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Appendix 1

Clock Skew M odel 1

Steven D. Kugemass, Kenneth Steiglitz [K UG-88]

1. Introduction

The accumulation of clock skew, the differencearnval times of signal in digital
systems with a central clock, is one of the factbas limit the speed in these systems.

These authors present a probabilistic model forat®@imulation of clock skew in
synchronous systems. Using this model, it's posstbl estimate upper bounds for
expected clock skew between processing elementa processor array, and it's
variance, in tree distribution systems witth synchronously clocked processing

elements.
These results can be applied to two specific moidelslock distributions:

e The first, metric-freemodel, the skew is in a buffer stage is Gaussiah wi
variance independent of wire length. In this cabke, upper bound on skew

3/2

grows as?(In”“ N) for a system witiN processing elements.

¢ The secondmetric model, is intended to reflect VLSI constraints: ttleck

skew in a stage is Gaussian with a variance prigp@itto wire length. In this

case the upper bound on expected skeWD(is'NIn N) for a system withN

processors.
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Thus the probabilistic model is more optimistic rthize deterministic summation
model of Fisher and Kung [FIS-85], which prediatlack skew®(N) in this case, and

is also consistent with their lower bound @(m) for planar embeddings. Fisher and

Kung’s model ignore a fundamental property of cle&lew: its origins in the random
variations of propagation time through buffers ancs.

2. General model of signal distribution

A global signal, such as clock, is distributed tlgbout a processing system by a
signal distribution system. This, is composed atimmber buffers (amplifiers) and wires
which may be organized in a number of different svajivo common structures are a
bus and a tree.

A clock distribution system can be represented bgraph. It has a single
distinguished vertex called tlseurce This is the origin of the global signal, and itf'®
only input to the distribution system. This distiion system can have multiple
destinations, but for practical reasons, therexa#y one path from the source to each
destination, that we are going to galbcessing elemen{PE). PEs may have their own
internal signal distribution system. This internajstems can be modelled in a similar
manner to the global signal distribution system.

Each buffer and wire in the clock distribution gyt propagates and delays its
incoming signal. Therefore, it's natural to assteciavery delay element in the signal
distribution system, either a buffer or a wire,lwé random variable,.dThe value of
the random variable gives the delay contributiothat element. The delay at any point
is a real random variable, which is the sum otladl random variables along the path

from the source to that point.

These definitions constitute de essence of the mdtley make it very simple. But
extremely general, and allow one to model any clibskibution system. Geometry can
be incorporated into the model by attaching an @mte probability density function

to wire delays. There is also the freedom to amaz much or as little as desired by
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creating simplified models, in which buffer delags wire delays can be ignored

entirely.

The primary interest is the skew, the distributminarrival times of a particular
clock pulse to al PEs that communicate. Becausbeomodel is probabilistic, it's not
possible to give an expression for the worst casa sbut we derive an expression for
the expected maximum skew by assuming that alld®&snunicate.

We haven't made any mention of any particular pbditg density function. The
total delay through the distribution system is shen of a number of random variables.
In many cases, it quickly converges to a normalribigtion, by the Central Limit
Theorem. That's why, in the case of the skew coafmrs, the actual distributions

attached to buffers and wires are usually relagiveimportant.

The arrival times of a signal to ti¢ PEs constitute a random sample of dize
From this sample, find the difference between twgdst of themAna, and the
smallest,Amin. The random variabl®= Anax- Anin is calledrange of the sample. The

range is equivalent to the skew in the signal histion system.

3. Analysisand upper bounds

There is a lot of literature that describe techag&to compute the expected range of
a set of independent identically distributed (irdpdom variables. However, little is
described about the case when variables are demerate they are in a clock tree.
Fortunately, it is possible to the statistics of viariables to predict an upper bound on
the statistics of the dependent variables. Thetioelship is given by the following

theorem:

Theorem 1. “The expected range of a set of random variablebjch are
dependent because they are sums of overlappin@blaes, is no greater than the
expected range of the corresponding set of indegr@nm@andom variables”.
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We definey;,, i=1,2,...,Nas iid real random variables, wiN¥kn, andg;, j=1,2,..,n
asn disjoint subsets of differer, each of cardinalit)k. Now, we definer; similarly,
with k distinct elements each, except that they are aogéssarily disjoint. Define the

corresponding sums of tlyg by:

5=V t=>y

yeo Yer;

The theorem 1 demonstrates thahe expected range of the s dominates the
expected range of thet;, and so any upper bound for the first also hatdgHe second.

