
Chapter 3

Software tools

In this section we are going to see all software tools used in the station and
some tools that were study to include in the station but for one reason or
another were finally discarded. Between these elements are Head-Tracking,
3D Sound and SPINE.

3.1 Head Tracking

3.1.1 Introduction

This section introduces head tracking system, defining its objective and mo-
tivations. It summarizes the state of the art in head tracking systems and
presents the approach proposed in this section. The main advantages of the
system with respect the state of the art are also detailed.

Objectives

The main objective of this section is to detail the implementation of a head
tracking system suitable for its use in Teleoperation Stations, taking into
account the limitations and constraints usually associated to these environ-
ments. The focus of the section will be centered on the multimodal tech-
nologies included in the human-machine interface for the ground command
and control station. In particular, the section mainly describes the develop-
ment of a robust head tracking system for its integration in Control Stations.
Thus, the section firstly presents the last updates that have been carried out
in the field of vision-based head tracking in the reporting period. Later, the
section presents a new approach to integrate inertial sensors into the head
tracking system in order to increase the reliability of the system.

45



46 3. Software tools

Figure 3.1: Left : Tracker Pro (Madentec). Center : SmartNav 4 AT (Natu-
ralPoint). Right : TrackIR 4 (NaturalPoint)

State of the art

Latest advances in technology and the growing computational capabilities of
desktop computers have allowed the introduction of new devices for human-
machine interaction. These devices usually provide functionalities to substi-
tute the computer mouse. In the last years, new devices to estimate the real
position of the user’s head in real time under certain constraints have been
developed.

Most of these devices rely on cameras and image processing algorithms.
In general, they can be divided into two main application areas: 2DoF (De-
grees of Freedom) and 6DoF head tracking. The 2DoF tracking products are
focused on mouse emulation. They replace the standard computer mouse
for people who cannot use their hands when controlling a computer or an
augmentative communication device. On the other hand, 6DoF tracking is
mainly oriented to gaming, allowing complete user immersion into different
computer games.

2DoF head tracking applications and products are easy to find. Most
of these products are based on image processing and marks/spots placed in
the users’ head (on a hat for instance). They also provide the two angles
information used to move the mouse left/right and up/down. Tracker Pro
[11] (see Figure 3.1) is a good example. This product is based on an USB
camera and a software package. It is very reliable and has a wide field of view
(about 45 degrees) and supports sunlight compatibility. Other examples are
the Headmouse Extreme [16] or the SmartNav 4 AT [12] (see Figure 3.1).

6DoF head tracking moves one step forward and allows estimating the
complete position and orientation of the user’s head in real time. Most
of the approaches can be divided into two groups: based on human face
detection and based on visual pattern detection, both using image processing.
Into the first group, several research works as [5], [4] or [7] have shown
robust estimation processing stages of the position and orientation of the
user’s head. In those cases, model-based head detection is used to initialize
the tracker and also to estimate the 6DoF localization of the head. The
main concern is usually related to the reliability of the face detection stage.
Actually, many recent works have been devoted to increase the robustness
of this kind of approaches. For instance, in [2] particle filtering and complex



3.1. Head Tracking 47

Figure 3.2: Visual pattern used in the Cachya head tracking system

tracking policies are used to implement a robust system.
The second group of 6DoF head tracking approaches makes use of some

patterns/marks that allow simplifying the head detection process in the se-
quence of images. Thus, [8] uses infrared LEDs mounted on the user’s head
to localize it. A different approach is applied in [10], where the camera is
mounted on the user’s head and some landmarks are detected and used to
localize the head. Nowadays, the commercial products are mainly focused
in this kind of approaches and normally make use of camera and visual/IR
patterns mounted on the head. TrackIr [13] is a good example of these sys-
tems (see Figure 3.1). It uses a 3D pattern visible in the infrared band to
estimate the position and orientation of the user.

In our case, a new 6DoF head tracking system able to provide real time
position and orientation of the head, minimizing the interferences with the
user operations, is proposed. This is an aspect that differentiates Ivan and
Fernando work from the above presented approaches. Thus, the previously
introduced 6DoF products require a 3D pattern mounted on the user’s head,
as shown in Figure 3.2. They are normally attached to a hat that the user
wears. Although it is common for gamers, operators are subject to hard
constraints in terms of additional devices, i.e. they must be compatible with
current systems like headphones, haptic systems, etc.

The design guidelines were focused on integration and robustness. To
fulfill such constraints, the following system was proposed:

• A head tracking system based on the localization of an infrared pattern
that the operator carries on the head. The reason to use infrared
emission is that it is out of the visible band, so it is not perceived by the
operator. Moreover, it is possible to use infrared filters to remove visual
information, remaining only the infrared information and simplifying
the pattern detection algorithms.

• The infrared pattern is integrated into the headphones used by the
operator in order to avoid disturbing his working environment. Thus,
the pattern is 2D and not 3D as usual in the previously described
products and approaches.

To the best of our knowledge, this is one of the first implementations



48 3. Software tools

of a 6DoF head-tracking system based on planar templates. The research
is focused on a particular problem: the head-tracking in teleoperation sta-
tions. This environment poses very hard constraints in terms of robustness,
usability and compatibility with already existing devices:

• Usability and compatibility are addressed by means of the proposed
prototype based on an infrared planar template integrated into the
user’s headphones.

• Robustness is explicitly addressed in the approach by including marker
tracking in the image space. This feature makes a difference with
respect to the commercial devices in which environment disturbances
such as sun light, reflections, halogen lamps or ir-remotes have a direct
impact in the head-tracking estimation. The proposed tracking method
allows rejecting such disturbances once the pattern has been detected.
In addition, it allows decreasing the computational requirements for
image processing because the filter prediction bounds the area in which
the markers should be projected and hence, the processing can be
applied only locally.

3.1.2 Head tracking system

This section details the design, taking into account several practical issues.
The proposed head tracking process can be decomposed into the steps showed
in Figure 3.3. First, an image of the environment is captured and processed
by the system to prepare the detection of the infrared pattern. Then, the pat-
tern is searched using two possible approaches: pattern detection or tracking
considering previous information. The normal operation of the system will
be to track the position of the pattern. If the tracking fails or there is not
enough information to compute the tracking, then the system will try to
detect it again.

