6.- DEFINICIÓN DE NUESTRO PROYECTO

6.1 - LOCALIZACIÓN DE LA RNC

Nuestro proyecto tiene como objetivo el diseño y la simulación de una red de transmisión de acceso UMTS destinada a cubrir una parte determinada de la provincia de Sevilla. Estará compuesta por una estación RNC y una serie de nodos B, algunos de los cuales actuarán como puntos de concentración agrupando así el tráfico del resto de nodos B finales. Es, en consecuencia, fundamental para poder resolver la transmisión de nuestra red poder conectar mediante radioenlaces la RNC con esos nodos B que podemos denominar nodos B concentradores.

Antes de nada vamos a hacer una importante aclaración. En un proyecto de despliegue de una red de comunicaciones móviles llevado a cabo por cualquier compañía operadora en la realidad hay una serie de condicionantes con los que no contamos en nuestro caso, porque no disponemos de la información necesaria.

Tras realizar un estudio del alcance del despliegue y de las necesidades de capacidad presentes en la zona, los ingenieros de radio frecuencia realizan un primer diseño del sistema radiante que se va a implementar y hacen una propuesta a los agentes de adquisiciones sobre los puntos candidatos a emplazamientos para instalar las estaciones. Son estos agentes los que se personan en las localizaciones marcadas y estudian la viabilidad de cada punto, teniendo en cuenta muchos factores entre los que destacan los estudios de visibilidad con la zona a cubrir y la posibilidad de acometer la instalación en esa posición concreta. Hay que tener en cuenta que detalles como que se pueda llegar a un acuerdo aceptable con el propietario, evitar problemas con las comunidades de vecinos de los edificios más próximos o que se trate de una zona de fácil acceso para facilitar las labores de mantenimiento y reparación, también tienen un peso importante en nuestra decisión.

Lógicamente las coordenadas de la situación definitiva del nodo suele variar ligeramente con respecto a la localización teórica inicial, aunque se encuentra acotada siempre dentro de un área de búsqueda definida. El departamento de adquisiciones antes de contratar el emplazamiento remite al ingeniero un documento llamado SAR (Site Adquisition Request) donde le informa de las posiciones obtenidas como resultado del análisis del terreno y el ingeniero adapta el diseño original, ajustando parámetros determinantes como la orientación de los sectores de radiación o los ángulos de inclinación de la antena ("downtilt"), para cumplir los requerimientos de cobertura fijados. El procedimiento en acto. Más tarde, tras realizar los trámites marcados por la legislación, los técnicos de implantación se encargarán de poner en marcha el montaje de la estación radio. No entra dentro de nuestras aspiraciones recrear el proceso descrito porque claramente no disponemos de los medios ni de la documentación precisos.

La prioridad para la localización de la RNC en este proyecto es encontrar un emplazamiento que tenga una visibilidad total de la zona en la que vamos a dar servicio de modo que existan los mínimos casos posibles de bloqueo de la señal por parte de la orografía. Este punto será primordial pues debemos prever que nuestra estructura inicial sólo es la base sobre la que se sustentará un despliegue futuro y continuado de la red de transmisión, ya que la capacidad de la RNC está muy lejos de verse consumida. El

carácter dinámico de la red hará que más adelante haya que añadir nuevos nodos B concentradores y esto se traduce en que la situación de la RNC es un punto crítico para permitir un crecimiento posterior, ya que escoger el emplazamiento adecuado nos garantiza que un alto número de los nodos que se vayan adquiriendo tendrán visibilidad con éste.

Radio Mobile nos facilita esta tarea, poniendo a nuestra disposición la utilidad "Ver > Encontrar la mayor altitud". El proceso que seguiremos será ir modificando las "Propiedades del mapa" de modo que reduzcamos progresivamente el área de búsqueda de nuestro lugar con mayor altura y alternarlo con la herramienta citada de forma repetitiva hasta que localicemos una posición relativamente centrada y que pertenezca a la provincia de Sevilla. En bucle sería el siguiente: buscaremos la máxima altura en el mapa que tenemos representado, comprobaremos si nos es satisfactoria y si no es así haremos un zoom que no incluya el punto que hemos descartado y volveremos a buscar de nuevo.

Debemos tener presente que el código de colores de nuestro mapa nos debe servir de guía para hacernos una idea de las zonas de interés. Además seleccionando una cuadrícula sobre la imagen del mapa de elevaciones con el ratón y haciendo clic con el botón derecho sin soltar, el programa nos crea una imagen ampliada de la zona. Si queremos usar este nuevo mapa generado como límite para encontrar la mayor altitud activamos "Editar > Ajustar mapa a la imagen/selección" o pulsando en el teclado F9.

Figura 6.1 – Resultado de la búsqueda de la coordenada con mayor altitud en el mapa original

Las coordenadas del máximo valor de altitud encontrado por el programa para las características del mapa definido en la figura 5.3 aparecen en la barra de estado a la izquierda. Nuestro primer intento nos da una posición (36.49.32 N 4.51.7 O) que no se ubica en la provincia de Sevilla, sino que forma parte del territorio de Málaga. Reducimos un poco la imagen para buscar un punto que nos sea válido.

Nos centramos en el pico que vemos con más elevación, hacemos un zoom en esa zona y adaptamos la "Propiedades del mapa" con F9.

Volvemos a tener el mismo problema, hemos superado los límites de Sevilla de nuevo. No nos queda más remedio que crear un nuevo mapa con una altura/anchura más reducida, de modo que nos aseguremos encontrar un posicionamiento correcto.

