
Chapter 3

Fundamentals of Neural Network

One of the main challenge in actual times researching, is the construction of AI (Arti�-

cial Intelligence) systems. These systems could be understood as any physical or logical

device capable of carrying out the task for it was designed.

The Arti�cial Neural Network (ANN) belong to a subgroup of the AI systems. It is

called bottom-up, due to the fact that the initial systems are simples and identical, and

they generate more complex systems through a learning process.

The �eld of Neural Networks has arisen from diverse sources, ranging from the fascina-

tion of mankind with understanding and emulating the human brain, to broader issues

of copying human abilities such as speech and the use of language, to the practica com-

mercial, scienti�c, and engineering disciplines of pattern recognition, modelling, and

prediction.

In Neural Networks, as in AI, the excitement of technological progress is supplemented

by the challenge of reproducing intelligence itself.

Neural Networks approaches combine the complexity of some of the statistical

techniques with the machine learning objective of imitating human intelligence. How-

ever, it is done at a level where there is no accompanying ability to make learned

concepts transparent to the user, as it is with other techniques like decision trees [27].

3. Fundamentals of Neural Network

3.1 Arti�cial Neural Networks (A.N.N.)

3.1.1 Biological Fundamentals

ANN are inspired by the biological nervous system in humans and animals. The neural

communication system conformed by the nervous and hormonal system, connected to

sense and e�ector organs is conformed by three parts [26]:

(a) Nervous System Sample (b) Biological Neurone

Figure 3.1: Biological Fundamentals of a Nervous Cell

1. Receptors, which are in sensorial cells, they collect the information by means of

stimulus, either from medium or from inside the organism.

2. Nervous System. It recieves informations, and it sends them, already manufac-

tured to e�ector organs and other places in the nervous system. Figure 3.1a.

3. E�ector Organs (muscles and glands), which receive the information, and they

interpret in the form of motor or hormonal actions.

The more essential structural and functional, in the communication neural system

is the nervous cell or neurone (Figure 3.1b). They establish communications each other

by means of chemical signals between axons, which send, and dendrites, which receive

signals.

29

3. Fundamentals of Neural Network

The mision from neurones covers approximately �ve functions:

• They collect the information from other neurones or receptors in the form of

impulses.

• They integrate the information in an activation code.

• They transmit the codi�ed information, in form of frequency impulses through

their Axon.

• The axon carries out the distribution through its rami�cations.

• In its terminals, it transmits the impulses to the next neurones or the e�ector

cells.

Given a signal, the synaptic process might increase (excite) or decrease (inhibit)

electrical potential. The neuron will �re (send), when its electrical potential reaches a

threshold. Learning process might occur by changes to synapses. Our nervous system,

and from the rest of animals, work in this way. And these are the mechanisms, that

ANN try to incorporate throughout its history.

The conectivity between neurones is too elevated. The brain has about 1011 neurones

and 1014 synapses, what is an enormous network, and impossible to implement (until

now) with the present technology.

3.1.2 General Model of A.N.N.

There exist many di�erent models of ANN, which follow di�erent design strategies,

learning rules and output construction functions. A �rst classi�cation, is made attend-

ing to the route that follow the information inside the network, and in this way, it can

be distinguished two types: feed-forward networks and feed-backward networks.

Now it will be described the general computational model used to develop an ANN.

30

3. Fundamentals of Neural Network

3.1.2.1 Arti�cial Neurone

An arti�cial neurone is a mathematical function which is the constitutive unit in an

ANN. The �rst one was proposed by Warren McCulloch and Watter Pitts in 1943.

Althought they were quite di�erent to the actual neurone models, at this time with

these Threshold Logic Units (as they were called) it was possible to implement any

boolean function. Since its developed some variants were introduced to the units, like

the Perceptron, developed by Fank Rosenblatt, which used a linear threshold function.

In the last years, neurones with more continuous shapes started to be considered [31].

The actual arti�cial neurone receives one or more inputs (dendrites), the input

values are ponderated by the weights of each connection and summed to produce a value.

This sum could be understanding as the synaptic process. After that it is summed a bias

value, that belong to the neurone which simulates the synaptic threshold in biological

neurones. Finally is applied a function 'ϕ' (activation function) to obtain the output

value. All this calculations are described in Equation 3.1, for m input connections to

the neurone k.

