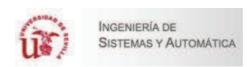


#### Escuela Técnica Superior de Ingenieros Universidad de Sevilla



## Control Borroso Industrial: Uso de la IEC 1131-7 para el control de plantas industriales


Autor: Rafael Pajarón Pérez

Tutor: Juan Manuel Escaño González Cotutor: Luis Fernando Castaño Castaño

Proyecto Fin de Carrera

Ingeniería de Telecomunicación

#### Este Proyecto se realizó en el



Departamento de Ingeniería de Sistemas y Automática  $\mbox{http://disa.us.es/disa/}$ 

Grupo de investigación: Automática y Robótica Industrial

|                                                                    | DEDICATORIA                   |
|--------------------------------------------------------------------|-------------------------------|
| $A \ mis \ p$                                                      | padres y mi novia Beatriz     |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
| "La potencia intelectual de un hombre se mide por la dosis de humo | or que es capaz de utilizar." |
|                                                                    | Friedrich Nietzsche           |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
|                                                                    |                               |
| -Este proyecto se escribió en L <sup>A</sup> T <sub>E</sub> X-     |                               |
| 1                                                                  |                               |

### Agradecimientos

Me gustaría agradecer a Juan Manuel Escaño, mi tutor y amigo, por la oportunidad que me ha brindado para realizar este poryecto y aprender de él así como agradecer su infinita paciencia y ayuda. A mis padres y al resto de mi familia, mi hermana y mi abuela, mis tios, primos,... por vuestra confianza en mí. A mi novia, fuente inagotable de apoyo y cariño que me hicieron fuerte en los momentos de decline y cansancio. A todos mis compañeros y amigos de la universidad, porque sin todos vosotros, vuestros ánimos, vuestros consejos y vuestra ayuda no habría terminado nunca. A todos mis amigos de siempre, en especial a Pablo por estar siempre ahí. Y en definitiva agradecer a todas las personas que de una u otra manera me ayudaron en el desarrollo de mi Proyecto Fin de Carrera.

### Prefacio

El presente proyecto se centra en la implementación de estrategias de Control Borroso en autómatas programables industriales, proporcionando a los lectores una guía práctica para iniciarse en el mundo de las plantas reales. Se ha realizado una conexión vía OPC para desarrollar una plataforma de interconexión entre el software Unity de Schneider Electric y Matlab, lo que proporcionará una herramienta muy útil para el desarrollo y sintonización de controladores antes de implantarlos en plantas reales.

Podemos dividir el proyecto en varias partes. Una primera parte en la que se exponen los objetivos marcados y se realiza una introducción a la teoría de la lógica borrosa, conceptos básicos sobre los que gira este proyecto. Posteriormente se expone el sistema que se pretende controlar para más tarde diseñar las estrategias de control, centrándonos en las técnicas de control borroso.

Por último se presentarán las conclusiones a las que se ha llegado y se expondrán nuevas líneas de trabajo en el proyecto realizo.

# Índice general

| Pr | efaci                        | io                           |                                                                                   |                                                                                                                                                                                                                                                                | I                                                         |
|----|------------------------------|------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Ín | dice                         | genera                       | 1                                                                                 |                                                                                                                                                                                                                                                                | III                                                       |
| Ín | dice                         | de figu                      | ıras                                                                              |                                                                                                                                                                                                                                                                | VII                                                       |
| Ín | dice                         | de tab                       | las                                                                               |                                                                                                                                                                                                                                                                | VIII                                                      |
| 1. | Intr<br>1.1.<br>1.2.<br>1.3. | Justific                     | vos del pr<br>cación                                                              | royecto                                                                                                                                                                                                                                                        | . 3                                                       |
| 2. |                              | Control 2.1.1. 2.1.2. 2.1.3. | l Borroso<br>Lógica b<br>¿Por qué<br>Conjunto<br>2.1.3.1.<br>2.1.3.2.<br>2.1.3.3. | orrosa  de utilizar lógica borrosa?  os borrosos  Funciones de pertenencia  Variable lingüística  Operaciones borrosas  Inferencia borrosa  de Control Borroso  Borrosificador (Fuzzifier)  Desborrosificador (Defuzzifier)  Diferentes controladores borrosos | . 7<br>. 8<br>. 9<br>. 12<br>. 13<br>. 14<br>. 15<br>. 16 |
|    | 2.2.                         | Norma 2.2.1.                 | IEC 113                                                                           |                                                                                                                                                                                                                                                                | . 18<br>. 22<br>. 24<br>. 25                              |
|    | 2.3.                         | Fuzzy                        |                                                                                   |                                                                                                                                                                                                                                                                |                                                           |
|    | 2.4.                         |                              |                                                                                   | $\mathrm{olbox}^{TM}$                                                                                                                                                                                                                                          |                                                           |

