
Chapter 4

Classification concepts

4.1 Introduction

The purpose of the classifier is assigning a label (in this case “depressed” or “non-

depressed”) to a data sample (eg. a human face). Automatic classification can

usually be split into two different phases, training and testing.

The first phase is the training of the classifier, where a set of labeled data samples

(the “training set”) is used to adjust the internal parameters of the underlying

classification algorithm. Once the training phase is complete, the algorithm with

the adjusted parameters can be used on new data samples to estimate or predict

the corresponding (theoretically unknown) class label. This latter set is called the

“testing set” in classification literature. It is common for the correct labels to be

known for both data-sets, being the testing set labels only used to assess classification

accuracy [4], although there are cases in which the classifier is used for labeling

completely unknown data.

For two-class classification problems, the training set is usually expressed as:

{(x1, y2), . . . , (xp, yp)} (4.1)

Where xi ∈ <n is the feature vector of a particular sample to be classified, and

yi ∈ {−1, 1} is the corresponding label, indicating class membership as a function

of its sign.

At least three crucial design choices can be distinguished: the choosing of ade-

quate training examples, the choosing of a representation for the data sample, and

the choosing of the classification algorithm. These three important points will be

discussed in the following sections.
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Figure 4.1: Classification overview.

4.1.1 Training set

In the training phase, the classifier “learns” its internal parameters based on the

input, which is a set of features extracted from a certain set of videos. For each

video sequence chosen as part of the training set, a set of features will be extracted.

These features will have a label associated, which in this case will mean if the features

themselves correspond to a depressed or non-depressed example.

In this particular case, the labeling of the videos is a very easy task. The de-

pressed or non-depressed status of the a patient in a given session is only related

to the Hamilton score associated to it (see Appendix A). However, there are other

cases in which this labeling process is very costly, both in time and resources, for

instance, when it is necessary to annotate the Action Units occurrences using the

Facial Action Coding System [14].

Once the video sequences have been labeled, good training examples must be

chosen. Examples that are too subtle (not noticeable in the extracted features) or

otherwise noisy will only “confuse” the classifier’s training algorithm, resulting in

worse parameters than if they had been excluded. This has lead us to choose sessions

where the patients are either very depressed or non-depressed (remitted subjects),

which reflects in the criterion adopted, explained in Section 2.2.3.

4.1.2 Data sample representation

The data sample to be classified (conceptually, a face) must be represented in a way

the classifying algorithm can handle. This is usually a real valued multidimensional

vector xi ∈ <n, the components of which are the features determined to carry

discriminative information.
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The problem is more complex than might appear. Since the number of examples

available for each class is limited, the chosen features might confuse the classifier if

the sampling of them that has been made in the training set is not representative

of the population of samples at large [8].

Therefore, one cannot input all imaginable features related to the problem at

hand to the classifier and expect good results. A previous feature selection step

must be carried out. This selection can be, strictly speaking, a selection (some of

the generated features are included, others are left out), or a transformation of the

original set.

There are a number of feature selection algorithms available. Most are based on

calculating some measure (eg. correlation, mutual information, classification per-

formance considering only this feature, etc.) between features and class labels and

selecting features given a threshold value for this measure, or on a transformation

of the original feature space which preserves only the discriminative information [1].

The transformations applied to the features are typically linear transformations,

for simplicity. The most popular methods are component analysis methods, such

as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and

variations. The transformation can usually be expressed as a projection into a differ-

ent basis, x̃ = BT · x with B ∈ <n×n′
transforming the n dimensional feature space

into n′, with n′ < n usually. In PCA, the matrix B minimizes the reconstruction

error for the training data (see Section 3.3.2). In LDA, B maximizes the variance

between classes while minimizing within class variance. If the values of B are lim-

ited to {0, 1}, with one non-zero value per column, a discrete feature selection is

obtained [6].

