Índice de Figuras

1.1	Modelo general de la Separación Ciega de Fuentes. Una serie de fuentes originales $S_i(t)$ entran en un sistema desconocido donde se mezclan con un ruido $n_i(t)$ y a la salida se tiene un conjunto de señales observadas $X_i(t)$.	7
1.2	Métodos básicos de análisis de componentes: ICA, NMF/NTF, SCA y MCA. Figura adaptada de [Cichocki01]	8
2.1	Señales originales X1 (eje horizontal) y X2 (eje vertical).	15
2.2	Señales obtenidas al aplicar el método de descomposición PCA. Y1 (eje horizontal) y Y2 (eje vertical).	16
2.3	Descomposición en Valores Singulares (SVD). Los elementos no representados de la matriz diagonal Σ son cero.	17
2.4	SVD de la matriz ${\bf A}$. La matriz ${\bf U}$ está compuesta por los 5 vectores singulares izquierdos; la matriz ${\bf V}$ por los 3 vectores singulares derechos; la matriz ${\bf \Sigma}$ es diagonal y está formada por los valores singulares.	18
2.5	SVD truncada de la matriz \boldsymbol{A} . La matriz $\boldsymbol{U_p}$ está compuesta por los 4 vectores singulares izquierdos; la matriz $\boldsymbol{V_p}$ por los 2 vectores singulares derechos; la matriz $\boldsymbol{\Sigma}$ es diagonal y está formada por los 2 valores singulares de mayor tamaño.	18
2.6	Modelo Bilineal de la NMF. La matriz Y es representada como una combinación lineal de matrices no negativas de rango unidad más un error desconocido	20
2. <i>7</i>	NMF de tres factores (Tri-NMF). El objetivo es, dada la matriz ${m S}$, estimar las matrices ${m A}$ y ${m X}$.	21
2.8	NMF multicapa. En este modelo la matriz ${m A}$ se encuentra distribuida a lo largo de las matrices factor ${m A}^{(i)}$.	21
2.9	NMF Convolutiva (CNMF). El objetivo es estimar las matriz \boldsymbol{X} y el sistema convolutivo a través de las matrices no negativas \boldsymbol{A}_p ($p=1,,P$). Cada operador T indica un desplazamiento de las columnas de la matriz \boldsymbol{X} .	22
3.1	Tensor $\underline{\mathbf{Y}}$ de orden (modo) 3, con dimensiones [5,4,3]. El modo 1 toma valores entre $i_1=1,2,,5$; El modo 2 toma valores entre $i_1=1,2,3,4$; El modo 3 toma valores entre $i_1=1,2,3$.	26

