
Chapter 5

3D Application

5.1 Introduction

When all tools of the station were ready, it was the time to test the station.
But it is impossible to test the station directly with an UAV, it will be
expensive and unsafe, for this reason it was decided to make a new simulation
tool. The aim is to get a 3D scene with some UAVs flying in it, and with
tools previously seen to schedule new functions (some of them like we saw in
the last chapter) for our station. In that way we can simulate the situation
of an operator control and monitoring one or more UAVs.

We need a Software tool that allows us to work with 3D graphics to get a
simulation nearer to the reality that we can. The first thought was OpenGL
(Open Graphics Library), which is a standard specification defining a cross-
language, cross-platform API for writing applications that produce 2D and
3D computer graphics. The interface consists of over 250 different function
calls which can be used to draw complex three-dimensional scenes from sim-
ple primitives. OpenGL was developed by Silicon Graphics Inc. (SGI) in
1992 and is widely used in CAD, virtual reality, scientific visualization, in-
formation visualization, and flight simulation. It is also used in video games,
where it competes with Direct3D on Microsoft Windows platforms (see Di-
rect3D vs. OpenGL). OpenGL is managed by the non-profit technology
consortium, the Khronos Group.

The OpenGL API (Application Programming Interface) began as an ini-
tiative by SGI to create a single, vendor-independent API for the devel-
opment of 2D and 3D graphics applications. Prior to the introduction of
OpenGL, many hardware vendors had different graphics libraries. This sit-
uation made it expensive for software developers to support versions of their
applications on multiple hardware platforms, and it made porting of appli-
cations from one hardware platform to another very time-consuming and
difficult. SGI saw the lack of a standard graphics API as an inhibitor to
the growth of the 3D marketplace and decided to lead an industry group in
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creating such a standard.
The result of this work was the OpenGL API, which was largely based

on earlier work on the SGIő IRIS GLŹ library. The OpenGL API began as
a specification, then, SGI produced a sample implementation that hardware
vendors could use to develop OpenGL drivers for their hardware. The sample
implementation has been released under an open source license.

OpenGL could be the solution, but more recently has emerged other
cross-platform graphics toolkit called OpenSceneGraph, it is based on OpenGL,
but in a higher level. Now we are going to see the main futures and an
overview about OpenSceneGraph.

5.2 OpenSceneGraph

The OpenSceneGraph is an OpenSource, cross-platform graphics toolkit for
the development of high-performance graphics applications such as flight sim-
ulators, games, virtual reality and scientific visualization. It is based around
the concept of a SceneGraph, providing an object-oriented framework on
top of OpenGL. This frees the developer from implementing and optimizing
low-level graphics calls and provides many additional utilities for rapid de-
velopment of graphics applications. We will start with an introduction to
scene graphs and then we will see important features of OpenSceneGraph,
more information is available in the official website [15].

Figure 5.1: OSG logo

5.2.1 Introduction to Scene Graphs

A scene graph is a hierarchical tree data structure that organizes spatial
data for efficient rendering. Figure 5.2 illustrates an abstract scene graph
consisting of terrain, a cow, and a truck.

The scene graph tree is headed by a top-level root node. Beneath the
root node, group nodes organize geometry and the rendering state that con-
trols their appearance. Root nodes and group nodes can have zero or more
children. (However, group nodes with zero children are essentially no-ops.)
At the bottom of the scene graph, leaf nodes contain the actual geometry
that make up the objects in the scene.

Applications use group nodes to organize and arrange geometry in a
scene. Imagine a 3D database containing a room with a table and two
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Figure 5.2: Scene Graph example

identical chairs. You can organize a scene graph for this database in many
ways. Figure 5.3 shows one example organization. The root node has four
group node children, one for the room geometry, one for the table, and one
for each chair. The chair group nodes are color-coded red to indicate that
they transform their children. There is only one chair leaf node because the
two chairs are identical their parent group nodes transform the chair to two
different locations to produce the appearance of two chairs. The table group
node has a single child, the table leaf node. The room leaf node contains the
geometry for the floor, walls, and ceiling.

Figure 5.3: A typical scene graph

Scene graphs usually offer a variety of different node types that offer a
wide range of functionality, such as switch nodes that enable or disable their
children, level of detail (LOD) nodes that select children based on distance
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from the viewer, and transform nodes that modify transformation state of
child geometry. Object-oriented scene graphs provide this variety using in-
heritance; all nodes share a common base class with specialized functionality
defined in the derived classes.

The large variety of node types and their implicit spatial organization
ability provide data storage features that are unavailable in traditional low-
level rendering APIs. OpenGL and Direct3D focus primarily on abstracting
features found in graphics hardware. Although graphics hardware allows
storage of geometric and state data for later execution (such as display lists
or buffer objects), low-level API features for spatial organization of that data
are generally minimal and primitive in nature, and inadequate for the vast
majority of 3D applications. Scene graphs are middleware, which are built on
top of low-level APIs to provide spatial organization capabilities and other
features typically required by highperformance 3D applications. Figure 5.4
illustrates a typical OSG application stack.

Figure 5.4: The 3D Applications stack

5.2.2 Scene Graph Features

Scene graphs expose the geometry and state management functionality found
in lowlevel rendering APIs, and provide additional features and capabilities,
such as the following:

• Spatial organization: The scene graph tree structure lends itself natu-
rally to intuitive spatial organization.

• Culling: View frustum and occlusion culling on the host CPU typically
reduces overall system load by not processing geometry that doesn’t
appear in the final rendered image.
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• LOD: Viewer-object distance computation on bounding geometry al-
lows objects to efficiently render at varying levels of detail. Further-
more, portions of a scene can load from disk when they are within a
specified viewer distance range, and page out when they are beyond
that distance.

• Translucent: Correct and efficient rendering of translucent (non-opaque)
geometry requires all translucent geometry to render after all opaque
geometry. Furthermore, translucent geometry should be sorted by
depth and rendered in back-to-front order. These operations are com-
monly supported by scene graphs.

• State change minimization: To maximize application performance,
redundant and unnecessary state changes should be avoided. Scene
graphs commonly sort geometry by state to minimize state changes,
and OpenSceneGraph’s state management facilities eliminate redun-
dant state changes.

• File I/O-Scene graphs are an effective tool for reading and writing 3D
data from disk. Once loaded into memory, the internal scene graph
data structure allows the application to easily manipulate dynamic 3D
data. Scene graphs can be an effective intermediary for converting
from one file format to another.

• Additional high-level functionality: Scene graph libraries commonly
provide high-level functionality beyond what is typically found in low-
level APIs, such as full-featured text support, support for rendering
effects (such as particle effects and shadows), rendering optimizations,
3D model file I/O support, and cross-platform access to input devices
and render surfaces.

Nearly all 3D applications require some of these features. As a result,
developers who build their applications directly on low-level APIs typically
resort to implementing many of these features, which increases development
costs. Using an off-the-shelf scene graph that already fully supports such
features enables rapid application development.

5.2.3 How Scene Graph render

A trivial scene graph implementation allows applications to store geometry
and execute a draw traversal, during which all geometry stored in the scene
graph is sent to the hardware as OpenGL commands. However, such an
implementation lacks many of the features described in the previous section.
To allow for dynamic geometry updates, culling, sorting, and efficient ren-
dering, scene graphs typically provide more than a simple draw traversal. In
general, there are three types of traversals:
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• Update: The update traversal (sometimes referred to as the applica-
tion traversal) allows the application to modify the scene graph, which
enables dynamic scenes. Updates are accomplished either directly by
the application or with callback functions assigned to nodes within the
scene graph. Applications use the update traversal to modify the posi-
tion of a flying aircraft in a flight simulation, for example, or to allow
user interaction using input devices.

• Cull: During the cull traversal, the scene graph library tests the
bounding volumes of all nodes for inclusion in the scene. If a leaf node
is within the view, the scene graph library adds leaf node geometry
references to a final rendering list. This list is sorted by opaque versus
translucent, and translucent geometry is further sorted by depth.

• Draw: In the draw traversal (sometimes referred to as the render
traversal), the scene graph traverses the list of geometry created during
the cull traversal and issues low-level graphics API calls to render that
geometry. OSG includes a fourth traversal, the event traversal, which
processes input and other events each frame, just before the update
traversal.

Figure 5.5 illustrates these traversals.

Figure 5.5: Scene graph traversals

Like we can see in the figure above, rendering a scene graph typically
requires three traversals. In (a), the update traversal modifies geometry,
rendering state, or node parameters to ensure the scene graph is up-to-date
for the current frame. In (b), the cull traversal checks for visibility, and
places geometry and state references in a new structure (called the render
graph in OSG). In (c), the draw traversal traverses the render graph and
issues drawing commands to the graphics hardware.

Typically, these three traversals are executed once for each rendered
frame. However, some rendering situations require multiple simultaneous
views of the same scene. Stereo rendering and multiple display systems are
two examples. In these situations, the update traversal is executed once per
frame, but the cull and draw traversals execute once per view per frame.
(That’s twice per frame for simple stereo rendering, and once per graphics
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card per frame on multiple display systems.) This allows systems with mul-
tiple processors and graphics cards to process the scene graph in parallel.
The cull traversal must be a read-only operation to allow for multithreaded
access.

5.2.4 Overview of OpenSceneGraph

OSG is a set of open source libraries that primarily provide scene manage-
ment and graphics rendering optimization functionality to applications. It’s
written in portable ANSI C++ and uses the industry standard OpenGL low-
level graphics API. As a result, OSG is cross platform and runs on Windows,
Mac OS X, and most UNIX and Linux (our case) operating systems. Most
of OSG operates independently of the native windowing system. However,
OSG includes code to support some windowing system specific functionality,
such as input devices, window creation, and Buffers. OSG is open source
and is available under a modified GNU Lesser General Public License, or
Library GPL (LGPL) software license. OSG’s open source nature has many
benefits:

• Improved quality: OSG is reviewed, tested, and improved by many
members of the OSG community. Over 250 developers contributed to
OSG v2.0.