Figura 6.3 – Localización definitiva de nuestra estación RNC → 37.55.31 N 5.36.04 O CAZALLA DE LA SIERRA: 892 m

6.2 - DIMENSIONAMIENTO DE LA RED

En este apartado debemos rememorar que lo que caracteriza al sistema UMTS es que se pretende garantizar el acceso a una amplia gama de servicios multimedia a la vez que se compromete a mantener unos umbrales de calidad para cada aplicación (QoS: Quality of Service). Esto conlleva unos requisitos de capacidad considerablemente mayores que en el caso de las tecnologías predecesoras, que se sustentan en un uso eficiente de los recursos de red y que son especialmente críticos en la red de transmisión de acceso. Todo esto se resume en que el coste de la infraestructura de transmisión precisa, ya sea propia o alquilada, tiene un peso determinante en el coste global del proyecto de despliegue de la red.

La planificación de la red tiene por finalidad evaluar el número de emplazamientos radio que serán precisos para cumplir los objetivos de capacidad y de cobertura que se van a ofrecer al cliente, así como el equipamiento de la red UTRAN, la tipología y las propiedades de los enlaces que se van a establecer, ... En cualquier caso todos estos parámetros adquirirán un valor u otro en función de los estudios de densidad de tráfico de la zona, las estadísticas de distribución de usuarios por servicio, las predicciones de crecimiento de demanda y los requerimientos de calidad de servicio de los que disponga el operador.

Entre las ambiciones de este proyecto no se incluye analizar el tráfico de la zona de interés de forma detallada, principalmente porque carecemos de los datos reales en los que apoyarnos y tampoco contamos con las herramientas adecuadas para realizar una investigación. Creemos que lo más apropiado es tomar como referencia estos datos de una fuente que sí haya podido profundizar en el tema y aplicarlos a nuestro caso particular [4].

Distinguimos 3 tipos de entorno y a cada uno se le asigna una distancia de separación entre nodos B contiguos específica.

	RURAL	SUBURBANO	URBANO
Distancia entre			
nodos B (km)	30.6 - 37.9	8.7 - 9.0	2.3 - 2.4

Tabla 6.1 – Distancia entre nodos B en km en función del tipo de entorno

En la página web del Instituto Nacional de Estadística [7] tenemos acceso a información detallada y fidedigna para poder clasificar los municipios según el entorno.

Territorio						
Población, superficie y densidad por municipios						
Sevilla.						
Unidades:Población en personas, superficie er	n Km. cuadrado	s y densidad er	hab/Km cuad			
	Población	Superficie	Densidad			
TOTAL	1.849.268	14.036.09	131 75			
			101,70			
41001 Aguaduice	2.060	13,69	150,44			

41003 Albaida del Aljarafe	2.586	10,93	236,61
41004 Alcalá de Guadaíra	66.089	284,61	232,21
41005 Alcalá del Río	9.943	81,97	121,30
41006 Alcolea del Río	3.331	50,02	66,59
41007 Algaba (La)	14.064	17,68	795,33
41008 Algámitas	1.321	20,42	64,68
41009 Almadén de la Plata	1.577	255,78	6,17
41010 Almensi IIa	5.096	14,31	356,07
41011 Arahal	18.896	201,09	93,97
41012 Aznalcázar	3.860	449,84	8,58
41013 Aznalcóllar	6.168	198,96	31,00
41014 Badolatosa	3.218	47,79	67,33
41015 Benacazón	6.089	32,16	189,36
41016 Bollullos de la Mitación	7.729	62,36	123,95
41017 Bormujos	16.548	12,17	1.359,32
41018 Brenes	12.022	21,45	560,50
41019 Burguillos	4.876	43,14	113,02
41020 Cabezas de San Juan (Las)	16.239	229,70	70,70
41021 Camas	25.694	11,65	2.204,89
41022 Campana (La)	5.310	126,09	42,11
41023 Cantillana	9.927	107,70	92,18
41901 Cañada Rosal	3.122	25,45	122,67
41024 Carmona	27.578	924,12	29,84
41025 Carrión de los Céspedes	2.261	6,01	376,11
41026 Casariche	5.453	52,90	103,09
41027 Castilblanco de los Arroyos	4.986	323,54	15,41
41028 Castilleja de Guzmán	2.627	2,06	1.277,99
41029 Castilleja de la Cuesta	17.034	2,23	7.644,70
41030 Castilleja del Campo	631	16,22	38,90
41031 Castillo de las Guardas (El)	1.618	258,75	6,25
41032 Cazalla de la Sierra	5.095	357,10	14,27
41033 Constantina	6.687	481,31	13,89
41034 Coria del Río	26.831	61,99	432,82
41035 Coripe	1.446	51,46	28,10
41036 Coronil (El)	5.045	91,64	55,05
41037 Corrales (Los)	4.076	67,07	60,78
41903 Cuervo de Sevilla (El)	8.410	30,44	276,31
41038 Dos Hermanas	117.564	160,52	732,41
41039 Ecija	39.510	978,73	40,37
41040 Espartinas	10.485	22,74	461,17
41041 Estepa	12.397	189,97	65,26
41042 Fuentes de Andalucía	7.365	150,18	49,04
41043 Garrobo (El)	793	44,35	17,88