This activation function can be linear, non-linear, threshold function, or even

any function it could be conceived. But usually is recommended the use of non-linear

functions, such as sigmoid or hyperbolic tangent.

yk
j = ϕ(

nk−1∑
i=0

wk
ijx

k
i + bkj) (3.1)

In Figure 3.2 can be observed the common model and the similarities with the

biological neurone can be observed.

3.1.2.2 Basic Structure of the A.N.N.

Generally A.N.N. consist of layers of interconnected nodes, each node producing a non-

linear function of its summed input. The input to a node may come from other nodes

or directly from the input data. Also, some nodes are identi�ed with the output of

the network. The complete network therefore represents a very complex set of inter-

dependencies which may incorporate any degree of nonlinearity, allowing very general

31

3. Fundamentals of Neural Network

... ...

Artificial
Neurone j

Inputs Outputs

w
ij

w
1j

w
2j

w
3j

b
j

w
j1

w
j(k-1)

w
jk

Figure 3.2: Arti�cial Neurone Schema

functions to be modelled [26].

The basic interconection structure between units is the Multilayer Network, shown

in Figure 3.3. The �rst level is constituted by the input cells, these units receive the

inputs to the Networks. Next to the input layer, there is a serie of intermediate layers,

called hidden layers. There can be one or more hidden layers, where the last one, is the

output level. The output of these units, is the output of the network.

Each connection between cells is like a communication route: through this con-

nections �ow numeric values, which are weighted by the weights on each link. These

weights are adjusted during the learning phase to produce the �nal ANN.

All these can be resumed, like: input units store the input vectors, hidden units trans-

form the inputs into an internal numeric vector and output units transform the hidden

values into the prediction.

So if the ANN has k-layers, the output will result as in equation 3.2, where
→
X is the

input vector,ϕ the activation function, andWij the weight matrix of the k-hidden layer,

where the weight belongs to the link between i-unit in (k-1)-layer and the j-unit in k-

layer.

→
o= ϕ(. . . ϕ(ϕ(

→
X ·W1)W2) . . .Wk) (3.2)

32

3. Fundamentals of Neural Network

Input Layer

Layer 1.
Hidden Layer

Layer K.
Output Layer

Layer K-1.
Hidden Layer

Bias connections

Figure 3.3: General structure of a Multilayer Network

3.1.2.3 Learning Stage

Maybe the most important part in an ANN. The learning schema in a network, is what

establish the problems that the network will be able to solve. The ability of a network

to solve a problem will be linked, to the available examples (patterns) in the learning

stage.

The learning dataset should be signi�cant (if it is limited, the network will not

adjust the weights/bias well) and representative (there must exist diversity of examples

in the dataset). Anyway in Chapter 4, it will be explained/carried out in great details,

the optimization phase of a dataset.

Learning algorithms fall into three groups with respect to the sort of feedback

that the learner has access to:

33

3. Fundamentals of Neural Network

• Supervised learning: for every input, the network is provided with a target or

class; that is, the environment tells the network what its response should be. The

network then compares its actual response to the target and adjusts weight/bias

values in such a way that it is more likely to produce the appropriate response

the next time it receives the same input.

• Unsupervised learning: the network receives no feedback from the environment.

Instead the network's task is to represent the inputs in a more e�cient way, as

clusters or categories or using a reduced set of dimensions. Unsupervised learning

is based on the similarities and di�erences among the input patterns.

• Reinforcement learning: is much closer to supervised than unsupervised learning,

the network receives feedback about the appropriateness of its response.

The avaliable dataset in this research is provided, with the output attribute

values, so it means that in this case it will be worked with Supervised Learning Al-

gorithms. Some of these algorithms are Backpropagation, Batch Backpropagation,

Reasilient Backpropagation and some others, that will be explained in great details

in the last section of this chapter. It would be interesting to mention, that all the

learning algorithms that will be implemented in this research, are based in this back-

propagation idea, which is simply the retropropagation of a gradient of the output error

through the hidden neurones. Anyway it will be described in the next sections.

The leaning stage in ANN consists in determinate the most accurated weights/bias

values for all the connections, which solve more e�ciently the proposed problem. The

normal learning process consists of: introducing the learning samples, and then modi-

fying the weights/bias, following a particular learning algorithm. Once all the patterns

have been introduced, it is checked if the convergence criterion was achieved, and if not

the process is repeated, and all the patterns are again introduced.

The convergence criterion can be implemented in three forms:

• Fix number of epochs. It is decided how many times will be introduced the

learning samples.