• Improved application quality: To produce quality applications, appli-
cation developers need intimate knowledge of the underlying middle-
ware. If the middleware is closed source, this information is effectively
blocked and limited to vendor documentation and customer support.
Open source allows application developers to review and debug mid-
dleware source code, which allows free access to code internals.

• Reduced cost: Open source is free, eliminating the up-front purchase
price.

• No intellectual property issues: There is no way to hide software patent
violations in code that is open source and easily read by all.

Design and Architecture

OSG is designed up front for portability and scalability. As a result, it
is useful on a wide variety of platforms, and renders efficiently on a large
number and variety of graphics hardware. OSG is designed to be both flexible
and extensible to allow adaptive development over time. As a result, OSG
can meet customer needs as they arise.

To enable these design criteria, OSG is built with the following concepts
and tools:
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• ANSI standard C++

• C++ Standard Template Library (STL)

• Design patterns [Gamma95]

These tools allow developers using OSG to develop on the platform of their
choice and deploy on any platform the customer requires.

Components

The OSG runtime exists as a set of dynamically loaded libraries (or shared
objects) and executables. These libraries fall into five conceptual categories:

• The Core OSG libraries provide essential scene graph and rendering
functionality, as well as additional functionality that 3D graphics ap-
plications typically require.

• NodeKits extend the functionality of core OSG scene graph node classes
to provide higher-level node types and special effects.

• OSG plugins are libraries that read and write 2D image and 3D model
files.

• The interoperability libraries allow OSG to easily integrate into other
environments, including scripting languages such as Python and Lua.

• An extensive collection of applications and examples provide useful
functionality and demonstrate correct OSG usage.

Like we can see in the Figure 5.6, The Core OSG libraries provide func-
tionality to both the application and the NodeKits. Together, the Core
OSG libraries and NodeKits make up the OSG API. One of the Core OSG
libraries, osgDB, provides access to 2D and 3D file I/O by managing the
OSG plugins.
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Figure 5.6: OSG architecture

OpenSceneGraph has many more features, but it is impossible to include
them in the memory and nor is the goal. In the next section will review all
the steps in the development of the simulation station.
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5.3 Development of the simulation tool

In this section will see step by step all the development process associated to
the simulation tool. With this aim, some features of OpenSceneGraph, that
were not exposed before and are necessary to built the tool, will be explained
when programming needed.

5.3.1 First steps

The first step was to install OpensceneGraph in the Station PC. The station
uses Ubuntu Linux like operating system, so it was necessary to install a
compatible version of OpenSceneGraph with Linux. But, before install it,
it is necessary to build the dependencies. In Debian GNU/Linux is possi-
ble to make use of the pre-packaged binaries and simply type in a console
apt-get build-dep openscenegraph, to download and install the neces-
sary dependencies. Moreover the dependencies, is necessary to download
OpenSeceneGraph standard dataset for use with examples too. In this case
OpenSceneGraph-Data-2.8.0.zip was downloaded from http://www.opensce
negraph.org/projects/osg/wiki/Downloads/SampleDatasets. With these files
we can execute the OSG examples.

After the installation of the dependencies, I downloaded the OpenScene-
Graph from http://www.openscenegraph.org/projects/osg/wiki/Downloads.
The downloaded openSceneGraph version was OpenSceneGraph-2.8.2 that
is a stable version released 28th July 2009. After performing a file decom-
pression (source packet is a .zip), I opened a console, looked for the folder
with OSG and entered the following commands:
./configure
Make
Sudo make install

When instructions associated to the last command finished, OSG was
successful install in the PC. Next step was to run the example applications.
First we need to set up the path to the applications, and it is recommended
to add these environmental settings to the station PC login setup such us
.bashrc under Unix. The binaries paths to set up are:

• export PATH:/home/caba/OpenSceneGraph2.8.2/bin:/opt/Adobe/Re
ader8/bin:/home/caba/OpenSceneGraph-2.8.2/lib

• export OSG_FILE_PATH=/home/caba/OpenSceneGraph-Data-2.8.0

Now, it is possible to run a simple a simple application type in a console:
osgviewer cow.osg
Above command result is illustrated in the Figure 5.7:
Osgviewer is an OSG’s flexible and powerful model viewing tool and is a

fundamental tool in the present project because will allow us to represent the
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Figure 5.7: Osgviewer output

3D scene with UAVs. Viewer instantiates an osgViewer::Viewer object,
attaches a scene graph to it, and allows it to render. In the picture above
we loaded a simple model of a cow and display it.

The cow model is in OSG’s own .osg file format. However, osgViewer
supports the same file formats as OSG, many of which are enumerated in the
OSG Plugins section later in this chapter. OsgViewer lets you interact
with the model. By default, osgViewer exposes a trackball-like interface
(there are another interface that will be seen later in the memory). To
rotate the cow model, drag with your left mouse button. When you release
the mouse button, the model continues to rotate. You can zoom in or out
using the right mouse button. Press the space bar to return to the initial
view.

Once tested with the OSG examples, is time to start the scheduling of
our scene. First aim was to build a scene with a 3D terrain and a plane. For
that I was based on the examples of OSG official website. First of all I built
the associated scene graph (see Figure 5.8).

Like we can see in this example is very simple. Only need a RootNode
and two childs of the RootNode, the Plane and the terrain. Due I only
wanted to a static scene the child nodes could be simple osg::Nodes, later
will be necessary to do actions over these nodes (like to move the plane
around the terrain) and these nodes will be of a different kind in function of
these actions. Then, I associated an osgViewer to the Rootnode and when
the program was executed the result is illustrated in Figure 5.9.
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Figure 5.8: Basic Scene Graph

Figure 5.9: Viewer with plane and terrain
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And here is the first scene in OSG. The terrain is a Microsoft Flight
Simulator file (.flt) and the plane is an .osg file called "Cessna.osg". OSG
can load these models thanks to osgDB library.

The osgDB library allows applications to load, use, and write 3D databases.
The osgDB plugin architecture provides support for a wide variety of com-
mon 2D image and 3D model file formats. The osgDB maintains a registry
of and oversees access to the loaded OSG plugins. OSG supports its own file
formats. .osg is a plain ASCII text description of a scene graph, and .osga is
an archive (or group) of .osg files. The osgDB library contains support code
for these file formats. (OSG also supports a binary .ive format.)

Large 3D terrain databases are often created in sections that tile to-
gether. In this case, applications require that portions of the database load
from file in a background thread without interrupting rendering. The os-
gDB::DatabasePager provides this functionality.

5.3.2 Moving the plane

Once achieved the static scene, next logic step was to get a dynamic scene.
Now, the aim is to move the plane around the terrain. For that, we need to
define a new node type that can be rotated and translated. Is the time to
see the different scene graph classes present in OSG.

Scene Graph Classes

Scene graph classes aid in scene graph construction. All scene graph classes
in OSG are derived from osg::Node. Conceptually, root, group, and leaf
nodes are all different node types. In OSG, these are all ultimately derived
from osg::Node, and specialized classes provide varying scene graph func-
tionality. Also, the root node in OSG is not a special node type; it’s simply
an osg::Node that does not have a parent.

• Node: The Node class is the base class for all nodes in the scene
graph. It contains methods to facilitate scene graph traversals, culling,
application callbacks, and state management.

• Group: The Group class is the base class for any node that can have
children. It is a key class in the spatial organization of scene graphs.

• Geode: The Geode (or Geometry Node) class corresponds to the leaf
node in OSG. It has no children, but contains osg::Drawable objects
(see below) that contain geometry for rendering.

• LOD: The LOD class displays its children based on their distance to
the view point. This is commonly used to create a varying levels of
detail for objects in a scene.
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• MatrixTransform: The MatrixTransform class contains a matrix
that transforms the geometry of its children, allowing scene objects to
be rotated, translated, scaled, skewed, projected, etc.

• Switch: The Switch class contains a Boolean mask to enable or dis-
able processing of its children.

This is an incomplete list of OSG node types. Other node types exist, such
as Sequence and PositionAttitudeTransform.

For the system I needed an OSG Node class that allowed me to translate
and rotate the plane. I had two choices MatrixTransfrom and Position-
AtitudeTransform. Initially I choseMatrixTransform, but now I needed
a way to update the osgviewer with the moves of the plane. OSG can sup-
port dynamical scenes as we saw above. We needed the Callbacks to do
it.

CallBacks

OSG allows you to assign callbacks to Node and Drawable objects. OSG
executes Node callbacks during the update and cull traversals, and executes
Drawable callbacks during the cull and draw traversals. This section de-
scribes how to dynamically modify aNode during the update traversal using
an osg::NodeCallback. OSG’s callback interface is based on the Callback
design pattern [Gamma95].

To use a NodeCallback, your application should perform the following
steps:

• Derive a new class from NodeCallback.

• Override theNodeCallback::operator()()method. Code this method
to perform the dynamic modification on your scene graph.

• Instantiate your new class derived from NodeCallback, and attach it
to theNode that you want to modify using theNode::setUpdateCall
back() method.

OSG calls the operator()() method in your derived class during each
update traversal, allowing your application to modify the Node.

OSG passes two parameters to your operator()() method. The first
parameter is the address of the Node associated with your callback. This is
the Node that your callback dynamically modifies within the operator()()
method. The second parameter is an osg::NodeVisitor address. The next
section describes the NodeVisitor class, and for now you can ignore it.

