
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Network Service for Independent
Software Vendors

Autor: Carlos Sánchez Montero

Tutor: Jorge Jesús Chávez Orzáez

Dep. Ingeniería Electrónica
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2017

Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Network Service for Independent
Software Vendors

Autor:

Carlos Sánchez Montero

Tutor:

Jorge Jesús Chávez Orzáez
Profesor Titular

Dep. Ingeniería Electrónica
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla
Sevilla, 2017

Contents

1 Introduction 1
1.1 Network Service: general objectives 2

1.1.1 Updates and Messages 2
1.1.2 Marketing Tool 3
1.1.3 Additional Services for End-users 3

1.2 Project Scope 3
1.3 Project Management: SCRUM 4

2 Environment and Technologies 6
2.1 Technologies 6

2.1.1 Ruby 6
2.1.2 Ruby on Rails 7

2.1.2.1 MVC Architecture 7
2.1.2.2 Components of Rails 8
2.1.2.3 File Structure 8

2.1.3 RSpec 8
2.1.4 Nginx 9
2.1.5 MySQL 10
2.1.6 Capistrano 10
2.1.7 God.rb 10
2.1.8 RESTful Design 11

2.2 Initial Data Structure 11

3 Properties Storage System 13
3.1 Receiving Metrics. Simple storage system 13

3.1.1 Short API description 13
3.1.2 Initial Properties Storage 15
3.1.3 API Modifications 17

3.2 Properties Storage with History 18
3.2.1 Time Slots 19
3.2.2 Empty Slots 20

i

3.2.3 Losing Resolution 20
3.2.4 Database Migration 21
3.2.5 Processing Algorithms 23

3.3 Improved Properties Storage 24
3.3.1 Installation Tiers 24
3.3.2 Merge Property Slots 24
3.3.3 API Improvements 26

3.3.3.1 Add Notifications and Monitoring Methods 26
3.3.3.2 Avoid Sending Duplicated Notifications 27
3.3.3.3 Add Background Processing 28
3.3.3.4 Switch the API and Workers to Merb 31

3.4 Performance Tuning 33
3.4.1 Properties stored in separate tables 33
3.4.2 Remove Empty Slots 36
3.4.3 Indexes Configuration 37

3.5 Storage Size Estimation 38

4 Filtering Application Users 42
4.1 Rails plugins structure 42
4.2 Filter Models Plugin 43

4.2.1 Objectives 44
4.2.2 Implementation 44

4.2.2.1 Model methods extension 45
4.2.2.2 Fields configuration 46
4.2.2.3 Filtering Rules Generation 48
4.2.2.4 Cached rules 53
4.2.2.5 WillPaginate Compatibility 53
4.2.2.6 Filterable Model Extensions 54
4.2.2.7 Filter Model Extensions 54
4.2.2.8 View helpers 55

4.3 Installation Filters 58
4.3.1 Special filters 59
4.3.2 Installation filters applied to notifications 62

5 Reports Generation 64
5.1 Reports generation plugin 64

5.1.1 Conventions 66
5.1.2 Datasets 66

5.1.2.1 Graph Generation 67
5.1.3 EventList 69

5.2 Network Service Reports system 69
5.2.1 General Structure 69
5.2.2 Filtering 71

5.2.2.1 Current statistics 72

ii

5.2.2.2 Evolution over time 73
5.2.2.3 Notification reach 75
5.2.2.4 Numeric property value evolution 76

5.2.3 Background Processing 79
5.2.4 Iterative Loading and caching slots 79

5.2.4.1 Memcached Collisions 82
5.2.5 Cache Preloading 82

5.3 Views Generation 83
5.3.1 Chart generation 83
5.3.2 Number of Installations 84
5.3.3 Notification Reports 85
5.3.4 Property value evolution 87

Conclusion 88
Bibliography 90
A Network Service User Manual 91

iii

List of Figures

1.1 Scrum Process 5

2.1 Initial Data Structure 12

3.1 Data Structure with Simple Properties 17
3.2 Property Time Slots Generation 19
3.3 Property Empty Slots Generation 20
3.4 Losing Resolution in Properties 21
3.5 Property Slots Merging 25
3.6 Agent behavior with installation tiers and monitoring API 27
3.7 Property Empty Slots with extended end at 37

4.1 FilterModels: rule generation through view helpers. 57
4.2 FilterModels: selecting filters through view helpers. 57
4.3 Installation Filters: Index page. 60
4.4 Installation Filters: Adding a new filter. 60
4.5 Installation Filters: Choosing notification destinations. 63

5.1 Example of chart generated with Gruff 68
5.2 Example of chart generated with Plotr 69
5.3 Example of chart generated with Simeline Timeline 70
5.4 Reports General Structure 71
5.5 Reports: number of users, main view. 85
5.6 Reports: number of users, detailed view. 86
5.7 Reports: notification reach, main report. 86
5.8 Reports: property value evolution. 87

iv

List of Tables

2.1 Rails Directory Structure 9

3.1 Rails to MySQL type and storage size 39

4.1 Rails Plugin Files 43
4.2 Filtering Operations 49
4.3 ActiveRecord Associations 50
4.4 Filtering Operations to SQL Conditions 52

5.1 AllowedResolutions 66

v

CHAPTER 1. INTRODUCTION

Introduction

This document describes the design and implementation of some of the features to
be included in the application Network Service. The main project has been developed
in collaboration with BitRock S.L.1.