4.1.3 Choosing the classifier

Classification results have been published with almost all available classification

algorithms [17, 26]. The results obtained (and the applicability of each algorithm)

depends on the nature of the data to classify, which in this case depends on the

features chosen, and the video recording conditions of the database. Good results

have been reported on different data-sets (and different feature sets), especially in

the context of classification based on AAM tracked video sequences, with a Support

Vector Machine [21, 22], where results with more than 90% accuracy where reported

on the Cohn-Kanade posed expressions database. The SVMs are state-of-the-art

classification tools and are considered to be among the most versatile and efficient
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classification algorithms. SVMs will be, therefore, the algorithm of focus of this

project.

4.1.4 Cross validation

Once the classifier is chosen, a data representation has been found, and labeled

examples have been collected, the classifying and feature selection algorithms must

be trained and subsequently tested.

It is often the case that one does not have enough data available to do as thorough

an evaluation of the performance as one would wish (data collection is often costly).

One common way to mitigate the effect of having a small data-set and providing a

more reliable evaluation of the methods used is cross-validation. This is a training

and testing scheme where the training-testing cycle is run multiple times on different

subsets of the complete labeled data-set available to the researcher.

The general procedure is called K-fold cross-validation, which involves partition-

ing the complete data-set into K subsets. In each training-testing cycle, one subset

is used for testing while the remaining K-1 subsets are used as training information.

The procedure is repeated so that all the samples are found once in the testing set.

The subset size is chosen so that enough samples are available for the training step

and testing set in each cycle. Statistics of the performance across training-testing

cycles, such as mean error, can then be used to evaluate performance. Hyper-

parameters of the classification (such as the SVM C parameter, or the Gaussian

kernel σ, discussed in the next section) are also often tuned using a cross-validation

procedure [4].

In the case K is chosen to be the total numbers of samples available in the

database, in each of the cycles one single sample is used for the testing, while the

remaining ones are used for the training phase. This is the so-called leave one out

method.

4.2 SVM classification

4.2.1 Overview

SVMs are a linear (during testing) classification method which (during training)

searches for the maximum margin hyper-plane (in the feature space) which best sep-

arates the samples to be classified. The criteria to evaluate this “best” separation is
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due to Vapnik and Cortes [12], based on previous work on optimal hyper-plane clas-

sification from Vapnik: the idea is to maximize the distance to the hyper-plane (the

margin) of each of the closest samples of each class. Vapnik and Cortes introduce a

penalization term ξi for misclassified samples, for the non-separable case.

min
‖w‖

2
+ C

p∑
i=1

ξi such that

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , p

ξi ≥ 0, i = 1, . . . , p (4.2)
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Figure 4.2: SVM two class linear classification example on a 2D data-set. Left: The

contours show the margin (distance to the hyperplane, at 0). The arrows show the

support vectors. Right: Example of a non-linearly separable 2D data-set.

The parameters w and b, are determined by a quadratic programming optimiza-

tion on the training data. The parameter C (considered a hyper-parameter, i.e. a

parameter of the training process itself) must usually be determined empirically for

the data-set in question (typically, by some trial-and-error optimization scheme).

The LibSVM implementation [5] was used for all experiments.

4.2.2 Kernel methods

The linear separability restriction of this algorithm is usually overcome by trans-

forming the original feature space into a higher dimensional feature space where the

classes can (hopefully) be separated by a hyper-plane. This can be done efficiently by

employing the so-called “Kernel Trick”: substituting dot products in the algorithm’s



28 CHAPTER 4. CLASSIFICATION CONCEPTS

formulation with adequate kernel functions (generalized dot product functions in a

Hilbert space) [12].

As an intuitive explanation, a polynomial kernel will be used to separate the ex-

ample data-set (right) in Figure 4.2. The data-set is arranged in concentric circles,

where the distance to the origin is the most discriminant feature. One higher di-

mensional mapping where this data is linearly separable is the 3D space where each

2D point 〈u, v〉 is mapped to 〈u2, v2, uv〉. Since circles have u2 + v2 = c, concentric

circles describe lines in the first two coordinates of the new higher dimensional (3D,

in this case) space. This mapping is shown in Fig. 4.3 (left). In this space, a plane

that separates the two classes can easily be found.