	Fibras obtenidas a partir del tensor $\underline{\mathbf{Y}}$ de orden (modo) 3, con dimensiones [5, 4, 3]. (a) Columna o fibra de modo-1 obtenida como	
3.2	$\underline{\mathbf{Y}}_{:,4,1}$. (b) Fila o fibra de modo-2 obtenida como $\underline{\mathbf{Y}}_{1,:,3}$. (c) Tubo o fibra de	
	modo-3 obtenida como $\underline{\mathbf{Y}}_{1,3,:}$.	27
3.3	Slices obtenidas a partir del tensor $\underline{\mathbf{Y}}$ de orden (modo) 3, con dimensiones [5, 4, 3]. (a) Slices horizontales. La primera slice horizontal se obtiene como $\underline{\mathbf{Y}}_{1,:::}$. (b) Slices Laterales. El primer slice lateral se obtiene como $\underline{\mathbf{Y}}_{1,:::}$. (c) Slices Frontales. El primera slice frontal se obtiene como $\underline{\mathbf{Y}}_{:::::}$.	
		28
3.4	Desdoblado del tensor $\underline{\mathbf{A}}$ de orden 3, con dimensiones [4,3,2]. El modo-1 tiene como resultado una matriz de dimensiones [3,8], el modo-2 de [4,6] y el modo-3 de [2,12].	29
3.5	Multiplicación de un tensor G de orden (modo) 3, con dimensiones [5,4,3] por una matriz. (a) Multiplicación modo-1. (b) Multiplicación modo-2. (c) Multiplicación modo-3.	31
3.6	Multiplicación de un tensor $\underline{\mathbf{G}}$ de orden (modo) 3, con dimensiones [5,4,3] en cada uno de sus modos por los vectores A, B y C, de dimensiones [5,1], [4,1] y [3,1] respectivamente.	32
3.7	Tensor $\underline{\mathbf{G}}$ de tercer orden de rango unidad obtenido como multiplicación de los vectores A, B y C: $\underline{\mathbf{G}} = A \circ B \circ C$.	33
3.8	Tensor identidad $\underline{\mathbf{I}}$ de tercer orden. Todos sus elementos son nulos salvo los de la diagonal principal.	34
3.9	Descomposición PARAFAC/CANDECOMP. Un tensor de tercer orden se obtiene como resultado de la suma de tensores de rango unidad.	35
3.10	Modelo PARAFAC de Harshman de un tensor de tercer orden. El tensor <u>Y</u> se obtiene como resultado de la multiplicación de la multiplicación de las matrices de carga por un tensor núcleo.	36
3.11	Modelo Tucker3. Descomposición del tensor $\underline{\mathbf{Y}}$. Esta descomposición coincide con el modelo PARAFAC de Harshman cuando el tensor $\underline{\mathbf{G}}$ es un tensor superdiagonal cuadrado de dimensiones [JxJxJ].	38
3.12	Descomposición del tensor $\underline{\mathbf{Y}}$ mediante el modelo Tucker2. Inclusión de la matriz de carga \boldsymbol{C} en el tensor núcleo.	39
3.13	Descomposición del tensor $\underline{\mathbf{Y}}$ mediante el modelo Tucker1. Inclusión de la matriz de carga \mathbf{B} en el tensor núcleo.	40
4.1	Diagrama de bloques del problema de la Separación Ciega de Fuentes.	44
4.2	Comparación Preblanqueo, PCA e ICA. (a)Distribución conjunta de dos variables aleatorias S_1 y S_2 independientes. (b)Distribución de las variables mezcladas a través de la matriz \mathbf{A} , X_1 y X_2 . (c)Distribución tras las diferentes transformaciones: (c.1)Preblanqueo, (c.2)PCA y (c.3)ICA. Eigura adaptada de [Cichocki01]	50