Independent Software Vendors2 need to know about how their applications are
being used. What are the environments where they are running? How many users
are really using the application? Which exact product versions? Are there any clients
near their license limits? Who are the ones doing a more intensive usage? This
kind of information is useful in order to make the correct decisions. For example,
discontinuing the development on certain platforms if there are no people using
them or identifying possible users interested in upgrading their licenses or buying
additional services.

Getting this information may be specially problematic in open-source projects
where people is be able to download the application code directly. Although some
statistics about the number of downloads can be obtained, it will not provide the real
usage information. For example, it is not possible to know if the user just tried the
application once and removed it.

On the other hand, users need to be alerted when new application updates are
available. Specially when there are critical bugs that affects the specific version
they are running. ISVs should keep a channel of communication open with all their
end-users. Some of them may even end up developing their own notification system
to be integrated in their product.

The main objective of Network Service is to provide a solution for these common
ISV needs. By using this service, they will be able to concentrate in their own product
development instead of in secondary tools to monitor or contact their users.

As we have mentioned, in this project we will concentrate in a subset of the
features:
1 http://bitrock.com
2 Independent Software Vendor (ISV): business term for companies specializing in making or selling
software, designed for mass marketing or for niche markets.

CHAPTER 1. INTRODUCTION 1

1.1 Network Service: general objectives 2

• Properties storage system: store gathered metrics from the client machines.

• User filtering capabilities: include ways to define groups of users and to perform
targeted operations on them.

• Reports: ability to get statistics about the number of users based on filters and
properties as well as to get property value evolution over time.

We will cover the different aspects of the project in the following chapters:

1. First, in the current chapter, we will describe a general overview of Network
Service, talking about its main objectives and functionalities. The project scope
will be defined based on those general objectives and the project management
methodologies will be described.

2. Once the main objectives and working methodologies has been defined, we will
start describing the initial environment and technologies of Network Service.

3. Then, the development and evolution of the system to collect and store prop-
erties in the server. It will be done as a incremental approach, showing the
different steps that have been taken during the process.

4. After that, we will talk about the implementation of a filtering plugin that will
be helpful to perform different operations over the groups of users.

5. Finally, we will describe the development of the report generation system.

The Network Service documentation has been also updated in the process to
describe all the new features. The latest version of the Network Service User Manual
can be found in the Appendix A.

Network Service: general objectives

Network Service main objective is to include any tools that may useful for the software
vendors, removing the need of building their own solution from scratch. This will
include getting useful information about the application usage, providing a way to
send notifications or new updates to the end-users, etc.

We can think of Network Service from different points of view:

Updates and Messages

Every application requires to maintain the communication with the clients. At least,
bug fixes and application updates should be notified as fast as possible. Network
Service provides a base system that can be easily integrated in the application to send
that information as well as any notifications.

1.2 Project Scope 3

Using an external graphical tool or adding some elements in the application
interface, the ISV is able to send notifications about their new products and versions
directly to the end-users. Filters based on the metrics may be applied to them in order
to decide the specific target.

The upgrade process may be controlled by sending the notification to specific
groups of users or only to a percentage of them. That way, they may assure there are
not important issues in the upgrade process or control the load in their servers.

Marketing Tool

Network Service can provide useful information about the clients: statistics about the
number of users, their location, the architectures they are using, etc. This information
could be used to analyze the impact of the promotion campaigns.

Application specific information can be also fetched. If the appropriate metrics
are defined, this might help to determine the users that can be more interested in
license upgrades or additional services.

Some simple tests about the licenses may be also performed. As long as a unique
key that identifies the license is sent, they may be able to detect invalid licenses or
inadequate usage.

It is also planned to integrate Network Service in with other client relation
management tools like SugarCRM.

Additional Services for End-users

There are other needs that usually appear when an end-user works with an application.
Network Service plans to make it easier to implement some of them:

• Monitoring: track system properties. Generation of alerts to prevent overload
on end-user machine. Increased information to support team to deal with
certain application issues.

• Backups: automated backups of the end-user data.