41044 Gelves	8.540	8,18	1.044,54
41045 Gerena	6.016	129,90	46,31
41046 Gilena	3.915	50,97	76,81
41047 Gines	12.568	2,90	4.341,16
41048 Guadalcanal	2.994	274,97	10,89
41049 Guillena	9.995	226,63	44,10
41050 Herrera	6.450	53,48	120,62
41051 Huévar del Aljarafe	2.533	57,58	43,99
41902 Isla Mayor	5.759	114,38	50,35
41052 Lantejuela (La)	3.800	17,76	214,01
41053 Lebrija	25.614	375,21	68,27
41054 Lora de Estepa	829	18,09	45,83
41055 Lora del Río	19.194	293,69	65,35
41056 Luisiana (La)	4.568	42,97	106,30
41057 Madroño (El)	353	102,88	3,43
41058 Mairena del Alcor	19.363	69,72	277,73
41059 Mairena del Aljarafe	39.389	17,70	2.225,05
41060 Marchena	19.310	378,25	51,05
41061 Marinaleda	2.670	24,82	107,57
41062 Martín de la Jara	2.753	49,80	55,28
41063 Molares (Los)	2.991	42,74	69,99
41064 Montellano	7.037	116,71	60,29
41065 Morón de la Frontera	28.165	431,94	65,21
41066 Navas de la Concepción (Las)	1.788	63,35	28,22
41067 Olivares	9.012	45,53	197,92
41068 Osuna	17.698	592,49	29,87
41069 Palacios y Villafranca (Los)	35.775	109,47	326,79
41070 Palomares del Río	5.738	13,00	441,31
41071 Paradas	6.990	109,43	63,88
41072 Pedrera	5.161	60,64	85,11
41073 Pedroso (El)	2.259	314,25	7,19
41074 Peñaflor	3.740	82,89	45,12
41075 Pilas	12.478	45,94	271,62
41076 Pruna	2.950	100,64	29,31
41077 Puebla de Cazalla (La)	11.013	189,81	58,02
41078 Puebla de los Infantes (La)	3.281	154,23	21,27
41079 Puebla del Río (La)	11.851	374,73	31,63
41080 Real de la Jara (El)	1.623	157,35	10,31
41081 Rinconada (La)	34.211	139,48	245,27
41082 Roda de Andalucía (La)	4.397	76,68	57,34
41083 Ronquillo (El)	1.395	76,52	18,23
41084 Rubio (El)	3.548	20,80	170,59
41085 Salteras	4.692	57,46	81,65

Diseño de una red de transmisión de acceso UMTS (UTRAN) con Radio Mobile

41086 San Juan de Aznalfarache	19.943	4,11	4.852,90
41088 San Nicolás del Puerto	674	44,93	15,00
41087 Sanlúcar la Mayor	12.221	135,41	90,25
41089 Santiponce	7.794	8,38	930,51
41090 Saucejo (El)	4.428	92,20	48,03
41091 Sevilla	699.145	141,31	4.947,69
41092 Tocina	9.271	15,56	595,68
41093 Tomares	21.099	5,17	4.081,66
41094 Umbrete	6.779	12,39	547,12
41095 Utrera	49.135	684,26	71,81
41096 Valencina de la Concepción	7.796	25,14	310,16
41097 Villamanrique de la Condesa	4.000	57,67	69,36
41100 Villanueva de San Juan	1.409	34,74	40,55
41098 Villanueva A del Ariscal	5.769	4,70	1.227,43
41099 Villanueva del Río y Minas	5.229	150,70	34,70
41101 Villaverde del Río	6.912	41,07	168,31
41102 Viso del Alcor (El)	17.714	19,93	888,84

Notas:

1) La superficie total de cada provincia contiene la suma de la superficie de sus municipios y la de un conjunto de territorios que perteneciendo a varios municipios, no están contabilizados en la superficie de ninguno de ellos.

Fuente de información: Revisión del Padrón Municipal a 1-1-2007 e Instituto Geográfico Nacional.

Fuente: Anuario Estadístico de España

Figura 6.4 – Representación de la provincia de Sevilla en función de las distintas densidades de población presente en sus municipios

Tras echar un vistazo a la tabla con las densidades de población de los municipios de la provincia de Sevilla y a la representación gráfica de esos datos nuestra idea de una división del territorio por entornos, coherente y equilibrada se ajusta a los siguientes umbrales:

	RURAL	SUBURBANO	URBANO
Densidad de población (hab/km)	x < 50	50 = x < 200	200 = x

Buscamos un mapa político de la zona con los límites entre núcleos municipales bien definidos ya que la distribución de nodos se hará en función de la demarcación en la que haya que situarlos.

52

Figura 6.5 – Mapa político de la provincia de Sevilla

6.2.1 – USO DE CARTOGRAFÍA PROPIETARIA

Nuestro programa aparte de descargar mapas cartográficos de los servidores estipulados nos proporciona una alternativa muy práctica, podemos hacer uso de cartografía propietaria siempre que la convirtamos previamente a un formato de imagen estándar que pueda importarse a Radio Mobile. Otra condición para que trabajemos con precisión es conocer las coordenadas geográficas de las 4 esquinas, sino resultaría imposible poder georreferenciar la imagen.

El propósito de la georreferenciación es que independientemente de que las dimensiones del plano cartográfico que vamos a emplear no coincidan con las de nuestro mapa de trabajo, Radio Mobile sea capaz de realizar los ajustes necesarios y correlar ambos.

6.2.1.1 - <u>GEORRENFERENCIAR</u>

Esta es sin duda la parte más compleja del uso de mapas cartográficos que no pertenecen a los servidores ofrecidos por defecto en Radio Mobile.

Podemos emplear diferentes tácticas para georreferenciar. Lo más cómodo es capturar nuestra figura de una página web que nos ofrezca directamente el valor de las coordenadas que la encuadran. Por ejemplo la herramienta GeoNet Names Server [8] que se encuentra a cargo de la "National Geospatial-Intelligence Agency" de los Estados Unidos.