• Goal de�nition. It is established a performance value (normally Mean Absolut

Error or Mean Squared Error), and when a goal value is reached, the learning

phase will end.

34

3. Fundamentals of Neural Network

• Early stop. It will be de�ned a validation set, from the dataset. And if there is

no improvement in a determinated number of epochs in this validation set, then,

the learning will end.

In this research all these criterions where implemented in the simulations. It

will be also necessary to distingish between the possible learning strategies. Here were

implemented the two most common. The �rst one consists on to make a partition in

the dataset, where a percentage (normally 60%) was for learning tasks, and the rest for

validation tasks. And the second one, was Cross-Validation.

K-fold-Cross-Validation is generally used when one wants to estimate how accurately

a predictive model will perform in practice. The original sample is partitioned into K

subsamples. Of the K subsamples, a single subsample is retained as the validation data

for testing the model, and the remaining K-1 subsamples are used as training data.

The cross-validation process is then repeated K times (the folds), with each of the K

subsamples used exactly once as the validation data. The K results from the folds

then can be averaged to produce a single estimation. The advantage of this method

over repeated random sub-sampling is that all observations are used for both training

and validation, and each observation is used for validation exactly once, and hence the

generalization capabilities of the A.N.N. will be increased, but at the expense of more

computational cost [3].

What is expected to improve using this second strategie, is the avoiding of the

over�tting phenomenon, that takes place when the result model does not �t so well the

learning samples as the validation samples.

Finally to resume this subsection the learning stage could stay as follows:

1. Initialize all the parameters (weights/bias)

2. Selection of training and validation set

(a) Introduce the training set, and adjust parameters according to the

learning algorithm

(b) Introduce the validation set, and evaluate performance of the network

(c) If the convergence criterion is achieved the network model is finished,

if not go back to 2.a

35

3. Fundamentals of Neural Network

3.2 Feed Forward Networks

3.2.1 MultilayerPerceptron

A MLP (Multilayer Perceptron) or as it is also known, Multilayer Network with forward

connections, is a generalization of the Simple Perceptron, and it came up due to the

limitations of the latter one. In 1986, Rumenhart, Hinton and Willians, they presented

a way to retropropagate the output errors (Backpropagation) measured of the network

to the hidden neurons of the network, this was the generalized Delta Rule. Some authors

have demostrated [10] that the MLP is an universal aproximator, in the sense that any

continuous function over a <n space can be approximated with a MLP, with at least

one hidden layer.

Actually the MLP is one of the most used architectures to sove learning machine

problems, due to their capability as universal approximator, as well as to their easy use

and aplicability. They have been applied to solve problems in di�erent areas like speech

recognition, character recognition, control of processes, medical diagnoses, time series

prediction. . .

However, it could be important to point out, that although it is one of the most

used and known networks, it does not involve that it will be one of the most powerful or

with the best results in the di�erent application areas. In fact, the MLP possess some

limitations, as its long learning process for complex problems or the di�culty to make

a theoretical analysis of the network due to the presence of non-linear components and

to the big connectivity.

3.2.1.1 M.L.P. Architecture

As it was mentioned before, the M.L.P. as the general Multilayer Network, it is formed

by three types of di�erent layers: input layer, hidden layer(s) and output layer (see

Figure 3.3). The neurones in the input layer only propagate the signals (input vector)

arriving to them, it can be understood then as if their activation function were linear.

They send the signals to all the neurones in the next layer, which carry out a non-linear

processing (or also linear with saturation in this research, see Figure 3.4), and then

the signals travel (each hidden neurone sends the signal to all the neurones in the next

36

3. Fundamentals of Neural Network

layer) through the (k-1)hidden layers, until they arrive to the output layer, it is then

said that the network has total connectivity.

In the output layer is obtained the output of the network. With these output

values or vectors a non-linear processing can be made or not (giving the direct result).

For this research, as it will be later mentioned, the labelled data was normalized in

the range [-1,1], so what it was made was to incorporate the hyperbolic tangent as

the output layer activation function, to avoid output values greater or lower as the

maximum or minimum expected.

Each connection in the network has associated a real number, called weight of the

connection. And each neurone has associated a threshold or bias value, which for the

case of MLP, it is threated like another connection to the neurone with input constant

�1�. These two parameters are the essence of the learning stage, wij , bj .