Once the infrared pattern is detected in the image, the system will com-
pute the homography matrix that relates the pattern and its projection, and
this homography will be decomposed into the real position and orientation
of the user’s head.

The processing carried out in each step is further detailed in the next
sections.

Image Capture

All the head tracking software developed is operating system independent up
to the image capture level. For this purpose the libdc1394 library for Linux
has been used. This library provides a complete set of functions to manage
any firewire camera that implements the DCAM protocol for machine vision,



3.1. Head Tracking 49

Figure 3.3: Different stages involved in the proposed head tracking system

from simple image capture to camera parametrization (shutter, exposure,
gain, etc).

Thus, the firewire cameras ability of setting up image capture param-
eters such gain, shutter or iris allows implementing methods for camera
self-configuration, making the system much more robust to changes in the
lighting conditions.

The firewire image capture library is used in the software to capture
images and to setup the following parameters: brightness, exposure, gamma,
shutter and gain. All of them are set to zero in order to manually manage
any image processing, so that our software can take the control of the entire
image domain.

Regarding camera synchronization, an external digital signal can be used
as trigger to ensure the image timing. However, given the low latency of the
firewire bus triggering (lower than a microsecond) and assuming a static
camera (which is the case), the firewire internal triggering is used in the
implementation in order to simplify the camera setup. The camera is con-
figured to capture images at 30Hz, so the system will provide head tracking
information every 33ms.

Image Processing

The image processing stage is probably the most sensitive, but simplest stage,
in the head tracking system. The goal of this stage is to process the image in
order to detect the set of bright LEDs. This problem is particularly complex
in the sense that depends on the camera environment.



50 3. Software tools

(a) Detection in a room with a window
in the background

(b) Detection in the same environment
and two infrared remotes close to the
headphones

Figure 3.4: Images showing the detection process during the operation of
the system. The four infrared LEDs detected are marked by red dots over
the raw images captured by the camera (notice that the colors are inverted).
The computed coordinate frame is also shown as an overlay on the image
captured.

As it was mentioned above, the camera integrates an infrared filter to
suppress visible information from the image and pass the infrared pattern.
However, infrared is present in many environments: daylight, lamps or in-
frared communication. The system is designed to be able to eliminate part
of the disturbances induced by the environment.

Then, the camera, the filter and the infrared LEDs have to be carefully
selected to obtain maximum gain into the bandwidth of interest. In these
conditions, the images captured by the camera are similar to those presented
in Figure 3.4. Four black spots, that represent the four emitting LEDs of
the pattern, can be found (notice that the colors are inverted). Additional
infrared information is also present in the images: sunlight from a window
in the background and two ir-remotes.

The infrared detection is based on finding four maximums into the im-
age (each maximum corresponding to an infrared LED). Additionally, these
maximums will be subject to the following constraints:

• The grayscale of each maximum must be greater than a given thresh-
old. Assuming that the infrared information provided by the LEDs
is always greater than the infrared present in the environment, this
threshold helps to separate between LED information and noise from
the environment. In the current implementation, this threshold is set
to 40 (15% of the maximum value that can be perceived by the cam-
era). If there are no enough maximums greater than this threshold,
the system drop off the image and cancel the head tracking estimation
with that image.



3.1. Head Tracking 51

• In a general case, the LED will be projected in the image as an ellipse,
but not as a single pixel. The ellipse of each detected peak must have a
minimal and maximal area. This information can be used to detect and
eliminate potential outliers, allowing to reject mismatches produced by
reflections or noise. However, given the elliptical nature of the detected
peaks, the position of the LED must be computed as the centroid of
such ellipse. Then, the position [Cu, Cv]

t of the LED is finally given by

Cu = 1/N

N∑
k=0

pu, Cv = 1/N

N∑
k=0

pv , (3.1)

where N is the number of pixels that compose the ellipse, and pu and
pv stand for the pixel column and row respectively.

• The distance among maximums must be greater than a given threshold.
The idea behind this constraint is to avoid the selection of maximums
too close to each other. This is very usual when the infrared emission
is split due to the presence of objects such as hair, glasses, etc. This
threshold has been set to 60 pixels. Notice that this threshold limits the
distance at which the user can be located with respect to the camera.
The current value allows standing at more than two meters from the
camera.

These constraints are applied sequentially in the above order. Thus, a
group of potential maximums from the first step will be obtained; they will
be cut off depending on the size of the projected ellipse in the image and,
finally, this sub-group of maximums is reduced to four taking into account
the minimal distance constraint.

Figure 3.4 shows the result of applying this algorithm to different images.
The four LEDs of the pattern (red spots) are detected and many outliers are
rejected by the algorithm.

Infrared Pattern Matching

The previous step provides a set of points in the image that may correspond
with the LEDs of the infrared pattern. This set of matches was filtered
according to geometrical and gray scale constraints. However, the match
between each LED and its projection in the image is still unknown. This
section details how to match the infrared pattern with its projection in the
image.

The matching between LEDs and projections is based on the geometrical
constraints imposed by the pattern. Our pattern is composed of four LEDs
mounted into the headphones of the operator, and has a trapezoidal shape
(see Figure 3.5), i.e. the bottom LEDs (labelled as 1 and 4) are more sepa-
rated than the two LEDs in the top (labelled as 2 and 3). This characteristic



52 3. Software tools

(a) Infrared pattern integrated in
the headphones

(b) Trapezoidal shape of the in-
frared pattern

Figure 3.5: Shape of the infrared pattern integrated in the headphones.

allows to easily sort out between bottom and top LEDs based on the relative
distances.

Then, given the set of projections pi = [ui, vi]
t, i = 1, . . . , 4 , where ui

holds for the rows and vi for the columns with the zero in the upper left
corner of the image (see Figure 3.5), the first step consists on sorting the
projections depending on the value of vi from maximal to minimal values.
Then, assuming that the pattern is rotated less than forty five degrees, the
two first projections correspond to the bottom LEDs (labelled as 1 and 4 in
Figure 3.5) and the other two to the upper projections (labelled as 2 and 3).
Finally, it is possible to distinguish between the left and right projections
depending on the value of ui.