Si no fuese este el caso, sino que simplemente disponemos de una imagen sin más y no tenemos ninguna información de su localización geográfica, la única opción viable es intentar afinar las coordenadas con la mayor exactitud alcanzable. Existen directorios donde se organizan de forma jerárquica y en orden alfabético los municipios de los distintos países del mundo. Por ejemplo Global Gazetteer Version 2.2 [9], proporciona los siguientes datos de lugares de todo el mundo: coordenadas geográficas, altitud en pies (1 pie = 0,3048 m) y número de habitantes.

E incluso, el propio software que estamos investigando nos puede ser de ayuda en esta tarea. Debemos tener presente que a medida que desplazamos el ratón por el mapa de trabajo las coordenadas del punto que estamos seleccionando en ese instante se muestran en la barra de estado. Si el mapa de trabajo lo combinamos con un plano que nos sirva de referencia, como los representados en figura 5.6, podremos situar a ojo las esquinas de la imagen que queremos proyectar sobre el mismo, claro que los resultados dependerán de nuestra agudeza visual y pericia.

Una breve demostración es la que logramos al crear un nuevo mapa con las mismas propiedades que las definidas en la figura 5.3, sólo que ampliando el alto y el ancho a 200 km y combinándolo con MapQuest. Si lo enfrentamos a nuestro dibujo de Sevilla y correlamos algunas posiciones tendremos una idea aproximada de las coordenadas de las esquinas.

Figura 6.6 – Empleo del mapa de Sevilla dado por Radio Mobile para georreferenciar nuestro mapa político

Los pasos que nos permiten unir la imagen una vez georreferenciada e independientemente de la metodología que se haya utilizado para georreferenciar, al mapa de elevaciones de Radio Mobile serían los siguientes:

- Abrir la imagen que contiene el mapa de cartografía propietaria que queremos fusionar.

- En el menú "Archivo > Propiedades de la Imagen" la calibramos introduciendo las coordenadas de sus esquinas o la posición central y el tamaño vertical de la misma.

- Al pulsar OK nos aparece una ventana para que guardemos los cambios. Creamos así un archivo de extensión .dat cuyo nombre debe ser exactamente idéntico al de imagen a la que georreferencia.

- Volvemos a cargar las "Propiedades del mapa" y marcamos la opción "Combinar imágenes", sólo que ahora tomamos como fuente la imagen que en nuestro caso es "mapasanitarioandalucia.jpg".

En la figura 6.8 se hace patente que el solape no es total a causa de las distintas extensiones de terreno que se han superpuesto.

Luatro ese	quinas	Centro y t	tamaño	Cancelar	
odo de cuat	ro esquinas			-	_
Esquina s	uperior izquie	erda	Esquina s	uperior derec	ha
Latitud	38,16889	Modificar	Latitud	38,17250	Modificar
Longitud	-006,49500	Cursor	Longitud	-004,82444	Cursor
Esquina i	nferir izquierd	la	Esquina i	nferior derect	ia
Latitud	36,83583	Modificar	Latitud	36,84278	Modificar
Longitud	-006,48611	Cursor	Longitud	-004,82444	Cursor
					-

Figura 6.7 – Georreferenciación en Radio Mobile de la imagen de Sevilla recuadrada en la figura 6.6

Figura 6.8 – Uso de la herramienta "Combinar imágenes" para superponer la imagen georreferenciada a nuestro mapa de elevaciones

55

Algunas webs relacionadas interesantes:

Cartografía en Internet \rightarrow <u>http://home.datacomm.ch/kerguelen/mapas/</u>

Instituto Geográfico Nacional \rightarrow <u>http://www.ign.es/ign/es/IGN/home.jsp</u>

Aplicación creada por el IGN \rightarrow <u>http://www.ign.es/website/ign0212/viewer.htm</u>

Recursos para georreferenciación y SIG. Destacan los enlaces de "Georreferenciación Usando Cartografía" y "Calculadora de Georreferenciación" → http://www.herpnet.org/herpnet/Gazetteer/GeorefEspanol.html

Cómo localizar coordenadas con Google Maps → http://www.microsiervos.com/archivo/tecnologia/coordenadas-en-google-maps.html

6.2.1.2 – <u>CREACIÓN DEL MAPA DEFINITIVO</u>

Como ya hemos explicado la adición del mapa de la figura 6.5 nos permite tener una clara idea de las delimitaciones entre núcleos, es decir, ver con claridad las fronteras es nuestro propósito. Si empleamos cualquier programa de edición gráfica y oscurecemos la imagen antes de superponerla el efecto es que se resaltan más los márgenes, tal y como comprobamos en la figura 6.9.

Figura 6.9 – Representación del mapa político resaltando los límites municipales

Podemos hacer un zoom en el mapa de la figura 6.10 y ajustar las propiedades del mapa a la zona que nos convenga para el despliegue de nuestros nodos B.

Figura 6.10 – Imagen definitiva de Sevilla y sus municipios

6.2.2 - POSICIONAMIENTO NODOS B

En el apartado 6.1 emplazamos la RNC en un punto situado entre Cazalla de la Sierra y Constantina. Teniendo en cuenta que conocemos la distancia de separación entre nodos B vecinos que nos permitirá cumplir con nuestro compromiso de cobertura, lo más sensato es partir del punto donde se encuentra localizada la RNC e ir distribuyendo los nodos B de forma homogénea alrededor.

Como ya comentamos en el apartado 6.1 en una situación real el proceso de localización de emplazamientos válidos no es tan sencillo como el que presentamos a continuación, ya que la elección de una posición inicial debe perfilarse con un profundo análisis in

situ de la situación que permita verificar que el emplazamiento cumple con los requisitos exigidos para que proporcione el servicio esperado.