3.2.1.2 Propagation from patterns

Now it is the time for introducing the background theory in this MLP. What is going

to be �rst made, is to de�ne all the parameters involved in this Neural Network with

their appropiate indexes.

The Multilayer Perceptron (see Figure 3.3) de�nes a non-linear relationship between the

input and the output patterns, which is obtained propagating forwards the inputs. For

this task, each neurone process the information received, and generates the activation

which is again propagate towards the connections with the next layer.

Although almost all the simulations will be carried out with one or two hidden

layers, here the MLP equations will be de�ned in the K-layers case.

Be a MLP with K − layers (K − 1 hidden layers) and nk neurones in layer k,

being k = 1, 2, . . . ,K. Be W k = (wk
ij) the weight matrix (k = 1, 2, . . . ,K) with (wk

ij)
representing the weight from neurone i (layer k− 1) to the neurone j (layer k); and be

Bk = (bki) the bias (threshold) vector from neurones in layer k being k = 1, 2, . . . ,K.

Finally it is neccesary to describe the output or activation value of each neurone, de�ned

as ak
i with the same meaning as the index for b, but this time k = 0, 1, 2, . . . ,K. This

activation value is calculated as follows:

37

3. Fundamentals of Neural Network

ak
i =

{
xi if k = 0

ϕ
(∑nk−1

j=1 wk−1
ji ak−1

j + bki

)
if k = 1, 2, 3, . . . ,K

(3.3)

Where xi are the elements of the input pattern vector
→
X= (x1, x2, . . . , xn0). When

k = K, ak
i are the output values, that will be named as yi, the components of the output

vector
→
Y= (y1, y2, . . . , ynK).

ϕ is the activation function common to all the neurones in the layer. As is shown

in Figure 3.4 there are three possibilites to choose, both of them with saturation areas

from [-1,1] or [0,1] for the output values. These are:

Figure 3.4: Typical Activation/Transfer Functions

• Sigmoidal function:

ϕ(x) =
1

1 + e−x
(3.4)

• Hyperbolic tangent function:

ϕ(x) =
1− e−x

1 + e−x
(3.5)

38

3. Fundamentals of Neural Network

• Lineal saturation function:

ϕ(x) =


−1 if x < 1
x if −1 ≤ x ≤ 1
1 if x > 1

(3.6)

Normally the activation function is common to all neurones in the network, but

this time, during the searching of the best con�guration, it will be contempled di�erent

functions for the hidden layers but keeping the output layer with the hyperbolic tangent

function for convenience.

The election of one activation function, or a determinated number of neurones

in each layer, will be discussed in Chapter 5. Now it is the time to describe the basic

learning rule or algorithm.

3.2.1.3 BACKPROPAGATION Algorithm

The learning algorithm is the mechanism by means of which the parameters in the

A.N.N. are adjusted and modi�ed in the search of the best results. The most common

algorithm for this task is the BackPropagation Algorithm ([11]).

It is an algorithm belonging to the class of supervised algorithms, so for each input

pattern, the network must be also provided with a desired output pattern or, as it will

be called since now, a target, ti.

So what it must be faced, is a minimation problem, which objective is to obtain an

output the most similar possible to the target. This problem could be expresed as in

Equation 3.7.

Minw,bE (3.7)

Where E is a funtion of the error (see Equation 3.8), which can be evaluated as the sum

of Mean Absolut Error of all the patterns, Mean Squared Error, or another performance

function, that can be also contempled. The index D indicates the number of patterns

in the training set.

Note 2 All the equations are represented in the case of one neurone in the output layer.

39

3. Fundamentals of Neural Network

E =
1
D

D∑
d=1

e(d) (3.8)

e(d) = Performance Function
(
ti(d)− yi(d)

)
(3.9)

Being Y (d) = (y1(d)) and T (d) = (t1(d)) the output of the network and the desired

target, respectively, for the pattern d.

So if W,B, are a minimum of the error function E, the error will be next to zero, what

entails that the network output is similar to the desired output, the learning objective.

Due to the fact that there are non-linear functions, this minimization problem will be

non-linear too. What means, that it should be neccesary to use non-linear optimization

techniques for its resolution.

These techniques are based in and adjustment of the parameters following a particular

search direction. In the context of ANN, and more particularly for the MLP, the search-

ing direction commonly used is the negative direction of the error function gradient,

�Gradient Descent Method �. Anyway they have been developed other methods to �nd

these error function minimums, like random search method or evolutive techniques. An

algorithm belonging to the latter possibility, is described in Section 5.2, and it was

applied, and the results shown in the same section, to �nd the best con�guration of the

Neural Network. In Section 6.2 are shown the results when they were used as a learning

algorithm.