Later, constraints in ui are used to verify the detection. Thus, given
the matching between projections and LEDs in the pattern, and assuming
a rotation less than forty five degrees, the projections belonging to LEDs 1
and 2 must have an ui coordinate shorter than projections 3 and 4.

Then, this method is valid only when the pattern is rotated less than
fortyfive degrees and tilted less than ninety degrees. It is easy to see that
the LED/projection association is undetermined out of these limits. Never-
theless, this is not a hard constraint in the system because the operators’s
head will be normally within such limits. In addition, this limitation holds
for the detection stage, but not for the tracking process detailed in next
section.

Pattern Tracking in the Image Plane

Now, there is an initial estimation about the projection of the pattern into the
camera and the next step is to track the position of these projections during
the images sequence. The tracking of the projections allows to improve



3.1. Head Tracking 53

the image processing and pattern detection thanks to the prediction phase.
Thus, the predicted position of the projections will be used by the whole
head tracking system to reject outliers and decrease the searching area in
the image processing stage.

Then, the tracking process is divided into two basic parts: prediction and
updating. The first step consists on predicting the position of the projections
in the image and the second uses the current position of the projections
(obtained by means of all the previous algorithms) to update the predictions.

It is proposed a Kalman Filter for each projection tracking. The fil-
ter will estimate the position and velocity of each projection in the image,
whereas the covariance matrix associated to the projections will determine
the searching areas and the candidates that can be used as projections. An
independent Kalman Filter will be launched for each projection, being the
state vector for projection i the following:

xi = [pi,vi]
t (3.2)

where pi and vi are the position and velocity of the projection i in the
current image expressed in pixels and pixels/s respectively.

During the prediction stage, it will be assumed that each ∆t seconds,
an instant perturbation in the velocity of the pixels will be produced (∆v
holds for this perturbation). It will be assumed that the components of this
velocity are independent Gaussians with zero mean and known standard
deviation, so:

∆v =

[
∆vu
∆vv

]
=

[
N(0, σ2u)
N(0, σ2v)

]
. (3.3)

Then, the prediction model for the projection i, from time instant k − 1
to k is given by[

pi(k)
vi(k)

]
=

[
pi(k − 1) + (vi(k − 1) + ∆v)∆t

vi(k − 1) + ∆v

]
. (3.4)

The Kalman filter proposes the following equations to predict the new
state and its covariance matrix:

x−i (k) = Aixi(k − 1) + Biui(k − 1) (3.5)
P−i (k) = AiPi(k − 1)AT

i + Qi (3.6)

By comparing with (3.4), it is easy to identify the matrices Ai, Bi and
Qi as

Ai =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Bi = 0, Qi =


(∆tσu)2 0 ∆tσ2u 0

0 (∆tσv)
2 0 ∆tσ2v

∆tσ2u 0 σ2u 0
0 ∆tσ2v 0 σ2v

 .
(3.7)



54 3. Software tools

In the system implementation, the value of ∆t is dynamically computed
during the program execution. A timer is launched when the filter updating
is done and stopped when the filter prediction is computed, being ∆t the
elapsed time. This value is usually in the order of 0.33 ms.

Another important part in the prediction is the value estimation of σu
and σv. In order to have a balance between conservativeness and efficiency
in the prediction, this value is composed of two terms: a constant and a term
that depends on the current filter state. Thus, such values are computed as
follows:

σu = 1 + 0.2v̂u(k − 1) (3.8)
σv = 1 + 0.2v̂v(k − 1) (3.9)

On the other hand, the updating model considers the measurement pro-
vided by the detection algorithms. Then, the estimated position of the pro-
jection i will be directly mapped into the state vector xi. If zi(k) is the
measurement corresponding to the i-th projection, the updating equation
can be expressed as

zi(k) = pi(k) . (3.10)

The new measurement zi(k) is considered in the Kalman Filter by means
of the following equations:

Ki(k) = P−i (k)HT
i (HiP

−
i (k)HT

i + Ri)
−1 (3.11)

xi(k) = x−i (k) + Ki(k)(zi(k)−Hix
−
i (k)) (3.12)

Pi(k) = (I−Ki(k)Hi)P
−
i (k) (3.13)

Considering (3.10), the following updating matrices can be derived:

Hi =

[
1 0 0 0
0 1 0 0

]
, Ri =

[
σ2iu 0
0 σ2iv

]
(3.14)

where σ2iu and σ
2
iv stand for the variance associated to the detected projection

i. Assuming that every projection includes a standard deviation of 2 pixels in
the detection due to image saturation and binarization, this leads to σ2iu = 4
and σ2iv = 4.

6DoF Pose Estimation

This section details the computation of the user’s head position and orien-
tation by using the projection provided by the tracking system. Two basic
steps are carried out: first, the mathematical model that relates the projec-
tion with the infrared pattern is computed (this model is a homography),



3.1. Head Tracking 55

and then, the computed homography is decomposed into rotation and trans-
lation.

The following notation will be used: A 2D point in the image plane is
denoted by m = [u, v]t and a 3D point in the world system reference is
denoted by g = [x, y, z]t. This system reference is the frame in which the
position of the infrared pattern will be finally expressed. In the case of the
application presented in the Chapter, this frame is attached to the main
screen of the operation station. It will be used the symbol ˜ to denote the
augmented homogeneous vector generated by adding 1 as the last element:
m̃ = [u, v, 1]t and g̃ = [x, y, z, 1]t.

Homography Computation

Knowing the matching between pattern and image projections, it is necessary
to fit them a motion model, minimizing the error. The model used is the
homography. Thus, assuming that the pattern is planar (which is our case),
the projection in the image is related with the pattern through the following
expression:

km̃′ = Hm̃ with m̃′ =

u′v′
1

 , m̃ =

uv
1

 and H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 ,(3.15)
whereH is a 3x3 non-singular matrix called homography and which is defined
up to a scale factor k. This means that the homography matrix depends on 8
parameters. Four correspondences are needed to determine one homography
because each correspondence gives two equations to solve the system.