El concepto es tomar un nodo como origen y colocar sus 4 vecinos (Norte, Sur, Este y Oeste) alejándolos más o menos en función del tipo de entorno en el que nos encontremos. Después habrá que repetir la operación tomando como nodo origen cada uno de esos cuatro vecinos iniciales, o lo que es lo mismo, habrá que situar a los vecinos secundarios y así ir creando una cuadrícula que se extienda por todo el terreno a cubrir.

La tabla 3 nos muestra los núcleos municipales que vamos a considerar que debemos cubrir, su densidad de población según los datos del INE y el tipo de entorno según lo establecido anteriormente en la tabla 2.

DENOMINACIÓN NÚCLEO	DENSIDAD DE POBLACIÓN	TIPO DE ENTORNO
CAZALLA DE LA SIERRA	14,27	RURAL
CONSTANTINA	13,89	RURAL
GUILLENA	44,10	RURAL
ALCALA DEL RIO	121,30	SUBURBANO
CANTILLANA	92,18	SUBURBANO
LORA DEL RIO	65,35	SUBURBANO
BRENES	560,50	URBANO
CARMONA	29,84	RURAL
LA ALGABA	795,33	URBANO
LA LUISIANA	106,30	SUBURBANO

Tabla 6.3 – Distribución de los núcleos a cubrir por entornos

No hay que olvidar que estamos trabajando con coordenadas y que las distancias entre nodos las tenemos en kilómetros. Lo lógico es que intentemos establecer un patrón entre ambas medidas de modo que cada una de las 3 longitudes fijadas en la tabla 1 sea equivalente a un número de grados, minutos y segundos que habría que sumar a las coordenadas de un nodo B para obtener las de su contiguo.

6.2.2.1 – <u>CONVERSIÓN DE COORDENADAS</u>

El tema que nos ocupa puede parecer sencillo a simple vista pero nada que ver con la realidad. Para llegar a comprender su complejidad no nos viene mal recopilar un poco de teoría.

La Tierra es el tercer planeta del sistema solar en orden creciente de distancias al sol y el quinto en tamaño dentro de este sistema. La acción de las fuerzas gravitacionales la ha moldeado dándole una forma muy semejante a la de una esfera achatada por los polos y abombada en el ecuador, esfera cuyas dimensiones son aproximadamente:

- El diámetro ecuatorial mide 12.756 Km. y el polar 12.715 Km.
- La longitud de la circunferencia ecuatorial es de 40.075 Km. y la de un meridiano 40.008 Km.

La latitud proporciona la localización de un lugar, en dirección Norte o Sur desde el ecuador y se expresa en medidas angulares que varían desde los 0° del Ecuador hasta los 90°N del polo Norte o los 90°S del polo Sur. Si trazamos una recta que vaya desde el punto **P** hasta el centro de la esfera **O**, el ángulo **a** que forma esa recta con el plano ecuatorial expresa la latitud de dicho punto.

Los grados de latitud están espaciados regularmente, pero el ligero achatamiento de la Tierra en los polos causa que un grado de latitud varíe de 110.57 km (68.80 millas) en el ecuador hasta 111.70 km (69.41 millas) en los polos.

La longitud proporciona la localización de un lugar, en dirección Este u Oeste desde el meridiano de referencia 0°, también conocido como meridiano de Greenwich, expresándose en medidas angulares comprendidas desde los 0° hasta 180°E y 180°W. El ángulo **b** mide la distancia angular del meridiano del lugar **P** con el meridiano 0° (meridiano de Greenwich). Es lo mismo medir este ángulo sobre el círculo del ecuador que sobre el círculo del paralelo que pasa por el punto **P**, el valor angular de **b** es igual en ambos casos.

Figura 6.12 - Latitud y longitud de un punto P de la superficie terrestre

Mientras que un grado de latitud corresponde a una distancia casi idéntica (entre 110.57 y 111.70 Km.) en cualquier punto de la superficie terrestre, no sucede lo mismo con un grado de longitud dado que los círculos sobre los cuales se miden convergen hacia los polos. En el ecuador, un grado de longitud equivale a 111,32 Km. (69.72 millas) que es el resultado de dividir la circunferencia ecuatorial entre 360°.

La consecuencia es que la relación entre distancia medida en coordenadas geográficas y distancia en metros no es uniforme sobre la esfera terrestre, sino todo lo contrario, es una función inherente a la localización exacta donde queramos establecer la equivalencia.

Definimos proyección como cualquier sistema ordenado de paralelos y meridianos dibujado sobre una superficie plana para representar la superficie de la Tierra, es decir, una aproximación de la forma de la Tierra al plano. La Proyección UTM (Universal Transverse Mercator) es una proyección cilíndrica que carece de distorsiones en la zona del Ecuador utilizando un cilindro colocado transversalmente, esto es, con su eje situado en el plano del ecuador.

Figura 6.13 – Proyección UTM

Procuramos afinar lo más que podemos en los cálculos, usando una aplicación que nos permita pasar de coordenadas geográficas a UTM y viceversa [11].

El procedimiento que vamos a seguir para el caso rural es:

- Pasar las coordenadas de la RNC a coordenadas UTM. En la figura 6.14 vemos el resultado.
- Una vez situada la RNC en un plano mediante sus coordenadas X,Y, hallaremos las coordenadas de los nodos vecinos. Sumando 30600 metros a una de las coordenadas y dejando la otra igual, calculamos la posición del vecino en cada uno de los ejes. La figura 6.15 plasma esta idea gráficamente.
- Transformamos esos 2 nuevos puntos del plano de coordenadas UTM a latitud y longitud. Las cifras obtenidas podemos verlas en la tabla 6.4.
- Restamos grados, minutos y segundos y vemos la variación que han sufrido las coordenadas en cada dirección.
 Vecina X: 1'42'' de latitud y 20'36'' de longitud
 Vecina Y: 16'19'' de latitud y 2'7'' de longitud
- Aproximamos a la baja, pues preferimos que nuestros nodos estén más cerca de la cuenta a que existan zonas sin cubrir.

