conformal radiotherapy plan.

1.2 Medical Images

Medical imaging modalities can be divided into two subgroups: anatomical
and functional. The goal of both of them is to provide physicians with an
image of the internal organs in a non-invasive fashion. While the first one (for
instance, Computerized Tomography, CT, or magnetic resonance imaging,
MRI) is a representation of the internal anatomy of the body, the latter one
(like positron emission tomography, PET) marks the places in the patient’s
organism with a higher biologic activity. In this thesis, CT and PET images
will be utilized. These two modalities are now further explained.

1.2.1 CT

CT (computerized tomography) imaging is the evolution of X-rays [4] [5].
Classic X-ray imaging is a two-dimensional representation of a three-dimensional
body part. When an x-ray beam comes into contact with a body part, it can
travel through it or be absorbed by it. The beams that exit the patient’s
body will interact with a film and generate an image on it. The image inten-
sity on each point depends on the properties of the media (all the different
layers) the beam travels through and interacts with until reaching the film
(apart from the film’s detecting properties, of course). A typical x-ray image
is depicted in figure 1.1).

Hence, the final image is a summation of anatomic shadows, depending
on thickness, form, and atomic number of the different tissue layers the x-ray
beam has travelled through. The main disadvantage is the loss of depth and
contrast, and that opaque structures can hide the tissue behind them. That
is the reason why different images from different perspectives are usually
acquired in order to provide the physician with enough information to make
a correct diagnose.
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Figure 1.1: Typical x-ray image from the thorax.

In CT, in order to study a thin slice (a volume can then be constructed
by stacking slices acquired at different planes), a collimated beam from the
radiation cone from the X-ray tube is used. Through this tomographic tech-
nique, it is possible to project just a thin slice of the body part to study. The
detected one-dimensional signal is saved. Both the x-ray tube and the detec-
tor rotate then around the patient (as shown in figure 1.2), acquiring multiple
linear projections. These projections allow a computer to reconstruct the pla-
nar two-dimensional image in the studied plane, as it is explained in section
1.2.3.

1.2.2 PET

PET (positron emission tomography) imaging [4] [5], is a nuclear medicine
technique in which a radiopharmaceutical product is injected into the patient.
The most spread one is 18-fluorodeoxyglucose (18-FDG), which is a tracer
composed of radioactive fluorine (18-F, with a half-life of 110 minutes) and
a sugar (deoxyglucose).

18-FDG has two important properties. One is that it is a radioactive
product that emits positrons that annihilate with electrons in the tissue in a
relative short range (1-3 mm; this is a limiting factor for the resolution). This
process results in two gamma photons being emitted in opposite directions
with an energy of 511 keV each. It is perfectly possible to detect this gamma
photons. The second property is that 18-FDG is taken up and retained by
tissues with high metabolic activity, such as the brain, the liver, and most
types of malignant tumors.

The two described properties are the base of the PET imaging technique
(with 18-FDG). After waiting for approximately 45 minutes, so that 18-FDG
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Figure 1.2: a) CT detector and b) CT image from the aorta artery: a 3-D
volume is built by stacking several transverse slices and a vertical slice is
then extracted.

Figure 1.3: a) PET detector principle and b) commercial PET detector from
Siemens

gets concentrated around tissues with high metabolic activity, the patient is
placed into the PET scanner, which consists of one or more rings of detectors.
Every time that a pair of gamma photons are detected in coincidence in the
rings, a positron must have annihilated in the straight line that joins the
two detection points. That means that there has been an annihilation in
that line (figure 1.3). Different reconstruction techniques take us back from
coincidence pairs to a three-dimensional image representing the metabolic
activity in a volume in the patient’s body. Figure 1.4 shows an example of a
PET image.
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Figure 1.4: PET image from a breast cancer

Figure 1.5: a) Illustration of the Radon transform and b) Fan-beam geometry

1.2.3 Reconstruction techniques

The mathematics of the 2D reconstructions from a set of projections are
based on the Radon transform [6]. This transform maps a two-dimensional
spatial function to its projections along lines in all the possible angles (figure
1.5):

p(~θ, s) =

∫

R2

d~xδ(~x · ~θ − s)f(~x)

The reconstruction problem consists of finding back f(~x) from p(~θ, s).
Some methods can be found in [4]. They can be classified into direct Fourier
methods, signal space convolution and frequency space filtering, iterative
methods and series methods. FBP (filtered back-projection) can be cited as
one of the most popular ones. The lack of the complete set of line integrals
(due to discrete nature of the machine that acquires the projections) leads
to inaccuracies in the reconstructed image, also due to non-linearities and
insufficient data [7].