If a set of four matches between the pattern and the image are given by
the image processing algorithms, the following equations can be extracted
for each match:

(h31u+ h32v + h33)u
′ = h11u+ h12v + h13 (3.16)

(h31u+ h32v + h33)v
′ = h21u+ h22v + h23 (3.17)

and reordering the expression we have

[
u v 1 0 0 0 −uu′ −vu′ −u′
0 0 0 u v 1 −uv′ −vv′ −v′

]


h11
h12
h13
h21
h22
h23
h31
h32
h33


=

[
0
0

]
. (3.18)



56 3. Software tools

Finally, it is possible to stack the two equations provided by each projec-
tion, building a 9× 9 matrix A, and compute the parameters of the homog-
raphy H. However, it is important to note that the corresponding system
of equations is homogeneous, so it cannot be solved using the classical least
squares approach. In this case, the solution to the system of equations is
given by the right singular vector of A associated with the smallest singular
value.

Motion Estimation

If the camera is modelled by the usual pinhole model, the relationship be-
tween the augmented homogeneous vectors of a 3D point g̃ and its image
projection m̃ is given by:

km̃ = C[R|t]g̃ = C[r1, r2, r3, t]g̃ (3.19)

where k is an arbitrary scale factor, matrix [R|t] (called the extrinsic pa-
rameters) contains the rotation matrix R = [r1, r2, r3] and the translation
vector t which relates the world coordinate system to the camera coordinate
system, and C is the camera calibration matrix.

Without loss of generality, it is assumed that the pattern plane is on
z = 0 of the world coordinate system, allowing us to derive the following
expression:

k

uv
1

 = C[r1, r2, r3, t]


x
y
0
1

 = C[r1, r2, t]

xy
1

 . (3.20)

In turn, it can be assumed that g̃ = [x, y, 1]t while r3 is computed as the
cross product of the computed r1 and r2. Therefore, a pattern point g̃ and
its projection m̃ are related by a homography H according to

km̃ = Hg̃ with H = C[r1, r2, t] . (3.21)

Then, if the homography H that relates the infrared pattern and the
projection into the camera is known, it is possible to recover the full rotation
and translation of the pattern with respect to the camera. Thus, it can be
easily computed from

H = [h1,h2,h3] (3.22)
r1 = λC−1h1 (3.23)
r2 = λC−1h2 (3.24)
r3 = r1 × r2 (3.25)
t = λC−1h3 (3.26)



3.1. Head Tracking 57

with λ = 1/‖C−1h1‖ = 1/‖C−1h2‖. In general, due to the noise in the
data, the so-computed matrix R = [r1, r2, r3] does not satisfy the properties
of a rotation matrix. It can be demonstrated that the closest (in mean
squares terms) rotation matrix to the above solution will be determined by
R = UVt, where U and V come from the singular value decomposition of
the above estimation [r1, r2, r3] = USVt.

Further mathematical details and demonstrations can be found in [21].



58 3. Software tools

3.1.3 Integration of inertial sensors into head tracking sys-
tem for robust estimation

In the previous Section, the updates carried out on the vision-based head
tracking system have been described. But additionally, the vision-based sys-
tem has been extended with inertial sensors in order to increase its robust-
ness. Then, this Section describes the details of the improved head-tracking
system.

Introduction

A vision-based head tracking system using a single camera and a planar IR
pattern has been designed, implemented and tested. It was described in
[1] (previous reporting period) and also in Section 3.1 of this Section. This
system was able to compute the full position and orientation of an operator
in real time at 30 Hz. The experimental results showed that the accuracy
of the approach was good enough to be usable in a Ground Control Station
to provide the state of the operator in real time. Also, new modalities to
communicate with the computer were described, such as the so-called Virtual
Head Mounted Display.

Nevertheless, the system presented in [1] has some limitations. Due to
the field of view of the camera installed in the Control Station, the operator’s
position and orientation computation is limited to a certain volume in front
of the station.

This section describes how the integration of the vision-based head track-
ing measurements with inertial and gyroscope sensors can be used to increase
the reliability, robustness and operational space. Thus, the system will be
able to provide full position and orientation information even if the operator
is out of the field of view of the camera thanks to the integration of the
sensors.

Approach overview

The approach can be divide into the following three steps (depicted in Fig.
3.6):

1. Position and orientation estimation using visual information. The
techniques described in Chap. 3.1 are used to provide an estimation of
the head position and orientation using visual means.

2. Orientation correction. Once a first guest of the operator orientation
is provided, gyroscopes can be used to make a short time prediction
based on the rotation rate of each axis. In this step, the accelerometers
will be also used to have a ground truth in roll and pitch angles. The
yaw ground truth is provided by the visual system.



3.1. Head Tracking 59

Figure 3.6: Approach overview. The output of the system are the operator’s
head orientation R and translation t. R′ and t′ stand for the orientation
and translation computed by the vision-based head tracking system

3. Translation correction. From the previous steps we have an estimation
of the translation and a stabilized orientation. Now, this orientation
can be used to rotate the measured acceleration to align it with the
operator system reference. Then, the acceleration can be integrated
in time to have a short time prediction of the translation. Again, the
information provided by the visual system is used as a ground truth
for the estimation.

Next sections will describe the second and third steps. A Kalman fil-
ter will be proposed for orientation and translation correction. This type
of filters will allow to integrate the measurements taking into account the
intrinsic noise in both inertial sensors and visual system.

Orientation correction

Assuming that an initial estimation of the orientation with respect to the
Ground Control Station is provided by the vision-based head tracking sys-
tem, this step will refine the orientation by means of the integration of gy-
roscopes for a short term prediction and accelerometers for long term esti-
mation in roll and pitch.

This document proposes to filter the above information considering the
intrinsic errors of the sensors. A Kalman Filter will be used for this purpose.
This filter can be divided in two stages:



60 3. Software tools

Figure 3.7: Orientation correction system. The approach processes the gy-
roscopes, accelerometers and visual information to produce a compensated
estimation of the operators’s Roll, Pitch and Yaw. Notice that the Kalman
Filters have the same formulation but with different data-feeds.

