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Appendix 1  

 

Clock Skew Model 1 

 

Steven D. Kugelmass, Kenneth Steiglitz [KUG-88] 

 

 

1. Introduction 

 

The accumulation of clock skew, the differences in arrival times of signal in digital 

systems with a central clock, is one of the factors that limit the speed in these systems.  

 

These authors present a probabilistic model for the accumulation of clock skew in 

synchronous systems. Using this model, it’s possible to estimate upper bounds for 

expected clock skew between processing elements in a processor array, and it’s 

variance, in tree distribution systems with N synchronously clocked processing 

elements. 

 

These results can be applied to two specific models for clock distributions: 

 

• The first, metric-free model, the skew is in a buffer stage is Gaussian with a 

variance independent of wire length. In this case, the upper bound on skew 

grows as Θ(ln3/2 N) for a system with N processing elements. 

 

• The second, metric model, is intended to reflect VLSI constraints: the clock 

skew in a stage is Gaussian with a variance proportional to wire length. In this 

case the upper bound on expected skew is ( )Nln NΘ  for a system with N 

processors.  
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Thus the probabilistic model is more optimistic than the deterministic summation 

model of Fisher and Kung [FIS-85], which predict a clock skew Θ(N) in this case, and 

is also consistent with their lower bound of ( )NΩ  for planar embeddings. Fisher and 

Kung’s model ignore a fundamental property of clock skew: its origins in the random 

variations of propagation time through buffers and wires. 

 

 

2. General model of signal distribution 

 

A global signal, such as clock, is distributed throughout a processing system by a 

signal distribution system. This, is composed of a number buffers (amplifiers) and wires 

which may be organized in a number of different ways. Two common structures are a 

bus and a tree. 

 

A clock distribution system can be represented by a graph. It has a single 

distinguished vertex called the source. This is the origin of the global signal, and it’s the 

only input to the distribution system. This distribution system can have multiple 

destinations, but for practical reasons, there is exactly one path from the source to each 

destination, that we are going to call processing elements (PE). PEs may have their own 

internal signal distribution system. This internals systems can be modelled in a similar 

manner to the global signal distribution system.  

 

Each buffer and wire in the clock distribution system propagates and delays its 

incoming signal. Therefore, it’s natural to associate every delay element in the signal 

distribution system, either a buffer or a wire, with a random variable, dj. The value of 

the random variable gives the delay contribution of that element. The delay at any point 

is a real random variable, which is the sum of all the random variables along the path 

from the source to that point. 

 

These definitions constitute de essence of the model. They make it very simple. But 

extremely general, and allow one to model any clock distribution system. Geometry can 

be incorporated into the model by attaching an appropriate probability density function 

to wire delays. There is also the freedom to analyze as much or as little as desired by 
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creating simplified models, in which buffer delays or wire delays can be ignored 

entirely.  

 

The primary interest is the skew, the distribution of arrival times of a particular 

clock pulse to al PEs that communicate. Because of the model is probabilistic, it’s not 

possible to give an expression for the worst case skew, but we derive an expression for 

the expected maximum skew by assuming that all PEs communicate. 

 

We haven’t made any mention of any particular probability density function. The 

total delay through the distribution system is the sum of a number of random variables. 

In many cases, it quickly converges to a normal distribution, by the Central Limit 

Theorem. That’s why, in the case of the skew computations, the actual distributions 

attached to buffers and wires are usually relatively unimportant. 

 

The arrival times of a signal to the N PEs constitute a random sample of size N. 

From this sample, find the difference between the largest of them, Amax, and the 

smallest, Amin. The random variable R= Amax - Amin is called range of the sample. The 

range is equivalent to the skew in the signal distribution system.  

 

 

3. Analysis and upper bounds 

 

There is a lot of literature that describe techniques to compute the expected range of 

a set of independent identically distributed (iid) random variables. However, little is 

described about the case when variables are dependent, as they are in a clock tree. 

Fortunately, it is possible to the statistics of iid variables to predict an upper bound on 

the statistics of the dependent variables. The relationship is given by the following 

theorem: 

 

Theorem 1: “The expected range of a set of random variables, which are 

dependent because they are sums of overlapping variables, is no greater than the 

expected range of the corresponding set of independent random variables”. 
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We define yi,, i=1,2,…,N as iid real random variables, with N=kn, and σj, j=1,2,..,n 

as n disjoint subsets of different yi, each of cardinality k. Now, we define τi similarly, 

with k distinct elements each, except that they are not necessarily disjoint. Define the 

corresponding sums of the yi, by: 

,
j j

j j
y y

s y t y
σ τ∈ ∈

= =∑ ∑  

 

The theorem 1 demonstrates that the expected range of the sj dominates the 

expected range of the tj, and so any upper bound for the first also holds for the second. 