	Ellipsoide WGS84 💌					
•	UTM a Geográficas Geográficas a UTM					
	In Grados Minutos Segundos					
×	0		Latitud	37 55 31		
Y	0		Longitud	-5 36 4		
Huso	28		Huso	28		
	Cambio de Huso					
Х	0	Huso Inicial 28				
Y	0		Huso Fina	al 28		
	C)btener resultado c	le la conversi	ión		
	RE	SULTADO DE LA	CONVERSIÓ	ÓN		
X,Y		132693	8,31576	4239425,37887		
Latitu	Ы					
Longui	tud					
Conver	gencia	5* 48' 3	2,84652	5,80912		
ĸ		1,008	00368			

Figura 6.15 – Cálculo de las coordenadas UTM de los nodos vecinos de la RNC

	GEOGRÁFICAS		UTM	
	Latitud	Longitud	Х	Y
COORDENADAS DE LA RNC	37º 55' 31" N	5º 36' 4" W	1326938,31576	4239425,37887
VECINA ENT. RURAL DIRECCION X	37º 53' 49" N	5º 15' 28'' W	1357538,31576	4239425,37887
VECINA ENT. RURAL DIRECCION Y	38º 11' 50" N	5º 33' 57" W	1326938,31576	4270025,37887

Tabla 6.4 – Correspondencia entre las coordenadas geográficas y las UTM de	la
RNC y sus dos nodos B vecinos	

	Ellipsoide WGS84 💌							
۰	UTM a	Geográficas	• Geog	Geográficas a UTM				
			Gra S	Grados Minutos Segundos				
X	135	7538,31576	Latitud	0				
Y	4239425,37887] Longitud	d 0				
Huso	28] Huso	28				
Cambio de Huso								
X	0		Huso Inic	ial 28				
Y	0		Huso Fin	al 28				
	Obtener resultado de la conversión							
	RESULTADO DE LA CONVERSIÓN							
X,Y								
Latitu	Latitud		53' 49,56324	37,89710				
Longui	tud	-5*	5' 28,23782	-5,25784				
Conver	Convergencia		11,98942	6,01999				
К		1,00863567						

Figura 6.16 – Conversión de las coordenadas UTM del nodo vecino a la RNC, en entorno rural y dirección X, a coordenadas geográficas

Tipo de entorno	Distancia entre nodos B (m)	Equivalencia en minutos
RURAL	30600	16'
SUBURBANO	8700	5'
URBANO	2300	1.5'

Tabla 6.5 – Correspondencia entre la distancia entre nodos B contiguos medida en metros y su equivalente en minutos

Existe un método mucho menos elaborado que el que hemos seguido pero que nos permite confirmar estos valores. Si fijamos las propiedades del mapa de partida, tomamos como ejemplo las de la figura 5.3, y nos servimos de la utilidad "Editar > Coordenadas en las esquinas" obtendremos las siguientes conclusiones:

- Latitudes máxima y mínima del mapa: 38° 6' 27''N 36° 48' 9''N
- Distancia representada a lo alto: 145 km
- Proporción: 1º 18' 18'' = 145 km → 1 km = 32.4'

Y los entornos hubiesen seguido las relaciones indicadas más abajo, que apenas distan de las que hemos deducido en la tabla 4.

RURAL \rightarrow 30.6 km = 991.44' = 16' 31'' SUBURBANO \rightarrow 8.7 km = 281.88' = 4' 42'' URBANO \rightarrow 2.3 km = 74.52' =1' 15''

6.2.2.2 – <u>UBICACIÓN INICIAL DE LOS NODOS B</u>

La tabla 5 nos enseña cómo se han ido emplazando los nodos B en el plano según el criterio fijado. Resaltamos que de la misma manera que sucede en una situación real este plan de despliegue es "teórico" pero no se hará efectivo hasta que un ingeniero de radio verifique mediante herramientas de software especializado, como nuestro programa Radio Mobile, que el establecimiento de los radioenlaces entre la RNC y los nodos B es viable. Este será nuestro cometido en gran parte de lo que resta a este PFC y para solucionar las eventualidades que nos vayan surgiendo iremos adaptando la distribución mostrada en la tabla 5, desplazando los nodos en torno a su situación originaria lo mínimo que sea necesario e introduciremos equipos repetidores cuando veamos que la primera alternativa no es satisfactoria.

Contabilizamos un total de 37 nodos, incluyendo la RNC (denominada CazRTC) en el recuento. Vamos a extrapolar el concepto de estaciones a Radio Mobile. En el menú Archivo visto en la figura 5.2, ya hemos desglosado el significado de las palabras "redes", "mapa" e "imagen", pero nos queda un término aún por estudiar, las "unidades".

