
Chapter 6

Simulations and Results

From now on, the �ve con�gurations for ANN found in the chapter before, will be

discussed. They will be simulated for di�erent sets of data, their training evolution

compared (avoiding over�tting, and local minimuns) to �nd the most appropiated num-

ber of epochs, and their weights/biases distribution compared, trying to �nd a network

which always tends to evolve to the same parameters, because this will be regarded as

a good generalizator.

In the second section of this chapter, GAs will again be implemented, but this

time to train the networks from a random state to (what at least is expected to be) the

optimal solution.

6.1 Training with learning algorithms

The �ve con�gurations were trained with 2000 epochs, because this number is thought

to be high enough, and after that with matlab plotperf function, the performance

evolution was represented. In Figures 6.1 and 6.2 the output of this function for the

�rst and the second con�guration are represented and in Appendix B for the other three

con�gurations after training. One can observe that some of them do not train all the

epochs, this is because the early stopping criterion, 100 validation failures.

Before the observation of these performance �gures, it is important to mention
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that matlab, when a network is trained with a set of data, makes three partitions of

this set, choosing the �rst for training (60%), the second for validating (30%) and the

third for testing (10%), and the performance of all them is represented in the �gures.

Figure 6.1: Performance evolution of con�guration 1. 4000 Epochs.

After training the �ve con�gurations, they were simulated for a set of 4000 pat-

terns (4000wrap.csv), and the output error of the estimations is represented here in the

next �gures and the MAE and STD of error computed.

Analyzing the results (MAE and STD), all the con�gurations are almost equally

as good in deriving estimates, so it the performance evolution will be looked at in order

to �nd the best of these con�gurations.

Looking at the performance �gures, all the con�gurations tends to be approxi-

mately the same performance value, but if it is observed the Figures 6.1, 6.2 and B.7,

they all converge faster than the rest. This is due to the used algorithm in this case,

Resilient Backpropagation. It can be concluded that an adjustment of the learning rate

during the training periode, improve considerably the performance of an ANN.
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Figure 6.2: Performance evolution of con�guration 2. 4000 Epochs.

Figure 6.3: Output error for 4000 patterns with con�guration 1. MAE = 2, 8125
and STD = 3, 4445
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Figure 6.4: Output error for 4000 patterns with con�guration 2. MAE = 2, 9058
and STD = 3, 4970

Figure 6.5: Output error for 4000 patterns with con�guration 3. MAE = 3, 0163
and STD = 3, 6649
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Figure 6.6: Output error for 4000 patterns with con�guration 4. MAE = 3, 0185
and STD = 3, 4451

Figure 6.7: Output error for 4000 patterns with con�guration 5. MAE = 2, 9512
and STD = 3, 4786
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6.2 Training with genetic algorithms

Another genetic algorithm was designed, but this was not to determine the best con�gu-

ration of a Neural Network, but to train it. This time the chromosomes were something

di�erent than in Section 5.2.

Each individual represents a network, being the chromosomes a distribution of weight

and bias values for the �ve selected con�gurations of networks. Maybe the fact that

any attention is being paid to the learning algorithm previously selected, sounds a little

strange, but if the supposition that is not so relevant to the learning algorithm as the

rest of parameters in the con�guration is made, we can go on with these con�gurations.

The implemented algorithm will have the same structure as in 4. Three functions

in Matlab were de�ned in the same way to Section 5.2: Main Genetic.m, Reproduction.m

and Evaluation.m, which can again be found in the enclosed documents.

The supposition that weights and bias were not bigger than abs(1, 5) was taken
for the simulations. The selected parameters for the simulations are presented below:

• Number of individuals in population: 20

• Number of children in each reproduction: 7 (It is odd because in each reproduction

the last children will be created by a di�erent method. Not reproduction, but

averaging all the individuals in the population)

• Number of generations: 1000

• Early stop criterion: 20 generations with no improvements

• Number of individuals in selection procedures (tournaments): 3

• Probability of cross-over: 80%

• Probability of mutation: 50%

• Fitness function: 0, 6(STD) + 0, 4(MAE)

Each con�guration, has a di�erent number of weight and bias values, depending

on the number of hidden units and on the presence or absence of shortcut connections.

The individuals in the �rst con�guration have 74 genes, in the second 134, in the third

211, in the fourth 76 and in �fth 301. So now, if the possesion of optimal results is
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wanted for all them, it is needed that the reproduction functions a�ect in the same way

to all them. This is because if there is a mutation (Probability = 0, 5), it is important

that the number of mutated chromosomes for each con�guration, will be dependant on

the number of chromosomes in the individuals. Half of the chromosomes multiplied by a

random number belonging (0, 1) will be mutated. The randomness is always introduced

in this algorithms, to preserve the evolutive theories.

