- 18 -

ITU - Telecommunication Standardization Sector
Temporary Document PLEN XXX
STUDY GROUP 16
Geneva, 5 - 15 February 2002

Question(s):
WP 2

SOURCE*:
Rapporteur
TITLE:

Draft Recommendation H.460.1

Guidelines for the Use of the Generic Extensible Framework

Summary

This Recommendation gives guidelines on how to use the "Generic Extensibility Framework" specified in H.323 (2000) (version 4). It describes when to use the framework, and how to specify features using the framework. It also gives examples on how the framework's negotiation scheme works.

[image: image1.wmf]
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T
Draft H.460.1
TELECOMMUNICATION
(February, 2002)
STANDARDIZATION SECTOR

OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services – Systems and terminal equipment for audiovisual services

Guidelines for the Use of the Generic Extensible Framework

ITU-T Draft Recommendation H.460.1

Draft Recommendation H.460.1

CONTENTS

41.
Scope

2.
References
4
3.
Abbreviations
4
4.
What is GEF
4
5.
When to Use GEF
5
6.
GEF Module Identification
6
7.
Specifying GEF Modules
6
7.1.
Table Based Method
6
7.1.1.
Example Definition of a Fictitious Feature using the Table Based Method
7
7.2.
Encoded in Raw Method
8
APPENDIX I - INFORMATIVE
9
I.1
Examples of GEF Negotiation
9
I.1.1
RAS Scenarios
9
I.1.2
Call Signalling Scenarios
11
Bibliography
17

 AUTONUMLGL
Scope

This recommendation provides information on when and how to use the Generic Extensible Framework (GEF) defined in H.323. It does not repeat the text from Recommendation H.323. Instead, it expands and elaborates on the text in Recommendation H.323 and thus should be read in conjunction with the H.323 text rather than being viewed as a substitute to it.

The main topics covered by this recommendation are, when to use GEF, how to specify GEF modules, and examples of the GEF negotiation mechanism.

 AUTONUMLGL
References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is published regularly.

· ITU-T Recommendation H.323 (2000), Packet based Multimedia Communications Systems.

· ITU-T Recommendation H.225.0 (2000), Media Stream Packetization and Synchronization on Non-Guaranteed Quality of Service LANs

 AUTONUMLGL
Abbreviations

For the purpose of this Recommendation the following abbreviations are used.

ABNF
Augmented Backus-Naur Form

ASN.1
Abstract Syntax Notation One

GEF
Generic Extensible Framework

XML
Extensible Markup Language

 AUTONUMLGL
What is GEF

The Generic Extensibility Framework (GEF) provides a low overhead way of adding functionality to H.323 without adding to the H.225.0 ASN.1 base specification. GEF provides a common feature negotiation mechanism, and the ability to carry opaque data in all H.225.0 and H.225.0 Annex G messages. Thus it allows application specific extensions to be made to the H.323 suite of recommendations without burdening all H.323 implementations with all specified extensions.

GEF is explained formally in the main body of Recommendation H.323.

 AUTONUMLGL
When to Use GEF

New functionality can be added to H.323 by adding new syntax to the H.225.0 ASN.1 base definition, defining a GEF module, or defining an H.450 supplementary service. When deciding which method to use, it may be appropriate to consider the feature negotiation aspects, and the data transport aspects of the feature separately. Thus, in some cases, it may be appropriate to implement a feature primarily as an H.450 supplementary service, but negotiate the feature using GEF's feature negotiation capabilities.

To decide which method should be used to add new functionality, the following guidelines are suggested.

· If the feature is applicable to a large number of applications, then it may be appropriate to add it to the H.225.0 ASN.1 base specification directly. Note that, as H.323 is now fairly mature, it is not expected that such features will be encountered, and a strong case will need to be made for taking this course of action. The most likely situation in which this will occur is in the case of extending all ready existing parameters such as AliasAddress and TransportAddress.

· Or if the feature only requires a few parameters, then define it as a GEF module.

· Or if the feature requires data to be carried in H.225.0 RAS or H.225.0 Annex G, then define it as a GEF module.