There are some other more modern techniques for reconstructing the im-
age. The expectation maximization (EM) algorithm for PET images [8] is
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Figure 1.6: a) FBP reconstruction of an image showing a carcinoma and b)
OSEM reconstruction of the same data. The artifacts in the FBP one makes
it difficult to notice the lesion

an iterative procedure that takes into account the stochastic nature of the
positron emission process. It has some interesting properties:

1. There are modified versions for accelerated convergence (like ordered
subsets, described below).

2. The images produced by the algorithm are non-negative (negative emis-
sion densities are meaningless).

3. The algorithm is self-normalizing in the sense of that the sum of the
events in the image is equal to the sum of the counts in the data.

4. It allows the incorporation of many physical factors, such as:

(a) Attenuation correction information.

(b) Accidental coincidence corrections.

(c) Time-of-flight information, that is, the difference in time of arrival
of the gamma particles for a better estimation.

(d) Variation in spatial resolution.

An improved version of EM is the OSEM (Ordered Subsets EM) algo-
rithm [9]. EM has the problem of being computationally expensive. OSEM,
on the other hand, divides the data within each iteration in blocks, which
accelerates the convergence by a factor proportional to the number of sub-
sets. A comparison between a classic FBP PET reconstruction and a OSEM
one is shown if figure 1.6.

In the case of CT images, there are also improvements to the FBP al-
gorithm. They are not based on the emission’s statistics (as there are not
emissions any longer), but on trying to reduce motion artifacts [10].
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Figure 1.7: Prostate cancer images a) CT image: there is no track of cancer
b) PET image: there are signs of tumor c) PET-CT image: the situation of
the lesion is now clear.

The complete discussion of reconstruction techniques is outside the scope
of this thesis. However, it is important to remark that it is also possible to
reconstruct 3-D volumes both in PET and CT imaging. The third dimension
can be obtained by stacking adjacent transverse sections [11]. There are also
algorithms that consider information from other slices [12].

1.2.4 Image fusion

The two imaging techniques, functional and anatomical, are a complement
to each other: while a structural image represents the proton density, hence
imaging the anatomy,a functional one can provide information about physi-
ology that the first one lacks.

This is the reason for hybrid modalities like PET/CT or PET/MRI in-
creasing popularity: a combined image image (which is created by superim-
posing two images) provides the physicians with both anatomical and physio-
logical data, improving the detecting ability of malignant lesions and staging
treatment of cancer. In these techniques, two different images are combined
either by software or hardware. An example of a hybrid image is shown in
figure 1.7.

The hybrid PET/CT, being two separate detectors connected in conjunc-
tion and sharing the same bed [13], can hence acquire CT images pre- or post
acquisition of the PET data. Even though the accuracy of the acquired im-
ages is substantially superior to those of software co-registered fully separated
modalities, they suffer from the fact that the acquisition is not done fully si-
multaneously. Furthermore, while the acquisition of CT, specially with the
last generation multi-slice CT:s with up to 64 slices, is done in a fraction of
second (for example in breath hold position, where the separation between
internal organs is in average larger, the image usually clearer, and a more
efficient radiotherapy dose plan can in general be designed), the PET acqui-
sition on the other hand, due to the detection geometry and the inherent
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acquisition nature of PET imaging, can not be done instantly.
Once the medical imaging modalities involved in this thesis have been

presented, the most used image processing technique in this project, image
registration, is introduced.

1.3 Image registration

The image registration concept will now be introduced and the different
involved steps reviewed. Some methods and the possibilities of applying
each of them to PET and CT images will be studied.

1.3.1 Introduction

Image registration is the process of relating two or more images of the same
scene taken in different conditions: different viewpoints, different sensors, dif-
ferent times, or perhaps a combination of more than one of them. Another
discipline consists of registering an image to a template, which is known as
“template matching”. The idea is to find the mathematical transformations
that convert one image (“sensed” or “moving” image) into the other (“refer-
ence” image).

One of the possible formal definitions of image registration is “a mapping
between two images both spatially and in pixel/voxel intensity values”. If
the images are assumed to be three-dimensional, this can be expressed:

I2(x, y, z) = g(I1(f(x, y, z)))

The function f represents a transformation for the volume elements’ (vox-
els) positions and g is an one-dimensional intensity mapping. This intensity
transformation is not necessary in many cases, but is still of big importance
in the case of different sensors, as the typical voxel values in each image will
in general be very different. It is for example very important in the case of
registering a PET and a CT image.