It’s demonstrated using the following lemmas.  

 

Lemma 1: “If F A(x) and FB(x) are the probability distribution function for random 

variables A and B, and we suppose that FA(x) and FB(x) are differentiable and A and B 

have finite means and variances. Then, if FA(x) ≥ FB(x) for all, then E(A) ≤ E(B)”.  

 

Lemma 2: “For any α and β, without any restriction in them, and any continuous 

probability density P: ( ) ( )|P y y P yα β α≤ ≤ ≥ ≤ . This lemma expresses that if y ≤ β, 

then y ≤ α”. 

 

Now that we have demonstrated this theorem, any bound for iid variables is an 

upper bound for the variables that arises in the clock distribution system model. 

 

At this point we are going to assume that the arrival times are Gaussian, motivated 

by the Central Limit Theorem. Although no closed-form expression is known for the 

expected value and the variance of the range of N iid Gaussian distributed random 

variables, it is possible to obtain asymptotic expressions. This is shown by the following 

theorem. 

 

Theorem 2: “Let xi, i=1,2,…N be random samples from an n(µ,σ2) normal 

distribution, and let R = xmax - xmin be the difference of the largest and smallest xi. Then 

the expected value of R is asymptotically: 
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where C ≈ 0.5772 is Euler constant. The variance of R is given by: 
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Equation (1) is therefore asymptotic upper bound on the expected skew in a clock 

distribution tree with N leaves. 

 

 

4. Examples 

 

The model is applied to two different global signal distribution systems. The 

examples represent what it’s considered to be common, typical clock distribution 

systems, but they are not intended to represent the full scope of all possibilities. 

 

4.1. Metric-free tree 

 

The first example is a metric-free tree. This type of topology could be used to 

implement a large-scale distribution system, which would provide a clock to chips on a 

board or to boards in a system. It doesn’t constrain the circuit to be planar, so it’s 

possible to equalize the lengths of all the wires in the tree. Therefore, every wire has the 

same probability distribution for delay, which can be lumped with the delay of the 

buffer that follows it. This results in a model of a tree of buffers without wires. 

 

The root of the tree (node A) is the source of the signal, the PEs are placed at the 

leaves (nodes M-Z), and the intervening levels consist of buffers and wires. Figure 1 

represents the tree: 
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Figure 1: Clock distribution tree. 

 

In Figure 1, internal nodes are buffers, which retransmit the clock signal. The leaf 

nodes of the tree are the PEs that communicates among them. Lines connecting nodes of 

the clock tree represent wires that conduct the clock signal to all the PEs. 

 

The delay through a buffer of the clock distribution tree can be modelled as a real 

random variable di, The arrival time of the clock signal to any PE is the sum of the 

delays along the path from the root of the tree to the PE. The buffers in this metric-free 

model cause all the delays. The effect of a wire is absorbed by the line effect of  the 

buffer that follows it. The arrival time at leaf i, Ai, is therefore the random variable: 

 

i jA d=∑ , where the dj lie on the path from the root to the leaf i. 

 

In order to apply theorem 2, we must estimate the underlying distribution of the Ai. 

 

Assuming that there are N PEs, each Ai is the sum of log2N dj’s and that each dj has 

mean µb and variance σb
2. By our Gaussian assumption, the Ai have the distribution 

n(µblog2N,σb
2log2

2N). Applying theorem 2 with distribution, we find that the expected 

skew is: 
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The variance of the skew is: 
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which is a constant when N → ∞. 

 

The following simulations corroborate the asymptotic skew results. Figure 2 shows 

the asymptotic curve of E[Skew], with dashed line. The solid line represents the result 

of the Monte Carlo simulation after 100 trials. It shows that the bound is relatively tight, 

despite the fact that dependence between variables is ignored in the equation of 

E[Skew]. The gap between the asymptote and simulation results decreases steadily from 

about 20% for N=22 to about 10% for N=214. 

 

 

Figure 2: Metric-free simulations. 

 

Even for trees of small depth, the expected range in both cases is nearly identical. 

This is due to the rapid convergence of the sums of random variables to a normal 

distribution. 