To attach yourNodeCallback to aNode, use theNode::setUpdateCa
llback() method. setUpdateCallback() takes one parameter, the address
of a class derived from NodeCallback. The following code segment shows
how to attach a NodeCallback to a node:
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c l a s s RotateCB : pub l i c osg : : NodeCallback
{
. . .
} ;
. . .
node−>setUpdateCal lback ( new RotateCB ) ;

Multiple nodes can share callbacks. NodeCallback derives (indirectly)
from Referenced, and Node keeps a ref_ptr<> to its update callback.
When the last node referencing a callback is deleted, the NodeCallback
reference count drops to zero, and it is also deleted. In the code above, your
application doesn’t keep a pointer to the RotateCB object and doesn’t need
to.

The book’s example code contains a Callback example that demonstrates
the use of update callbacks. The code attaches a cow to two MatrixTrans-
form nodes. The code derives a class from NodeCallback and attaches it
to one of the two MatrixTransform objects. During the update traver-
sal, the new NodeCallback modifies the matrix to rotate one of the cows.
Figure 5.10 shows the output of the callback example.

Figure 5.10: Dynamic modification using CallBacks

Now we are going to see the example code, which consists of three main
parts. The first part defines a class called RotateCB, which derives from
NodeCallback. The second part is a function called createScene(), which
creates the scene graph. Note that when this function creates the first
MatrixTransform object, called mtLeft, it assigns an update callback
to mtLeft with the function call mtLeft->setUpdateCallback( new Ro-
tateCB ).



104 5. 3D Application

The Callback Example Source Code

This example demonstrates the process of creating a NodeCallback to up-
date the scene graph during the update traversal.

#include <osgViewer /Viewer>
#include <osgGA/Trackbal lManipulator>
#include <osg/NodeCallback>
#include <osg/Camera>
#include<osg /Group>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
// Derive a c l a s s from NodeCal lback to manipulate a
// MatrixTransform ob j e c t ’ s matrix .
c l a s s RotateCB : pub l i c osg : : NodeCallback
{

pub l i c : RotateCB ( ) : _angle ( 0 . ){}
v i r t u a l void operator ( ) ( osg : : Node∗ node , osg : : NodeVis i tor ∗ nv )
{
// Normally , check to make sure we have an update
// v i s i t o r , not necessary in t h i s s imp le example .
osg : : MatrixTransform∗ mtLeft = dynamic_cast<osg : : MatrixTransform∗>
( node ) ;
osg : : Matrix mR, mT; mT. makeTranslate ( −6. , 0 . , 0 . ) ;
mR. makeRotate (_angle , osg : : Vec3 ( 0 . , 0 . , 1 . ) ) ;
mtLeft−>setMatr ix (mR ∗ mT ) ;
// Increment the ang l e f o r the next from .
_angle += 0 . 0 1 ;
// Continue t r a v e r s i n g so t ha t OSG can proces s
// any o ther nodes wi th c a l l b a c k s .
t r a v e r s e ( node , nv ) ;
}

protec ted :
double _angle ;
} ;
// Create the scene graph . This i s a Group root node wi th two
// MatrixTransform ch i l d ren , which both parent a s i n g l e
// Geode loaded from the cow . osg model f i l e .

osg : : ref_ptr<osg : : Node> createScene ( )
{

// Load the cow model .
osg : : Node∗ cow = osgDB : : readNodeFi le ( "cow . osg " ) ;
// Data var iance i s STATIC because we won ’ t modify i t .
cow−>setDataVariance ( osg : : Object : : STATIC ) ;
// Create a MatrixTransform to d i s p l a y the cow on the l e f t .
osg : : ref_ptr<osg : : MatrixTransform> mtLeft = new
osg : : MatrixTransform ; mtLeft−>setName ( " Le f t ␣Cow\nDYNAMIC" ) ;
// Set data var iance to DYNAMIC to l e t OSG know tha t we
// w i l l modify t h i s node during the update t r a v e r s a l .
mtLeft−>setDataVariance ( osg : : Object : :DYNAMIC ) ;
// Set the update c a l l b a c k .
mtLeft−>setUpdateCal lback ( new RotateCB ) ;
osg : : Matrix m;
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m. makeTranslate ( −6. f , 0 . f , 0 . f ) ;
mtLeft−>setMatr ix ( m ) ;
mtLeft−>addChild ( cow ) ;
// Create a MatrixTransform to d i s p l a y the cow on the r i g h t .
osg : : ref_ptr<osg : : MatrixTransform> mtRight = new
osg : : MatrixTransform ;
mtRight−>setName ( "Right␣Cow\nSTATIC" ) ;
// Data var iance i s STATIC because we won ’ t modify i t .
mtRight−>setDataVariance ( osg : : Object : : STATIC ) ;
m. makeTranslate ( 6 . f , 0 . f , 0 . f ) ;
mtRight−>setMatr ix ( m ) ;
mtRight−>addChild ( cow ) ;
// Create the Group roo t node .
osg : : ref_ptr<osg : : Group> root = new osg : : Group ;
root−>setName ( "RootNode" ) ;
// Data var iance i s STATIC because we won ’ t modify i t .
root−>setDataVariance ( osg : : Object : : STATIC ) ;
root−>addChild ( mtLeft . get ( ) ) ;
root−>addChild ( mtRight . get ( ) ) ;
return root . get ( ) ;

}

int main ( int , char ∗∗)
{
// Create the v iewer and s e t i t s scene data to our scene
// graph crea t ed above .
osgViewer : : Viewer viewer ;
v iewer . setSceneData ( c rea teScene ( ) . get ( ) ) ;
// Set the c l e a r co l o r to something o ther than cha l ky b l u e .
viewer . getCamera()−>setC lea rCo lo r ( osg : : Vec4 ( 1 . , 1 . , 1 . , 1 . ) ) ;
// Loop and render . OSG c a l l s RotateCB : : opera tor ( ) ( )
// during the update t r a v e r s a l .
viewer . run ( ) ;
}

RotateCB::operator()() contains a call to traverse(). This is a mem-
ber method of the osg::NodeCallback class. This call allows the update
traversal (osgUtil::UpdateVisitor) to traverse the current group node chil-
dren. Requiring a call to traverse() is a design feature that lets yourNode-
Callback perform either pre- or post-traversal processing, depending on
where you place your code relative to the traverse() call. Omitting this call
prevents OSG from executing child node callbacks. The following section
discusses the NodeVisitor class in more detail.

Figure 5.11 shows the scene graph that the Callback example creates.
The Group root node has two child MatrixTransform nodes that trans-
form the single cow Geode to two different locations. As the figure shows,
one of the two MatrixTransform objects has its data variance set to DY-
NAMIC, and the other uses STATIC data variance because the code never
modifies it. The MatrixTransform on the left has the update callback
attached to it, which dynamically modifies the matrix during the update
traversal.
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Figure 5.11: The Callback example program scene graph

As this example illustrates, dynamically modifying a node is straightfor-
ward because attaching an update callback to a known node is trivial. The
problem becomes more complex if your application modifies a node that is
buried deep within a scene graph or selected interactively by a user. The
next sections describe some methods in OSG for runtime node identification.

NodeVisitors

NodeVisitor is OSG’s implementation of the Visitor design pattern [Gamma95].
In essence,NodeVisitor traverses a scene graph and calls a function for each
visited node. This simple technique exists as a base class for many OSG op-
erations, including the osgUtil::Optimizer, the osgUtil library’s geometry
processing classes, and file output. OSG uses the osgUtil::UpdateVisitor
class (derived from NodeVisitor) to perform the update traversal. In the
preceding section, UpdateVisitor is theNodeVisitor that calls theNode-
Callback::operator()() method. In summary, NodeVisitor classes are
used throughout OSG.

NodeVisitor is a base class that your application never instantiates
directly. Your application can use any NodeVisitor supplied by OSG, and
you can code your own class derived from NodeVisitor. NodeVisitor
consists of several apply() methods overloaded for most major OSG node
types. When aNodeVisitor traverses a scene graph, it calls the appropriate
apply() method for each node that it visits. Your custom NodeVisitor
overrides only the apply() methods for the node types requiring processing.
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After loading a scene graph from file, applications commonly search the
loaded scene graph for nodes of interest. As an example, imagine a model
of a robot arm containing articulations modeled with transformations at
the joints. After loading this file from disk, an application might use a
NodeVisitor to locate all the Transform nodes to enable animation. In this
case, the application uses a custom NodeVisitor and overrides the apply(
osg::Transform& ) method. As this custom NodeVisitor traverses the
scene graph, it executes the apply() method for each node that derives
from Transform, and the application can perform the operations necessary
to enable animation on that node, such as saving the node address in a list.

If your NodeVisitor overrides multiple apply() methods, OSG calls
the most specific apply() method for a given node. For example, Group
derives from Node. If your NodeVisitor overrides apply( Node& ) and
apply( Group& ), OSG calls apply( Group& ) if it encounters a Group
or any node derived from Group during the traversal. If OSG encounters a
Geode, it calls apply( Node& ) in this example, because Geode derives
from Node, not from Group.

The traverse() method is a member of NodeVisitor. This is differ-
ent from, but similar to, the traverse() call in section 5.3.2 Callbacks,
which is a member of NodeCallback. When traversing a scene graph, a
NodeVisitor uses the following rules:

• A vanillaNodeVisitor configured to TRAVERSE_ALL_CHILDREN
traverses its children.

• Custom NodeVisitor classes that override one or more apply() meth-
ods are responsible for calling NodeVisitor::traverse() to traverse
a node’s children. This requirement allows your custom NodeVisi-
tor to perform pre- and posttraversal operations, and stop traversal if
necessary.