· Or if the feature contains numerous parameters, then define it as either ASN.1 (or similar method such as ABNF or XML) to be encoded into a raw element of a GEF content construct, or define an H.450 supplementary service.

These considerations are captured in the flow chart shown in Figure 1 below.

[image: image2.wmf]Core to all

applications?

Start

Define in H.225 Annex H

Base Specification

Use GEF Encoded in

Raw Method or H.450

Use GEF Table Based

Method

Data

Required in RAS

and/or

Annex G?

Only a Few

Parameters

Required?

No

Yes

Yes

No

No

Use GEF Encoded in

Raw Method

Yes

Figure 1/H.460.1

Decision Tree for How to Specify a New Feature

 AUTONUMLGL
GEF Module Identification

GEF allows for both ITU-T approved and non-ITU-T approved module definitions. All ITU-T approved GEF module definitions shall be defined as part of the H.460 series of recommendations and shall use the standard variant of id in GenericData to identify them. All non-ITU-T approved modules shall use either the oid or nonStandard variants of id in GenericData to identify them.

There is a direct relationship between an H.460 series recommendation's identity and the value encoded into the standard variant of id in GenericData. That is recommendation H.460.n (where n is an integer number) shall use the value n in the standard variant of id in GenericData to identify the module. For example, H.460.2 shall have the standard variant of id in GenericData set to 2.

 AUTONUMLGL
Specifying GEF Modules

GEF modules may be specified in a number of ways, clarity of definition being the principle concern. To provide some consistency of specification, this section describes two ways in which GEF modules can be defined, these being the table based method, and the encoded in raw method.

Note that if a feature requires both negotiation and opaque data transfer, it may be necessary to document the requirements for each in separate sections of the specification document.

 AUTONUMLGL
Table Based Method

In the table-based method, each of the parameters constituting a feature is described in tabular form. Each parameter definition maps to a separate EnumeratedParameter for data exchange. Note that the tables are not expected to capture all the detail of the feature's use and operation, and additional explanatory text would typically be expected.

An instance of Table 1 is used to describe the feature as a whole. This captures the features name, its identifier and a brief description. A single instance of this table suffices for features that contain both negotiation and data transport.

Feature name:
The name of the feature

Feature Description:
Short description of the feature. This may be augmented by text elsewhere in the document describing the feature.

Feature identifier type:
Indicates whether the identifier is Standard, oid, or nonStandard.

Feature identifier value:
The actual value of the identifier.

TABLE 1/H.460.1

Tabular Specification of a Feature

Each parameter used by the feature is described using an instance of Table 2. Once again, this includes the parameters name, identifier and description as well as other information. Parameters conveyed within compound or nested parameters should be described in a separate section of the specification document. If parameters are needed for both the negotiation and data transport aspects of the feature, it may be appropriate to have the two sets of parameters captured in different sections of the document describing the feature.

Parameter name:
The name of the parameter

Parameter description:
Short description of the parameter

Parameter identifier type:
Indicates whether the identifier is Standard, oid, or nonStandard

Parameter identifier value:
The actual value of the identifier

Parameter type:
One of raw, text, unicode, bool, number8, number16, number32, id, alias, transport, compound, nested.

Parameter cardinality:
How many times the parameter may occur

TABLE 2/H.460.1

Tabular Specification of a Parameter

 AUTONUMLGL
Example Definition of a Fictitious Feature using the Table Based Method

This section gives a fictitious example of a feature using the table based method of feature definition.

Specification of the Fictitious Example feature

Feature name:
Fictitious Example

Feature Description:
This is a fictitious example to illustrate how to use the table based method to specify a GEF module.

Feature identifier type:
Standard

Feature identifier value:
1

Parameters for the Fictitious Example feature

Parameter name:
priority

Parameter description:
Describes the priority of this call in relation to other calls that may be received.

Parameter identifier type:
Standard

Parameter identifier value:
0

Parameter type:
number8

Parameter cardinality:
Once and once only

Parameter name:
destination

Parameter description:
Identity of the remote party that is being contacted.