4.3	Modelo de señal para la extracción ciega de P fuentes. S es el conjunto N de señales fuente; A es la matriz de mezcla del sistema de tamaño $[M,N]$ $(M \ge N)$; N es el ruido externo del sistema; X es el conjunto de fuentes observadas tras el paso por la matriz de mezcla y la adición del ruido; Z se corresponde con las observaciones blanqueadas, a partir de la matriz de preblanqueo W ($[N,M]$); U es una matriz semiunitaria a parir de la cual se obtienen las fuentes separadas Y .	51
4.4	Algoritmo de aproximación del vector de extracción hacia el autovector dominante.	54
4.5	Algoritmo de extracción múltiple de fuentes. En el tercer paso se podrá elegir una de las dos opciones disponibles. El cuarto paso es opcional.	57
5.1	Fuentes Experimentales Independientes. En orden descendente: Cuadrada, Diente de sierra y Senoidal.	74
5.2	Matriz de mezcla A generada de forma aleatoria y con dimensiones [8,3]. (a) Valores numéricos. (b) Escala de grises.	75
5.3	Señal experimental extraída $m{Y}$ correspondiente con la tercera fuente original invertida.	76
5.4	Evolución a lo largo de las iteraciones en la extracción de señales experimentales. (a) Función de transferencia global del sistema G . (b)	
	Relación P _y /P _{E_j} .	76
5.5	Ascenso en la función contraste Φ ($U^{(k)}$) en la extracción de señales experimentales. El máximo alcanzado se consigue tras la sexta iteración.	77
5.6	Evolución a lo largo de las iteraciones. (a) Performance Index P_i , (b) Crosstalk 'Cross', (c) GAP y (d) Índice Global (GlobInd).	77
5.7	Batería de simulaciones. Módulo de la Función de transferencia global del sistema ${m G}$ obtenida en la extracción simple de señales de laboratorio.	78
5.8	Batería de simulaciones. (a) Media del ascenso en la función contraste $\Phi_{_{\Theta}}(U^{^{(k)}})$, (b) Media de la evolución de los Performance Index P_i .	78
5.9	Evolución de la señal extraída frente al incremento de la relación señal a ruido. De izquierda a derecha y de arriba abajo: SNR=0dB, SNR=5dB, SNR=10dB, SNR=15dB, SNR=20dB y SNR=40 dB.	79
5.10	Evolución de la función de transferencia global del sistema y de la relación de potencias frente al incremento de la relación señal a ruido en la extracción múltiple de señales experimentales. (a) Evolución de G .	
	(b)Evolución de P _v /P _{E,} .	80
5.11	Evolución del Performance Index P_i frente al incremento de la relación señal a ruido en la extracción múltiple de señales experimentales.	80
5.12	Evolución de los diferentes índices de prestaciones frente al incremento de la relación señal a ruido. (a) Crosstalk 'Cross', (b) GAP y (c) Índice Global (GlobInd).	80
5.13	Componentes extraídas Y . En orden descendente: Diente de sierra, Senoidal y Cuadrada.	81

5.14	Extracción múltiple de señales de laboratorio. (a)Función de Transferencia global del sistema obtenida $\bf G$. (b) Relación de potencias entre la componente extraída y el resto de fuentes ${\bf P}_{_{\rm Y}}/{\bf P}_{_{\rm E}}$.	
	Y/ E _j	81
5.15	Batería de simulaciones. Módulo de la Función de transferencia global del sistema ${m G}$ obtenido en la extracción múltiple de señales de laboratorio.	82
5.16	Batería de simulaciones. (a) Media del ascenso en la función contraste $\Phi_{_{\Theta}}(U^{^{(k)}})$, (b) Media de la evolución de los Performance Index P_i	82
5.17	Evolución de la señal extraída, la función de transferencia global del sistema y la relación de potencia P_y/P_N frente al incremento de la relación señal a ruido. (a) SNR=15dB y (b) SNR=25 dB.	84
5.18	Evolución del Performance Index P_i frente al incremento de la relación señal a ruido para los métodos ThinICA, Jade, Sobi y Amuse	85
5.19	Fuentes de audio originales S . En orden descendente: conferenciante, murmullo, música ambiente y ruido.	86
5.20	Dispersión de las muestras de las fuentes originales S incorreladas.	86
5.21	Observaciones X. Fuentes originales mezcladas a partir de la matriz A.	87
5.22	Matrices Correlación. (a) Correlación de las fuentes, Corr (S) , (b) Correlación de las observaciones, Corr (X) .	87
5.23	Dispersión de las muestras de las observaciones X correladas	87
5.24	Salidas obtenidas Y . En orden descendente: música ambiente, ruido, conferenciante y murmullo.	88
5.25	Extracción múltiple de señales de audio. (a) Función de Transferencia Global del Sistema ${\bf G}$. (b) Relación de potencias $P_{_Y}/P_{_{E_{_I}}}$ de las fuentes	
	extraídas.	88
5.26	Media de la evolución a lo largo de las iteraciones tras 50 simulaciones. (a)Índice de separación P _i , (b)Ascenso en a función contraste.	89
5.27	Evolución del Índice de separación P_i frente al incremento de la SNR en la separación de señales de audio.	89
5.28	Ejemplo de aplicación de la BSS en biomedicina. Obtención del Fetal Heart Rate (FHR) mediante Electrocardiograma fetal (FECG).	90
5.29	Conjunto PQRST correspondiente a una señal ECG	90
5.30	Observaciones obtenidas por los electrodos situados sobre la piel de la madre. Las cinco primeras se corresponden a electrodos situados sobre el abdomen mientras que las restantes se corresponden a observaciones obtenidas por electrodos en el tórax.	91
5.31	Detalle de la MECG y FECG obtenida por el electrodo 'Abdomen1'. Recuadrado en verde se observa la componente correspondiente al feto (F). Recuadrado en rojo se observa la componente correspondiente a la madre (M).	92
5.32	MECG y FECG extraídas. En la parte superior se muestra la FECG donde se observa un ritmo cardíaco superior a la MECG mostrada en la parte inferior.	92