• When using callbacks executed by NodeVisitor classes, such as an
update callback as described in the previous section, the NodeVisi-
tor traverses the children of nodes without a callback. NodeVisitor
doesn’t traverse the children of nodes with callbacks attached. In-
stead, the callback method operator()() is responsible for traversing
children with a call to NodeCallback::traverse() if the application
requires traversal.

To traverse your scene graph with a NodeVisitor, pass the NodeVisitor
as a parameter to Node::accept(). You can call accept() on any node,
and the NodeVisitor will traverse the scene graph starting at that node.
To search an entire scene graph, call accept() on the root node.
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Building the dynamic scene

Taking in account all explained before about CallBacks and Nodevisi-
tors was time to apply all to my program. At this point with each viewer
frame using callbacks I could move the plane, because in each frame Call-
backs would be executed and if I schedule that callback with instructions
to translate or rotate the plane, this translation or rotation would be shown
in the viewer. But how could I do it? First solution I found was to use an
osg::AnimationPath class.

The class osg::AnimationPath encapsulates a time varying transfor-
mation pathway. It can be used for updating camera position and model
object position. Osg::AnimationPathCallBack can be attached directly
Transform nodes to move subgraphs around the scene.

First of all, I needed to define a path that UAV would follow. I decided
that the UAV describing a square path over the terrain always at the same
height (to eliminate the variable z). So it was needed to define a home
position, distance traveled in each frame and when the UAV would have to
rotate and change its direction. As I was trying to describe a square it was
very easy, only one of the coordinates was changing in each moment. The
code to create the AnimationPath was the next:

osg : : AnimationPath∗ createAnimationPath ( const osg : : Vec3& home ,
double loopt ime )
{

// s e t up the animation path
osg : : AnimationPath∗ animationPath = new osg : : AnimationPath ;
// Make sure t ha t i t b u i l d the loop
animationPath−>setLoopMode ( osg : : AnimationPath : :LOOP) ;
// number o f samples
int numSamples = 40 ;
f loat disp lacement = 0 .0 f ;
// t o t a l d i sp lacement w i l l be 800 and we d i v i d ed t ha t f o r the
// number o f samples
f loat disp lacement_delta = 800 .0 f / ( ( f loat ) numSamples−1.0 f ) ;
double time = 0 .0 f ;
double t ime_delta = loopt ime /(double ) numSamples ;

// loop " f o r " o f the f i r s t path o f the square
for ( int i =0; i <10;++ i )
{

// Pos i t i on w i l l be the home p lu s the d i sp lacement dur ing
// the path in the f i r s t path we are t r a v e l l i n g through y
// ax i s from nega t i v e va l u e s to p o s i t i v e ones
osg : : Vec3 po s i t i o n (home+osg : : Vec3 ( 0 . 0 f , d isplacement , 0 . 0 f ) ) ;
osg : : Quat r o t a t i on ( osg : : Quat ( osg : : PI , osg : : Vec3 ( 0 . 0 , 0 . 0 , 1 . 0 ) ) ) ;
// wi th the token time we in t roduce the p o s i t i o n and
// o r i e n t a t i o n o f the p lane in to the animationpath
animationPath−>i n s e r t ( time , osg : : AnimationPath : : Contro lPoint
( po s i t i on , r o t a t i on ) ) ;
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// Update the v a r i a b l e s
disp lacement += displacement_delta ;
time += time_delta ;

}
d isp lacement = 0 .0 f ;
// a u x i l i a r y v a r i a b l e to l o c a t e the p lane
osg : : Vec3 aux (−100.0 f , 1 0 0 . 0 f , 1 0 0 . 0 f ) ;
for ( int i =0; i <10;++ i )
{

// Now we are t r a v e l l i n g through x ax is , from nega t i v e s
// va l u e s to p o s i t i v e ones , t h e r e f o r e the d i sp lacement i s
// on x ax i s .
osg : : Vec3 po s i t i o n ( aux+osg : : Vec3 ( displacement , 0 . 0 f , 0 . 0 f ) ) ;
osg : : Quat r o t a t i on ( osg : : Quat ( 0 . 5 f ∗ osg : : PI , osg : : Vec3 ( 0 , 0 , 1 ) ) ) ;
animationPath−>i n s e r t ( time , osg : : AnimationPath : : Contro lPoint
( po s i t i on , r o t a t i on ) ) ;

d i sp lacement += displacement_delta ;
time += time_delta ;

}
d isp lacement = 0 .0 f ;
osg : : Vec3 aux1 (100 . 0 f , 1 0 0 . 0 f , 1 0 0 . 0 f ) ;
for ( int i =0; i <10;++ i )
{

// Now we are t r a v e l l i n g through y ax is , from p o s i t i v e va l u e s
// to nega t i v e ones , t h e r e f o r e the d i sp lacement i s on y ax i s .
osg : : Vec3 po s i t i o n ( aux1−osg : : Vec3 ( 0 . 0 f , d isplacement , 0 . 0 f ) ) ;
osg : : Quat r o t a t i on ( osg : : Quat ( 0 . 0 f , osg : : Vec3 ( 0 . 0 , 1 . 0 , 0 . 0 ) ) ) ;
animationPath−>i n s e r t ( time , osg : : AnimationPath : : Contro lPoint
( po s i t i on , r o t a t i on ) ) ;

d i sp lacement += displacement_delta ;
time += time_delta ;

}
d isp lacement = 0 .0 f ;
osg : : Vec3 aux2 (100 . 0 f ,−100.0 f , 1 0 0 . 0 f ) ;
for ( int i =0; i <10;++ i )
{

// Now we are t r a v e l l i n g through x ax is , from p o s i t i v e va l u e s
// to nega t i v e ones , t h e r e f o r e the d i sp lacement i s on x ax i s
osg : : Vec3 po s i t i o n ( aux2−osg : : Vec3 ( displacement , 0 . 0 f , 0 . 0 f ) ) ;
osg : : Quat r o t a t i on ( osg : : Quat ( 3 . 0 f ∗ osg : : PI /2 .0 f , osg : : Vec3 ( 0 , 0 , 1 ) ) ) ;
animationPath−>i n s e r t ( time , osg : : AnimationPath : : Contro lPoint
( po s i t i on , r o t a t i on ) ) ;

d i sp lacement += displacement_delta ;
time += time_delta ;

}
return animationPath ;

}

It is possible to distinguish four parts in the code, each one associated
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to a stretch of the square path. In the code are associated position and
orientation of the plane with a timestamp, and in each iteration of any loop
"for" is stored this timestamp with its associated values of position and
rotation. In that way OSG knows in each moment where the plane is. Like
I activated the loop mode, the movement repeats in a periodical way.

But, there is still something to be done. It was needed to call toOsg::Ani
mationPathCallBack, in order to do an update callback when the viewer
is refreshed. I had another function that has this mission:

osg : : Node∗ createMovingModel ( const osg : : Vec3& home)
{

f loat animationLength = 40 .0 f ;
osg : : AnimationPath∗ animationPath = createAnimationPath (home ,
animationLength ) ;
osg : : Group∗ model = new osg : : Group ;
osg : : Node∗ ces sna=osgDB : : readNodeFi le ( " . / models / ces sna . osg " ) ;
i f ( ces sna )
{

osg : : MatrixTransform∗ xform = new osg : : MatrixTransform ;
xform−>setUpdateCal lback (new osg : : AnimationPathCallback
( animationPath , 0 . 0 f , 2 . 0 ) ) ;
xform−>addChild ( ces sna ) ;
model−>addChild ( xform ) ;

}
return model ;

}

Like we can see in the code above, this function receive a 3D vector that
represents the home position of the plane. It calls to the function we saw
before, which is responsible to creating the AnimationPath. Then the pro-
gram loads the 3D model of the plane and creates an osg::MatrixTransform
Node called xform . Program calls to the setUpdateCallbackmethod with
a new osg::AnimationPathCallback class (this last, with the Anima-
tionPath set up before like argument) as argument. Thus, all translations
or rotations made to xform will affect to its children. Then, a child of
xform type osg::Node is created and contains the 3D model of the plane.
Therefore, all the transformations made to xform will affect our plane. Fi-
nally, xform is added like a child to an osg::Group Node, and this node is
return to the main program where it will become in a child of the rootNode.
This rootNode will be passed like a parameter to the viewer to render the
scene.

The result was very satisfactory. It was possible to ascertain that the
plane described a square path over the terrain. But there was a mistake,
when the plane arrived to the home position did not rotate to face its target
but the plane appeared directly facing the goal. But that mistake was not
the only, in next sections will see the limitations of this method.
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5.3.3 Cameras management

At this point, we had a scene with a plane flying over a terrain. The camera
point of view is extern to the scene, that is to say we can see the plane
and the terrain simultaneously. But, as I wanted to simulate a camera in
the UAV, I needed to change the camera manipulator and associate it with
the plane for the camera to be translated and rotated with the plane. In
OSG there are many camera manipulators, by default osgViewer have a
TrackBallManipulator.

We suppose that we have created the scene and the principal node is
rootnode (all other nodes on the scene are its children), and now we are
going to define the viewer and we want to view the scene which parent node
is rootnode, the instructions would be the next:

osgViewer : : Viewer viewer ;
v iewer . se tScenedata ( rootnode ) ;
v iewer . setUpViewInWindow ( 100 , 100 ,800 , 650 ) ;
v iewer . r e a l i z e ( ) ;
while ( ! v iewer . done ( ) )
{

Viewer . frame ( simulationTime ) ;
s imulationTime += 0 ,001 ,

}

It is easy to understand the code above, is defined a variable osgViewer::
Viewer called viewer ; with setScenedata, that is a method of the os-
gViewer::Viewer class, indicates that the viewer has to represent the scene
graph which parent is rootnode. Method setUpInWindow define the po-
sition and the size of the window of the viewer. And last part is the loop
to represent the scene. Figure 5.12 illustrates the output generated for the
code above.