These services can be an additional income for the ISVs and the efforts to integrate
them would be reduced by using a common solution.

Project Scope

During the development of this project, most of the objectives described in 1.1 have
been implemented. However, only some of them are part of the current project scope.

We will concentrate in the functionalities related to the installation properties:

1.3 Project Management: SCRUM 4

• Allow to receive and store the properties from installations in Network Service.
It should be able to get the latest properties for a chosen installation as fast as
possible and store the historical values. The storage should be restricted in
resolution and size. We should minimize the impact of ’Basic’ users (the ones
without monitoring metrics).

• Add the ability to define installation groups based on the property values. It
should be possible to filter all the statistics using those definitions. It should be
also possible to perform operations on those specific user sets. For example, to
send updates or notifications to one or more of them.

• Generate reports on server side about:

– Number of Installations: grouped by product, by version or by specific
property value. Being able to filter those statistics to a subset of installa-
tion groups

– Notification Reach: describe the number of installations that have received
a particular message or update, how much installations are pending to be
notified. Furthermore, get that evolution by version, property value or
filtered by installation groups

– Information about the status of a specific installation.
– Evolution over time for a chosen property with different resolutions and
aggregation methods.

Project Management: SCRUM

The project management has been performed following the SCRUM methodologies.
SCRUM is an agile software development method for project management. All the
features that we would like to have implemented are enumerated and prioritized in a
list called Product Backlog. That list will be maintained by a person called Product
Owner.

The work is done in an incremental way: during a 15-30 days period (called
Sprint) the team will work on a group of stories taken from the Product Backlog
without external interruptions. Those stories are estimated and chosen by the whole
team, in a meeting called Sprint Meeting that should be done before each Sprint.

In this meeting, the members should estimate the most important stories in the
Product Backlog by giving them a number of points (those points will be related to
the duration or complexity of the task). They have also to decide which will be the
speed of the team for the next Sprint (taking into account the history of the team
in past sprints). That speed will determine the number of points that the team will
be able to burn and the stories will be chosen according to it and their estimation.
The Team should choose the stories by their own taking into account the priorities

1.3 Project Management: SCRUM 5

Figure 1.1 Scrum Process.

given by the Product Owner, the result is a Sprint Backlog with all the things that are
supposed to be done on the next Sprint.

During the sprint there are short daily meetings (5-10 minutes) in which each
one of the team members gives a short explanation about:

• What was done yesterday

• What will be done today

• Comment any problems that have appeared

Daily and Sprint Meetings should be coordinated by the SCRUM master, who is a
member of the team elected by the rest of them.

After the sprint is finished there should be possible to do a demo with the latest
implemented features. Product Owner should be present on it and should give any
comments about the results obtained.

It is important to have a Retrospective Meeting after each Sprint, to analyze the
things that have gone wrong and those that have been good. That way, we are able to
improve the productivity by fixing the possible problems and adapting the SCRUM
methodology to our own team.

All the meetings have a fixed length and should start at a specific time. It is also
important to talk only about what the meeting is supposed to be about.

One of the most important benefits of this method is that the project is able to
adapt its objectives to the needs of the market faster than other solutions. It is also
important that the client gets involved in the evolution of the application. He can see
how the product is growing and if it is what he really wants to get before it is finished.
This avoids misunderstandings before it is too late.

Additional details about the involved process can be consulted at [10].

Environment and Technologies

We will start by studying the initial status of the application giving a short description
of how it is organized and about the main technologies involved in Network Service
at the beginning of the current project.

Technologies

Network Service is based on Ruby programming language and uses the framework
Ruby on Rails. The application code tests are written as behavior specs, using RSpec.

On server side,Nginx is used as proxy balancer between a set ofMongrel processes.
MySQL is the main database. All the processes are monitored by god.rb. Deployment
is designed via Capistrano.

In the following sections we will give some short descriptions about them.

Ruby

Ruby is an object-oriented interpreted scripting language distributed under MIT
license. It was developed by Yukihiro Matsumoto, being released in 1995. It has
been designed to be clean and intuitive, with simple sintax and following a natural
language.

When writing Ruby code, you should follow some simple conventions:

• Indentation size is two spaces and spaces are preferred to tabs.

• Naming conventions:

– CONSTANTS_USE_UPPER_CASE, for example Math::PI
– ClassesAndModuleNamesUsePascalCase, joining words in the name capi-

talizing the first letter of each word.
– method_names, local_variables, @instance_variables and, @@class_variables

use lowercased and underscored names, joining words with underscores. For
example: some_variable, not someVariable or somevariable.

6

2.1 Technologies 7

– Keep acronyms in class names capitalized. MyXMLClass, not MyXmlClass.
Variables should use all lower case

• Method definitions should include parentheses and no unnecessary spaces: MyClass.my_method(my_arg),
not my_method(my_arg) or my_method my_arg

• Put parentheses around non-trivial parameter lists but without spaces after the method
name: method(params), not method (params).