1. Prediction. The gyroscope information will be used to predict the state
of the orientation based on the angle rates in each axis and the time
horizon. This prediction will not only provide an estimation of the
orientation at a very high rate, but also an estimation of its uncertainty.
This uncertainty will be used later in the filter updating to optimally
integrate the accelerometer and vision-based measurements.

2. Updating. This stage will allow to integrate sensor readings provided by
the accelerometers and the vision-based system. These measurements,
although noisy, provide a global estimation of the orientation of the
operator’s head. Particularly, accelerometers enable a stable computa-
tion of roll and pitch angles, whereas vision-based head tracking will
provide the yaw angle of the operator’s head.

Assuming that the operator’s roll, pitch and yaw orientation angles are
statistically independent, a separate filter can be implemented per axis. Fig-
ure 3.7 shows a scheme of the proposed approach for the orientation correc-
tion in which the three filters can be seen. The Kalman Filters used in the
orientation correction have the same formulation but with different sensor
feeds. In the next paragraphs this Kalman Filter will be detailed.

State vector

The measurements of the gyroscopes are composed by the addition of two
factors; the first one is proportional to the rotation rate in the measured



3.1. Head Tracking 61

axis and the second is an unknown bias value. The bias evolves smoothly
with time and temperature, so it should be computed at the beginning and
periodically updated by the filter.

Thus, the state vector will be composed by the estimated orientation
angle (roll, pitch or yaw) and the associated gyroscope bias. It can be written
as follows:

x = [θ, b]T , (3.27)

where θ is the angle expressed in degrees and b the estimated gyro bias.
The associated covariance matrix P will be the following 2× 2 matrix:

P =

[
p00 p01
p01 p11

]
. (3.28)

Notice that it has been considered the symmetry of the covariance, so p01 =
p10.

Prediction stage

The proposed filter will provide predictions based on the gyro values every
∆t seconds. Thus, given a gyro measurement g over a particular axis at time
t, the predicted orientation in the next time step t+ ∆t will be given by the
following expression:

θ = θ + (g − b)∆t. (3.29)

Considering the definition of the state vector, this equation can be re-written
in matrix form as follows:

x =

[
1 −∆t
0 1

]
x +

[
∆t
0

]
g. (3.30)

Then, according to the prediction equations of the Kalman Filter, the
covariance matrix P associated to the state vector x will be modified as
follows:

P =

[
1 −∆t
0 1

]
P

[
1 0
−∆t 1

]
+

[
∆t
0

]
σ2g
[
∆t 0

]
(3.31)

where σ2g stands for the variance of the additive errors included in the gyro-
scope estimation.

This stage will be repeated every ∆t seconds with the latest value of the
gyroscope sensor. It can be seen how this prediction cannot be maintained
for a long period of time because the additive errors inherent to the gyroscope
measurement will eventually make diverge the angle θ estimation. To avoid
this problem, global measurements provided by accelerometers and vision-
based head tracking will be used.



62 3. Software tools

Figure 3.8: Reference system attached to the operator’s head

Updating stage

Measurements

The information of the accelerometers could be also used to estimate the
orientation of the operator’s head if a smooth motion of the head is assumed
(in this case the measured acceleration matches with the projection of the
gravity vector). Under this assumption, the values of the roll and pitch angles
can be computed from a 3-axis accelerometer according to the following
formulae:

roll = arctan(ay/
√
a2x + a2z) (3.32)

pitch = arctan(ax/
√
a2y + a2z), (3.33)

where ax, ay and az represent the components of the acceleration vector.
The reference frame is attached to the operators’ head following the usual
right-handed aeronautics system represented in Figure 3.8. roll and pitch
stand for the rotation around the x and y axes respectively.

Notice how the accelerometers provide a global measurement of roll and
pitch angles, so they are not subject of additive errors as gyroscopes. Nev-
ertheless, accelerometers can only be used to estimate the orientation if and
only if the operator’s head is moving smoothly, otherwise, the accelerome-
ter will include the acceleration of the gravity plus the acceleration in the
movement axis.

To avoid erroneous estimations of roll and pitch based on accelerometers,
the module of the acceleration can be used to distinguish whether the oper-
ator’s head motion is smooth or not. Thus, the acceleration module q a q is
computed as:

q a q=
√
a2x + a2y + a2z (3.34)

In general, the acceleration will be included into the filter if the module
satisfies the constraint 0.9 ≤q a q≤ 1.1.



3.1. Head Tracking 63

On the other hand, accelerometers cannot provide measurements on the
yaw angle. The yaw angle estimated by the vision-based head tracking sys-
tem will be used as global measurement in this case.

Filter updating

Now that we have an estimation of the angle ground-truth (wherever it
cames: accelerometers or head tracking), this measurement has to be incor-
porated into the filter to correct the gyro-based estimation.

Assuming a measurement (zθ, σ
2
z) of the orientation angle is provided by

the sensors, the filter must be updated according to the equation:

zθ =
[
1 0

]
x. (3.35)

From this equation it is possible to compute the Kalman Gain and to opti-
mally update the filter according to its state and the measurement zθ, and
we obtain:

x = x +

[
p00(zθ − θ)/(p00 + σ2z)
p01(zθ − θ)/(p00 + σ2z)

]
(3.36)

P = P− 1

p00 + σ2z

[
p00p00 p00p01
p00p01 p01p01

]
. (3.37)

The value of the variance σ2z associated to the measurement zθ will be
different depending on the source of information. Normally, the errors asso-
ciated to the vision-based orientation will be smaller than the ones provided
by the accelerometers.

Filter initialization

Finally, this section deals with the initialization of the three filters (roll,
pitch and yaw). Thus, the initial value of the state vector and the covariance
matrix will be detailed.

In the case of the state vector, two are the variables to be initialized:
angle and bias. The procedure is the following:

• The filter is initialized when the first angle measurement arrives. The
angle θ of the state vector is forced to be equal to the angle measure-
ment zθ.

• Once the angle is initialized, the bias value is set to the current value
of the gyroscope sensor g.

