7 APLICACIÓN DE LOS MODELOS FDH CENTRALIZADOS A LA REASIGNACIÓN DE CONTENEDORES DE VIDRIO EN EL PRINCIPADO DE ASTURIAS

El problema a resolver pretende maximizar la cantidad de vidrio recogido en el Principado de Asturias para su posterior reciclaje. Más concretamente, se considera la existencia de una Administración Central, que será la encargada de gestionar de forma eficiente el reparto de los contenedores de vidrio a los distintos municipios del Principado, en función de la necesidad de cada uno. Todo ello debe realizarse de forma óptima para conseguir obtener el mayor volumen posible de vidrio para reciclar. Se trata, por tanto, de un problema DEA Centralizado.

El conjunto de municipios serán las unidades productivas del problema que se pretende diseñar.

Los datos de entrada considerados son:

- El número de contenedores de vidrio que hay repartidos actualmente en los distintos municipios de Asturias.
- El número total de habitantes de cada municipio.
- El número de bares total que hay en cada uno de los pueblos.

La salida considerada es:

• El número de kilos de vidrio recogido en cada municipio.

Gráficamente, el problema sería el siguiente:

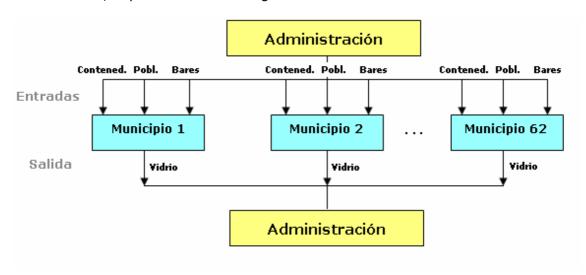


Ilustración 119: Representación del problema

Observamos que, tanto las entradas como las salidas del problema, son variables enteras, con lo que parece conveniente utilizar una tecnología FDH para su resolución.

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

Para esta aplicación, se va a resolver únicamente el modelo de orientación de salida, ya que lo que nos interesa, es conseguir el máximo volumen de vidrio posible.

De las entradas que hemos considerado, se deduce claramente que el número de contenedores será una variable centralizada, ya que la Administración podrá reubicar dichos contenedores como desee, en función de sus necesidades.

Por otro lado, el número de habitantes, será una variable tradicional no discrecional, ya que no podemos reubicar a la población. Del mismo modo, el número de bares de cada municipio, también se considerará una variable tradicional no discrecional.

Los datos considerados en nuestro problema se muestran en la siguiente tabla:

	DMII	OONE (IN)	DOD! 40 (IN)	D 4 D 5 0 (1)	VIDDIO (OUT)
	DMU	CONT.(IN)	POBLAC. (IN)	BARES (IN)	VIDRIO (OUT)
1	ALLER	16	16347	15	31940
2	AMIEVA	3	958	13	750
3	AVILES	204	85696	55	1444650
4	BIMENES	5	2285	6	250
5	BOAL	4	2720	10	1350
6	CABRALES	5	2393	68	5750
7	CANDAMO	3	2688	4	6750
8	CANGAS DE NARCEA	20	18110	47	37490
9	CANGAS DE ONIS	8	6285	104	15410
10	CARAVIA	3	577	7	500
11	CARREÑO	29	10533	32	127210
12	CASTRILLÓN	39	22361	41	159490
13	CASTROPOL	6	4547	26	12090
14	COAÑA	11	3846	11	7000
15	COLUNGA	6	4681	23	1120
16	CORVERA	52	16502	11	171850
17	CUDILLERO	15	6218	60	40250
18	DEGAÑA	7	1605	1	1000
19	FRANCO, EL	9	4193	11	21750
20	GIJON	557	264381	325	4458410
21	GOZON	28	11410	41	103700
22	GRADO	23	12051	20	54610
23	IBIAS	9	2307	4	2500
24	ILLAS	4	1225	0	16350
25	LANGREO	101	50597	21	418630
26	LAVIANA	39	15085	17	84820
27	LENA	20	14323	26	65380
28	VALDES	48	16073	71	119630
29	LLANERA	57	11407	20	139000
30	LLANES	32	13184	200	76200
31	MIERES	93	51423	46	240320
32	MORCIN	10	2933	1	17420
33	MUROS DE NALON	13	2497	5	11640
34	NAVA	7	5681	28	27290
35	NAVIA	28	9136	29	123020
36	NOREÑA	18	4207	6	101990