• Use curly braces for single-line blocks, use do-end for multi-line blocks.

More information can be found at [3], [4], [5] and, http://ruby-lang.org/.

Ruby on Rails

Rails, also known as Ruby on Rails or RoR, is an open source web development
framework written in Ruby. It was created in 2003 by David Heinemeier Hansson and
has since been extended by the Rails core team, with more than 1,400 contributors.

Rails simplifies the process of writing new applications by making assumptions
about what developers need to do and how it should be done, encouraging people to
use specific code organization. This kind of approach speeds up the development
process and help developers to easily understand applications implemented by other
teams.

Some of the principles used in Rails are:

• Favor Convention Over Configuration

• DRY (Don’t Repeat Yourself): avoid writing same code over and over.

• REST: organize application around resources and standard HTTP verbs.

• MVC: follow model view controller architecture

MVC Architecture

Rails uses the MVC (Model, View, Controller) architecture. That is, we have three
kinds of elements to organize the code:

• Themodel represents the information and the rules to manipulate it. It manages
the interaction with database tables. In Rails, each model usually describes the
data inside one table.

• Views construct the user interface, providing the tools to represent the applica-
tion data in different formats (XML, HTML...).

• Controllers represents the connection between models and views. They are
responsible for processing the incoming requests, using models to update or
get the information and sending them to specific views to generate the response
to them.

2.1 Technologies 8

MVC provides isolation of business logic from the user interface and makes easier
the maintenance, being helpful to know where to locate problems in the code.

Components of Rails

Rails has the following set of modules:

• Railties: it’s the core of the framework, connecting the different components.

• Action Controller: manages the controllers, processing the requests coming to
the application.

• Action View: manages the views, creating HTML and XML outputs by default,
having built-in AJAX support and providing template rendering tools.

• Active Record: it provides models to the application,giving database indepen-
dence and tools to configure the relations between models.

• Action Mailer: for building email services. It has the tools to construct, send
emails as well as to receive and process them.

• Active Resource: manages the connection between business objects an RESTful
web services.

• Active Support: extensive collection of utility classes and standard Ruby library
extensions that are used in the Rails

File Structure

Rails defines a specific structure of files that should be used in any project. It can be
seen in table 2.1.

Further details about Rails and common usage examples can be found at [1], [6]
and, http://rubyonrails.org/.

RSpec

RSpec is a Behavior Driven Development framework for Ruby. It provides two
frameworks for writing and executing examples about how the application should
behave:

• a Story Framework for describing behavior at the application level

• a Spec Framework for describing behavior at the object level

More information about RSpec can be found at [13] and http://rspec.info/.

2.1 Technologies 9

Table 2.1 Rails Directory Structure.

/app/models The models subdirectory holds the classes that model and wrap the data
stored in our application’s database.

/app/controllers contains the files with the controller classes. Those controllers will deal
with the user requests.

/app/views The views subdirectory holds the display templates to fill in with data from
our application, convert to HTML, and return to the user’s browser.

/app/views/layouts Holds the template files for layouts to be used with views. This models the
common header/footer method of wrapping views. In your views, define a
layout using the layout :default and create a file named default.rhtml.
Inside default.rhtml, call <% yield %> to render the view using this layout.

/app/helpers The helpers subdirectory holds any helper classes used to assist the model,
view, and controller classes. This helps to keep the model, view, and con-
troller code small, focused, and uncluttered.

/components This directory holds components tiny self-contained applications that bun-
dle model, view, and controller.

/config This directory contains the small amount of configuration code that your ap-
plication will need, including your database configuration (in database.yml),
your Rails environment structure (environment.rb), and routing of incoming
web requests (routes.rb). You can also tailor the behavior of the three Rails
environments for test, development, and deployment with files found in the
environments directory.

/db Usually, your Rails applicationwill havemodel objects that access relational
database tables. You can manage the relational database with scripts you
create and place in this directory.

/doc Ruby has a framework, called RubyDoc, that can automatically generate
documentation for code you create. You can assist RubyDoc with comments
in your code. This directory holds all the RubyDoc-generated Rails and
application documentation.

/lib You’ll put libraries here, unless they explicitly belong elsewhere (such as
vendor libraries).

/log Error logs go here. Rails creates scripts that help you manage various error
logs. You’ll find separate logs for the server (server.log) and each Rails
environment (development.log, test.log, and production.log).

/public Like the public directory for a web server, this directory has web files that
don’t change, such as JavaScript files (public/javascripts), graphics (pub-
lic/images), stylesheets (public/stylesheets), and HTML files (public).