It's demonstrated using the following lemmas.

Lemma 1: “If F A(x) and Fg(X) are the probability distribution function foandom
variables A and B, and we suppose thaixJFand Fs(x) are differentiable and A and B
have finite means and variances. Then (k> Fg(x) for all, then E(AX E(B)".

Lemma 2: “For any o and g, without any restriction in them, and any contingo
probability density P:P(y<ea|y< )= P( y<a). This lemma expresses that iy,

then y<a”.

Now that we have demonstrated this theorem, anyddar iid variables is an

upper bound for the variables that arises in thekctlistribution system model.

At this point we are going to assume that the attivmes are Gaussian, motivated
by the Central Limit Theorem. Although no closednfioexpression is known for the
expected value and the variance of the range oidNsaussian distributed random
variables, it is possible to obtain asymptotic eggions. This is shown by the following

theorem.

Theorem 2: “Let X, i=1,2,...N be random samples from anu,af) normal
distribution, and let R = xax- Xmin be the difference of the largest and smallesten

the expected value of R is asymptotically:
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E[R]=0'

4InN-InInN-=1In4r+ 2C 1
+ (1)

(2InN)" logN

where C= 0.5772 is Euler constant. The variance of R igigily:

o’ n? 1
Var| R| = ——— "
R INN 6 +O{I092N} @

Equation (1) is therefore asymptotic upper boundrenexpected skew in a clock
distribution tree with N leaves.

4. Examples

The model is applied to two different global sigrdistribution systems. The
examples represent what it's considered to be cammypical clock distribution
systems, but they are not intended to represerulihecope of all possibilities.

4.1.Metric-freetree

The first example is a metric-free tree. This tygfetopology could be used to
implement a large-scale distribution system, wictuld provide a clock to chips on a
board or to boards in a system. It doesn’'t constthe circuit to be planar, so it's
possible to equalize the lengths of all the wirethe tree. Therefore, every wire has the
same probability distribution for delay, which che lumped with the delay of the
buffer that follows it. This results in a modelafree of buffers without wires.

The root of the tree (nodk) is the source of the signal, the PEs are platdtea
leaves (noded/-Z), and the intervening levels consist of buffersl arres. Figure 1
represents the tree:
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Figure 1: Clock distribution tree.

In Figure 1, internal nodes are buffers, whichamesmit the clock signal. The leaf
nodes of the tree are the PEs that communicatesgathem. Lines connecting nodes of

the clock tree represent wires that conduct thekcéignal to all the PEs.

The delay through a buffer of the clock distributivee can be modelled as a real
random variabled, The arrival time of the clock signal to any PEthe sum of the
delays along the path from the root of the treth&éoPE. The buffers in this metric-free
model cause all the delays. The effect of a wiralisorbed by the line effect of the

buffer that follows it. The arrival time at leaf4;, is therefore the random variable:

A =>"d. , where the die on the path from the root to the leaf i.

In order to apply theorem 2, we must estimate tigedying distribution of thé\.

Assuming that there aMé PEs, eacld is the sum ofog;N d’'s and that eacl; has
meanu, and variancesy’. By our Gaussian assumption, tAehave the distribution
n(uplogoN oplogz*N). Applying theorem 2 with distribution, we find thete expected

skew is:

E[Ske/= o, log, 4InN—InInN—In47z+2C+C€ 1 ]

(2InN)" logN

4In"2 N
= o, ———— +lower order terms 3

> J2In2
_(In’2 N)
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The variance of the skew is:

2
Var[Skevy:sz%+C% 1 } (4)

log” N
which is a constant wha\— oo.