DENOMINACIÓN	COORDENADAS		VECINDAD DE		
DEL NODO	Latitud (N)	Longitud (W)	PROCEDENCIA / ENTORNO	VALIDEZ	JUSTIFICACION
CazRTC	37º 55' 31"	5º 36' 4"	/ RURAL	SI	
Caz1	38º 11' 31"	5º 36' 4"	CazRTC[N]/RURAL	NO	Supera los límites de la red
Caz1	37º 55' 31"	5º 52' 4"	CazRTC[W] / RURAL	SI	
Lora1	37º 39' 31"	5º 36' 4"	CazRTC[S] / SUBURBANO	SI	
Cons1	37º 55' 31'	5º 10' 4"	CazRTC[E] /	NO	Pertenece a Posadas (Córdoba)
Lora2	37º 44' 31"	5º 36' 4"	Lora1[N]/RURAL	NO	Es Constantina y por ser rural ya está cubierto
Carm1	37º 34' 31"	5º 36' 4"	Lora1[S] / RURAL	SI	
Lora2	37º 39' 31"	5º 41' 4"	Lora1[W] / SUBURBANO	SI	
Lora3	37º 39' 31"	5º 31' 4"	Lora1[E] / SUBURBANO	SI	
Cant1	37º 39' 31"	5º 52' 4"	Caz1[S] / SUBURBANO	SI	
Guill1	37º 55' 31'	6º 8' 4"	Caz1[W] / RURAL	SI	
Guill2	37º 39' 31"	6º 8' 4"	Guill1[S] / RURAL	SI	
Guill3	37º 39' 31"	6º 24' 4"	Guill2[W] / RURAL	SI	
Cant2	37º 44' 31"	5º 52' 4"	Cant1[N]/SUBURBANO	SI	
Cant3	37º 39' 31"	5º 57' 4"	Cant1[W] / SUBURBANO	SI	
Cant4	37º 39' 31"	5° 47' 4"	Cant1[E] / SUBURBANO	SI	
Cant5	37º 34' 31"	5º 52' 4"	Cant1[S] / SUBURBANO	SI	
Alcala1	37º 39' 31"	6º 2' 4"	Cant3[W] / SUBURBANO	SI	
Alcala2	37º 44' 31"	5º 57' 4"	Cant3[N] / SUBURBANO	SI	
Alcala3	37º 49' 31"	6º 2' 4"	Alcala1[N] / SUBURBANO	SI	
Alcala4	37º 49' 31"	6º 2' 4"	Alcala3[N] / SUBURBANO	SI	
Alcala5	37º 34' 31"	6º 2' 4"	Alcala1[S] / SUBURBANO	SI	
Bren1	37º 34' 31"	5º 57' 4"	Cant3[S] / URBANO	SI	
Bren2	37º 34' 31"	5° 55' 34''	Bren1[E] / URBANO	SI	
Bren3	37º 34' 31"	5º 54' 4"	Bren2[E] / URBANO	SI	
Bren4	37º 33' 1"	5° 55' 34''	Bren2[S] / URBANO	SI	
Bren5	37º 36' 1"	5º 55' 34''	Bren2[N]/URBANO	SI	
Bren6	37º 37' 31"	5º 55' 34''	Bren5[N]/URBANO	SI	
Lora4	37º 39' 31"	5º 26' 4"	Lora3[E] / SUBURBANO	SI	
Lora5	37º 44' 31"	5º 31' 4"	Lora3[N]/SUBURBANO	SI	
Lora6	37º 49' 31"	5º 31' 4"	Lora5[N] / SUBURBANO	NO	Pertenece a Constantina
Lora6	37º 44' 31"	5º 26' 4"	Lora4[N] / SUBURBANO	SI	
Lora7	37º 49' 31"	5º 26' 4"	Lora6[N] / SUBURBANO	SI	
Lora8	37º 34' 31"	5º 26' 4"	Lora4[S] / SUBURBANO	SI	
Lora9	37º 34' 31"	5º 21' 4"	Lora8[E] / SUBURBANO	SI	
Luis1	37º 29' 31"	5º 26' 4"	Lora8[S] / SUBURBANO	SI	
Carm2	37º 34' 31"	5° 52' 4"	Carm1[W]/RURAL	NO	Coincide con Cant5
Carm2	37º 18' 31"	5º 36' 4"	Carm1[S] / RURAL	SI	
Alga1	37º 28' 18"	6º 3' 24"	/ URBANO	SI	
Alga2	37º 28' 18"	6º 1' 54"	Alga1[E] / URBANO	SI	
Luis2	37º 29' 31"	5º 21' 4"	Luis1[E] / SUBURBANO	SI	
Luis3	37º 24' 31"	5º 21' 4"	Luis2[S] / SUBURBANO	SI	

Tabla 6.6 – Distribución de partida de los nodos B en el territorio

6.3 - CREACIÓN DE LAS ESTACIONES O UNIDADES EN RADIO MOBILE

Cualquier elemento que componga nuestra red tiene que designarse en Radio Mobile como una unidad y para caracterizarla hay que fijar su nombre y sus coordenadas. La ubicación de la unidad puede determinarse, de forma parecida a cuando escogimos el centro del mapa, introduciendo la latitud y la longitud directamente o colocando el cursor del ratón sobre el mapa en el punto destino de nuestra estación. Tenemos la posibilidad de puntualizar unas coordenadas primero y "colocar el cursor" en ese sitio para ver si es el apropiado, o agregar la unidad a una base de datos de ciudades llamada "cities.dat" para que podamos importarla e incluirla en otros proyectos. Después de este paso la casilla de altitud se actualizará por parte del programa mostrando la elevación que tendrá la unidad en función de sus coordenadas, para lo que lee los datos del archivo .map que tenemos cargado.