Parameter identifier type:
Standard

Parameter identifier value:
1

Parameter type:
alias

Parameter cardinality:
One or more

Parameter name:
message-display-lines

Parameter description:
One of more message lines that should be displayed when the call is being processed.

Parameter identifier type:
Standard

Parameter identifier value:
2

Parameter type:
text

Parameter cardinality:
Zero or more

 AUTONUMLGL
Encoded in Raw Method

The second method of GEF module definition defines a feature using existing message encoding methods, such as ASN.1, XML or ABNF. In this case, message fragments are encoded according to the normal rules of the chosen specification method and exchanged as the raw variant of a GEF parameter. This is particularly recommended for features that contain a sufficient number of parameters to make the table based method of definition cumbersome.

In addition to specifying the content of the GEF parameter, it is also necessary to specify the identifier of the GEF parameter. This can be done using the table-based method of specification, or in narrative text.

If the feature is defined using ASN.1, then it is recommended that the basic aligned variant of the PER encoding rules be used. However, irrespective of this, the encoding rules that are used shall be explicitly stated in the specification of the feature.

Defining features using ABNF potentially allows features to inter-operate unmodified with other signalling protocols that perform a similar function to H.323 (e.g. SIP). Note that such a representation will still have to be conveyed in a raw element to allow for UTF-8 encoding of characters.

APPENDIX I - INFORMATIVE

(This appendix does not form an integral part of this Recommendation)

I.1
Examples of GEF Negotiation

This appendix illustrates various aspects of GEF's negotiation mechanism. It is for illustrative purposes only.

I.1.1
RAS Scenarios

The figures shown below illustrate an endpoint negotiating with a gatekeeper.

For illustration purposes, the negotiation is shown using the RRQ/RCF/RRJ message set. However, GEF is not limited to this set of messages for negotiation.

The example assumes that the endpoint wants to use a fictional Charge Advice Feature, called CAF. The details of this are not important, but the principle would be that the gatekeeper would supply the endpoint with some notification of the call charge at the end of a call using the DCF message.

Similarly, the gatekeeper wishes to use a Bandwidth Management Feature called BWF. Again, the details of this feature are not important, but the principle would be that the parameters within the module would define some form of bandwidth template that the endpoint must adhere to.

The following diagrams illustrate various aspects of the negotiation process.

[image: image3.wmf]RRQ(Need:CAF)

RCF(Support:CAF)

Endpoint

Gatekeeper

Figure I.1/H.460.1: Conditions:
Endpoint needs/requires CAF feature
Gatekeeper supports CAF feature.
Request successful

Description: In Figure I.1 the endpoint requests the CAF feature, and the gatekeeper indicates that it supports the CAF feature. The negotiation has been successful, and the endpoint may now use the feature.

[image: image4.wmf]RRQ(Need:CAF)

RCF

Endpoint

Gatekeeper

URQ

UCF

Figure I.2/H.460.1: Conditions:
Endpoint needs/requires CAF feature
Gatekeeper does not support the framework.
Procedure fails.
(Endpoint has to handle backwards compatibility when it gets the reply.)

Description: In Figure I.2 the endpoint requests the CAF feature, but the gatekeeper does not support the GEF negotiation mechanism, and so does not see the request for the CAF feature. As the gatekeeper does not see the request for the CAF feature, it believes that it can accept the request, and sends an RCF. The endpoint observes that the gatekeeper has not signalled support for CAF, and therefore decides to unregister as the gatekeeper does not provide the features it requires.

[image: image5.wmf]RRQ(Need:CAF)

RRJ

Endpoint

Gatekeeper

Figure I.3/H.460.1: Conditions:
Endpoint needs CAF feature
Gatekeeper does not support CAF feature
Request fails

Description: Figure I.3 is similar to the Figure I.2 case, except that the gatekeeper supports the GEF negotiation mechanism. The gatekeeper knows that it does not support the CAF feature, and so rejects the request with an RRJ.