For the purposes of actual computation, instead of mapping the data to a higher

dimensional space, the kernel trick involves finding an efficient expression for the

dot product in this higher dimensional space, preferably in terms of the original

components. The higher dimensional dot product in this example is:〈
u2

1, v
2
1, u1v1

〉 〈
u2

2, v
2
2, u2v2

〉
= (u1u2)

2 + (v1v2)
2 + 2u1v1u2v2 = (〈u1, v1〉 〈u2, v2〉)2

(4.3)

namely, the squared dot product in the original 2D space. This is called the kernel

function for this mapping; in this case, a polynomial kernel of degree 2. By express-

ing all computations of the SVM algorithm in terms of dot products of features, one

can incorporate any higher dimensional mapping by substituting the dot products

with an adequate kernel function.
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Figure 4.3: Polynomial SVM classification example on a 2D data-set. Left: The

original 2D data-set mapped to 3D. Right: The margin separation contours (distance

to the 3D optimal separating plane) reflected in the original 2D space.

Finding the kernel function that allows for linear separation of a particular data-
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set is not trivial, and proving that a certain function corresponds to a dot product in

some space is difficult too. Normally, only a set of the most popular kernels choices

is tried.

Among these, the exponential kernel (sometimes called Gaussian or radial basis

function kernel) is perhaps one of the most popular, where the kernel function is:

K (s1, s2) = exp

(
−‖s1 − s2‖2

2σ2

)
(4.4)

As can be seen in Eq. (4.4), the similarity measure induced by the kernel depends

on distance and the influence of the support vectors is modified by the parameter

σ. This parameter must usually be determined empirically.

4.3 Performance measures

4.3.1 Performance parameters

As mentioned in previous sections, hyper-parameters of the classification such as

the SVM C parameter, or the Gaussian kernel σ, are often tuned using a cross-

validation procedure [4]. Basically, the pair of C and σ which provide the best results

during the cross validation are chosen. The goodness of the result is measured in

the experiments by the accuracy, which is computed by taking into account the

following set of parameters: the true and false positive rates and the true and false

negative rates. The definition of all these terms is presented above:

• True positive rate (TPR) is the number of positives examples that have

been correctly classified over the total number of positive samples.

• False negative rate (FNR) is the number of positive examples that have

been incorrectly classified over the total number of positive samples.

• True negative rate (TNR) is the number of negative examples that have

been correctly classified over the total number of negative samples.

• False negative rate (FNR) is the number of negative examples that have

been incorrectly classified over the total number of negative samples.

• Accuracy in binary classification is the number of true positives plus the

number of true negatives over the total number of samples.
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Figure 4.4: Confusion matrix.

In addition to the above mentioned measures, another parameter is used as a

complement of the accuracy for the evaluation of the classification performance.

This is the parameter F, and it is a function of the precision and recall measures.

precision =
TPR

TPR + FPR
(4.5)

recall =
TPR

TPR + FNR
(4.6)

F =
2 · precision · recall

precision + recall
(4.7)

4.3.2 ROC curves

The parameters described in the previous section depend on the threshold value

used for classification, given by the SVM. To provide some independence from this

value, Receiver Operating Characteristic (ROC) curves are often used to display

classification results. This curve displays the False Positive Rate (FPR) against the

True Positive Rate (TPR), while sweeping all the possible values for the threshold

of the SVM.

Some examples of ROC curves are shown in Figure 4.3.2. The y-axis corresponds

to the TPR and the x-axis to the FPR. The sweeping begins in the right hand side of

the curve, setting the threshold lower than any output of the SVM. In this scenario,

every sample is classified to belong to the positive class (depressed) and the TPR

and FPR take their maximum value, 1. On the other hand, the sweeping ends when

the threshold is set to be higher than any output of the SVM, being all the samples

classified as negative (non-depressed) and the TPR and FPR taking their minimum

value, 0. The threshold chosen for the SVM as the optimum value, in other words,
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the value that gives us the maximum accuracy, can be visualized in the figure as the

point that maximizes the values of the pair (TPR, FPR).
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Figure 4.5: Examples of ROC curves.