Last picture shows the 3D scene in a window (due to setUpInWindow
method) and as can be seen for default point of view is external to the scene
and shows all elements of the scene. But we were looking for a point of
view attached to the plane, in this way when the plane moves and rotates,
so will the camera. Then, a new definition of the camera manipulator was
needed. With the classic camera manipulator, TrackBallManipulator, is
not possible to get it, for this reason was necessary to find another cam-
era manipulator. Looking for it between OSG camera manipulators I found
osgGA::NodeTrackerManipulator, this new manipulator has the prop-
erties that I was looking for, and it has different members to specify the node
to follow and how it rotates.

The osgGA::NodetrackerManipulator has two rotation modes:

• TRACKBALL: Use a trackball style manipulation of the view direction
with respect to the tracked orientation.
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Figure 5.12: Scene view for default

• ELEVATION_AZIM: Allow the elevation and azimuth angles to be
adjust with respect the tracked orientation.

On the other hand, it is necessary to indicate the way that the node
is tracked for the new NodeTrackerManipulator. There are three
different ways of tracking nodes:

• NODE_CENTER: Track the center of the nodeťs bounding sphere,
but not rotations of the node.

• NODE_CENTER_AND_AZIM: Track the center of the nodeťs bound-
ing sphere, and the azimuth rotation (about the z axis of the current
coordinate frame).

• NODE_CENTER_AND_ROTATION: Track the center of the nodeťs
bounding sphere, and the all rotations of the node.

I tested all different ways to track the plane and two ways to track the
rotation of the plane. From my point of view, the best possible configu-
ration was to track the plane with NODE_CENTER_AND_ROTATION
mode and rotates the view direction with ELEVATION_AZIM mode. The
way to track the rotation of the node was chosen because the chosen one
(NODE_CENTER_AND_ROTATION) allows to make the same rotations
to the camera than those suffered by the plane. In the other hand, the way
that camera manipulator rotates was chosen due to this method is more life-
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like, simulates a pulp and tilt. To configure a NodeTrackerManipulator
are only necessary this code lines:

osgGA : : NodeTrackerMAnipulator∗ tm = new
osgGA : : NodeTrackerManipulator ;
tm−>setTrackerMode (osgGA : : NodeTrackerManipulator : :NODE_CENTER
_AND_ROTATION) ;
tm−>setRotationMode (osgGA : : NodeTrackerManipulator : :ELEVATION
_AZIM) ;

At this point, I needed to attach the NodeTrackerManipulator to the
plane. In order to do it, we defined a new child for the plane node. This
node would be slightly below the plane node and would allow us to attach
the NodeTrackerManipulator to it. This process is conducted with the
following code lines:

Osg : : po s i t i onAt t i t ude t r a s f o rm ∗ f o l l ow e rO f f s e t = new
osg : : Pos i t i t i onAtt i tudeTrans fo rm ( ) ;
f o l l owe rO f f s e t−>se tPo s i t i o n ( osg : : Vec3 ( 0 . 0 , 0 . 0 , −10 . 0 ) ) ;
f o l l owe rO f f s e t−>setAt t i tude ( osg : : Quat (
osg : : DegreeToRadians ( 9 0 . 0 ) , osg : : Vec3 (1 , 0 , 0 ) ) ) ;
Plane . get−>addChild ( f o l l ow e rO f f s e t ) ;
tm−>setTrackNode ( f o l l ow e rO f f s e t ) ;

With the last command we attach the NodeTracker to followerOffset
that we can see is a child of the plane. With the instruction setPosition,
we indicate to the system that the node followerOffset will be slightly
below from the plane; and with the instruction setAttitude we indicate that
initially the camera will be looking down. But now we needed to indicate to
the viewer that the camera manipulator would be tm, for that we will use
the Viewer method setCameraManipulator:

osgViewer : Viewer viewer ;
viewer−>setCameraManipulator (tm ) ;

At this point if we execute the program we would get the shown in the
Figure 5.13:

Obviously the obtained result is the terrain. But the aim was to get that
the camera moves with the plane and we got it. Like we saw in sections
above, the plane is describing a square trajectory and the camera, slightly
below of the plane, describes the same trajectory at the same time that the
plane.

In that point I had an idea, we can use to views, one like the figure 5.13
illustrates, and another like the figure 5-13 shows. In order to achieve that
aim, we needed another new tool, because the Viewer did not allow to do it
directly. OSG has a tool for this, and this tool is CompositeViewer. While
Viewer manages a single view into a scene (possibly with a group of Camera
objects to support multipipe rendering), CompositeViewer supports mul-
tiple views into one or more scenes and allows our application to specify their
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Figure 5.13: Camera view of plane

rendering order. CompositeViewer supports render-to-texture (RTT) op-
erations, which allows our application to use the rendered image from one
view as a texture map in a subsequent view.

I was looking for the best way to represent two different views at the
same time. In OSG examples I found a code createView.cpp that let me
to show the two views in the same window. The code is shown below:

#include <osgViewer /Viewer>
#include <osgDB/ReadFile>
#include<osgSim/MultiSwitch>
#include <osg/MatrixTransform>
#include<osg /Pos it ionAtt i tudeTransform>
#include<osgGA/Trackbal lManipulator>
#include <osgViewer /CompositeViewer>
#include <osgGA/StateSetManipulator>
#include<osgGA/NodeTrackerManipulator>

void createView ( osgViewer : : CompositeViewer ∗viewer ,
osg : : ref_ptr<osg : : Group> scene ,
osg : : ref_ptr<osg : : GraphicsContext> gc ,
osgGA : : NodeTrackerManipulator∗ Tman,
int x , int y , int width , int he ight )

{
double l e f t , r i ght , top , bottom , near , far , a s p e c t r a t i o ;
double f rusht , f ruswid , fudge ;
bool gotfrustum ;
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osgViewer : : View∗ view = new osgViewer : : View ;
viewer −> addView ( view ) ;
view−>setCameraManipulator (Tman) ;
view−>setSceneData ( scene . get ( ) ) ;
view−>getCamera()−>setViewport (new osg : : Viewport

(x , y , width , he ight ) ) ;
view−>getCamera()−> getProject ionMatrixAsFrustum ( l e f t , r i ght ,

bottom , top , near , f a r ) ;
i f ( gotfrustum )
{

a s p e c t r a t i o = (double ) width/ (double ) he ight ;
f r u sh t = top − bottom ;
f ruswid = r i gh t − l e f t ;
fudge = f ru sh t ∗ a s p e c t r a t i o / f ruswid ;
r i g h t = r i gh t ∗ fudge ;
l e f t = l e f t ∗ fudge ;

view−>getCamera()−> setProject ionMatr ixAsFrustum
( l e f t , r i ght , bottom , top , near , f a r ) ;

}
view−>getCamera()−>setGraphicsContext ( gc . get ( ) ) ;
// add the s t a t e manipulator
osg : : ref_ptr<osgGA : : StateSetManipulator>

sta t e s e tMan ipu la to r = new osgGA : : StateSetManipulator ;
s ta te se tManipu lator−>se tS t a t eS e t ( view−>getCamera ( )

−>getOrCreateStateSet ( ) ) ;
view−>addEventHandler ( s ta t e s e tMan ipu la to r . get ( ) ) ;

}

As we can see in the last code, it is a function that receives as parameters
a compositeViewer, the parent node of the scene, a graphic context, the
camera manipulator and the position and the size of each view inside the
window. I have decided to show the code because finally it was discarded and
it is not include in Appendix A. In the main program only will be necessary
to define a compositeViewer and add two lines:
osgViewer : : CompositeViewer viewer ;
createView (&viewer , rootNode , gc , tm , 0 , 0 , t r a i t s−>width , h2 ) ;
createView (&viewer , rootNode , gc , tm2 , 0 , h2 , w3 , h2 ) ;

Like we can see above, we define two views. One which camera manipu-
lator is tm (in this case is the camera attached to the plane) and its width
is full screen, and the other which its camera manipulator is tm2 (which
correspond to a point above the plane but also moves with it) and its width
is one third of the screen. Both have the same height, half the screen. The
loop will be the same that in previous examples:
While ( ! v iewer . done ( ) )
{

Viewer . frame ( ) ;
}

And the result of the execution of the code is illustrated in the Figure 5.18:
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Figure 5.14: Two views in the same window

Resulting aesthetics was not too pretty, so I decided to probe with two
different windows. In this case, we can use a CompositeViewer method
that allows us to add different views. This method is addView, and it
lets to add different Viewers to a CompositeViewer. Then, it is necessary
to show these Viewers in different windows but only display one. We can
do it using the Viewer method setUpViewInWindow, that receives like
parameters the position and size of the window. The modification to the
code would be:

osgViewer : : CompositeViewer viewer ;

// Create View 0
osgViewer : : View∗ view = new osgViewer : : View ;
viewer . addView ( view ) ;
view−>setUpViewInWindow ( 10 , 680 , 400 , 270 ) ;
view−>setSceneData ( rootNode ) ;
view−>setCameraManipulator ( tm2 ) ;

// Create View 1

osgViewer : : View∗ view1 = new osgViewer : : View ;
viewer . addView ( view1 ) ;
view1−>setUpViewInWindow ( 10 , 680 , 400 , 270 ) ;
view1−>setSceneData ( rootNode ) ;
view1−>setCameraManipulator ( tm2 ) ;
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Figure 5.15: Views in different windows

And now we can see the result in the figure 5.15
Comparing the two options, personally I think it is better the second,

that is to say, to have one view in different windows. In this way we can
move one of the views where we prefer without prejudice to other views. Even
considering we have several screens in the station we could move windows
between them to our taste. With two views in the same windows that would
not be possible.