| 3.        | Case               | o de estudio                                                       | 35    |  |  |  |  |
|-----------|--------------------|--------------------------------------------------------------------|-------|--|--|--|--|
|           | 3.1.               | Planta piloto de laboratorio                                       | . 35  |  |  |  |  |
|           |                    | 3.1.1. Descripción de la planta                                    | . 35  |  |  |  |  |
|           |                    | 3.1.2. Reacción exotérmica                                         |       |  |  |  |  |
|           |                    | 3.1.2.1. Modelado de la válvula                                    | . 42  |  |  |  |  |
|           |                    | 3.1.2.2. Modelo matemático                                         | . 42  |  |  |  |  |
|           |                    | 3.1.2.3. Identificación del sistema                                | . 44  |  |  |  |  |
|           | 3.2.               | Simulación de la planta piloto                                     | . 45  |  |  |  |  |
|           |                    | 3.2.1. Plataforma de interconexión Unity - Simulink                |       |  |  |  |  |
| 4.        | Con                | trol clásico aplicado a la planta                                  | 53    |  |  |  |  |
|           | 4.1.               | .T                                                                 | . 53  |  |  |  |  |
|           |                    | 4.1.1. Diseño del algoritmo                                        |       |  |  |  |  |
|           |                    | 4.1.2. Sintonización de controladores PID                          | . 55  |  |  |  |  |
|           | 4.2.               | Simulink PID Controller Blocks                                     |       |  |  |  |  |
|           | 4.3.               | Diseño del controlador PID en Simulink para el modelo de la planta |       |  |  |  |  |
|           |                    | 4.3.1. Simulaciones                                                | . 65  |  |  |  |  |
|           | 4.4.               | Implementación del controlador PID en Unity                        |       |  |  |  |  |
|           |                    | 4.4.1. Introducción al software Unity Pro                          | . 67  |  |  |  |  |
|           |                    | 4.4.1.1. Programación de la aplicación                             | . 69  |  |  |  |  |
|           |                    | 4.4.2. Controlador PID                                             | . 70  |  |  |  |  |
|           |                    | 4.4.3. Simulaciones                                                | . 74  |  |  |  |  |
|           |                    | 4.4.3.1. Creación de un SCADA                                      | . 74  |  |  |  |  |
|           |                    | 4.4.4. Manual de uso de la plataforma Unity-Matlab                 | . 76  |  |  |  |  |
|           |                    | 4.4.5. Resultados de las simulaciones                              | . 77  |  |  |  |  |
| <b>5.</b> | Con                | trol borroso directo aplicado a la planta                          | 80    |  |  |  |  |
|           | 5.1.               | Control Borroso Incremental                                        | . 81  |  |  |  |  |
|           | 5.2.               | Control borroso incremental en Simulink                            | . 84  |  |  |  |  |
|           |                    | 5.2.1. Simulaciones                                                | . 87  |  |  |  |  |
|           | 5.3.               | Implementación en Unity                                            | . 90  |  |  |  |  |
|           | 5.4.               | Simulación                                                         | . 94  |  |  |  |  |
| 6.        | . Conexión por OPC |                                                                    |       |  |  |  |  |
|           | 6.1.               | OLE para Control de Procesos                                       |       |  |  |  |  |
|           |                    | 6.1.1. Motivos para el desarrollo de la especificación OPC         | . 99  |  |  |  |  |
|           |                    | 6.1.2. Origen de la especificación OPC                             | . 100 |  |  |  |  |
|           | 6.2.               | Configuración                                                      | . 101 |  |  |  |  |
| 7.        | Conclusiones       |                                                                    |       |  |  |  |  |
|           |                    | Conclusiones                                                       |       |  |  |  |  |
|           | 7.2.               | Posibles ampliaciones para proyectos futuros                       | . 106 |  |  |  |  |
| Ar        | iexos              | 5                                                                  | 107   |  |  |  |  |
| Bi        | bliog              | grafía                                                             | 168   |  |  |  |  |