/script This directory holds scripts to launch and manage the various tools that
you’ll use with Rails. For example, there are scripts to generate code (gen-
erate) and launch the web server (server).

/spec Rspec folder containing the specs for model, views controllers and libraries.
Fixtures can be defined as well.

/test The tests you write and those Rails creates for you all go here. You’ll see
a subdirectory for mocks (mocks), unit tests (unit), fixtures (fixtures), and
functional tests (functional).

/tmp Rails uses this directory to hold temporary files for intermediate processing.
/vendor/plugins Libraries provided by third-party vendors.
/vendor/rails If it exists, contains a frozen version of rails than will be used when the

project runs.

Nginx

Nginx is a open-source, high-performance HTTP server and reverse proxy, as well as
an IMAP/POP3 proxy server. It was written by Igor Sysoev in 2005 and it’s known
for its stability, rich feature set, simple configuration, and low resource consumption.

More information can be found at [11] and http://nginx.org/.

2.1 Technologies 10

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust
SQL (Structured Query Language) database server. MySQL Server is intended
for mission-critical, heavy-load production systems as well as for embedding into
mass-deployed software. MySQL is aregistered trademark of Sun Microsystems, Inc.

More information can be found at [?], [2] and, http://www.mysql.com/.

Capistrano

It’s a tool for automating tasks on one or more remote servers. It executes commands
in parallel on all targeted machines, and provides a mechanism for rolling back
changes across multiple machines.

• Great for automating tasks via SSH on remote servers, like software installation,
application deployment, configuration management, ad hoc server monitoring,
and more.

• Easy to customize. Its configuration files use the Ruby programming language
syntax, but you don’t need to know Ruby to do most things with Capistrano.

• Easy to extend. Capistrano is written in the Ruby programming language, and
may be extended easily by writing additional Ruby modules.

More information can be found at [14] and, http://capify.org/.

God.rb

It’s a simple and powerful monitoring framework written in Ruby. We use god.rb to
control all the servers/processes in production server.

• it is controlling all servers states stop/start/restart.

• it is able to detect if the process went down and then start it once again

• it is restarting servers when their memory/cpu usage exceed previously defined
limits

It will be running as a daemon continuously in production server to control all
the process that should be working.

More information can be found at http://god.rubyforge.org/.

2.2 Initial Data Structure 11

RESTful Design

The application has been designed following the REST principles:

• Application state and functionality are abstracted into resources

• Every resource is uniquely addressable using a universal syntax for use in
hypermedia links

• All resources share a uniform interface for the transfer of state between client
and resource, consisting of

– A constrained set of well-defined operations
– A constrained set of content types, optionally supporting code on demand

• All resources share a uniform interface for the transfer of state between client
and resource, consisting of

– A constrained set of well-defined operations
– A constrained set of content types, optionally supporting code on demand

More information about REST approach can be seen at .

Initial Data Structure

The information is stored as different resources. We have products that represent
the different applications that the ISV provides. Each of them has a set of versions.
A version contains an unique identifier, called product_guid, that will be used to
determine the version for each installation.

On the other hand, we have installations that always belongs to a specific version.
Every installation has its own identifier, called installation_guid, that will be generated
during the installation process in the end-user machine.

For messaging system the application defines messages and updates both of them
have a related notification that contains the information that will be sent to the user.
Each notification has a set of versions as destinations that can belong to different
products and a time interval in which it will remain active. Updates have additional
information about the location where the file can be found.

Both installation and version identifiers must be provided by the end-user instal-
lation each time it contacts with the server to check for new messages and updates.
On each of those contacts an event will be generated with the information about the
request. A new installation will be generated when necessary.

We have also a status resource that is useful to setup the visibility or activation for
different elements: products, versions and, notifications. That way, we can disable
any of those elements without losing its related information in the server.

2.2 Initial Data Structure 12

To control the access to the frontend, the server has accounts and roles (added
using the plugins: RESTfulAuthentication and ACL2System). Those elements allow
us to have different views and permissions taking into account the roles of the network
service user that is logged in.

Finally, we have settings that define general configuration values. They consist in
a set of key-value pairs.

A diagram describing these relations can be seen in 2.1.

Figure 2.1 Initial Data Structure.

Properties Storage System

In this chapter, we will describe the implementation of the properties storage system in
Network Service. It should include the reception, storage and any related processing
of the metric values received from application installations.

We will describe the development by functionality increments, similar to the
approach followed during the implementation. Wewill start with simplemodifications
to get static values. Then, we will add properties history. And finally, some different
scalability and database improvements will be added.

Receiving Metrics. Simple storage system

We need a way to receive the property values. For doing so we will take advantage
of an already implemented feature in Network Service: sending application updates
and messages. In order to get these notifications, the application is using a simple
API that will reply to HTTP requests done from the end-user machine.