On the other hand, the covariance matrix P is initialized as follows:
Angle and bias are assumed statistically independent in the initialization, so
the covariance matrix is a diagonal matrix (p01 = p10 = 0). The remaining
two elements are given by:



64 3. Software tools

Figure 3.9: Approach for accelerometers filtering. Notice that the Kalman
Filter has the same formulation for each translation but with different data
feeds.

• p00: It is set to the uncertainty of the measurement σ2z .

• p11: It is set to a small value that guarantees a slow convergence to
the real bias value during the data filtering. It is very usual to set it
as p11 = 0.001

Translation correction

Once the orientation of the operator’s head has been estimated, the trans-
lation with respect to the Ground Station can be refined based on the ac-
celerometers. The idea behind is similar to the approach adopted with the
Strapdown Inertial Measurement Units [19], that is, the stabilized orienta-
tion is used to rotate the accelerometers to a known reference system and
then the acceleration can be integrated through time to provide a short term
estimation of the translation.

The approach is depicted in Figure 3.9. Prior to integration, the ac-
celerations are filtered to eliminate high frequency noise and then rotated
according to the current system orientation. Once rotated, the projection of
the gravity acceleration vector is known and can be removed from the mea-
sured acceleration, remaining the undergo motion of the operator’s head.
Finally, this filtered acceleration can be integrated through time to provide
an estimation of the operator’s head translation.

The integration of accelerations will be carried out by means of a Kalman



3.1. Head Tracking 65

Filter. As in the orientation correction, this filter will have the same formu-
lation in each axis but with different sensor feeds.

Low-pass filtering

Solid state accelerometers usually have high frequency noise associated to
their estimations. Considering that the accelerations will be used to inte-
grate the user position, this noise must be removed from the sensor because
otherwise, the impact in the estimation could be relevant.

Several approaches allow to eliminate such noise, but taking into account
the characteristics of the environment in which the sensor will gather the
information, a low-pass filter seems to be the better solution. Thus, assuming
a common behavior in the movements of the operator’s head, it is possible to
filter the accelerometers signal to remove/attenuate frequencies higher than
expected.

A very simple first order low-pass filter is proposed in this case. Consider-
ing that the dynamics of the operator’s head will be mainly below frequency
Fc, the filter can be computed as follows:

y = (∆ta1 + ∆ta−∆ty1 + 2y1/Fc)/(∆t+ 2/Fc); (3.38)

where a and a1 are the current and previous time step accelerations respec-
tively. y and y1 stand for the current and the previous time step filter outputs
respectively. Finally, ∆t is the time step in seconds.

For head tracking, it has been found that a value Fc = 100 Hz can prop-
erly filter the noise of the accelerometers without compromising the acceler-
ations.

Acceleration rotation and gravity cancelation

Once the accelerations are filtered, they have to be rotated to a known refer-
ence frame in order to subtract the gravity acceleration vector components.
For this purpose, the output of the orientation correction will be used.

The output of the orientation correction stage are the stabilized roll,
pitch and yaw that transform the system reference showed in Figure 3.8 to
the reference frame attached to the operator’s head. These angles are called
“Tait-Bryan Angles” and can be used to compute the associated rotation
matrix:

R
′
=

 cos(p)cos(y) −cos(p)sin(y) sin(p)
sin(r)sin(p)cos(y) + cos(r)sin(y) −sin(r)sin(p)sin(y) + cos(r)cos(y) −sin(r)cos(p)
−cos(r)sin(p)cos(y) + sin(r)sin(y) cos(r)sin(p)sin(y) + sin(r)cos(y) cos(r)cos(p)

 (3.39)

where r, p and y stand for the roll, pitch and yaw values respectively.
However, we are interested in the rotation from the frame attached to

the operator’s head to the reference system shown in Figure 3.8. Then, we



66 3. Software tools

need to invert the rotation matrix R′ (which is equal to its transpose), and
the final rotation matrix is given by

R = R
′T

=

 cos(p)cos(y) sin(r)sin(p)cos(y) + cos(r)sin(y) −cos(r)sin(p)cos(y) + sin(r)sin(y)
−cos(p)sin(y) −sin(r)sin(p)sin(y) + cos(r)cos(y) cos(r)sin(p)sin(y) + sin(r)cos(y)

sin(p) −sin(r)cos(p) cos(r)cos(p)

 .

(3.40)

With the rotation matrix R, the accelerometers can be rotated to a
reference system in which the value of the gravity vector is known. According
to Figure 3.8, the gravity vector will be given by g = [0, 0, 9.8]T m/s2 and
the gravity free acceleration in the fixed reference system can be computed
as:

agf = Ra + g, (3.41)

where a represents the original acceleration vector and agf is the gravity free
acceleration vector.

The new acceleration vector can be used now to integrate the velocity
and the position in a Kalman Filter in order to interpolate the estimation of
the vision-based head tracking.

Kalman Filter for acceleration integration

This section describes the proposed Kalman Filter for acceleration integra-
tion. As with the orientation, the filter will be split into three filters (one
per axis), each with the same formulation but different data feeds.

State vector

The state vector should consider the following constraints:

• Position. The filter must account for the current position of the op-
erator’s head. This variable will accumulate the integration provided
by the accelerations and the position information given by the vision-
based head tracking system.

• Velocity. Given that the acceleration must be integrated two times to
compute the translation, accounting for the velocity into the filter will
help to estimate the errors and propagate information.

• Bias. The accelerometers will always be misaligned with respect to the
vision-based measurements. If this error is not compensated, it will be
included into the position integration and will lead to permanent errors
in the translation estimation. To avoid this, the bias will be estimated
into the filter and compensated.

According to these constraints, the state vector for a single axis will be
structured as follows:

x = [t, v, b]T , (3.42)

where t, v and b stand for the current translation, velocity and bias in a
particular axis respectively.