## Índice de figuras

| 1.0.1.Aspecto de la planta piloto de laboratorio en la actualidad 1.3.1.Algunos ejemplos de las numerosas aplicaciones que utilizan control borroso. (a) 1996 Saturn SL1 equipado con una transmisión automática controlada con lógica borrosa. (b) Helicóptero no tripulado. (c) Panasonic® olla arrocera donde la lógica borrosa controla el proceso | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| de cocción. (d) ASML Water-Steppers                                                                                                                                                                                                                                                                                                                    | ć  |
| 2.1.1.Precisión y significado en el mundo real                                                                                                                                                                                                                                                                                                         | 8  |
| Con los conjuntos clásicos no se tolera este tipo de clasificación 2.1.3. Ejemplo de un conjunto de personas donde se hace una distinción por                                                                                                                                                                                                          | 10 |
| altura                                                                                                                                                                                                                                                                                                                                                 | 10 |
| 2.1.4.Funciones de pertenencia para definir si una sona es es alta o no                                                                                                                                                                                                                                                                                | 11 |
| 2.1.5. Términos principales de las funciones de pertenencia                                                                                                                                                                                                                                                                                            | 11 |
| 2.1.6.Formas comúnmente utilizadas de funciones de pertenencia                                                                                                                                                                                                                                                                                         | 12 |
| 2.1.7.Las principales fuentes y formas de formulación de reglas                                                                                                                                                                                                                                                                                        | 15 |
| 2.1.8.Funcionamiento del controlador Borroso                                                                                                                                                                                                                                                                                                           | 16 |
| 2.2.1.Ejemplo de programación en LD                                                                                                                                                                                                                                                                                                                    | 20 |
| 2.2.2.Ejemplo de programación en FBD                                                                                                                                                                                                                                                                                                                   | 20 |
| 2.2.3.Ejemplo de programación IL                                                                                                                                                                                                                                                                                                                       | 21 |
| 2.2.4.Ejemplo de programación en ST                                                                                                                                                                                                                                                                                                                    | 21 |
| 2.2.5.Ejemplo de programación SFC                                                                                                                                                                                                                                                                                                                      | 22 |
| 2.2.6.Esquema contenido de la norma IEC 1131-7                                                                                                                                                                                                                                                                                                         | 23 |
| 2.2.7. Ejemplo de un bloque de función de control borroso en representación                                                                                                                                                                                                                                                                            |    |
| FBD                                                                                                                                                                                                                                                                                                                                                    | 26 |
| 2.2.8.Intercambio de datos para de programas en lenguaje de Control Bo-                                                                                                                                                                                                                                                                                |    |
| rroso (FCL)                                                                                                                                                                                                                                                                                                                                            | 26 |
| 2.2.9. Ejemplo de bloque de función borroso.                                                                                                                                                                                                                                                                                                           | 27 |
|                                                                                                                                                                                                                                                                                                                                                        |    |

| 2.2.10 Niveles de conformidad                                                |                 |
|------------------------------------------------------------------------------|-----------------|
|                                                                              | $\frac{31}{32}$ |
| 2.4.1.Diagrama del funcionamiento de la Fuzzy Logic Toolbox                  |                 |
| 2.4.3. Funcionamiento de los tres editores                                   | 34              |
| 2.4.5.F uncionalmento de los tres editores                                   | 34              |
| 3.1.1.Componentes de la planta piloto                                        | 36              |
| 3.1.2.Fotografía del bastidor con el autómata programable M340 y sus mó-     | 9. <b>"</b>     |
| dulos.                                                                       | 37              |
| 3.1.3.Sensor para el nivel del depósito.                                     | 38              |
| 3.1.4.Placa orificio de un caudalímetro eléctrico.                           | 40              |
| 3.1.5. Esquemático de la planta piloto hecho con <i>Vijeo Citect.</i>        | 40              |
| 3.1.6.Diagrama de la planta piloto con los cuatro elementos: reactor, inter- | 11              |
| cambiador de calor, camisa de refrigeración y válvula de recirculación.      | 41              |
| 3.1.7. Característica Acción de control-Caudal de la válvula                 | 42              |
| 3.1.8.Reacción de la planta piloto a cambios en la entrada. Arriba la tem-   | 4.5             |
| peratura del tanque y abajo la apertura de la válvula                        | 45              |
| 3.2.1.Modelo de la planta desarrollado en Simulink                           | 46              |
| 3.2.2.Configuración de la condición inicial de un integrador                 | 46              |
| 3.2.3.Estructura interna del modelo de la planta en Simulink                 | 47              |
| 3.2.4. Subsistema que aproxima el caudal de entrada.                         | 47              |
| 3.2.5. Estructura del subsistema que aproxima el intercambio de calor        | 48              |
| 3.2.6.Respuesta de la temperatura a diferentes valores de apertura           | 48              |
| 3.2.7. Esquema conexión Unity-Simulink por OPC                               | 49              |
| 3.2.8. Diagrama de flujo del programa de simulación del modelo               | 49              |
| 3.2.9.Modelo de la planta desarrollado en Simulink preparado para la co-     | 50              |
| nexión por OPC                                                               | 50              |
| 3.2.1 Menú de configuración de parámetros de simulación de Simulink          | 51              |
| 5.2.1 Menu de configuración de parametros de simulación de simulink          | 91              |
| 4.1.1.Diagrama de flujo de trabajo para el diseño de un PID                  | 55              |
| 4.1.2. Esquema controlador PID de una planta                                 | 55              |
| 4.1.3. Curva de respuesta en forma de S                                      | 57              |
| 4.1.4. Oscilación sostenida con periodo $P_{cr}$                             | 57              |
| 4.2.1.Biblioteca de bloques de Simulink                                      | 58              |
| 4.2.2.Parámetros del bloque de Simulink: Controlador PID                     | 59              |
| 4.2.3. Parámetros avanzados del bloque PID                                   | 60              |
| 4.2.4.Linealización de la planta                                             | 60              |
| 4.2.5. Ventana de sintonización del PID                                      | 61              |
| 4.3.1.Respuesta ante una entrada escalón unitario del sistema de primer      |                 |
| orden                                                                        | 62              |
| 4.3.2. Modelo de la planta con un controlador PID                            | 62              |
| 4.3.3.Pantalla de configuración de los parámetros del PID                    | 63              |
| 4.3.4.Resultado de utilizar la autosintonización de Simulink                 | 63              |
| 4.3.5.Pantalla para modificar el tiempo de respuesta                         | 64              |