We will need to modify the API so it is able to receive the values. On the other
hand, the data structure should be altered to kept them in the server database. For
now, we will only store the latest values as installation properties.

Short API description

Initially, the API is implemented as part of the Rails application. An specific con-
troller, called AgentController, configures all the possible requests. The API is
designed to use regular HTTP protocol, encoding the required parameters in URL
format. It includes three GET methods.

• messages: returns the list of messages assigned to the application version
related to the parameter product_guid received.

• updates: returns the updates.

13

3.1 Receiving Metrics. Simple storage system 14

• news: returns single notification (either a message or an update) that has been
setup as default for the product.

The last method is useful for applications without ability to deal with more than
one notification. This might make sense if we want to simplify the integration in the
application GUI on client side.

All the queries to the server must contain the product and installation identifiers
related to the application version and the specific installation. SSL communication
is also forced and the certificate validated to assure the notifications come from the
correct server.

An example query looks like:

GET https :// server_name/api /messages? installation_guid =<guid_value>&
product_guid=<product_guid>

API responses are always encoded in XML format. Some example responses can
be seen below.

• Response to GET messages:

<?xml version="1.0" encoding="UTF−8"?>
<messages>
<message>
<guid>7</guid>
< title >Version 11.0 coming soon</ title >
< description >It will be available in a few days</ description >
< critical > false</ critical >
<created_at>Wed Jun 04 15:29:20 +0200 2011</created_at>
<updated_at>Wed Aug 27 19:35:19 +0200 2011</updated_at>
< start_date >2011−06−04</start_date>
< finish_date >2011−06−12</finish_date>
<webpage_url>http: // acme.bitrock .com/news</webpage_url>
<webpage_url_description>more info</ webpage_url_description>

</message>
<message>...</message>
...
</messages>

• Response to GET updates

<?xml version="1.0" encoding="UTF−8"?>
<updates>
<update>
<update_url>

http: // www.acme.bitrock.com/acme_product_10.5.bin
</ update_url>
<guid>8</guid>
< title >Acme Product 10.5 Released</ title >
< description >New version is available </ description >
< critical > false</ critical >
<created_at>Thu Jul 31 23:10:25 +0200 2011</created_at>
<updated_at>Wed Aug 27 19:45:16 +0200 2011</updated_at>
< start_date >2011−05−14</start_date>
< finish_date >2011−09−26</finish_date>

3.1 Receiving Metrics. Simple storage system 15

<webpage_url>http: // www.acme.bitrock.com</webpage_url>
<webpage_url_description />
<update_type>bin</update_type>
<update_os>linux</update_os>
<update_size>100</update_size>
<update_md5>9ba9801841f5fa941420f0af90e20634</update_md5>
<update_cmd_switch/>
< update_instruction >
Download the file and execute it as root

</ update_instruction >
</update>
<update> ... </update>
...

</updates>

• Response to GET news:

<?xml version="1.0" encoding="UTF−8"?>
<answer>
< status >1</ status >
< title >New Update available</ title >
<message>There is an important update of your application </message>
<url> http: // www.acme.bitrock.com/update/094</url>
< url_description >Get the update here</ url_description >

</answer>

• Response to GET news when there is no data:

<?xml version="1.0" encoding="UTF−8"?>
<answer>
< status >0</ status >
< title />
<message/>
<url />
< url_description />

</answer>

Initial Properties Storage

The data structure needs to be changed to store the properties that we are going to
receive from client machines.

We will have different formats for properties. For instance, we can store strings,
booleans, integers, floats, etc. To deal with them, Property Type resource is added.
Basically, its functionality is to define the different property keys used and bind them
to one of the possible formats. Those property types will belong to one or more
products and their key should be unique through all of them - to allow cross-product
analysis based on common properties).

Another resource is included to store the received values for each property:
Installation Property. Each installation property will belong to a property type
and to an installation. As we are using the same database table to contain properties
with different property types we would need a variable column type which is not
possible in MySQL. To work around this, we could store the properties serialized as

3.1 Receiving Metrics. Simple storage system 16

string or text and transform the values to their correct format before performing
any operation.

However, this would impact the performance since any analysis would be much
faster if we are able to use database aggregation methods. This can be done by having
separate columns for each of the allowed formats. It will not mean a big increase in
the size of the database since all the unused fields will be set to NULL. As long as
InnoDB storage engine is used, this means an additional bit per unused format and
table row[2]. Taking that into account, the fields are defined as <format>_value.
And, in order to get or set the values it will be necessary to take into account the
information of format contained in the associated PropertyType.