The following simulations corroborate the asymmatkew results. Figure 2 shows
the asymptotic curve d&[Skew],with dashed line. The solid line represents theltes
of the Monte Carlo simulation after 100 trialsshows that the bound is relatively tight,
despite the fact that dependence between variablagnored in the equation of
E[Skew] The gap between the asymptote and simulatioritsedecreases steadily from
about 20% foN=2° to about 10% foN=2"".
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Figure 2: Metric-free smulations.

Even for trees of small depth, the expected rangaoth cases is nearly identical.
This is due to the rapid convergence of the sumsanflom variables to a normal

distribution.

The explicit inclusion of wire delays into the mb@eot to include wire delays with
buffer delays) does not significantly modify thesutts. Wires can be considered to
contribute an additional random delay at each l@fethe tree. Assuming that wire

delays are distributed similarly to the buffer geslathe effect is to increase the variance
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of the variance of the distribution of arrival timby a constant factor. This doesn't alter

the asymptotic behaviour of skew.

4.2 Metrictree

The second example israetric tree. This is the type of system that is typichl o
systems described for VLSI. The central assumpiicthis topology is that circuit must
be embedded in the plane. If the embedding is tarba efficient, then the wires that
connect buffers cannot be the same length everywvhEne delay through a wire
therefore depends its location in he tree, and aahe lumped with a buffer delay. A

common tree of this type is the H-tree (Figure 3).

Clock
Generator

Figure 3: H-treeclock distribution system.

There are two distinct views of the effects of easing system size (number of
PEs) under the metric assumption. The first isgsuee that a tree with an arbitrary
number of leaves can be embedded in the fixed afehe integrated circuit. The
alternative to this view sets a lower limit on giee of the smallest feature: in this case
the size of a wire at the tree’s leaves. Each pliagelevel is progressively larger (to
avoid reflections in the wires) and the area ofeghtre clock tree grows with increasing
system size. This view ignores the effects of #mnigp feature size but its compatible
with increases in this chip die size. We are gamgdopt this second point of view.
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Now we assume that buffer delay, is N(up,on2). For this analysis we will also
assume that wire delayy, is Gaussian distributed with a mean value and@r@ance
proportional to its length. The linear relationslige the variance can be justified by
considering a long wire to be equivalent to tworskowires placed end to end. The
propagation delay of the long wire is equal to sben of the propagation delays of the
two shorter wires. The expected values add, abelwdriances because the delays of he

short wires are independent.

The wire delay at leaves of the treenigw,oy”) distributed. Because wire length
doubles at each higher level of the tree, theibistion ofw; can be written as function

of the depthd, of the wire. We find thatv, is n[# N (NJZJ, wherel <d <logN and
2d

W2d’ w

1w andey,? are the starting wire (lowest level) time delay mead variance.

The total delayA, is the sum ofog;N buffers delay and the sum delays from each
level of the tree. In a H-tree, the root to leavgtahce, starting with a unit length at

leaves, follows geometric serif N Jﬁjz BN The total delayA,

§+l+2+2+4+4+...+— +—
2 2

therefore has the distributiorh'(ﬂb log, N+ 11,2(VN~-1), o log N+O’i( AV N- :))j

As N — «, the linear (wire) term dominates. The expecteavskeherefore:

E[SkevyaWZ(\/_l\kl)[mannln N-In4r+ 2C+ Cé 1 j]

(2In N)% In N
= aw%(\/ﬁ—l)\/ln N + lower order terms (5)
=0(VNInN)

and the variance is given by:

Var[Skev]':MEE—Z}rC% ! } (6)

InN 6 log N
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Next Figure 4 shows the comparison of the H-trgem@sotic bound (dashed line)
an Monte Carlo simulations (solid line) after 1@@ls. In this case, the bound is not as
tight as in the metric-free case, because the dhaagables, representing deviation
from the independence assumption, are near theofdbe tree, where the wire lengths

are longer.
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Figure 2: Metric smulations.