In this moment the adjusting of the parameters can be understood as a simple

actualization of weights and bias by adding ∆w. It will be di�erenced two possibilities

now from this Backpropagation Algorithm, these are online Backpropagation and Batch

Backpropagation. The di�erence is that whereas the Online algorithm consists in a

sucesive minimization of the error function for each presented pattern, e(d), the Batch
algorithm carries out a minimization of the total error E. It will be compared which of

these algortihms provide better results during the simulations, in the Chapter 5.

Both online and batch backpropagation are presented in Algorithms 1 and 2, it

can be observed how they work and the result equations which were before discussed.

The parameter α is the learning rate, which has in�uence in the displacement on the er-

ror surface. ∆W represents the matrix of increments to all the weights and biases in the

network, where the index i denotes the corresponding neurone. In the presented algo-

rithm, the propagation of the error through the neurones (δ function), is not explained

for simplicity.

40

3. Fundamentals of Neural Network

Algorithm 1 Gradient Descent Algorithm. Online Backpropagation

initialize w

while stopping criterion is false do

for each (xd, td) ∈ D do

for each ∆wij ∈ ∆W do

∆wij ← −α∂e(n)
∂wij

end for

for each wij ∈ W do

wij ← wij + ∆wij

end for

end for

end while

return w

Algorithm 2 Gradient Descent Algorithm. Batch Backpropagation

initialize w

while stopping criterion is false do

for each ∆wij ∈ ∆W do

∆wij ← 0

end for

for each (xd, td) ∈ D do

for each ∆wij ∈ ∆W do

∆wij ← ∆wij − α∂e(n)
∂wij

end for

end for

for each wij ∈ W do

wij ← wij + ∆wij

end for

end while

return w

41

3. Fundamentals of Neural Network

Note 3 The bias values are not included in the algorithm because they are assumed to

be another weight with input (output from the previous neurone) constant and equal to

�1�.

Due to the fact that the neurones are grouped in di�erent layers and connected

between them, it is possible to apply the gradient method in an e�cient form, resulting

this Backpropagation algorithm or as it is also known generalized delta rule. Backprop-

agation term is used due to the form of implement this method in the MLP, since the

output error is propagated backwards, transforming it in an error for each neurone in

the network.

This algorithm is one of the most used in A.N.N. simulations but, as it was before said,

it has many limitations, on of the most importants is the long convergence time.

In Section 3.3 some other algorithms, variants of this Backpropagation Algorithm,

are described. In the simulations all these algorithms will be implemented using Matlab,

so it will not be neccesary to programme all these functions at any Programming Lan-

guage, due to that Matlab have all them already implemented in the Neural Network

Toolbox [24].

3.3 Learning Algorithms

In this section will be introduced some variants from the Backpropagation Algorithm,

which were also implemented in the simulations. These are: Gradient Descent with Mo-

mentum Backpropagation, Levenberg Marquardt Backpropagation and Resilient Back-

propagation.

3.3.1 Gradient Descent with Momentum Backpropagation

This method emerge to solve the possible instabilities in the Backpropagation Algorithm

due to the learning rate. As it was already mentioned this parameter is which take care

of controlling how much the weigths are moved around the network through the error

surface. Big values of this parameter could achieve a rapid convergence at cost of the

possibility of oscillate around a minimun or even jump this minimum of the error. And

small values could avoid this problem but they cause a slower convergence [26].

42

3. Fundamentals of Neural Network

What this method makes is to modify the Backpropagation learning rule, by

adding a second member, which is called Momentum, obtaining the next learning rule:

w(n) = w(n− 1)− α∂e(n)
∂w

+ γ∆w(n− 1) (3.10)

Note 4 The biases parameters are considered as another weight but with input (output

from previous neurone) constant and equal to �1�.

Where ∆w is the increase of the parameter in the previous iteration, and γ is a new

con�gurable parameter called Momentum Constant (0 ≤ γ < 1), which controls the

assigned importancy to the previous increase. This rule was again proposed by Rumel-

hart [11], and keeps the Backpropagation properties, attending to modify the network's

parameters minimizing the Error function (Equation 3.8). The new term gives to the

original method some inertia, which could avoid oscillations.