A measure extracted from this curve is the area under it and its value is used

for measuring the performance of the classification experiment. An ideal curve has

area 1.

4.4 Normalization

4.4.1 Overview

A perfect tracking of the human face does not suffice. Since we are trying to build

a person independent classifier (or, as person independent as possible under the

constraint of limited training data) the correspondence between tracked features

in consecutive frames must be dealt with accurately. This is the reason why a

normalization is needed previous to the feature extraction procedure. Correctly

aligning, scaling, and rotating the shapes is what is meant by normalization.

One of the most important challenges of the normalization method is to be

able to separate the rigid and non-rigid components of the movement. While the

rigid deformation of the landmark points is of little interest (at least, in a first

approximation), the non-rigid deformations of the feature points will carry the bulk

of the discriminant information that will allow us to separate between the depressed
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and non-depressed class of subjects. As such, it is crucial to our purpose that

the facial normalization compensates as much of the rigid deformation (that is,

relative head position, rotation and gross scale [29]) as possible, while maintaining

the non-rigid deformations (the shape of the mouth, the position of the eyebrows,

etc.) intact. These motions are intimately coupled in the movement of the tracked

points, and separating them is not simple.

In a two dimensional alignment framework, it is common to model the rigid

transformation as an affine or similarity transformation applied to the non-rigid de-

formation basis of the AAM model. The AAM training and fitting process itself

typically incorporates a similarity transformation precisely meant to separate these

motions. While it is tempting to attempt classification based on the AAM parame-

ters directly (most of the rigid motion has been compensated for in the fitting process

and has shown promising results [22, 21]), the process of re-aligning the faces will

be tackled separately from the AAM fitting algorithm for several reasons. Firstly,

the AAM fitting algorithm minimizes a measure of error based on the likeness of

the modeled face to the actual video frame. Thus, the error function minimized

does not necessarily satisfy the requirements for classification, but only a goodness

of fit of the AAM model. Secondly, it depends entirely on the trained AAM model.

Depending on how the model was created, the shape variation basis will or will

not incorporate a certain amount of rigid variations which will be confused with

non-rigid motion. Thirdly, not using the AAM parameters directly gives a measure

of independence from the underlying tracking algorithm. Conceptually, a different

tracker could be used without drastically affecting the rest of the system.

In the following sections two alignment methods will be reviewed and compared:

the similarity transformation and the affine transformation.

4.4.2 Similarity transformation

The similarity transform is the simplest to be considered. It has four (4) parameters

to be optimized: scale, rotation, and two translational components. The deformation

it produces is minimal in comparison with other methods considered. This can be

both positive and negative: it does not excessively deform the shape of the face

(therefore preserving most of the information), but conversely, its descriptive power

is limited and cannot compensate for as much out of plane head motion as other

methods.

In the following, xi will be a position vector for a landmark point i in homoge-
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neous coordinates (padded with one to <3) and Xj ∈ <3×n will be a matrix with

xi as columns for the shape at frame j. The vector p will symbolize the underlying

parameters of the transformation used.

T s (p) =


a b tx

−b a ty

0 0 1

 (4.8)

4.4.3 Affine transformation

The affine transform can ideally compensate for the rigid motion of points on a

plane undergoing a perspective projection. As most of the points of interest in

the face can be said to lie on a plane (when one considers relative distance to

the camera), this transformation would be ideally suited to our purposes. When

applying this transformation, more care must be taken because it can introduce

unwanted deformations.