5.3.4 Introduction of GTK elements

At this point, we have a representation in two windows of a scene with a
plane flying around a terrain. But, it would be good that the user, as well
as monitor and see what happens windows would interact with them. For
this reason was decided to introduce GTK, which would allow us to build
a graphical interface to interact with the elements in the scene. GTK+ [6]
is a highly usable, feature rich toolkit for creating graphical user interfaces
which boasts cross platform compatibility and an easy to use API. GTK+
it is written in C, but has bindings to many other popular programming
languages such as C++, Python and C# among others. GTK+ is licensed
under the GNU LGPL 2.1 allowing development of both free and proprietary
software with GTK+ without any license fees or royalties.

Over time GTK+ has been built up to be based on four libraries, also
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Figure 5.16: GTK

developed by the GTK+ team:

• GLib, a low-level core library that forms the basis of GTK+. It pro-
vides data structure handling for C, portability wrappers and interfaces
for such run-time functionality as an event loop, threads, dynamic load-
ing and an object system.

• Pango, a library for layout and rendering of text with an emphasis on
internationalization. It forms the core of text and font handling for
GTK+ 2.0.

• Cairo, a library for 2D graphics with support for multiple output de-
vices (including the X Window System, Win32) while producing a con-
sistent output on all media while taking advantage of display hardware
acceleration when available.

• ATK, a library for a set of interfaces providing accessibility. By sup-
porting the ATK interfaces, an application or toolkit can be used with
tools such as screen readers, magnifiers, and alternative input devices.

GTK+ was initially developed for and used by the GIMP, the GNU Image
Manipulation Program. It is called the "The GIMP ToolKit" so that the
origins of the project are remembered. Today it is more commonly known
as GTK+ for short and is used by a large number of applications including
the GNU project’s GNOME desktop. Looking for a way to apply GTK
to OSG, I found osgGtk, which is a library of C based Gtk+ and C++
based Gtk widgets to support OpenSceneGraph (OSG) applications. The
library also includes several example applications such as osgviewerGtk and
osgviewerGtkmm.

Downloaded version was osgGtk-0.1.4, last released version. I installed
all necessary dependencies and run the application osgviewerGtk. Figure
5.17 illustrates osgviewerGtk:
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Figure 5.17: OsgViewerGtk

If we compare the two viewers:

Figure 5.18: Viewers comparison, classic viewer to the left, and Gtkviewer
to the right

Now we are going to see the advantages of the use of osgviewerGtk. We
look at the buttons on the far left bottom of the screen (Figure 5.19).

For default osgviewerGtk has associated four buttons. If we click with
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Figure 5.19: Function buttons

the mousse in the buttons or touch the screen in the position of the buttons
(remember we are working with touchscreens), a CallBack is executed and
there will be an action associated to that button. For example, if we press
(or touch) the "Open File" button a new window will open and we can load
a 3D model of our computer looking for it. If we press the "Run 120 frames"
viewer will be refreshed at 120 frames per second (for default are 60 frames
per second). This button has the particularity that changes when is pressed
and now the third button "Click to stop" become "Click to run 60 frames",
so if we press the button called now "Click to run 60 frames" viewer will be
refreshed at 60 frames per second again. The third button "Click to stop"
stop the viewer when is pressed, and changes to "Click to run 60 frames",
obviously when is pressed again the viewer run. Last button "Close" finish
the gtkmain (gtk loop) and close the viewer.

These four buttons offer many possibilities to the station, the function-
ality can be changed for another more useful with a little change in the
function called when the callback is triggered.

osgviewerGtk has scheduled for default a fake Gtk menu that pops up
when the user right-click while holding CTRL or SHIFT as illustrates Figure
5.20, and if you look at the bottom of the viewer will can see that osgview-
erGtk allows the introduction of explanatory text on it. This fake menu
currently does nothing but is a good option to add new functionalities in the
future.
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Figure 5.20: Gtkviewer with fake menu

Once I had the Gtkviewer was the moment to prepare the final scene
with UAVs.

5.3.5 Creating the final scene

At this point, I provided necessary tools and knowledge to mount the scene.
The aim was to have some UAVs flying near an airport, and to be able to
control or monitoring one or more UAVs with a camera. We must to be able
to use tools like Head-tracking or 3D sound (first is now integrated, second
will can be integrated in the future).

Creating the terrain

First of all, I needed a terrain. Terrain used in previous examples is a
Microsoft Flight Simulator file (.flt), and it was impossible to modify it.
I was looking between OSG examples and I found osghangglide.cpp that
creates a simple flying site, demonstrating how to create simple terrain, trees
and skydomes, and how to implement a simple flight camera manipulator to
allow the user to fly around, it is possible to check the code in OSG official
website. But, to our station I only needed the part of the code related with
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to create the terrain and trees. Codes can be consulted in the appendix A of
memory, I will try to reference pages as needed. Code of Createscene.cpp
A.2 is responsible, among other things, to create the terrain, for it rests the
codes of terrain.cpp A.11, trees.cpp A.13 and hat.cpp A.6. First allows
us to build the terrain and the other ones to add trees to the scene. It is
impossible and it is not my aim to spell out each of these codes, so I will
try to explain them superficially. Terrain.cpp A.11 uses an array located
in terrain_coords.h A.12 called vertex, which stores the coordinates of
the terrain to build it. The array vertex is constituted for 38 blocks with
39 three dimensions vectors. Each block is a column of the final terrain
(for example considering the first dimension of the vectors is the x-axis,
each block would contain the points on the plane with the same value of
x). The function makeTerrain takes this array and builds the terrain using
the OpenGl primitive TRIANGLE_STRIP. Operation is shown in the next
figure:

Figure 5.21: GL_TRIANGLE_STRIP

TRIANGLE_STRIP receives coordinates and builds up a mesh of trian-
gles. In the figure we can see its behavior. We have V0 and add to the mesh
V1, after that we add V2 and, for add it to the mesh, the primitive joins
V0 with V2, then we add V3 and again to join it to the triangle mesh, the
primitive joins V3 with V1; and so on. In that way is possible to create any
surface.

In our case, V0 would be the first vector of the first block and V1 the
first vector of the second block. Then, V2 would be the second vector of the
first block, and V3 would be the second vector of the second block and in
this way, the surface terrain is built.

Finally to build the terrain is necessary to add a texture. Like we wanted
to represent an airport, I was looking for airports satellite images, for that
I used Google Earth. I took the images from the airport of Badajoz and
around. The images can be seen in Figure 5.22:

Field texture was added with the aim that airport texture did not have
to occupy the entire terrain as it would be a problem due to UAVs only
could move near to the airport. For this reason and because the resultant
terrain was very small, I decided to replicate the terrain and to locate replicas
around the airport with the texture of the field, as we can see in figure
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Figure 5.22: Airport texture (on the left) and field texture on the right

5.23. This part is carried out for the function Createterrainaux presents
in Createscene.cpp A.2.

Figure 5.23: Terrain structure

In that point was necessary to adjust the height of the terrain, I needed
that replicas at their ends coincide, so I needed to change the vertex array in
terrain_coords.h A.12 to do that. Besides, I would help pave the terrain
in which the airport would be. In order to achieve it, I created a program
called Translator.cpp A.16 with which is possible to modify the vertex
array.

First part of the code has the aim to create a struct to store the coordi-
nates of each point. Main looks very difficult but only is responsible to get a
flat terrain where the airport texture will be and that the ends of each field
match, that is to say the coordinate in z-axis must be the same. In order
to achieve this must be a .txt file called prueba.txt in the same folder that
the code above. We make a copy of the vertex array inside it and run the
program. The resulting array is stored in a text file called pruebaout.txt.
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Now we save the new array in terrain_cords.h A.12 and when vertex ar-
ray would be called by the function makeTerrain we obtain the new stored
heights.

But even with this increase was insufficient and had to have escalation
in OSG.

At this point was the moment to add the trees to the scene. Trees are
mere decorative detail, but it is not difficult to add to the scene and the
result is very colorful. There are two .cpp files that are responsible to create
and add to the scene the trees. They are trees.cpp A.13 and hat.cpp A.6.
With the first .cpp file is defined the position of the trees in the scene as well
as also the height and width of each one, the image .rgba of a tree (Figure
5.24) is associated to it too. At the other hand hat.cpp A.6 is responsible
to match the coordinates of the terrain with that of the trees, thus placing
the trees at the proper height.

It is especially significant the functioning of trees, is a plane with the
form and the image of a tree that rotates with the camera seeming a 3D
tree. When the point of view of the camera is just above, the behavior is not
the most appropriate, but in any other case the impression is pretty good.