An example of a transformation function could be, in 2-D:

I2(x, y) = 2 · (I1(x − 20, y))

where the image has been shifted 20 pixels in the x-axis direction and made
2 times brighter, as shown in figure 1.8-a. In 1.8-b, a CT-PET example is
shown. The spatial deformation f cannot be expressed as a simple mathe-
matical function, and the intensity mapping function g is not trivial either.

Registering a pair of images is a way of comparing them. The need for
this comparison has arisen in may different problems in different fields. One
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Figure 1.8: Mapping function in two cases: a) simple translation and inten-
sity amplification and b) complex CT-PET registration problem

may for example want to integrate the information acquired by two different
sensors (for example, a CT and a PET image, as already discussed). It may
also be desirable to find the spatial changes between two images taken at
different times to characterize the movement (something also done in this
thesis). Interested readers may further read [14] and [15].

Independently of the application, the majority of the registration methods
consist of the following four steps [16], which are illustrated in figure 1.9 (from
the same source):

1. Feature detection: distinctive objects, such as edges, contours or cor-
ners, are manually or automatically detected. For further processing,
these objects are represented by their point representatives (endings of
lines, centers of gravity), which are called control points (CPs) in the
literature. In an extreme case, every pixel in the images can be a CP.

2. Feature matching: the correspondence between the features detected
in the two images is determined.

3. Transform model estimation: the type and parameters of the function
that “translates” the sensed image’s features into the reference image’s
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Figure 1.9: Registration steps: a) feature detection b) feature mapping c)
transform model estimation and image transformation

ones are estimated. Different deformation functions and similarity mea-
sures to maximize can be used to achieve it. The idea is to try to find
a function that depends on a certain number of parameters and that
can potentially represent the transformation between the two images.
The values for these parameters that maximize a similarity function
(based for example in the sum of the squared voxel differences, or in
the crossed correlation) are then sought.

4. Image resampling and transformation: the sensed image is finally trans-
formed by the mapping function. Image values in non-integer coordi-
nates must be interpolated.

Apart from the four steps above, each registration method can be seen as
a combination of choices for the following components [17]:
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1. A feature space: e.g. voxel values, edges...

2. A search space: the function that maps one image to the other.

3. A search strategy: the different ways of trying to find out the best
parameters for the transformation function.

4. A similarity metric: a quantitative measure of how similar two images
are. The search strategy’s goal is to try to maximize this value for the
fixed image - registered image pair.

The following section describes these different components in more detail.

1.3.2 Registration components

Feature space

The first step when registering images is to decide the feature space that will
be used. As previously mentioned, edges, contours, surfaces, corners, points...
may be used. The decision of the feature space can affect the registration’s
performance dramatically. For example, if the case of having two images
that are exactly equal but with scaled voxel intensity levels, a raw pixel
comparison would result in a huge difference, whereas if the images’ edges
were detected in a preprocessing step, the results would be almost equal.
That is why one must consider which features remain in common in the two
images. The decision can also be influenced by possible limitations in the
computational cost: need to preprocess or not, number of detected features
to compare...

Features can be extracted both manually or automatically. The latter is
of course preferred, but is not always possible or reliable. In the manual or
semi-manual case, an expert user must choose equivalent structures or points
in both images manually. One of the problems with manual extraction is that
it is irreproducible. Slightly different selections may lead, especially if the
algorithm is not robust, to completely different results.

In automatic detection, in order to help the computer to make its work as
good as possible, image enhancement techniques can be used prior to the the
process’s start. For example, image smoothing can be used to remove high-
frequency noise, or image sharpening can be used to highlight edges if they
are supposed to be detected afterwards. However, it is difficult to know the
filters’ parameters (for example, cut-off frequencies) a priori, automatizing
the enhancement process.
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The simplest feature detection technique consists of directly working with
the raw intensity data. This is the feature space that contains most infor-
mation. It saves computations in the preprocessing step, but usually leads to
a more costly matching process, especially if all the voxels are considered in
the calculations. Pyramidal processing, which consist of working with down-
sampled versions of the image to estimate solutions at higher resolutions and
thus save iterations, can help to speed the process up. This will be further
explained and discussed later.

Another possibility for detecting features is to extract region features.
They are usually projections of high contrast closed-boundary regions that
can be detected through segmentation. The regions may be represented by
their centers of gravity, which have the good property of being invariant to
rotation and scaling. This representation is also very robust against noise
and intensity variation. This technique will only lead to good results with
images from the same modality, though.