[image: image6.wmf]RRQ(Need:CAF)

RRJ(Support:CAF,

Need:BWF)

Endpoint

Gatekeeper

Figure I.4/H.460.1: Conditions:
Endpoint needs CAF feature
Gatekeeper supports CAF, BUT also needs BWF feature
Request fails

Description: In the case shown in Figure I.4, the endpoint needs the CAF feature and the gatekeeper needs the BWF feature. The endpoint indicates that it needs the CAF feature in the RRQ. The gatekeeper sees that CAF is needed, which it supports, but it does not see that the endpoint supports the BWF feature. The gatekeeper therefore rejects the request, indicating that it supports the CAF feature, but needs the BWF feature.

[image: image7.wmf]RRQ(Need:CAF,

Support:BWF)

RCF(Support:CAF,

Need:BWF)

Endpoint

Gatekeeper

Figure I.5/H.460.1: Conditions:
Endpoint needs CAF and supports BWF
Gatekeeper supports CAF and needs BWF
Request successful

Description: In Figure I.5, the endpoint signals that it needs the CAF feature, and also supports the BWF feature. As the gatekeeper supports the CAF feature, it signals this in its reply. The gatekeeper also needs the endpoint to use the BWF feature, and signals this as needed in its reply.

I.1.2
Call Signalling Scenarios

The following figures show examples of GEF call signalling negotiation. The gatekeeper routed model is shown on the basis that the direct model is a special (simplified) case of the gatekeeper routed model.

In these examples the fictitious features DPNSS, 450Proxy and Account are used. The details of what these features entail is not important to the discussion here and are therefore not described.

[image: image8.wmf]Setup(Needed:DPNSS)

Release Complete

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Figure I.6/H.460.1. Conditions:
Initiating Endpoint needs DPNSS feature
First Gatekeeper does not support feature
Unsuccessful

Description: Figure I.6 shows the endpoint initiating a call that requires the fictional DPNSS feature. The first gatekeeper supports GEF negotiation, but does not support the DPNSS feature, and therefore rejects the call.

[image: image9.wmf]Setup(Needed:DPNSS)

Alerting

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Needed:DPNSS)

Alerting

Setup(Needed:DPNSS)

Alerting

Call Proceeding

Call Proceeding

Release Complete

Release Complete

Release Complete

Figure I.7/H.460.1. Conditions:
Initiating Endpoint needs DPNSS feature
The Gatekeepers support GEF
Far Endpoint does not support GEF
Unsuccessful

Description: In the example shown in Figure I.7 the endpoint initiating a call that requires the DPNSS feature. While the gatekeepers support GEF, the far endpoint does not. It is therefore ignorant of the need for the DPNSS feature and therefore progresses the call by sending an ALERTING message. The ALERTING message does not contain indication for support of the DPNSS feature, and therefore the initiating endpoint terminates the call.

[image: image10.wmf]Setup(Needed:DPNSS)

Release Complete

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Needed:DPNSS)

Release Complete

Setup(Needed:DPNSS)

Release Complete

Call Proceeding

Call Proceeding

Figure I.8/H.460.1. Conditions:
Initiating Endpoint needs DPNSS feature
The Gatekeepers supports GEF
Far Endpoint does not support DPNSS feature
Unsuccessful

Description: In Figure I.8 the endpoint wishes to create a call using the DPNSS feature. The remote endpoint supports GEF negotiation, but does not support the DPNSS feature, and so rejects the call.

[image: image11.wmf]Setup(Needed:DPNSS)

Alerting(Supported:DPNSS)

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Needed:DPNSS)

Alerting(Supported:DPNSS)

Setup(Needed:DPNSS)

Alerting(Supported:DPNSS)

Call Proceeding

Call Proceeding

Call Proceeding

Figure I.9/H.460.1. Conditions:
Initiating Endpoint needs DPNSS feature
Far endpoint support DPNSS feature
Successful

Description: In the case shown in Figure I.9, the remote endpoint does support the DPNSS feature. It is therefore able to accept the call. It signals support for DPNSS in ALERTING, which is the first end-to-end message.