5.33	Complejo PQRST obtenido. En la MECG (a) se percibe el conjunto PQRST de forma completa mentas que en la FECG (b) solo es apreciable las componentes R y S.	92	
5.34	Ejemplos de imágenes de diferente naturaleza. (a) Imagen Médica, (b) Imagen Natural y (c) Imagen sintética correspondiente a un texto.	93	
5.35	Conjunto de imágenes fuente S . La primera columna está formada por las fuentes en dos dimensiones, la segunda columna se corresponde con sus histogramas y la tercera columna con las fuentes normalizadas en una dimensión.	94	
5.36	Conjunto de observaciones \mathbf{X} . La primera fila está formada por las imágenes de las observaciones mientras que la segunda fila se corresponde con sus histogramas	95	
5.37	Conjunto de componentes extraídas Y . La primera fila está formada por las imágenes obtenidas mientras que la segunda fila se corresponde con sus histogramas.	95	
5.38	Evolución en la extracción de la tercera componente a lo largo de las iteraciones. A partir de la novena iteración el resultado es satisfactorio.	95	
5.39	Extracción múltiple de imágenes. (a) Módulo de la Función de Transferencia Global del Sistema. (b) Relación de las potencias $P_{_{Y}}/P_{_{E_{_{j}}}}$ de		
	las fuentes extraídas.	96	
5.40	Media de la evolución a lo largo de las iteraciones tras 50 simulaciones. (a)Índice de separación P _i , (b)Ascenso en a función contraste.	96	
5.41	Evolución del Índice de separación P_i frente al incremento de la SNR en la separación de imágenes.	97	
5.42	Separación de señales para comunicaciones. La primera columna se corresponde con las fuentes originales $\bf S$: BPSK, π /4-QPSK, 16-QAM y 4-PCM. La segunda columna se corresponde con las señales observadas $\bf X$. La tercera columna se corresponde con las señales extraídas $\bf Y$: BPSK, 4-PCM, π /4-QPSK y 16-QAM.	98	
5.43	Extracción múltiple de fuentes para comunicaciones. (a) Módulo de la Función de Transferencia Global del Sistema. (b) Relación de potencia $P_{y}/P_{E_{y}}$ de las fuentes extraídas.	99	
5.44	Media de la evolución a lo largo de las iteraciones tras 50 simulaciones. (a)Índice de separación P _i , (b)Ascenso en a función contraste.		
5.45	Evolución del Índice de separación P_i frente al incremento de la SNR en la separación de señales para comunicaciones.	100	

Índice de Tablas

5.1	Media de la extracción simple de señales experimentales	78
5.2	Media de la extracción múltiple de señales experimentales.	82
5.3	Tabla Comparativa. Rapidez y calidad en la separación de componentes de los algoritmos de extracción JADE, AMUSE, SOBI y Thin-ICA.	83
5.4	Media de la extracción múltiple de señales de audio.	89
5. <i>5</i>	Media de la extracción múltiple de fuentes tipo imagen.	97
5.6	Media de la extracción múltiple de señales para comunicaciones.	99