Another type of feature space is the one of line features. Object con-
tours, elongated anatomic structures, roads, etc are well represented by lines.
Edge detection algorithms are used in order to detect them, and they rep-
resent much of the intrinsic structures of an image. Another advantage of
this scheme is that they are quite robust against several variations (rota-
tion, translation, scaling...). Once the edges are detected, it is possible to
choose prominent features that are easily distinguished, such as corners, line
intersections or points of maximum curvature.

There are yet another kind of features: point features. They usually
provide the user with accurate positioning. One must be careful with the
number of detected points though, because the computational costs increase
along with them. There are several proposed methods for an efficient selec-
tion of a subset of points [18] [19] [20].

It is also possible to use higher level features, that are good for inexact
matching (for example, when different types of images are registered). Ex-
amples of these are structural features, graphs of pattern configurations [21],
or syntactic features, like grammars composed from patterns [22].

Finally, it is worth mentioning that frequency domain features are not
considered in this master’s thesis. The reason is that they do not offer any
kind of spatial local possibilities.

Search space

The spatial transformation from the sensed image to the reference one is
assumed to be performed according to a model, which depends on a set of
parameters. The search space is the class of transformation parameters from
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Figure 1.10: Typical distortions: a) translation b) rotation c) scaling d)
change of viewpoint

which the optimal values to align the images are searched.

The main goal when choosing the search space is to select the type of
transformation that can compensate the spatial distortion between the sensed
and the reference image. A priori knowledge of the kind of phenomena that
has originated the distortion (a rotation, a translation, a change of view-
point..., view figure 1.10) can result in a reduction of complexity of the search
space. If one knows for example that an image is a translated version of the
other one, a simple three-parameter translation transform would be suitable
and give satisfactory results. Otherwise methods that do not make any as-
sumption about the kind of deformation are required. These methods will
require in general a much larger computation time.

A first general classification distinguishes between global and local trans-
formations. In the first case, a single equation maps the entire image. In
the second one, the mapping function depends on the spatial location. This
can handle locally deformed images. If a global method is applied on one
of this images, it will just average the local geometric distortion over the
whole image. Local methods can achieve much more powerful transforma-
tions. In some cases, the best approach is to find a global transformation
and then refine it with local transformations in the places where the result
is not sufficiently good.

One of the simplest global models for two-dimensional images is the sim-
ilarity transform:

u = s(x · cosθ − y · sinθ) + tx
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v = s(x · sinθ − y · cosθ) + ty

where (u, v) are the transformed coordinates from (x, y). This transfor-
mation is capable of handling rotation (of an angle θ), translation (tx in the
horizontal direction and ty in the vertical one) and scaling (with a factor of
s). Three control points (six equations) are required to determine the para-
meters. More points are usually taken into a least square fit in order to make
the algorithm less sensitive to errors in the control point positions.

A more complex transform would be the affine transform, which is
capable of mapping a parallelogram onto a square:

u = a0 + a1x + a2y

v = b0 + b1x + b2y

All these methods can be generalized to higher dimensions. An even
more complex method consists of using higher order polynomials, which
can handle more complicated deformations. Given a set of control points,
it is possible to adapt the coefficients of the polynomials to minimize the
error, usually measured in a least square fashion. As explained above, it is
always preferable to have as much data as possible in order to have more
reliable statistics. It would be possible to have just twice as coefficients as
control points (each point leads to two equations, still assuming 2D), but
this would lead to very high order polynomials with several undulations that
would create artifacts in the image. These transformations can in general be
expressed as:

u =
m∑

i=0

i∑

j=0

aijx
iyj−i

v =
m∑

i=0

i∑

j=0

bijx
iyj−i

When two images are misaligned by an unknown transformation, (which
is the case in this thesis), one is forced to use yet another kind of mappings.
This happens, for example, when the transformation includes complex defor-
mations (that would require a too high order if one tries to use polynomials).
If the distortions become local, it is difficult to perform a satisfactory reg-
istration with a global mapping function. All of the above described global
methods can however be applied piecewise in order to create local transfor-
mations.

It is usually desirable to constrain the global transformation to be smooth.
This can be done through introducing a penalty term in the cost function
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that determines the quality of the transformation. This penalty term will be
higher when the transformations parameters change rapidly. An illustrative
example for spline interpolation can be found in [23], and it looks like:

v =
1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
δ2 ~T (x, y, z)

δx2
)2 + (

δ2 ~T (x, y, z)

δy2
)2 + (

δ2 ~T (x, y, z)

δz2
)2 + . . .