| 4.3.6. Respuesta del sistema tras modificar el tiempo de respuesta                                                                                                     | 64 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.3.7.Distintas respuestas variando el tiempo de respuesta dado por la au-                                                                                             |    |
| tosintonización                                                                                                                                                        | 65 |
| 4.3.8. Opciones para discretizar el controlador                                                                                                                        | 65 |
| 4.3.9.Resultados simulación 1                                                                                                                                          | 66 |
| 4.3.1 Resultados simulación 2                                                                                                                                          | 66 |
| 4.4.1.Pantalla de error al conectar el simulador de Unity Pro                                                                                                          | 68 |
| 4.4.2.Panel de simulador del PLC cuando se produce el error                                                                                                            | 68 |
| 4.4.3.Panel de simulador del PLC una vez cargado un proyecto                                                                                                           | 68 |
| 4.4.4.Estructura de la aplicación en SFC                                                                                                                               | 69 |
| 4.4.5. Variables con dirección de memoria %MW fija                                                                                                                     | 70 |
| 4.4.6.Menú explorador de biblioteca de tipos de Unity                                                                                                                  | 70 |
| 4.4.7.Representación del bloque PIDFF en FBD                                                                                                                           | 71 |
| 4.4.8.Diagrama de estructura de controlador PIDFF                                                                                                                      | 73 |
| 4.4.9.Bloque PIDFF activado cada 2s                                                                                                                                    | 74 |
| 4.4.1 Imagen del SCADA diseñado                                                                                                                                        | 75 |
| 4.4.11Creación de un SCADA en Unity                                                                                                                                    | 75 |
| 4.4.1 Selección del modo de conexión: estándar o simulador                                                                                                             | 76 |
| 4.4.1 $\Re$ rueba 1. $K_p = -58,98$ y $T_i = 62,25s$                                                                                                                   | 77 |
| 4.4.14Prueba 2. $K_p = -58,98 \text{ y } T_i = 15s. \dots \dots$ | 78 |
| 4.4.1\Prueba 3. $K_p = -58.98 \text{ y } T_i = 5s.$                                                                                                                    | 78 |
| 4.4.16 Respuesta del sistema en diferentes puntos de trabajo con: $K_p =$                                                                                              |    |
| $-58,98, T_i = 4ms, T_d = 16s \text{ y } T_s = 2s \dots \dots \dots \dots \dots \dots \dots \dots \dots$                                                               | 79 |
| 4.4.1 Respuesta del sistema en diferentes puntos de trabajo con: $K_p = -50$ ,                                                                                         |    |
| $T_i = 4ms \text{ y } T_s = 2s \dots $                           | 79 |
|                                                                                                                                                                        |    |
| 5.1.1.Estructura general de un controlador borroso                                                                                                                     | 81 |
| 5.1.2. Estructura de un controlador borroso incremental                                                                                                                | 81 |
| 5.1.3. Funciones de pertenencia de las entradas                                                                                                                        | 82 |
| 5.1.4. Funciones de pertenencia de la salida                                                                                                                           | 82 |
| 5.1.5.Respuesta ante entrada escalón y número de estado del proceso                                                                                                    | 83 |
| 5.2.1. Fuzzy Logic Toolbox                                                                                                                                             | 84 |
| 5.2.2.Controlador Borroso Incremental en Simulink                                                                                                                      | 84 |
| 5.2.3.Bloques que forman el controlador borroso                                                                                                                        | 85 |
| 5.2.4. Editor de Sistemas de Inferencia Borrosos                                                                                                                       | 85 |
| 5.2.5.Configuración para el control borroso incremental                                                                                                                | 85 |
| 5.2.6. Ventana del Editor de Funciones de Pertenencia                                                                                                                  | 86 |
| 5.2.7. Ventana del Editor de Reglas                                                                                                                                    | 86 |
| 5.2.8. Ventana del Visualizador de Reglas                                                                                                                              | 87 |
| 5.2.9.Comparación 1 entre el PI clásico y el PI Fuzzy                                                                                                                  | 88 |
| 5.2.10Comparación 2 entre el PI clásico y el PI Fuzzy                                                                                                                  | 89 |
| 5.3.1.<br>Explorador de librería de tipos<br>                                                                                                                          | 90 |
| 5.3.2. Controlborroso incremental implementado en Unity                                                                                                                | 90 |
| $5.3.3. Representación borrosificador FUZ\_ATERM en FBD. \ \ldots \ \ldots \ \ldots$                                                                                   | 91 |
| 5.3.4.Borrosificador en Unity.                                                                                                                                         | 92 |