[image: image12.wmf]Setup(Needed:DPNSS,

450Proxy)

Alerting(Supported:DPNSS,

450Proxy)

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Needed:DPNSS)

Alerting(Supported:DPNSS)

Setup(Needed:DPNSS)

Alerting(Supported:DPNSS)

Call Proceeding

Call Proceeding

Call Proceeding

Figure I.10/H.460.1. Conditions:
Initiating Endpoint needs DPNSS AND 450Proxy feature
Local gatekeeper supports 450Proxy feature
Far endpoint supports DPNSS feature
Successful

Description: Figure I.10 is similar to the case shown in Figure I.9, except that the endpoint also wishes the H.450 proxing feature (identified as 450Proxy) to be supported. The first gatekeeper accepts responsibility for this, and removes the needed feature from the message before on-ward routing it. The far endpoint implements the DPNSS feature, and sends back ALERTING indicating this. When ALERTING passes through the first gatekeeper, it modifies the message indicating its ability to implement the H.450 proxy feature.

[image: image13.wmf]Setup

RelComp(Needed:Account)

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup

RelComp(Needed:Account)

Setup

RelComp(Needed:Account)

Call Proceeding

Call Proceeding

Figure I.11/H.460.1. Conditions:
Initiating endpoint does not support framework, or has no features
Far endpoint needs Account feature
Unsuccessful

Description: In Figure I.11 the endpoint initiates a call to an endpoint that requires an account feature to be specified. As the calling endpoint did not indicate that it supports the account feature, the far endpoint clears the call.

[image: image14.wmf]Setup(Support:Account)

Alerting(Needed:Account)

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Support:Account)

Alerting(Needed:Account)

Setup(Support:Account)

Alerting(Needed:Account)

Call

Proceeding

Call

Proceeding

Call

Proceeding

Figure I.12/H.460.1. Conditions:
Initiating endpoint supports Account feature
Far endpoint needs Account feature
Successful

Description: Figure I.12 shows a case in which the calling endpoint indicates that it supports the account feature. The called endpoint needs this feature, and as support for the feature is indicated in the Setup message, it is able to accept the call.

[image: image15.wmf]Setup()

Alerting()

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup()

Alerting()

Setup(Support:Account)

Alerting(Needed:Account)

Call

Proceeding

Call

Proceeding

Call

Proceeding

Figure I.13/H.460.1: Conditions:
Initiating endpoint does not support Account feature
Second gatekeeper supports Account feature
Far endpoint needs Account feature
Successful

Description: Figure I.13 shows a gatekeeper adding its own supported feature set. It is similar to the previous example. Again the called endpoint needs the Account feature, but the account feature is not signalled by the originating endpoint. In this case the last gatekeeper knows that it is necessary to support the Account feature for the call to be accepted by the terminating endpoint, so it indicates that it supports this feature. As the Account feature is supported, the called endpoint is able to accept the call.

[image: image16.wmf]Setup(Desired:DPNSS,

Support:Account)

Alerting(Supported:DPNSS,

450Proxy)

Gatekeeper

Gatekeeper

Endpoint

Setup(Desired:DPNSS,

Support:Account)

Alerting(Supported:DPNSS)

Setup(Desired:DPNSS,

Support:Account)

Alerting(Supported:DPNSS)

Call Proceeding

Call Proceeding

Call Proceeding

Endpoint

Figure I.14/H.460.1. Conditions:
Initiating endpoint would like DPNSS feature, but does not need it. The initiating endpoint also supports the Account feature.
Far endpoint supports the DPNSS feature.
First gatekeeper supports 450Proxy feature and declares it, even though its not asked for.
Successful

Description: In Figure I.14, the calling endpoint desires the DPNSS feature, but does not need it. The called endpoint supports the DPNSS feature, and therefore signals this in its ALERTING reply. (NOTE: in this case the first gatekeeper adds in signalling support for the 450Proxy feature even though it was not asked for. This is legitimate, and is typically the easiest way to implement indicating supported features.)