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

	DMU	CONT.(IN)	POBLAC. (IN)	BARES (IN)	VIDRIO (OUT)
37	ONIS	3	915	11	4750
38	OVIEDO	160	200049	292	1596850
39	PARRES	11	5574	26	25250
40	PEÑAMELLERA ALTA	3	783	21	3750
41	PEÑAMELLERA BAJA	2	1683	18	2360
42	PILOÑA	12	9215	75	24100
43	PONGA	4	788	15	3000
44	PRAVIA	14	9694	24	37030
45	PROAZA	3	960	2	500
46	REGUERAS, LA	5	2268	6	14750
47	RIBADEDEVA	3	1916	18	6750
48	RIBADESELLA	11	6295	71	51250
49	RIBERA DE ARRIBA	17	2095	2	34170
50	RIOSA	6	2663	6	20330
51	SALAS	11	7416	23	33940
52	S. MARTIN DEL REY AURELIO	38	22129	7	108430
53	S. TIRSO DE ABRES	3	675	3	500
54	STO. ADRIANO	2	357	1	250
55	SARIEGO	2	1452	1	2000
56	SIERO	129	46315	76	423860
57	SOTO DEL BARCO	4	4450	11	7000
58	TAPIA DE CASARIEGO	18	4455	14	23000
59	TARAMUNDI	7	975	15	1000
60	TINEO	17	13578	30	25590
61	VEGADEO	15	5030	12	46250
62	VILLAVICIOSA	28	14465	94	62840

Tabla 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio. Datos de entrada

Introduciendo estos datos en nuestra aplicación, obtenemos los resultados de la siguiente figura:

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

× N	Microsoft Excel - INDIb.xls								
:B)	Archivo Edición Ver Insertar Formato Herramientas Datos Ventana ?								
The second second	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐								
_	📴 🚉 🙋 🧭 🦄 🥱 🖄 🥦 🚱 🚱 🖟 🕒 🕒 🕒 🕒 🕒 🗀 🕒 🗀 🗀 🕶 Responder con cambios Terminar revisión								
	L64 ▼ f₂								
	А	В	C	D	Е	F			
1	Solucion optima								
2	50								
3	41								
4	3		Amplificacion radial de la suma de salidas	1.207451	:				
5	32								
6	3		Fitness	0.828191					
7	24								
8	53								
10	36 37								
11	10								
12	11								
13	12								
14	53								
15	50								
16	37								
17	11								
18	47								
19	32								
20	19								
21 22	20 53								
23	49	-							
24	40								
25	24								
26	12								
27	36								
28	36								
29	36								
30	29								
31 32	11 12								
33	32								
34	37								
35	34								
36	41								
37	36								
38	37								
39	38								
40	3								
41	40								
42 43	41 41								
44	43								
45	43 55								
46	45								
47	24								
48	47								
49	41								
50	49								

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

51	50			
52	51			
53	50			
54	53			
55	54			
56	55			
57	56			
58	40			
59	36			
60	50			
61	32			
62	61			
63	50			

Ilustración 120: Resultados obtenidos aplicando el método aproximado

Interpretando los resultados, se observa que la variable de amplificación radial de la suma de salidas gamma vale 1,207451, de donde se puede deducir que únicamente por cambiar la ubicación de los contenedores se podría obtener un aumento del 20% en la cantidad total de vidrio reciclado.

Esta sería la solución de nuestro problema, que posicionaría a todos los municipios en la frontera eficiente. Sin embargo, sabemos que en la realidad no es posible modificar el valor de la población, ni de los bares, ya que se tratan de entradas no discrecionales, por los que restauraremos dichos valores a los que teníamos inicialmente. Nuestra solución será otro punto (que ya no se encontrará en la frontera eficiente), pero que estará situado dentro de la tecnología FDH. Dicha solución mantendrá intactas las entradas de población y de bares, manteniendo la mejora del 20% conseguida en la salida.

Mostramos este hecho en la tabla mostrada en la página siguiente:

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

	PROYECCIÓN	CONTENED.	POBLACION	BARES	VIDRIO (OUT)	
1	50	6	2663	6	20330	
2	41	2	1683	18	2360	
3	3	204	85696	55	1444650	
4	32	93	51423	46	240320	
5	3	204	85696	55	1444650	
6	24	9	2307	4	2500	
7	53	3	675	3	500	
8	36	18	4207	6	101990	
9	37	3	915	11	4750	
10	10	3	577	7	500	
11	11	29	10533	32	127210	
12	12	39	22361	41	159490	
13	53	3	675	3	500	
14	50	6	2663	6	20330	
15	37	3	915	11	4750	
16	11	29	10533	32	127210	
17	47	3	1916	18	6750	
18	32	93	51423	46	240320	
19	19	9	4193	11	21750	
20	20	557	264381	325	4458410	
21	53	3	675	3	500	
22	49	17	2095	2	34170	
23	40	3	783	21	3750	
24	24	9	2307	4	2500	
25	12	39	22361	41	159490	
26	36	18	4207	6	101990	
27	36	18	4207	6	101990	
28	36	18	4207	6	101990	
29	29	57	11407	20	139000	
30	11	29	10533	32	127210	
31	12	39	22361	41	159490	
32	32	93	51423	46	240320	
33	37	3	915	11	4750	
34	34	7	5681	28	27290	
35	41	2	1683	18	2360	
36	36	18	4207	6	101990	
37	37	3	915	11	4750	
38	38	160	200049	292	1596850	
39	3	204	85696	55	1444650	
40	40	3	783	21	3750	
41	41	2	1683	18	2360	
42	41	2	1683	18	2360	
43	43	4	788	15	3000	
44	55	2	1452	1	2000	
45	45	3	960	2	500	
46	24	9	2307	4	2500	
47	47	3	1916	18	6750	
48	41	2	1683	18	2360	

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

_	PROYECCIÓN	CONTENED.	POBLACION	BARES	VIDRIO (OUT)
49	49	17	2095	2	34170
50	50	6	2663	6	20330
51	51	11	7416	23	33940
52	50	6	2663	6	20330
53	53	3	675	3	500
54	54	2	357	1	250
55	55	2	1452	1	2000
56	56	129	46315	76	423860
57	40	3	783	21	3750
58	36	18	4207	6	101990
59	50	6	2663	6	20330
60	32	93	51423	46	240320
61	61	15	5030	12	46250
62	50	6	2663	6	20330

Tabla 8: Solución ideal al problema de reasignación de contenedores de vidrio. No aplicable a la realidad

Restituyendo los valores iniciales de las entradas correspondientes al número de habitantes y a los bares de cada municipio, llegamos al resultado final que mostramos en la tabla de la página siguiente:

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

	PROYECCIÓN	CONTENED.	POBLACION	BARES	VIDRIO (OUT)
1	50	6	16347	15	20330
2	41	2	958	13	2360
3	3	204		55	1444650
	32		85696		
4		93	2285	6	240320
5	3 24	204	2720	10	1444650
6		9	2393	68	2500
7	53	3	2688	4	500
8	36	18	18110	47	101990
9	37	3	6285	104	4750
10	10	3	577	7	500
11	11	29	10533	32	127210
12	12	39	22361	41	159490
13	53	3	4547	26	500
14	50	6	3846	11	20330
15	37	3	4681	23	4750
16	11	29	16502	11	127210
17	47	3	6218	60	6750
18	32	93	1605	1	240320
19	19	9	4193	11	21750
20	20	557	264381	325	4458410
21	53	3	11410	41	500
22	49	17	12051	20	34170
23	40	3	2307	4	3750
24	24	9	1225	0	2500
25	12	39	50597	21	159490
26	36	18	15085	17	101990
27	36	18	14323	26	101990
28	36	18	16073	71	101990
29	29	57	11407	20	139000
30	11	29	13184	200	127210
31	12	39	51423	46	159490
32	32	93	2933	1	240320
33	37	3	2497	5	4750
34	34	7	5681	28	27290
35	41	2	9136	29	2360
36	36	18	4207	6	101990
37	37	3	915	11	4750
38	38	160	200049	292	1596850
39	3	204	5574	26	1444650
40	40	3	783	21	3750
41	41	2	1683	18	2360
42	41	2	9215	75	2360
43	43	4	788	15	3000
44	55	2	9694	24	2000
45	45	3	960	2	500
46	24	9	2268	6	2500
47	47	3	1916	18	6750
48	41	2	6295	71	2360

Capítulo 7: Aplicación de los modelos FDH Centralizados a la reasignación de contenedores de vidrio en el Principado de Asturias

_	PROYECCIÓN	CONTENED.	POBLACION	BARES	VIDRIO (OUT)
49	49	17	2095	2	34170
50	50	6	2663	6	20330
51	51	11	7416	23	33940
52	50	6	22129	7	20330
53	53	3	675	3	500
54	54	2	357	1	250
55	55	2	1452	1	2000
56	56	129	46315	76	423860
57	40	3	4450	11	3750
58	36	18	4455	14	101990
59	50	6	975	15	20330
60	32	93	13578	30	240320
61	61	15	5030	12	46250
62	50	6	14465	94	20330

Tabla 9: Solución real al problema de reasignación de contenedores de vidrio