4.3.Mistake probability

It's possible to give an estimate on the probapbitlitat the sample value of the skew
iS outside a certain range. Assume tKat a random variable with real meamnd
variances®. Then, using the one-sided Chebyshev inequalieycan predict un upper
bound on the probability of exceeding the mean skgwn amoun&:

2
(o2

c’+a

POX>(u+a)s—— (1)

Now leta=au, wherea is the fractional deviation from the expected eatd skew.
Then, using the estimate, in both the metric andricaee case, we can have an

estimate of an upper boundMs— «:

2
T

P(X> (u+d)s—y—B (8)
%+8a2InZN
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5. Calculation

Now, we are going to show how to calculate the metars necessaries to apply de

model.
5.1.Metric-freetree

In this model, | need the parametsgf, that is the delay variance through a buffer of
the clock distribution tree (effect of the wirealssorbed by effect of the buffer).

Using Sakurai’'s model for interconnection delay® delay of a stage composed of

a wire interconnecting two buffers (inverters) is:

TDeIayzl'ORint C|nt+ ZBQ R) Q+ R) Q‘n—i_ R]t (t;) (9)

whereRn; and Gy are the total resistance and capacitance of tleecomnecting wire,
Ry is the on-resistance of the driving transistod &g is the input capacitance of the

driving inverter.

L. /W P e W
~—  C=C. W o R= , = ——ot (10)
k /UC()X(VDD_VT) 0 > - B W, e b f To k

Here,Lin: is the length of the wire at the last stage oftiheee.

We are going to consider the following variablesafculateT geay;

-V threshold voltage.

- tox gate oxide thickness.

- Leg transistors effective length.

- Vpp: power supply voltage.

- Tuwp: interlevel dielectric thickness.
- Wiy wire width variation.

- 1o wire thickness variation.



Luis Manuel Santana Gallego 82
Investigation and simulation of the clock skew indarn integrated circuits

We also consider them independent. Thereforeanee of Tgeiay (6,2 can be
determined in terms of variances of these indepan@mdom variables.

GSZGTZ — % 05+ aTDeIay Gt§+ aTDelay GLZ
e av ! atox g a Leff °

(11)
+ aTDeIay 02 + aTDeIay 02 + aTDeIay 02 + aTDeIay 02
avDD Yoo aTILD Tio a Wnt o a Int Im
where:
T, oT,
Delay — Delay aR) — 2 ch + .nt) I%
aVT aR) aVr VDD - \4
T, oT, oT
Delay — Delay aR) + DelayaCD = 2 ch + mt)i—i_ qu R)+ Rﬂ)5
atOX aR) a tOX a Q) a tOX tOX tOX
oT, oT, oT
Delay — Delay aR) + Delay aCo :2 ch + |m) R) + 2@(%4‘ Rm)&
aLeff aR) aL\a-ff aCD a Leff Leff Leff
oT, oT,
Delay — Delay aR) _ 2 ch + .nt) I% (12)
aVDD aR) aVJD \éD - \(
aT, oT,
ooy _ ooy O _ (1 R + 2.30R) S
aTILD a(:lm a-ITLD TLD

oT, oT
Delay _ Delay al%nt + Delayaqm _ (1 Ox;mt +23C ) Rn (1 Omnt + 2. 30%) |nt
W, 5Rm oW, 0G, oW W Wi

0T,

Delay — aTDeIay aRm

atint al%nt a 1%nt

~ (1.0, + 2.3, )

int

5.2.M¢etrictree

In the second model, we need the paramgfethat is the delay variance through a
wire of the clock distribution tree. Buffer deles/not necessary to be taken into account
because, in this model, the wire effect dominates.

Using Sakurai’'s model for interconnection delay® dlelay of a stage composed of
a wire interconnecting two buffers (inverters) is:
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Delay_l Ommt |nt+ 2 BQ R) Q+ R) q1\ﬁt+ R]t Q) (13)

whereRn; and Ci,; are the total resistance and capacitance of tleecomnecting wire,
Ry is the on-resistance of the driving transistod &g is the input capacitance of the

driven inverter.