Finally, we will include a similar resource called Event Property with similar
structure to installation properties. It will keep information related to the API event
though. Event resources are generated on each API request containing the details
about it. By adding the property values, we get some kind of log with the evolution
in the property values. However, this has strong limitations since events table will
become huge over time and we are not forcing any resolution or time restrictions.

A more detailed description can be seen in the following Rails migration:

class InitialPropertiesSetup < ActiveRecord ::Migration
create_table " property_types " , : force => true do | t |
t . string "key" #os, lang , ...
t . string "value_type" # integer , string , ...
t . timestamps

end

create_table " event_properties " , : force => true do | t |
t . integer " event_id "
t . integer " property_type_id "
t .boolean "boolean_value"
t . integer " integer_value "
t . float " float_value "
t . string " string_value "
t . text " text_value "
t . datetime "datetime_value "
t . binary "binary_value"
t . timestamps

end
add_index " event_properties " , [" event_id "],
:name => " index_event_properties_on_event_id "

add_index " event_properties " , [" property_type_id "],
:name => " index_event_properties_on_property_type_id "

create_table " installation_properties " , : force => true do | t |
t . integer " installation_id "
t . integer " property_type_id "
t .boolean "boolean_value"
t . integer " integer_value "
t . float " float_value "
t . string " string_value "
t . text " text_value "
t . datetime "datetime_value "
t . binary "binary_value"
t . timestamps

end
add_index " installation_properties " , [" installation_id "],
:name => " index_installation_properties_on_installation_id "

add_index " installation_properties " , [" property_type_id "],

3.1 Receiving Metrics. Simple storage system 17

:name => " index_installation_properties_on_property_type_id "
end

Once these modifications are applied, the data structure seen in 2.1 will be
modified, taking the form shown in Figure 3.1.

Figure 3.1 Data Structure with Simple Properties.

API Modifications

The information will be sent to the server during the client requests asking for
new notifications. Following the HTTP approach, we include a new URL-encoded
parameter: properties. It will be present in all the described methods in the
section 3.1.1 (updates, messages and news). The properties will be sent as a set of
key-value pairs where key will be a unique identifier for each property.

With this change, the requests will look like:

GET https :/ server_name/api /messages? installation_guid =<guid_value>&
product_guid=<product_guid>&properties[<key1>]=<value1>&
properties [<key2>]=<value2>&...

To store the incoming properties we should modify the AgentController in
order to process this new parameter. However, it is important to minimize the impact
in the response time in the API. That means that any processing related to properties
should be done after sending the response to the user.

We modify the method which creates the API event resource so it generates all
EventProperty objects. Rails maps the parameters received into a Hash simplifying
the process to look for each pair key-value for the associated PropertyType based
on the key, and insert the property value in the correct column based on it.

Once event properties are modified, a similar task should be done over installation
properties which are just a copy of the latest event properties in this first approach.

3.2 Properties Storage with History 18

Properties Storage with History

We should improve the way we are storing the properties. Until now, we have been
only storing the historical values of the properties as event properties. That way of
storing properties has some inconveniences:

• Storage size has no limitations.

• Maximum resolution is not forced. All properties get saved every time a request
is received.

• Events table size makes any report generation really slow.

• Events and information related to them should only contain temporary infor-
mation.

Taking that into account we should find a way to

• Force the maximum resolution for each property.

• Decrease this resolution as the data is getting older. We are more interested in
the most recent data.

• Simplify the process to get all properties at a given time.

• Treat all properties in a similar way to simplify the code.

• Use the less disk space as possible specially for users without monitoring
functionality.

Some of these points sounds similar to the concepts used in RoundRobin databases
(RRDtool 1). However, using this tool might cause some problems:

• It is designed to store numerical data. In our case, we want to store any kind
of information. In other words, we would need to find a way to store other
formats on a different storage system increasing the complexity.

• Constant database size may be seen as an advantage. However, that would
mean that any installation that contacts the server would cause a disk region to
be reserved. If that installation has been just a test, or the user just wanted to
try the application or it is upgraded to a newer version, we are losing a space
which will never be used.

• Unsupported by Active Record2. This means we will have limitations to
filter installations over time based on RRDtool databases generated for each
property. The main problem is that it will be required to write additional code
to allow the interaction between Active Record models and RRDtool.

1 http://www.mrtg.org/rrdtool/
2 Ruby on Rails database connector, check section 2.1.2.2.

3.2 Properties Storage with History 19

• Difficult migration to a different database: SQL is fully supported in most
of the databases and it would be really easy to perform a migration to a new
engine like PostgreSQL if our database is SQL compatible.

• Advanced scalability configurations are limited. For example, it would not be
possible to use MySQL’s master-slave configuration.

Because of these drawbacks, we finally decided to integrate the improvements in
our MySQL models. We will apply some of RRDtool concepts though.