Figure 5.24: Tree image

The whole result is illustrated in Figure 5.25 but is not possible to see in
the Figure 5.25 the trees, we have a detailed view of the tree in the Figure
5.26

Adding elements to the scene

An important part of the tool is to achieve credibility, for this reason was de-
cided to add different decorative elements to the scene. Because we wanted
to simulate an airport it was essential a control tower and hangars. Fortu-
nately it was not necessary to create these 3D models, I had some 3D Studio
models and OSG accepts the .3DS format. However, it could not be so easy.
When I try to load .3DS files in OSG there were no problems, but in the
moment I tried to scale the 3D models the textures were lost. I had to do
the scaling with 3D Studio and then to load the models with OSG. From the
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Figure 5.25: Aerial view of the terrain

Figure 5.26: Detailed view of trees
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beginning I had the chosen model to the UAV (a helicopter) and hangars,
but I did not have a control tower. Then I had to find a 3D model of a con-
trol tower. I was looking on the internet for 3D models and I found Google
Sketchup 3d warehouse that is a repository of free 3D models and I found a
control tower 3D model. But it had a problem, these files only was available
in two 3D formats, SketchUp and Collada. Fortunately, Collada is an open
standard XML schema for exchanging digital assets among various graphics
software applications. This file format provides comprehensive encoding of
visual scenes and physics, and even multiple version of the same asset. It
also is a very hot topic within the video game industry as it offers quality
file format that can somewhat be standardized. With a 3D Studio pluging I
was able to change the format of the model from Collada to 3D Studio file.
In this way I could load the control tower 3D model in OSG. We can see in
the following figure the 3D models presents in the scene:

Figure 5.27: 3D models

Movements of UAVs

Now, is the time to explain like UAVs are going to move by the scene. Like
we could see in previous sections, we established a path at the start of the
execution and UAV followed it. This first solution was inflexible, it did not
allow me to change the movements of the UAV in another way that changing
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the whole path code. In the other hand, like the path is introduced at the
beginning of the execution was impossible to affect to the UAV movement
during the execution. I only could be a viewer. For these reasons was
necessary to change the way that UAVs were moved by the scene.

The way I could do it was the same as before (using Callbacks), but
instead of to specify the way to go at the beginning of the program, I de-
cided to move the UAV a range increment in every frame of the viewer.
In this case, it would be necessary to know the points which were the de-
scribed path and to define a new variable type called Movement that is
an osgNodeCallback which, as we will see below, will allow us to move
the UAVs. So, we would have to enter the coordinates at the beginning
of the program. This last part is taking care by the function readcoor-
dinates (Readcoordinates.cpp A.9), which receives the array of classes
Movement type (osg::NodeCallback) and the number of UAVs, and is
responsible for reading the files of coordinates of each UAV (in the same
folder as the program) and stored them in their proper place (UAV vector
inside Movement class). This way the program is independent of the num-
ber of points (three coordinates for point) we enter in it, even different UAVs
can have a number of different target points. Coordinates files should follow
these guidelines:
Coordinate_x1 Coordinate_y1 Coordinate_z1 (intro)
Coordinate_x2 Coordinate_y2 Coordinate_z2 (intro)
..................................
Coordinate_xn Coordinate_yn Coordinate_zn

Like we can see above is possible to introduce any number of points
(three coordinates each point), but is very important that the last line (with
the coordinates of the last point) does not end with an [intro]. Function
readcoordinates store at the end of the UAV vector inside Movement class
the coordinates of the first point.

Once we have stored all coordinates of each point is time to lead the UAV
across these points. In order to achieve that, like we saw above, is necessary
to create a new class called Movement, this class is an osg:NodeCallback
that will allow us to move the UAV in the three coordinates in every frame
of the viewer. This new class is declared and defined in the filemovement.h
A.8. As we saw in the section Callbacks, we use theMovement()::operator()()
that contains a call to traverse() at the end. This is a member method
of the osg::NodeCallback class. This call allows the update traversal
(osgUtil::UpdateVisitor) to traverse the current group node children. In
our case, the code above the call traverse() is executed previous to tra-
verse the current group node children thereby updating the position and
orientation of the UAV in each frame of the viewer.

It was decided to create a new parameter called speed, this parameter is
responsible to control how much progress an UAV in each frame. The higher
value of the speed greater the speed with which the UAV will move across the
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scene. Empirically tested values, 400 seemed the most appropriate. Needless
to say that if we want to increase or decrease the speed we can do it with
changing the value of the variable speed.

We can see the solution to the movement of each UAV in a flowchart in
the Figure 5.28:

It is very important to realize is not a conventional loop. Iterations do
not follow the normal order, when one ends other begins; but in this case
each iteration is performed with each frame of the viewer, that is the time
in which the Callback is called.

As shown in Figure 5.28, when the UAV reaches a new point, it rotates
on itself to face the next point on the list of coordinates. In earlier versions of
the program the UAV arrived at each point and was faced directly with the
target, losing any sign of continuity. For this reason I decided to do the UAV
rotate over itself to face its next target, but this way to rotate is only possible
if the UAV is a helicopter (like in our case). In future implementations, it
could be possible to do this orientation with the UAV in movement, allowing
in that way that UAV could be a plane.

Last condition, is responsible to know when we are in the first point (or
home position). As I said above, last coordinates stored into the UAV vector
of the class Movement are the coordinates of the first point. Then, when
we are in the last member of UAV vector we are in the first point. Saying we
are at the first point when we are at the last is like we build the infinite loop.
While program is running, UAV describe a path that includes the points
that were spent through the txt file, linking the latter with the former, until
the window is closed.

At this point, it was only necessary to add new functionality to the scene
drawing the osgGtkviewer tools. We will see more about this in the next
section.

New features

Now, had the terrain and the UAVmovement, was the time to take advantage
of the use of osgGtkviewer. When we were talking about it, I commented
that it has some pre-programmed buttons in its interface, and with minor
changes we can do many things. Moreover, it is possible to have two or
more cameras of the same scene with osgCompositeViewer like we saw in
previous sections.

I decided to include a global variable that allow to the station user to stop
the UAV and look around. For this reason I changed the functionality of one
of the buttons of osgGtkviewer. Run 120 frames button became Loitering
mode button (Figure 5.29). When the button Loitering mode is pressed, the
global variable loitering_mode change its value, in that way when its value
is 1, the callback in movement.h A.8 does not enter the loop and retains
the values of the UAV xyz, so the UAV will remain standing. Then, when
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Figure 5.28: Movement flowchart
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the button Loitering mode is pressed again loitering_mode again be zero
and the UAV follows its normal path.

Figure 5.29: Changes in the buttons

We wanted to add the Head-Tracking tool to the 3D simulation. Our aim
was to control a camera with the movements of our head. But first of all, we
needed a way to communicate the Head-tracking system response with the
program in OSG. To solve this problem was used YARP. Now we are going
to see an introduction to YARP:

YARP [17] is plumbing for robot software. It is a set of libraries, proto-
cols, and tools to keep modules and devices cleanly decoupled. It is reluctant
middleware, with no desire or expectation to be in control of your system.
YARP is definitely not an operating system.

Figure 5.30: YARP

Robot projects are often evolutionary dead ends, with the software and
hardware they produce disappearing without trace afterwards. Common
causes include dependencies on uncommon or obsolete devices or libraries,
and dispersion of an already small group of users. In humanoid robotics,
a small field with an avid appetite for novel devices, we experience a great
deal of churn of this nature. YARP is our attempt to make robot software
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that is more stable and long-lasting, without compromising our ability to
constantly change our sensors, actuators, processors, and networks. It helps
organize communication between sensors, processors, and actuators so that
loose coupling is encouraged, making gradual system evolution much easier.
The YARP model of communication is transport-neutral, so that data flow
is decoupled from the details of the underlying networks and protocols in
use (allowing several to be used simultaneously, key to smooth evolution).
YARP uses a methodology for interfacing with devices (sensors, actuators,
etc.) that again encourages loose coupling and can make changes in devices
less disruptive. At the same time, YARP doesn’t expect to be in charge; we
want to minimize problem of incompatible "architectures", "frameworks",
and "middleware" (also known in this context as "muddleware"). YARP is
free and open software. Along with many other benefits, the Free Software
social contract can speed software development for small communities with
idiosyncratic requirements, such as ourselves. YARP is written by and for
researchers in robotics, particularly humanoid robotics, who find themselves
with a complicated pile of hardware to control with an equally complicated
pile of software. At the time of writing, running decent visual, auditory,
and tactile perception while performing elaborate motor control in real-time
requires a lot of computation. The easiest and most scalable way to do this
right now is to have a cluster of computers. Every year what one machine
can do grows, but so do our demands. YARP is a set of tools we have found
useful for meeting our computational needs for controlling various humanoid
robots. The components of YARP can be broken down into:

• libYARP_OS - interfacing with the operating system(s) to support
easy streaming of data across many threads across many machines.
YARP is written to be OS neutral, and has been used on Linux, Mi-
crosoft Windows, Mac OSX and Solaris. YARP uses the open-source
ACE (ADAPTIVE Communication Environment) library, which is portable
across a very broad range of environments, and YARP inherits that
portability. YARP is written almost entirely in C++.

• libYARP_sig- performing common signal processing tasks (visual, au-
ditory) in an open manner easily interfaced with other commonly used
libraries, for example OpenCV.

• libYARP_dev - interfacing with common devices used in robotics:
framegrabbers, digital cameras, motor control boards, etc.