[image: image17.wmf]Setup(Desired:DPNSS,

Support:Account)

Alerting(450Proxy)

Gatekeeper

Gatekeeper

Endpoint

Setup(Desired:DPNSS,

Support:Account)

Alerting

Setup(Desired:DPNSS,

Support:Account)

Alerting

Call Proceeding

Call Proceeding

Call Proceeding

Endpoint

Figure I.15/H.460.1. Conditions:
Initiating endpoint would like DPNSS feature, but does not need it. The initiating endpoint also supports the Account feature.
Far endpoint does NOT support the DPNSS feature.
First gatekeeper supports 450Proxy feature and declares it, even though its not asked for.
Successful

Description: The case shown in Figure I.15 is a similar scenario to Figure I.14, except that in this case the called endpoint does not support the DPNSS feature. However, the call can still proceed as it is only a desired feature. The calling endpoint knows that the DPNSS feature is not supported because it is not indicated in the ALERTING message that comes back. (NOTE: in this case the first gatekeeper adds in signalling support for the 450Proxy feature even though it was not asked for. This is legitimate, and is typically the easiest way to implement indicating supported features.)

[image: image18.wmf]Setup(Needed:DPNSS

450Proxy,

Support:Account)

Alerting(Supported:DPNSS,

450Proxy)

Endpoint

Gatekeeper

Gatekeeper

Endpoint

Setup(Needed:DPNSS,

Support:Account)

Alerting(Supported:DPNSS)

Setup(Needed:DPNSS,

Support:Account)

Alerting(Supported:DPNSS)

Call Proceeding

Call Proceeding

Call Proceeding

Figure I.16/H.460.1.

A Combination of the Negotiation Elements

Description: Finally, Figure I.16 illustrates a number of aspects of the call signalling negotiation mechanism operating together. The originating endpoint needs the DPNSS feature in the remote endpoint, and the 450Proxy feature in its local gatekeeper. It also signals support for the Account feature. The local gatekeeper can implement the 450Proxy feature, and so removes the 450Proxy needed feature from the message before passing it on. The remote endpoint observes that the DPNSS feature is needed and it supports it. It responds to the call by sending an ALERTING message, indicating that it supports the DPNSS feature. When the message gets to the originating endpoint’s local gatekeeper, it signals that it supports the requested 450Proxy feature by adding this as a supported feature to the ALERTING message. The originating endpoint knows that the two features it needs are supported as it sees both of them advertised in the ALERTING message that it receives.

Bibliography

The following citations are for informative purposes only and do NOT constitute provisions of this recommendation.

· ITU-T Recommendation X.680 (1997), Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation.

·
· ITU-T Recommendation X.681 (1997), Information technology – Abstract Syntax Notation One (ASN.1): Information object specification.

· ITU-T Recommendation X.691 (1997), Information technology – ASN.1 encoding rules – Specification of Packed Encoding Rules (PER).

· IETF RFC-2234, November 1997, Augmented BNF for Syntax Specifications: ABNF.

· IETF RFC-2543, March 1999, SIP: Session Initiation Protocol.

· IETF RFC-2279, January 1998, UTF-8, a transformation format of ISO 10646.

· W3C REC-xml, October 2000, Extensible Markup Language (XML) 1.0 (Second Edition).

* Contact:
Pete Cordell
Tech-Know-Ware Ltd
P.O. Box 30, Ipswich, IP5 2WY, UK
Tel:
+44 1473 635863

Fax:

E-mail:
pete@tech-know-ware.com

D:\Pete\Work\H460-1-v6-Geneva-3.doc
07.02.02

D:\Pete\Work\H460-1-v6-Geneva-3.doc
07.02.02

_1019397213.vsd

_1019402767.vsd

_1049729019.vsd

_1059900907.vsd

_1059912500.vsd

_1059900789.vsd

_1019567925.vsd

_1019567926.vsd

_1019402852.vsd

_1019402880.vsd

_1019402825.vsd

_1019402649.vsd

_1019402737.vsd

_1019397249.vsd

_1019397122.vsd

_1019397177.vsd

_1019397079.vsd