3.1. Head Tracking 67

Prediction stage

As with the orientation correction, the sensor readings (in this case the ac-
celeration in one axis) will be used to predict the state of the filter. The
acceleration will be integrated two times to estimate both velocity and po-
sition. Thus, the corresponding prediction equations will be given by:

x = Ax + Ba; (3.43)

where a is the measured acceleration in the corresponding axis and matrices
A and B are the following:

A =

1 ∆t −∆t2

0 0 −∆t
0 0 1

 , B =

∆t2

∆t
0

 (3.44)

The covariance matrix P is updated following the usual prediction equa-
tions of the Kalman Filter, that is

P = APAT + Q, (3.45)

where Q is the process covariance matrix that contains the noise added by
the sensor in the prediction equation. Assuming that the sensor is affected
by noise whose variance is given by σ2a, matrix Q takes the following value

Q =

∆t4σ2a ∆t3σ2a 0
∆t3σ2a ∆t2σ2a 0

0 0 1

 . (3.46)

Updating stage

The filter updating will be carried out based on the vision-based measure-
ments. This system provides position estimation in each axis at a lower rate
than accelerometers do, but with a bounded error. Thus, the vision-based
computed translation allows to fix the estimated translation and, indirectly,
allows also to refine the estimated velocity and bias.

Then, the measurement will be the actual head translation in a particular
axis and its variance, (zt, σ

2
z). The updating equation can be written easily

in matrix form as follows:

zt =
[
1 0 0

]
x. (3.47)

From this equation it is easy to obtain the Kalman Gain that optimally
computes the state vector and covariance matrix updating.



68 3. Software tools

Filter initialization

Finally, this section deals with the initialization of the state vector and the
covariance matrix. Thus, the state vector is initialized with the first vision-
based measurement (zt, σ

2
z) as follows:

• The translation t is set to the mean value of the measurement zt.

• The velocity v is set to zero.

• The bias b is also initialized to 0.

The covariance matrix also is initialized with the first measurement. The
result is a diagonal matrix in which the variance of the translation t is set
to σ2z , the variance of the velocity is set to 0.1 and the variance of the bias
to 0.01.



3.2. SPINE 69

3.2 SPINE

3.2.1 Introduction

Was raised using a biometric sensor network on the user of the station, in
that way the system could know the state of the user all the time. That could
give us some advantages, like to know if the user is stressed or if the user is
too much relaxed (maybe slept) for example. For this reason was decided to
study the option to include a Software tool that allows us to monitor and
control the sensor network. This tool was SPINE [9].

SPINE (Signal Processing in Node Environment) is a software Frame-
work for the design of Wireless Sensor Network applications. SPINE enables
efficient implementations of signal processing algorithms for analysis and
classification of sensor data through libraries of processing and utility func-
tions and protocols. SPINE allows decrease development time and improves
interoperability among applications through libraries of components of typ-
ical WSN systems specified in nesC and developed in TinyOS environment.
Libraries include:

• a library of features computing parameters of the sensor data such as
variance, mean or range of the sensor data

• an over-the-air protocol that allows the coordinator of a WSN to dy-
namically request the computation of specific features to the sensor
nodes and obtain the result

• a set of utility functions such as a circular buffer and a sorting algorithm

SPINE enables efficient implementations of signal processing algorithms by
providing a flexible way to allocate tasks among the WSN nodes. For ex-
ample, SPINE allows compute features on the sensor nodes and uses an
over-the-air protocol to send the computation results to the WSN coordina-
tor. This implementation allows the coordinator to request the computation
of features only when needed.

The objective of the SPINE open source project is to build a community
to further develop the Framework and make it a valuable tool for the design
of signal processing intensive WSN applications.

3.2.2 Technical description

The SPINE Framework relies on a WSN architecture including one or more
sensor nodes and a WSN coordinator. The WSN coordinator typically per-
forms functions such as managing the WSN nodes, collecting and analyzing
the data received from the sensor nodes, and connecting as a gateway the
WSN with a wide area network (WAN) for remote data access.



70 3. Software tools

Figure 3.10: Schematic SPINE

SPINE has two main SW components: one to be executed on the sensor
nodes and the other on the BSN coordinator.

The sensor node component, designed in TinyOS environment and writ-
ten in nesC language, includes several utilities for signal processing such as
data storage buffers, mathematical function libraries and common feature
extractors used in signal processing. Furthermore, it includes an over-the-
air communication protocol to transfer data from the sensor nodes to the
WSN coordinator.

The coordinator component consists of a Java-based interface that an
application running on the gateway itself or on a remote server can use to
manage the sensor nodes or make service requests. This lightweight Java
API is easily portable to devices of various capabilities, such as a PC or a
mobile phone.

The SPINE framework offers developers great flexibility in the imple-
mentation of distributed signal processing algorithms for the analysis and
the classification of sensor data. Some applications are based on complex
algorithms that require an implementation on nodes such as gateway de-
vices with sufficient computational resources. Other applications are based
on rather lightweight algorithms that can be implemented in a distributed
manner, i.e. with some functions executed on the sensor nodes.

SPINE supports both centralized and distributed implementations and
therefore offers designers the flexibility to select the implementation approach
that is most suitable to meet the requirements of the application. It includes
a Feature Selection Protocol (FSP) that can be used by the gateway to re-
quest the sensor nodes to send back the result of locally computed features.
Computing features locally and sending the results instead of transmitting
the raw sensor data offers several advantages such as a more efficient utiliza-
tion of the bandwidth of the wireless medium and savings of the energy of
the nodes. In addition to requesting a node to send the results of features
computed locally, FSP can also be used to specify:

• The interval over which a feature is to be calculated.



3.2. SPINE 71

Figure 3.11: SPINE System

• The frequency with which the nodes should send the data to the gate-
way, e.g. 1) at regular intervals, 2) upon request, 3) when the values
reach a specified threshold

Another important feature of SPINE is the reusability of nodes in dif-
ferent application scenarios. The service discovery function at the WSN
coordinator allows it to recognize the functions of sensor nodes that have
already been configured. This flexibility allows the same node to be de-
ployed in many different application scenarios without reconfiguration of the
embedded code.

The first release of SPINE has been used for the design of assisted living
services such as the monitoring of limb movements of a person and more
in general the recognition of a person’s activities and postures. The system
is based on a sensor board with 3-axis accelerometers and gyroscopes. The
classification algorithm is implemented in TinyOS environment using the
SPINE libraries.