. . . + 2(
δ2 ~T (x, y, z)

δxδy
)2 + 2(

δ2 ~T (x, y, z)

δyδz
)2 + 2(

δ2 ~T (x, y, z)

δxδz
)2]dxdydz

The main point of this penalty term is that it gets larger as the absolute
values of the derivatives increase, that is, as the parameters tend to change
quickly.

The last approach that will be discussed is the most general one: not
using any parametric mapping functions at all. This is often called elastic
registration. The images are regarded as pieces of rubber in which exter-
nal forces stretch the image trying to bring it into the reference one with
the minimum possible amount of deformation. The result will be a differ-
ent displacement vector for every voxel in the image, without fitting any
preestablished model. The values of these displacement vectors are usually
calculated according to laws from physics. There are for example methods
based on diffusion processes, optical flows... The voxel values are usually
interpreted as potential functions.

A very powerful registration method is the “demons” algorithm, by Thirion
[24]. In this model, the object boundaries in the reference image are con-
sidered semipermeable membranes and the sensed image is considered de-
formable. The voxels in the latter diffuse through these interfaces by the
actions of effectors (Maxwell called them demons to explain concepts about
thermodynamics) situated within the membranes. The optical flow equation
is used to estimate the forces in this points. For a point P, if s is the inten-
sity in the static image S and m the intensity in the moving image M, the
displacement ~u required for P to match the corresponding point in M is:

~u =
(m − s)~∇s

|~∇s|2 + (m − s)2

Thirion proposed in his work [24] three different algorithms. In the first
one, every voxel is a demon. In the second one, demons are only present
in contours. The third one works with already segmented images. As ex-
pected, the first one provides the best results, as the displacement force is
calculated for every single image element, but at the cost of computational
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power. An improvement to this algorithm is introduced in [25], where an
active force based on the moving image’s gradient information and a mul-
tiresolution approach are introduced, making the convergence much faster
and saving computation time.

~u =
(m − s)~∇s

|~∇s|2 + (m − s)2
− (s − m)~∇m

|~∇m|2 + (s − m)2

Search strategy

Due to the large computational costs associated with most of the registration
techniques, it is often unfeasible to go along all of the possible combinations
in the feature space searching the best one. This process would always lead
to the optimum solution (lowest cost or maximum similarity according to a
established criterion), but this is only affordable in very simple cases. For
example, if one intends to just adjust a translation, all displacements over
a reasonable range of distances can be tested. The bigger the feature space
(more control points and more model parameters), the more complex the
search becomes.

There are many different search strategies, each one with its advantages
and disadvantages. Some of them can even be used in conjunction with an-
other one. The choice of the search strategy is based on the deformation
model, as well as it can be influenced by computational and storage limita-
tions. Some of the most popular techniques (mostly based on gradient descent
algorithms) are briefly described in the ITK toolkit documentation [26], and
are implemented in this package. Some of them will be tested in this master’s
thesis work.

Similarity metric

The choice of the similarity measure is closely related to the selection of the
matching features, as their alignment is the registration process’s goal. Some
measures focus on spatial differences between the locations of the features
in each image, while others try to match high-level structures, for example
graphs.

The simplest voxel intensity based cost function is the squared sum of
intensity differences (SSD):

SSD =
1

n

∑
(I(t0) − T(I(t)))2

where I(t0) denotes the reference image and I(t) the sensed one, while
n is the total number of voxels. This function has the advantage of being
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computed very quickly, but it is only valid for images from the same modality
(sensor) with properly normalized intensities. It is appropriate for finding
matches with no local distortions. The normalized correlation coefficient
(NCC), slightly more computationally expensive, is not tolerant to local
distortions either. Its peak is somehow harder to find than the SSD’s, but
it has the advantage of allowing a linear relationship between the images’
intensities:

NCC =

∑
(I(t0) − I(t0))(T(I(t)) − T(I(t)))√∑

(I(t0) − I(t0))2
∑

(T(I(t)) − T(I(t)))2

where I(t0) and I(t) refer to the average values, and T () represents the
transform. Another possibility is to measure the entropy of the differ-
ence image, that has the advantage of each pixel having the same weight
independently of its intensity. This represents and advantage over the previ-
ous two methods, in which a single pixel with a large difference in intensity
could contribute too much to the cost function. On the other hand, it is
computationally more complex.The cost function to be minimized is:

H(s) = −
∑

x

p(x)log[p(x)]

where x represents the different intensity values in the difference image,
and p(x) is the discrete probability distribution function, that is, the number
of voxels of value x divided by the total number of voxels. If the image
becomes zero or constant (the ideal case, perfect registration achieved), its
entropy would be zero.