| 5.3.5.Representación del bloque FUZ_MIN en FBD                                 |
|--------------------------------------------------------------------------------|
| 5.3.6. Conexiónborrosificador - base de Reglas                                 |
| 5.3.7.Representación desborrosificador DEFUZ en FBD                            |
| 5.3.8.Desborrosificador en Unity                                               |
| 5.4.1. Selección del controlador borroso en el SCADA                           |
| 5.4.2.Simulación 1 con GE=0.1, GCE=0.5 y GCU=-117.96 95                        |
| 5.4.3.<br>Simulación 2 con GE=0.1, GCE=6 y GCU=-9.83 95                        |
| 5.4.4.Simulación 3 con GE=0.1, GCE=25 y GCU=-0.79828 96                        |
| 5.4.5.Comparativa entre controladores clásico y borroso equivalentes 97        |
| 6.1.1.Diagrama ejemplo aplicaciones sin y con OPC 100                          |
| 6.2.1.Pantalla de configuración del OFS Configuration Tool de <i>Schneider</i> |
| Electric.                                                                      |
| 6.2.2.Pantalla de configuración IP del OFS Configuration Tools 102             |
| 6.2.3. Código en Matlab para establecer la conexión por OPC 103                |
| 6.2.4. Ventana del OPC Factory Server                                          |

### Índice de tablas

| 2.1. | Operaciones entre conjuntos borrosos                                        | 13 |
|------|-----------------------------------------------------------------------------|----|
| 2.2. | Funciones para aritmética INT y REAL en la biblioteca de control            |    |
|      | borroso                                                                     | 30 |
| 3.1. | Listado de parámetros analógicos de la planta                               | 41 |
| 3.2. | Parámetros del modelo y variables constantes                                | 43 |
| 3.3. | Identificación de las variables de interés del modelo                       |    |
| 4.1. | Regla de sintonía de Ziegler-Nichols basada en la respuesta escalón         |    |
|      | de la planta (primer método)                                                | 57 |
| 4.2. | Regla de sintonía de Ziegler-Nichols basada en la ganancia critica $K_{cr}$ |    |
|      | y periodo critico $P_{cr}$ (Segundo método)                                 | 58 |
| 4.3. | Parámetros Ziegler-Nichols PID                                              | 62 |
| 4.4. | Parámetros Ziegler-Nichols PID                                              | 63 |
| 4.5. | Parámetros del controlador PID en Simulink. Simulación 1                    | 66 |
| 4.6. | Parámetros del controlador PID en Simulink. Simulación 2                    | 66 |
| 4.7. | Descripción y valores del parámetro Para_PIDFF                              | 72 |
| 4.8. | Variables utilizadas en el bloque PIDFF                                     | 74 |
| 5.1. | Números de estado y su correspondencia con las variables de entrada.        | 83 |
| 5.2. | Parámetros del controlador clásico y el borroso de la comparación 1         | 88 |
| 5.3. | Parámetros del controlador clásico y el borroso de la comparación 2         | 89 |