 

The explicit inclusion of wire delays into the model (not to include wire delays with 

buffer delays) does not significantly modify the results. Wires can be considered to 

contribute an additional random delay at each level of the tree. Assuming that wire 

delays are distributed similarly to the buffer delays, the effect is to increase the variance 
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of the variance of the distribution of arrival times by a constant factor. This doesn’t alter 

the asymptotic behaviour of skew. 

 

 

4.2. Metric tree 

 

The second example is a metric tree. This is the type of system that is typical of 

systems described for VLSI. The central assumption of this topology is that circuit must 

be embedded in the plane. If the embedding is to be area efficient, then the wires that 

connect buffers cannot be the same length everywhere. The delay through a wire 

therefore depends its location in he tree, and cannot be lumped with a buffer delay. A 

common tree of this type is the H-tree (Figure 3). 

 

 

Figure 3: H-tree clock distribution system. 

 

There are two distinct views of the effects of increasing system size (number of 

PEs) under the metric assumption. The first is to assume that a tree with an arbitrary 

number of leaves can be embedded in the fixed area of the integrated circuit. The 

alternative to this view sets a lower limit on the size of the smallest feature: in this case 

the size of a wire at the tree’s leaves. Each preceding level is progressively larger (to 

avoid reflections in the wires) and the area of the entire clock tree grows with increasing 

system size. This view ignores the effects of shrinking feature size but its compatible 

with increases in this chip die size. We are going to adopt this second point of view. 
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Now we assume that buffer delay, dj, is n(µb,σb

2). For this analysis we will also 

assume that wire delay, wj, is Gaussian distributed with a mean value and a variance 

proportional to its length. The linear relationship for the variance can be justified by 

considering a long wire to be equivalent to two shorter wires placed end to end. The 

propagation delay of the long wire is equal to the sum of the propagation delays of the 

two shorter wires. The expected values add, as do the variances because the delays of he 

short wires are independent. 

 

The wire delay at leaves of the tree is n(µw,σw
2) distributed. Because wire length 

doubles at each higher level of the tree, the distribution of wj can be written as function 

of the depth, d, of the wire. We find that wj, is 2
2,

2 2w wd d

N N
n µ σ
       

, where 1 ≤ d ≤ log2N and 

µw and σw
2 are the starting wire (lowest level) time delay mean and variance.  

 

The total delay, Ai, is the sum of log2N buffers delay and the sum delays from each 

level of the tree. In a H-tree, the root to leave distance, starting with a unit length at 

leaves, follows geometric series ( )N N
1+1+2+2+4+4+...+ 2 1

2 2
N

 + = −   
. The total delay, Ai, 

therefore has the distribution:  ( ) ( )( )2
2 2 2

2 2log 2 1 , log 2 1b w b wn N N N Nµ µ σ σ + − + −  
. 

 

As N → ∞, the linear (wire) term dominates. The expected skew is therefore: 
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and the variance is given by: 

 

[ ] 2 22 1

ln 6 log
w N

Var Skew O
N N

σ π   = +       (6) 
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Next Figure 4 shows the comparison of the H-tree asymptotic bound (dashed line) 

an Monte Carlo simulations (solid line) after 100 trials. In this case, the bound is not as 

tight as in the metric-free case, because the shared variables, representing deviation 

from the independence assumption, are near the root of the tree, where the wire lengths 

are longer. 

 

Figure 2: Metric simulations. 

 

 

4.3. Mistake probability 

 

It’s possible to give an estimate on the probability that the sample value of the skew 

is outside a certain range. Assume that X is a random variable with real mean µ and 

variance σ2. Then, using the one-sided Chebyshev inequality, we can predict un upper 

bound on the probability of exceeding the mean skew by an amount a:  

 

2
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Now let a=αµ, where α is the fractional deviation from the expected value of skew. 

Then, using the estimate, in both the metric and metric-free case, we can have an 

estimate of an upper bound as N → ∞: 
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5. Calculation 

 

Now, we are going to show how to calculate the parameters necessaries to apply de 

model. 

 

5.1. Metric-free tree 

 

In this model, I need the parameter σb
2, that is the delay variance through a buffer of 

the clock distribution tree (effect of the wire is absorbed by effect of the buffer). 

 

Using Sakurai’s model for interconnection delays, the delay of a stage composed of 

a wire interconnecting two buffers (inverters) is: 

 

( )Delay int int 0 0 0 int int 0T =1.02 C 2.30 C C CR R R R+ + +   (9) 

 

where Rint and Cint are the total resistance and capacitance of the interconnecting wire, 

R0 is the on-resistance of the driving transistor, and C0 is the input capacitance of the 

driving inverter. 
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 (10) 

 

Here, Lint is the length of the wire at the last stage of the H-tree. 