T a(p) =


a b tx

c d ty

0 0 1

 (4.9)

4.4.3.1 Iterative alignment algorithm

To align a set of shapes, an iterative scheme is used. When the similarity transform

is considered, this is usually called iterative Procrustes alignment [28]. X̃ denotes a

transformed shape. The shapes are aligned to a mean shape, which is recalculated

with the transformed shapes at each iteration step, where:

X̃iter
j = T (pj) Xj, such that, pj = arg minE

(
Xj; pj;

{
X̃iter−1

1,..,n

})
(4.10)

Several error measures E
(
Xj; pj;

{
X̃iter−1

1,..,n

})
for the alignment of a shape can

be chosen. The most common by far is the sum of the L2 norm difference between

the coordinates of the mean shape of the previous iteration and the current warped

shape:

E
(
Xj; pj;

{
X̃iter−1

1,..,n

})
=
∥∥∥W �

(
T (pj) Xj − ¯̃

X iter−1
)∥∥∥

F
(4.11)

In Figure 4.6 a point cloud corresponding to the faces of a single session is shown,

before and after the alignment process.
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Figure 4.6: Left: Unaligned point cloud. Right: Similarity transform aligned point

cloud.

4.4.4 Inter-subject variability and global mean shape

There is great variability between human faces, especially in size (also due to distance

from the camera) but also in shape. The question arises whether some explicit

normalization of the facial features should be attempted, or whether this should be

left up to the classifier.

Figure 4.7: First frame of a sequence for 9 Spectrum subjects. Top: Zero centered

faces of the original sequences. Middle: Similarity aligned using most rigid points

(nose, eye corners). Bottom: Affine aligned using most rigid points. Right: Super-

imposed shapes.

If iterative Procrustes analysis is applied, every session will be aligned with high

accuracy to its own shape (the process will minimize a function of error), but the

inter-subject variability will be as well high. In the matter at hand, it is essential to
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be able to compare the features extracted from different subjects. Therefore, and

although it will lead to a lower accuracy in the alignment process, it is tempting

to apply an inter-subject normalization method to the subjects of the Spectrum

database.

One of the simplest ways to address this problem is to align every session of the

database with respect to a common mean shape. For a better alignment, it has to be

a mean shape that satisfies the relative position of the subject and the camera itself.

When the Spectrum database was recorded, two cameras were placed in both sides

of the subject (the idea was to be able to perform a three dimensional tracking) but

finally just the left one was used for the tracking. Therefore, the pose of the subject

is not frontal: him/her left hand side of the face is more visible. This is the reason

why, when choosing a common mean face for the alignment it is recommended to

take one that fulfils this condition.

A good example of a mean shape with the characteristics discussed above is the

mean face resulting of the averaging of all the faces of the database. That is, 149

sessions with an average length of 20,000 frames. In the following, this mean shape

will be referred to as global mean shape.

Once the mean face used is chosen, it is time to think which of the two methods of

alignment discussed would suite best our goal. As we are dealing with faces and we

want the alignment process to cause as small deformation as possible, the similarity

transformation is a good option. The drawback of using the global mean shape is

that no iterative method could be applied, and therefore no function of error could

be minimized. In sum, a single similarity transform is applied to each frame, which

aligns it with respect to the global mean face.

In Figure 4.8 a comparison between the alignment of a face with respect to its

session mean shape and the alignment with respect to the global mean shape is

shown. As it can be seen in the figure, the first one aligns each of the frames of a

session with respect to its own mean shape very precisely. Nevertheless, since after

this alignment the frames belonging to different sessions are not aligned between

them and thus cannot be compared, it does not provide a good framework for a

feature extraction procedure. The opposite could be said about the alignment with

respect to the global mean shape. Although it is not as precise as the aforementioned

case within a session, the shapes of different sessions are transformed to be as close

to a common shape. This means that when the feature extraction method is applied,

the features belonging to different subjects/sessions can be compared to each other,

making possible the classification into the depressed and non depressed class.
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Figure 4.8: 77th frame of a sequence for 8 Spectrum subjects. Top: Zero centered

faces of the original sequences. Middle: Similarity aligned using its corresponding

mean shape. Bottom: Similarity aligned using the global mean shape. Right: Super-

imposed shapes.
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