Another method based on entropies is the mutual information one.
This method is appropriate in inter-modality registration, as a linear rela-
tionship between the pixel values is not assumed any longer:

H(s) =
∑

x,y

p(x, y)log
p(x, y)

p(x)p(y)

where x refers to the intensity values in the reference image and y to
those in the sensed image. In this case, p(x, y) represents the joint discrete
probability distribution function, that is, the number of voxels that have a
value of x in the reference image and y in the sensed one, divided by the
total amount of voxels.

There are also more complicated cost functions. Some of them include
penalty terms for transformation parameters discontinuities, some of them
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Figure 1.11: Typical error-model complexity curve shape

use the images’ gradients, other functions consider the number of sign changes...
Some of the most popular for medical image registration are reviewed in [27].

1.3.3 Practical considerations

There are some practical issues that deserve being remarked. The first one is
that one must be careful with the transform’s flexibility. A too complicated
transform can lead to undesired results, as it may be capable of creating false
structures and other artifacts.

If the same very complex transformation was applied to another image
physically deformed in the same way (somehow equivalent to the original
moving image), the results may not be what one could expect (that is, some-
thing equivalent to the fixed image). As that is exactly, as it will be explained
afterwards, the goal of this thesis (applying the transformations estimated
from a CT to PET images), one must be careful with this phenomena.

The typical error behavior with increasing complexity of a model is shown
in figure 1.11. The alignment in the data always improve with the complex-
ity, assuming a perfect optimization process. If polynomials were used, for
example, the results would always improve if the order is increased (assuming
a perfect coefficient optimization, as already mentioned). However, there is
a point beyond which the new data’s fitting starts to impair, due to “over-
fitting” to the original data. Care of trying not to go beyond this point will
be taken in this thesis.

The following example clarifies this effect. Assuming that two images of
the same pair of lungs from the same patient are available, a transformation
that maps every point from the left lung to its symmetrically equivalent point
in the right one (assuming that the lungs are symmetrical, which they are
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not) could be found. The result would give a high similarity between the
fixed and registered images, but would be far from representing the reality:
that there is no movement between them. If this transform was applied to
a corresponding PET image showing a tumor in the right lung, the tumor
would actually be moved to the left lung.

Another practical consideration is that it is a rule in image registration to
start with a simple model and increase the degree of complexity as required.
Is is better to increase the complexity level stepwise rather than applying
a complex transform initially. Sometimes it also helps to perform an image
enhancement preprocessing prior to the registration algorithm. A gaussian
low-pass filter may for example be useful to smooth the error, reducing the
noise and thus and improve the final result. However as mentioned previously
the filter parameters may be difficult to set automatically.

It is also important to mention that the similarity measure used in the
registration process may not to be the one used in the evaluation of the
transformation. It is possible to use a more complex but also more accurate
one that one cannot afford calculating for every optimization iteration.

And last, but not least, the importance of pyramidal processing must be
mentioned. The complexity of matching two images grows with an order
of O(n3) or even O(n4) in some cases, depending on the used algorithm.
Downsampling the image to quickly calculate the transformation parameters
and use this solution as an initial value at the next resolution would improve
the algorithm’s efficiency. As 512x512 slices will be used, it would for example
be possible to begin with 64x64 and going on with 128x128 and 256x256
before finishing with the original 512x512 resolution.

Pyramidal processing has also another big advantage: preliminary results
are quickly available. That lets the doctor perform an initial evaluation of the
results while the calculations in the higher resolutions levels are still running.

A last important advantage of pyramidal processing is that it is much
more difficult to fall in a local minimum of the cost function. This function
is somehow smoothed when the resolution is made lower, so the local minima
tend to disappear in the lower pyramidal levels. This is illustrated in figure
1.11. If registering in these first levels leads to a point close to the global
minimum, using this point as starting point in the higher levels will not lead
to a local minimum, but to the global one.
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Figure 1.12: Example of how a lower resolution image can lead to a better
parameter choice: in the low resolution version, there are not local minima in
which the optimization algorithm may fall. The graphs show the similarity
metric evolution when the image is shifted to the right.