 

We are going to consider the following variables to calculate Tdelay:  

 

- VT: threshold voltage. 

- tox: gate oxide thickness. 

- Leff: transistors effective length. 

- VDD: power supply voltage. 

- TILD: interlevel dielectric thickness. 

- Wint: wire width variation. 

- tint: wire thickness variation. 
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 We also consider them independent. Therefore, variance of Tdelay (σb
2) can be 

determined in terms of variances of these independent random variables.  
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where: 
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5.2. Metric tree 

 

In the second model, we need the parameter σw
2 that is the delay variance through a 

wire of the clock distribution tree. Buffer delay is not necessary to be taken into account 

because, in this model, the wire effect dominates. 

 

Using Sakurai’s model for interconnection delays, the delay of a stage composed of 

a wire interconnecting two buffers (inverters) is: 
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( )Delay int int 0 0 0 int int 0T =1.02 C 2.30 C C CR R R R+ + +   (13) 

 

where Rint and Cint are the total resistance and capacitance of the interconnecting wire, 

R0 is the on-resistance of the driving transistor, and C0 is the input capacitance of the 

driven inverter. 
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Here, Lint is the length of the wire at the last stage of the H-tree. 

 

We are going to consider the following variables (Only the variables that affect to 

Rint and Cint, because we only consider the wire’s delay) to calculate Tdelay:  

 

- TILD: interlevel dielectric thickness. 

- Wint: wire width variation. 

- tint: wire thickness variation. 

 

 We also consider them independent. Therefore, variance of Tdelay can be determined 

in terms of variances of these independent random variables.  
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6. Conclusions 

 

• The model is probabilistic. 

 

• It give us an estimation of upper bounds for expected clock skew in tree 

distribution systems with N synchronously clocked processing elements. 

 

• Three basic assumptions in our model: 

 

- The paths from the clock source to the processing elements are identical, in 

the sense that the paths are equal of length, contain the same number of wires 

and buffer stages, and equally loaded. 

 

- The clock arrival times are random variables, and are the sums of uncertain 

independent delays through many wires and buffers. By the Central Limit 

Theorem, the arrival time of clock signals at processors can be modelled 

asymptotically as a Gaussian random variable. 

 

- For the purpose of arriving at an upper bound on clock skew that is 

independent of topology, we make the additional assumption that any 

processor can communicate with any other.  

 

• Results are applied to two different cases: 

 

- Metric-free model: Total delay in each buffer stage is Gaussian with a 

variance independent of stage number. Upper bound grows as Θ(log N). 

 

- Metric model: Clock delay in a stage is Gaussian with a variance 

proportional to wire length. H-tree case. Upper bound grows ( )Nlog NΘ . 

 

• To apply the model it’s necessary to know: 
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- Metric-free model 

- N: Number of processing elements. 

- σb
2: Delay variance through a buffer of the clock distribution tree (effect 

of the wire is absorbed by effect of the buffer). 

 

- Metric model 

- N: Number of processing elements. 

- σw
2: Delay variance through a wire (effect of the buffers is not taken into 

account). 

 

• We can calculate an upper bound of the clock skew for a H-tree clock 

distribution network taking into account the buffer delay. It is very 

recommendable, because the model doesn’t consider a real case, where to 

increase the number of levels doesn’t imply that the die size increases. To 

increase  the number of levels supposes that all the branches are shorter, so their 

delay is reduced. It makes no sense the metric-free supposition that when N → 

∞, the wire term dominates.  

 

In this case, including buffer delays, the upper bound clock skew expression 

would be:  
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Now, to calculate σw
2, we have to calculate the variance of TDelay as function of 

buffer parameter variations (VT, tox,, Leff, and VDD). To compute this variations, 

we do in the same way that in the metric-free model (equations 12). 

 

• Parameters we need to know: 

 

- Interconnection resistance: Rint 

- Interconnection capacitance: Cint 

- On-resistance of the driving transistor: R0 
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- Input capacitance of the driving inverter: C0 

- Threshold voltage of inverters: VT 

- Power supply voltage: VDD 

 

- Threshold voltage deviation (in %): σVT 

- Power supply voltage deviation (in %): σVDD 

- Gate oxide thickness deviation (in %): σtox 

- Effective channel length deviation (in %): σLeff 

- ILD thickness deviation (in %): σTILD 

- Wire width deviation (in %): σwint 

- Wire thickness deviation (in %): σtint  

 

- Number of processing elements: N 

- Lowest level branch length: Lint 