Applying successively the Equation 3.10 the learning rule can be expressed in another

form:

w(n) = w(n− 1)− α
n∑

t=0

γn−t∂e(t)
∂w

(3.11)

where it can be observed that the new addition to a parameter depends on all the pre-

vious variations, leading to a more stable method without abrupt oscillations.

3.3.2 Levenberg Marquardt Backpropagation

This is a second order technique to solve optimization problems, and it uses to be more

e�cient than the classic Backpropagation method, although it requires much more

memory. It was applied for the �rst time to a MLP by Hagan y Menhaj [13], which

demonstrated that it is much more e�cient than other techniques when the network

contains no more than a few hundred weights.

The performance function for the network is:

V (w) =
1
2

D∑ nK∑
i=1

[ti − yi(w)]T [ti − yi(w)] =
1
2

N∑
e(w)T e(w) (3.12)

withw ∈ <1×L is the vector with all the parameters in the network (weights/biases), and

N = D × nK . While backpropagation is a steepest descent algorithm, the Marquardt-

Levenberg algorithm is an approximation to Newton's method. The idea is to minimize

43

3. Fundamentals of Neural Network

the function V (w) with respect to the parameter vector w. Then Newton's method

would stay as:

∆w = −[∇2V (w)]−1∇V (w) (3.13)

where ∇2V (w) is the Hessian matrix and ∇V (w) is the gradient. Then being V (w)
as in Equation 3.12, it can be shown:

∇V (w) = JT (w)e(w)
∇2V (w) = JT (w)J(w) + S(w)

(3.14)

being J(w) the Jacobian matrix

J(w) =


∂e1(w)

∂w1

∂e1(w)
∂w2

· · · ∂e1(w)
∂wL

∂e2(w)
∂w1

∂e2(w)
∂w2

· · · ∂e2(w)
∂wL

...
...

. . .
...

∂enK
(w)

∂w1

∂enK
(w)

∂w2
· · · ∂enK

(w)

∂wL

 (3.15)

and

S(w) =
nK∑
i=1

eiw∇2eiw (3.16)

For the Gauss-Newton method S(w) ≈ 0, and after adding the Marquardt Levenberg

modi�cation to the Equation 3.13, the w increase will �nally stay as follows:

∆w = [JT (w)J(w) + ηI]−1JT (w)e(w) (3.17)

The parameter η is multiplied by β each time that a step will result in a positive ∆w.
And in the other side if ∆w is negative, η will be divided by β.

The algorithm would stay as follows:

1. Present all the training samples to the network and compute the outputs and

errors. Then compute the sum of squares of errors for all the inputs V (w).

2. Compute the Jacobian Matrix J(w).

3. Solve Equation 3.17 to obtain ∆w

4. Compute again V (w), but using w+ ∆w.

(a) If the new V (w) is smaller than in step 1, then reduce η by β, let w =
w+ ∆w and go back to 1.

(b) If the new V (w) is not reduced, then increase η by β and go back to 3.

5. The algorithm will converge when norm of gradient becomes lower than a prede-

termined value or the output error becomes lower than goal.

44

3.3.3 Resilient Backpropagation (Rprop)

Rprop [9] is an adaptive learning rate neural network learning algorithm. The main

purpose of these adaptive learning rate algorithm is to vary the learning rate with the

general goal of speeding up the network convergence.

One of the main di�culties founded with the backpropagated neural networks is the long

training times before convergence or even not convergence at all. This is often caused

by poor choice of parameters, such as learning rate, momentum, etc. . . By dropping use

of momentum and automatically adjusting the learning rate, then Rprop achieves faster

convergence, and also requires less manual optimization of parameters.

Rprop introduces a time varying weight step ∆ij to the standard backpropagation algo-

rithm, for every weight. The operation is the same than with standard backpropagation.

If the errors increasing, the weights are reduced, and when the errors decreasing the

weight are increased. Nevertheless, unlike the backpropagation algorithm, the size of

the adjustment is no more computed with a �xed constant, this time it is adjusted as

follows:

∆t
ij =


µ+∆t−1

ij if (∂E
∂wij

)t−1(∂E
∂wij

)t > 0

µ−∆t−1
ij if (∂E

∂wij
)t−1(∂E

∂wij
)t < 0

∆t−1
ij else

 (3.18)

where 0 < µ− < 1 < µ+ and ∆t−1
ij is the weight step for wij at instant t.