The current libraries include features relevant to the analysis of data
from accelerometers and gyroscopes (Figure 3.12), as well as on-mote imple-
mentation of code that interfaces accelerometer and gyroscope sensors with
internal buffers. However, the framework is not limited just to applications
based on accelerometers, but can be easily extended, adding libraries with
new features and interfaces, and used also in WSN applications based on
other types of sensors.

In our particular case we were interested in a sensor network with bio-
metric sensors (like we can see in the figure 3.12). In fact, SPINE can be
used to monitor the state of patients and we can use that in our profit.



72 3. Software tools

Figure 3.12: SPINE Compatible Sensors

But, finally, because the difficulties involved, the feeling that could prove
cumbersome for the user of the station take over as many elements (remember
that we are already using the Headphones and the vibrators) and the fact
that the contribution of such biometric sensors is not so valuable. It was
decided to discard this option. But if it would be necessary, this tool could
be implemented in the future.



3.3. 3D Sound 73

3.3 3D Sound

In a station is very important to combine the visual information with the
auditory information. In that way the user can process more information
given by the station. Some theories related to the Theory of Attention
speak about the viability of performing two or more tasks simultaneously.
As the theory of Multiples Resources, it is possible to carry out some tasks
simultaneously if these tasks require different attention resources. So, it is
possible to be looking at a screen for warnings and listen a warning and
react to it. But, for example, it is rather difficult to perform a linguistic task
(repeating a text, counting in reverse order, etc.) and a spatial task (detect a
target on a video screen, etc.) simultaneously. And it is still more difficult to
perform two linguistic tasks simultaneously (listening and reading), or two
spatial tasks, especially if these tasks concern information presented in the
same modality.

Taking account all above it was decided to use auditory warnings and
messages in the station and for that aim we decided to use the Headphones.
And, when the new functionality was installed in the Headphones (Head-
Tracking) we can use it in our profit and exploit it building a new Software
tool, 3D Sound. But, what is the 3D Sound?

Surround sound (or 3D Sound) encompases a range of techniques for
enriching the sound reproduction quality of an audio source with audio chan-
nels reproduced via additional, discrete speakers. The three-dimensional
(3D) sphere of human hearing can be virtually achieved with audio channels
above and below the listener. To that end, the multichannel surround sound
application encircles the audience (left-surround, right-surround, back-surround),
as opposed to "screen channels" (center, [front] left, and [front] right), i.e.
ca. 360ř horizontal plane, 2D).

Surround sound technology is used in cinema and home theater systems,
video game consoles, personal computers and other platforms. Commer-
cial surround sound media include videocassettes, Video DVDs, and HDTV
broadcasts encoded as Dolby Pro Logic, Dolby Digital, or DTS. Other com-
mercial formats include the competing DVD-Audio (DVD-A) and Super Au-
dio CD (SACD) formats, and MP3 Surround. Cinema 5.1 surround formats
include Dolby Digital and DTS. Sony Dynamic Digital Sound (SDDS) is a
7.1 Cinema configuration which features 5 independent audio channels across
the front with two independent surround channels, and an LFE.

Most surround sound recordings are created by film production compa-
nies or video game producers; however some consumer camcorders have such
capability either built-in or available separately. Surround sound technolo-
gies can also be used in music to enable new methods of artistic expression.
After the failure of quadraphonic audio in the 1970s, multichannel music has
slowly been reintroduced since 1999 with the help of SACD and DVD-Audio
formats. Some AV receivers, stereophonic systems, and computer soundcards



74 3. Software tools

contain integral digital signal processors and/or digital audio processors to
simulate surround sound from a stereophonic source.

The 3D simulation is the most advanced group of 3D audio effects. Using
head-related transfer functions and reverberation, the changes of sound on
its way from the source (including reflections from walls and floors) to the
listener’s ear can be simulated. These effects include localization of sound
sources behind, above and below the listener.

Figure 3.13: 3D Sound System

As we can see above, this is an emerging technology especially in the
leisure field, but there are not reasons not to apply this technology in the
industrial field. In our case we want to exploit the Head-Tracking system
to get a more accurate 3D Sound system. The main advantage we can get
with the implementation of 3D Sound in our system is the ability to locate a
sound in the 3D space; initially it does not look like much, but as our system
may have more than a single screen and due we always know the position
of userťs head (thanks to Head-tracking System), we can use it to generate
a sound that seems to come from one of the screens. In that way, we can
get that user does not miss important visual information. For example, we
suppose that we have three screens, and a warning appear in the left screen



3.3. 3D Sound 75

but, for any reason, the user is looking at the right screen; maybe user do not
see the warning. With 3D Sound it would be possible to generate a sound in
the Headphones that make the user believe that the sound comes from the
left screen. These and other utilities will be seen further in the next section:
Possible applications 4.

In order to schedule the 3D Sound, the smartest option looks to be to
use OpenAL. OpenAL (for "Open Audio Library") is a software interface to
audio hardware. The interface consists of a number of functions that allow a
programmer to specify the objects and operations in producing high-quality
audio output, specifically multichannel output of 3D arrangements of sound
sources around a listener.

The OpenAL API is designed to be cross-platform and easy to use. It
resembles the OpenGL API in coding style and conventions. OpenAL uses
a syntax resembling that of OpenGL where applicable.

OpenAL is foremost a means to generate audio in a simulated three-
dimensional space. Consequently, legacy audio concepts such as panning
and left/right channels are not directly supported. OpenAL does include
extensions compatible with the IA-SIG 3D Level 1 and Level 2 rendering
guidelines to handle sound-source directivity and distancerelated attenua-
tion and Doppler effects, as well as environmental effects such as reflection,
obstruction, transmission, and reverberation.

Next step will be to transform the reference matrix from Head-Tracking
to OpenAL matrix reference, in order to locate the userťs head in the 3D
Sound System and to schedule the sound that must be generated.




	Software tools
	Head Tracking
	Introduction
	Head tracking system
	Integration of inertial sensors into head tracking system for robust estimation

	SPINE
	Introduction
	Technical description

	3D Sound