🐕 Propiedades de las unida	des	
CazRTC	Nombre Altitud (m) CazRTC + 875,7	ОК
Carm1 I	Posición 37*55'31,0''N 005*36'04,0''0 1	Borrar
Loras Cant1 Guil1 Guil1	IM77EW Pegar	Deshacer unidad
Guill3 Cant2	Ingresar LAT LON o QRA	Mover hacia arriba
Cant3 Cant4 Cant5	Colocar la unidad en la posición del cursor	Mover hacia abajo
Alcala1 Alcala2 Alcala3	Colocar el cursor en la posición de la unidad	Exportar
Alcala 4 Alcala5 Decit	Agregar unidad a cities dat	Importar
Bren1 Bren2 Bren3		Ordenar
Bren4 Bren5 Bren6		Aplicar estilo
Lora4 Lora5 Lora6	Color de Color Sin etiqueta Color de Color	✓ Pequeño
Lora7 Lora8 Lora9		Elempic
Luis1	Mostrar sólo unidades que son miembros de una red visible	

Figura 6.17 – Ventana para definir las "Propiedades de las unidades"

En la figura 6.17 vemos que si elegimos la opción de ingresar a mano los datos de la ubicación de la unidad además del uso de las coordenadas clásicas (latitud y longitud) nos ofrece una variante para definir una posición en el plano, el sistema QRA. Al final de este documento desarrollamos en un anexo el significado de este tipo "lenguaje" de posicionamiento.

En algunas situaciones es muy útil poder "Colocar la unidad en la posición del cursor", sobre todo en el caso de que se trate de la búsqueda del nejor lugar para poner un repetidor, ya que a lo que solemos darle prioridad es a la altura del terreno y para eso contamos con la herramienta "Encontrar la mayor altitud" que desplaza el cursor a la coordenada que cumple nuestra condición. Más adelante veremos que el estudio del "Enlace de radio" también es idóneo para este fin.

En la parte de abajo es imprescindible marcar "Habilitar" si queremos que la unidad se considere en uso, es decir, que el programa la tenga en cuenta. Los otros campos de "Estilo" van referidos al icono y a la etiqueta que identifican a la unidad y a su aspecto.

La casilla "Mostrar sólo unidades que son miembros de una red visible" nos sirve para que cuando las unidades estén agrupadas en varias redes podamos ver sólo las correspondientes a una red determinada, liberándonos de la tarea de deshabilitar el resto una por una. Señalamos como visible únicamente la red que nos ocupa y marcamos esta casilla para que los nodos restantes desaparezcan.

Los botones de la derecha son:

- OK: Aplica los cambios realizados y cierra la ventana de "Propiedades de las unidades".
- Borrar: Elimina la unidad o unidades que tengamos seleccionadas.
- Deshacer unidad: Deshace los cambios realizados sobre la unidad que hayamos modificado más recientemente.
- Mover hacia arriba / abajo: Permite desplazar las unidades subiendo o bajando puestos en el listado.
- Exportar / Importar: Sirve para crear un fichero donde se almacenen las unidades marcadas en la lista, para poder importarlas cuando estemos generando otra red de trabajo. Es fácil deducir que las unidades están asociadas a la red que tengamos entre manos (archivo .net). El fichero que guarda esta información puede ser del tipo .txt, .kml o .dat.
- Ordenar: Reagrupa las unidades en el listado por orden alfabético.
- Aplica estilo: Extiende el estilo de una unidad a todas las demás.

Figura 6.18 – Ejemplo de importación de 7 unidades de una red ficticia en la Rinconada a la red de nuestro proyecto

Figura 6.19 – Ventana de iconos que se pueden aplicar a una unidad creada

6.3.1 – POSIBILIDAD DE EXPORTAR UNIDADES A GOOGLE EARTH

KML es un formato de archivo que se utiliza para mostrar información geográfica en navegadores terrestres como Google Earth, Google Maps y Google Maps para móviles. KML utiliza una estructura basada en etiquetas con atributos y elementos anidados y se fundamenta en el estándar XML. Todas las etiquetas distinguen entre mayúsculas y minúsculas y deben aparecer exactamente como aparecen en la Referencia de KML (sección donde se especifica una referencia alfabética para todos los elementos KML definidos en cada versión). KML es un estándar abierto cuyo nombre oficial es OpenGIS® KML Encoding Standard (OGC KML).

Cuando un archivo de texto se guarda con las extensiones .*kml* o .*kmz*, los navegadores terrestres saben como reproducirlo. Si al exportar, desde el programa Radio Mobile, las unidades radio de una red generamos una capa .kml y la cargamos en Google Earth contaremos con un instrumento de trabajo muy potente y muy empleado a nivel corporativo. Podemos unir varias capas entre sí y construirnos una que nos muestre todas las estaciones 2G y 3G que cubren una región o superponerle una capa que nos indique los límites de cada núcleo que queremos cubrir por ejemplo.

Figura 6.20 – Red de nodos B creada en Radio Mobile con el objetivo de cubrir el municipio de La Rinconada y exportada a Google Earth

Hemos recuadrado en la figura 6.20 los municipios colindantes con La Rinconada para que nos resulte más sencillo comparar la localización de éstos con el mapa político de Sevilla que hemos utilizado al situar las unidades. Parece que no nos hemos equivocado mucho al georreferenciar ya que la posición real de los nodos y las distancias de los mismos al resto de núcleos nos cuadra.

Para ver el código KML de un recurso ("feature") en Google Earth, sólo tenemos que hacer clic con el botón derecho en el recurso en el visor 3D de Google Earth y seleccionar la opción "Copiar". A continuación, pegamos el contenido del portapapeles en cualquier editor de texto. El recurso visual de Google Earth se convertirá en su equivalente en texto KML.

Figura 6. 21 – Ejemplo de código KML de un recurso cualquiera en Google Earth

adding WML do see as an alwaying an Coords For