L /W
HCoy (VDD - VT)

b G=—— k (14)

J Co:Cox'W' ff 1 = 2
o R Wi b TLD

R, ~

Here,Lin: is the length of the wire at the last stage oftihzee.

We are going to consider the following variableslfOthe variables that affect to

Rint andCin, because we only consider the wire’s delay) toutateTgelay;

- Tup: interlevel dielectric thickness.
- W wire width variation.

- 1o wire thickness variation.

We also consider them independent. Thereforeanegi ofTgeiny can be determined

in terms of variances of these independent randanalies.

2 2
oot [Tt o[ Tem| o o[ T o7 a9
SN oW, ot

where:

OTouey 0T,
ey _ ooy O _ (1 R+ 23RS
aTILD oC a-IILD TLD

int
o1 o (10
Delay _ Delay aRm n Delayaqnt _(1 OZ;mt + 2.3@C ) R\t ( 1'ORnt+ 23%)&
oW, am oW, G O W, W
aTDeIay Delay aRm — (1 0x . + 2. 3@0) I%nt
o, aRm ot " i
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6. Conclusions

e« The model is probabilistic.

e It give us an estimation of upper bounds for expectlock skew in tree
distribution systems witN synchronously clocked processing elements.

e Three basic assumptions in our model:

- The paths from the clock source to the processmigents are identical, in
the sense that the paths are equal of length, iodhi&same number of wires
and buffer stages, and equally loaded.

- The clock arrival times are random variables, amdthe sums of uncertain
independent delays through many wires and bufigysthe Central Limit
Theorem, the arrival time of clock signals at psswgs can be modelled

asymptotically as a Gaussian random variable.

- For the purpose of arriving at an upper bound atlkclskew that is
independent of topology, we make the additionalulseggion that any
processor can communicate with any other.

e Results are applied to two different cases:

- Metric-free model: Total delay in each buffer stageGaussian with a
variance independent of stage number. Upper botowlsgas?(log N).

- Metric model: Clock delay in a stage is Gaussiarthwa variance

proportional to wire length. H-tree case. Uppermbgrowse)(w/\/ﬁlog N).

e To apply the model it’s necessary to know:
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E[Skev]':(ab log, N+o-W2(«/7N—1))

- Metric-free model
- N: Number of processing elements.
- ap% Delay variance through a buffer of the clock rilisttion tree (effect
of the wire is absorbed by effect of the buffer).

- Metric model
- N: Number of processing elements.

- oy Delay variance through a wire (effect of the budfis not taken into
account).

We can calculate an upper bound of the clock skew a H-tree clock
distribution network taking into account the buffefelay. It is very
recommendable, because the model doesn’t considealacase, where to
increase the number of levels doesn’t imply that the size increases. To
increase the number of levels supposes thatalbtanches are shorter, so their
delay is reduced. It makes no sense the metricsispposition that wheN —

o0, the wire term dominates.

In this case, including buffer delays, the uppeurb clock skew expression
would be:

(17)

4InN—InInN—In4r:+2C+ é l]
(2InN)’ InN

Now, to calculates,’, we have to calculate the variance Tfiay as function of
buffer parameter variationd/4, tox, Le, andVpp). To compute this variations,
we do in the same way that in the metric-free méelglations 12).

Parameters we need to know:
- Interconnection resistancR;;

- Interconnection capacitanc@i

- On-resistance of the driving transistBs:
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- Input capacitance of the driving invert€l;
- Threshold voltage of invertersy
- Power supply voltagé/pp

- Threshold voltage deviation (in Y@+

- Power supply voltage deviation (in %)ipp

- Gate oxide thickness deviation (in %x

- Effective channel length deviation (in %)<
- ILD thickness deviation (in %}mip

- Wire width deviation (in %)&wint

- Wire thickness deviation (in %diint

- Number of processing elemenks:
- Lowest level branch lengtlh;y