These components are maintained separately. The core component is lib-
YARP_OS, which must be available before the other components can be
used. For real-time operation, network overhead has to be minimized, so
YARP is designed to operate on an isolated network or behind a firewall. For
interfacing with hardware, we are at the mercy of which operating systems
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particular companies choose to support - few are enlightened enough to pro-
vide source. The libYARP_dev library is structured to interface easily with
vendor-supplied code, but to shield the rest of your system from that code
so that future hardware replacements are possible. Check the requirements
imposed by your current hardware; YARP will not reduce these, only make
future changes easier. YARP has consequently three levels of configuration:
operating system, hardware, and robot level. The first level of configura-
tion should concern you only if you’re planning to compile YARP on a new
operating system. The second level is the hardware. A new addition on an
existing platform or a new platform altogether might require preparing a few
YARP device drivers. These are to all effects C++ classes that support the
methods for accessing the hardware which is normally implemented through
function calls to whatever provided by the hardware vendor. This comes typ-
ically in the form of either a DLL or a static library. Finally, you can prepare
configuration files for an entirely new robotic platform. With a YARP server
we can communicate Head-Tracking tool with the OSG program. But now,
we needed to define a new button to activate the Head-Tracking mode in
the osgGtkviewer. The chosen button was Open File which was replaced
by Head Tracking Mode button (Figure 5.29). In this point needed a way to
affect to the camera movements only when we press the Head Tracking Mode
button. I created a new global variable calledmanuallyPlaceCamera that
is a Boolean variable, if is false the Head Tracking mode is deactivated and
when it is true the camera should move with the head movements if the
program is receiving data form Head Tracking system. But, how I can do
it? I was thinking of a solution and I find one, I would create a child of
the camera UAV (followerOffset in the program) HTmode that it was a
pointer to aMatrixTransform node, and when I pressed the Head Tracking
Mode button, I change the rotation of that node (HTmode) with the head
movements. In the same way as above if we press again the Head Tracking
Mode button, the Head Tracking system will be deactivated and the system
returns to normal. We can see this in the following piece of code of main.c
A.1:

Plane . get ()−>addChild ( f o l l ow e rO f f s e t ) ;

// Now we are going to c r ea t e a new Node , mLeft which w i l l
// be a son o f the f o l l o w e rO f f s e t and w i l l a l l ow us to r o t a t e
// when the Head Tracking mode w i l l be a c t i v a t e d .
osg : : ref_ptr<osg : : MatrixTransform> HTmode = new\\
osg : : MatrixTransform ;
f o l l owe rO f f s e t−>addChild ( HTmode ) ;

// Ca l l back in ro ta t eHt . h t ha t update the r o t a t i on o f the
// camera when we a c t i v a t e the Head−t r a c k i n g mode and wh i l e
// we are r e c e i v i n g data from the Head_tracking system .
HTmode−>setUpdateCal lback ( new RotateHT ) ;
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// tm w i l l be the node t racker manipulator a soc i a t ed to the UAV
// p ro t a gon i s t
osgGA : : NodeTrackerManipulator∗ tm = new
osgGA : : NodeTrackerManipulator ;
tm−>setTrackerMode (
osgGA : : NodeTrackerManipulator : :NODE_CENTER_AND_ROTATION ) ;
tm−>setRotationMode (
osgGA : : NodeTrackerManipulator : :ELEVATION_AZIM) ;
tm−>setTrackNode (HTmode ) ;

Like we can see above, the camera manipulator is associated with HT-
mode, which is a child of followerOffset, which in turn is child of Plane.get
(the UAV model). In this way when Head-Tracking mode is deactivated the
movements of the camera are associated to the movements of the UAV and
mousse or touchscreen camera manipulator. As,HTmode is a descendant of
Plane.get all movements and rotations affecting the UAV will too HTmode
and consequently may be seen in the viewer (tm is associated to HTmode).

Now, is time to see how we rotate the camera. As in previous cases, it is
necessary to use callbacks. Similarly we did before to move the UAV we must
define a new class type osg::NodeCallBack called in this case RotateHT.
This class has a method called operator()() that allows us to rotate the
camera in function of Head Tracking data. The code is in rotateHT.h and
is very simple:

#include <osg/NodeCallback>
#include <osg/MatrixTransform>
#include <iostream>
#include <math . h>
#include " . . / . . / . . / . . / head_tracking / cyarpheadpos . h"
#include " . . / . . / . . / . . / head_tracking / cyarpheadposprocessor . h"

us ing namespace std ;

// We de f i n e a g l o b a l v a r i a b l e t h a t w i l l a l l ow us to acces s to
// the Head−Tracking system .

bool manuallyPlaceCamera = f a l s e ;

// We de f i n e a v a r i a b l e type CyarpHeadPosProcessor t ha t w i l l
// r e c e i v e data from the Head−Tracking thanks to yarp s e r v e r .
CYarpHeadPosProcessor headposProcessor ;

c l a s s RotateHT : pub l i c osg : : NodeCallback { pub l i c :
// This method w i l l be c a l l e d in each t r a v e r s e update .
v i r t u a l void operator ( ) ( osg : : Node∗ node ,

osg : : NodeVis i tor ∗ nv )
{

double r o l l , p i tch , yaw , x , y , z ;

// With the next cond i t i on we w i l l know i f the
// Head Tracking Button was pres sed and we are



134 5. 3D Application

// r e c e i v i n g data from Head−Tracking system .
i f ( manuallyPlaceCamera && headposProcessor . popHeadPos
( r o l l , p itch , yaw , x , y , z ) == 0)
{
osg : : MatrixTransform∗ HTmode =
dynamic_cast<osg : : MatrixTransform∗>( node ) ;
osg : : Matrix mR, mT;
// Trans la t ion Matrix w i l l be 0 , because we want on ly
// the r o t a t i on
mT. makeTranslate ( 0 . , 0 . , 0 . ) ;
mR. makeRotate (

osg : : DegreesToRadians ( 0 . 0 ) , osg : : Vec3 ( 0 , 1 , 0 ) ,
// r o l l , d e a c t i v a t e d
osg : : DegreesToRadians(−p i t ch ) , osg : : Vec3 (1 , 0 , 0 ) ,
// p i t c h

osg : : DegreesToRadians (1.5∗(−yaw)−33) , osg : : Vec3 (0 , 0 , 1 ) ) ;
// yaw

// now de f i n e the t rans format ion matrix
HTmode−>setMatr ix ( mR ∗ mT ) ;

// Continue t r a v e r s i n g so t ha t OSG can proces s
// any o ther nodes wi th c a l l b a c k s .
t r a v e r s e ( node , nv ) ;
}

}
} ;

Like the code shows, first of all is to check if Head-Tracking mode is
activated and that we are receiving data from it. If the condition, we store
the pitch and the yaw, (roll is deactivated because we are simulating a pulp
and tilt of a camera). And the translation matrix will be zero (move not,
only want to rotate). We apply the transformation matrix to HTmode and
execute the traverse call.

If we rotate the head left or right much, we can lose sight of the window
so we could not turn our head left and right a lot. To avoid this we introduce
a scaling in the yaw, thanks to this, we will see a big turn on the screen as
a result of a slight twist of the head

Having done all this, it occurred to us include more than one camera in
the scene. Taking advantage of osg::Compositeviewer seen in previous
section, we decided to include an aerial camera that shows the scene viewed
from above. Figure 5.31 illustrates the result:
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Figure 5.31: Two views

5.4 Simulation tool

And finally we have prepared the simulation tool. The scene will consist of
up to 10 UAVs (you can add more if necessary) flying over an airport, we can
distinguish the airport control tower and two hangars. We have two cameras,
one in the first UAV (UAV protagonist) and the other an aerial camera to
view the scene from above. The associated scene graph considering only 3
UAVs for simplicity can be seen in Figure:

Figure 5.32: Final scene graph

First of all we need to run the YARP server which is responsible for main-
taining communications between the program and head-tracking system. To
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achieve this, we open a console and type the following:
yarp server

Figure 5.33: YARP server launched

Next step is to boot the Head-Tracking system. We need now to turn
on the Headphones (for LEDs to be enlightened), turn on the IMU and its
receptor, and start the Head-Tracking program typing in the appropriate
folder:

./head_tracking

Figure 5.34: Head-Tracking system

In the final scene have been added new functions like that the UAVs take
their numbers over and this will move with them, in that way we can identify
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them on sight on the screen. Moreover, this text has the property that we see
it with the same size regardless of the distance that the UAV is and regardless
camera angle. On the other hand, was difficult to distinguish the height of
each UAV, so was decided to include a line from UAV to the terrain with
the aim to make easy to know the height of each UAV in the scene. Now,
next figure illustrates a simplified diagram of the program performance:

Figure 5.35: Diagram of the final version of the program

By looking at the diagram above I will explain briefly how the program
works. First of all, the program will ask for the number of UAVs. Then,
if the number is between 1 and 10, the program read the coordinates from
coordinates files and store them in the corresponding place. After that,
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initialization of YARP is done in order to exchange data with the Head-
Tracking system. Also need to initialize GTK. Later, the program will run a
group of functions which are responsible to build the whole scene, its mission
is to build the terrain, add trees, add the UAVs and, like was said before, the
number of each UAV and its height line. Moreover, this group of functions
has to add decorative elements on the scene, as are the two hangars, the
airport control tower and the helicopter near to hangar. On the other hand,
this group of functions is responsible to create the UAVmovements too. Once
the whole scene is finished, the program will prepare the cameras position
(in this version uses two cameras but may be more), one camera aboard
the UAV and the other an aerial camera. The next step will be to create
two different windows one for each camera. When everything is ready, is
time to launch the GTK main that is a loop that allow us to interact with
the scene at same time that the UAVs is in movement. Besides, this loop
allows us to use the GTK advantages and use them to be able to activate
the Head-Tracking system and the "loitering mode". First mode will be
activated when we press "Head-Tracking mode" button, and will allow us
to move the camera orientation with our head movements. We will need to
press the same button again to deactivate the Head-Tracking mode. On the
other hand, when we pressed "Loitering mode" button the UAV protagonist
will stop, and we will can to explore the scene with the UAV stopped; when
we want the UAV to move again we will press the "loitering mode" button
again. It is possible to combine the two modes.

The program output can be seen in the following images:
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Figure 5.36: UAV view

Figure 5.37: Aerial view
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Is important that the new viewer continues to maintain the property of
the fake menu we saw in previous sections (Figure 5.38), which can be useful
in future for the introduction of new features to the program.

Figure 5.38: Viewer with fake menu


	3D Application
	Introduction
	OpenSceneGraph
	Introduction to Scene Graphs
	Scene Graph Features
	How Scene Graph render
	Overview of OpenSceneGraph

	Development of the simulation tool
	First steps
	Moving the plane
	Cameras management
	Introduction of GTK elements
	Creating the final scene

	Simulation tool