From now on the results for all the con�gurations will be presented, but �rst it

is interesting to mention that although these simulations take a long time to converge

(almost two hours for 1000 generations), they are expected to be really good general-

izators, due to the fact that they are learning randomly from the �tness variable, and

not for each error value but in a more general way.

In Figure 6.8 the MAE and STD evolution for the �rst con�guration are presented,

for 1000 generations, with a set of 2000 patterns for simulations (wrap2000.csv). The

rest of the Figures are included in Appendix B. The convergence of the Algorithm can

be observed.

Figure 6.8: MAE and STD evolution with GAs

After training all the con�gurations, it was observed that all the individuals in

each of the populations were very similar, or almost the same, this is because they all

have converged to an optimal distribution of parameters (weights and biases). These

distributions of parameters are presented in the enclosed documents.

Then each population was averaged, to obtain �ve parameter distributions and
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after, simulation of them with another set of patterns, this time wrap4000.csv, and here

in Figure 6.9 represents the output error for the �rst con�guration and in Appendix B

the rest.

Figure 6.9: Output error for 4000 patterns with GAs. Con�guration 1. MAE =
3, 0866 STD = 4, 1451

6.3 Conclusions of this Chapter

Although the networks trained with genetic algorithms were expected to be the best

estimators, after the simulations, it was observed that they were good enough, but not

better than the networks trained with the previously presented (Section 3.3) algorithms.

Maybe the fact that these con�gurations were optimal for a particular learning algorithm

leave (in this case) the genetic algorithms in the background, or may be the reproduction

functions of the GAs (mutation, cross over) should be modi�ed (probabilities, number

of maximun mutations, cross points,...), trying to �nd an optimal solution. Anyway

it is interesting to observe, how since a random network, without backpropagation of
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error, and complex mathematical equations a network can be trained attending only

to a �tness value. This �tness value leaves the researchers a lot of possibilities to train

networks attending to many di�erent performance variables, inclusive combining some

variables, or introducing penalizations (even for trying to minimize the number of input

parameters).

From now on the results obtained with the �ve selected con�gurations will be

compared with the standards of presents blood pressure devices. These standards are

for sphygmomanometers devices, but they can give us an idea of how good are the ANN

estimators.

In 1987, the American Association for the Advancement of Medical Instrumenta-

tion (AAMI ), published a standard for sphygmomanometers, which included a protocol

for evaluating the accuracy of devices. In 1990, a protocol was devised by the British

Hypertension Society, BHS, and later by the European Society of Hypertension ESH.

This was then used as the basis for the International Protocol [30].

Attending to the British protocol the MAE between di�erent measurements (ANN

estimations and IBP in our case) represent the accuracy of the device. It falls into four

grades, A to D, where A denotes the greatest and D the least agreement. These grades

represent the cumulative percentage of readings falling within 5, 10 and 15 mmHg. To

ful�l the BHS protocol, a device must achieve at least grade B. Grades are speci�ed

separately for DBP and SBP [5]. However, as it has been only designed the ANN for

estimating SBP that is the variable which is here of interest. The di�erent grades are

represented in Table 6.1.

Grade A B C D

<5 mmHg (%) 60 50 40 Worse than Grade C

<10 mmHg (%) 85 75 65

<15 mmHg (%) 95 90 85

Table 6.1: Grading criteria used by the BHS

According to the results represented in Table 6.2, these �ve con�gurations are

expected to be very good estimators of SBP (all tests passed with grade A). Futures

researching directions must be focused in trying to �nd estimators for the other BP

parameters (DBP, MBP and PP).

Put together by a working group of the European Society of Hypertension, the
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Con�guration < 5 mmHg (%) < 10 mmHg (%) < 15 mmHg (%)

1 85,88 98,28 99,7

1 with GAs 82,27 96,33 99,25

2 83,98 98 99,68

2 with GAs 74,55 96,95 99,18

3 82,75 98 99,58

3 with GAs 78,85 97,2 99,32

4 82,27 97,68 99,65

4 with GAs 77,88 97,88 99,55

5 82,85 97,95 99,62

5 with GAs 70,97 94,4 99,12

Table 6.2: Evaluation of the con�gurations with the BHS standard

International Protocol for Validation of Blood Pressure Measuring Devices in Adults

provides a recommendation for the validation of BP measuring devices. These accuracy

criteria are quite similar to those of the BHS. Categories for rounded values are: 5

mmHg (no error of clinical relevance), 6-10 mmHg (slightly inaccurate), 11.15 mmHg

(moderately inaccurate) and 15 mmHg (very inaccurate).

According to this last criteria the selected ANN have in the majority of estima-

tions, no error of clinical relevance. It also true that the BHS standard is not exactly

evaluated in this way, but along di�erent periods of time, and with di�erent patients.

So next tasks would be to test this ANN direct with patients and check if there are still

good estimators, and the most important if they behave properly in di�erent situations.