Time Slots

In order to store the time information we will use a structure based on slots. Every
time a value is stored it will represent the value for a period of time or time slot.
Those slots will have a specific minimum size configured in the property type. For
example, if we have a property with resolution of one day and we have received
the value "linux" at "12:32:12 12/02/2011", then the stored value between
"00:00:00 12/02/2011" and "00:00:00 13/02/2011" for that property will be
"linux".

With that slot structure we are forcing a specific minimum resolution and we
avoid storing more entries than we really need for each specific property. Using slots
adapts the storage to the data that will be shown to the user.

If more than one value is received in the same slot, aggregation methods are
applied. In other words, the stored value will become the average, maximum, mini-
mum, sum, first received, last received value in those cases. This aggregation will be
configured as a property type parameter too. To perform the average aggregations
we will need to store a counter of the number of values that has been received in a
specific slot.

Whenwe are talking about resolutionswe are talking about a pair <number>-<time period>.
For example, a possible resolution can be 1-day, that will mean that minimum slot
size will be 1 day long. We restrict the allowed resolutions to a subset of combi-
nations to simplify the conversions between them: 5 min, 10 min, 15 min, 30 min,
1 hour, 3 hours, 6 hours, 12 hours, 1 day, 1 month, 1 year. We will need the fol-
lowing fields to be added to property types: resolution, resolution_units and,
aggregation_method.

A small diagram of how the slots are generated can be seen at 3.2, where V

represents the value and C the counter of the slot.

Figure 3.2 Property Time Slots Generation.

3.2 Properties Storage with History 20

Aswewill see later, those slots will not have a constant size. That’s why we should
store somehow when it starts and how long it is, or the start and end timestamps. In
our case, we have taken the second option storing two new fields for each installation
property: ’start_at’ and ’end_at’.

It will be also necessary to include a boolean, called latest, that will be used
to index the latest properties received. This will help to speed up all the algorithms
using the latest installation properties.

Since we don’t need to access event properties once they get processed, we will
replace event properties resource with a serialized field in events table. We keep this
properties in the events as they come from the client because it opens the possibility
of processing the events asynchronously.

Empty Slots

Imagine that we want to get the properties at a specific time. What happens if for an
installation there’s no slot at the time? We would need to look for the latest received
value before that specific time, making the queries more complex.

In order to avoid that, we will add slots without received data that we will call
empty slots. In those slots the value will take the latest value received before it has
its own. The way to distinguish that those values are not real but extended from the
previous one is that the counter takes the value 0 (no values have been merged to that
slot).

An empty slot will be added after the latest slot generated with end_at value set
to nil. That way we can consider that slot as an empty one without end. This avoids
having to generate that empty slot if there’s no data coming from the installation,
otherwise we would need to check that a slot time has passed and no data has been
received for each installation and property what would be a time consuming operation

In the figure 3.3 a small example of how are they added can be seen. V represents
the value and C the counter of the slot.

Figure 3.3 Property Empty Slots Generation.

Losing Resolution

The most interesting data for the user is the most recent. If we want to have a high
resolution we will need a huge amount of data to be stored and the user will not need
so much detail about the past. The best way to deal with that kind of scenario is to
modify the resolution over time.

3.2 Properties Storage with History 21

We define different regions that are common through all property values. Those
regions will be taken into account how old a slot is. In other words, we we will say
that a property value (or slot) is inside a particular region if its end_at time is older
than the start time of the region.

The maximum possible resolution is defined for each of those regions. The
aggregation method configured in the related property type will be used to increase
the size of the slot by merging it with adjacent ones.

In our case, we have configured it as a Hash which keys are the number of days
that should pass to get into that region and the values are the maximum resolutions
on them:

REGIONS = {2 => [1, :hour], 30 => [1, :day]}

If we configure a final region without resolution. The slots will be growing until
that point, storing only one value in that final region.

To control how the regions are processed, we will mark the different slots with
an integer that will represent the current region. That number will take the value of
the days ago where the region is started.

A small example about the behavior can be seen in the figure 3.4. The numbers
inside the slots represents (value,counter).

Figure 3.4 Losing Resolution in Properties.

Database Migration

The migration including the described changes can be seen below:

class AddHistoryToInstallationProperties < ActiveRecord ::Migration
def self .up
Modify the fields on the tables
add_column :property_types , : resolution , : string
add_column :property_types , : resolution_units , : integer
add_column :property_types , :aggregation_method, : integer

3.2 Properties Storage with History 22

add_column : installation_properties , : latest , :boolean,
: default => false

add_column : installation_properties , : start_at , : datetime
add_column : installation_properties , :end_at , : datetime
add_column : installation_properties , : counter , : integer ,
: null => false , : default => 0

add_column : installation_properties , : resolution_region , : integer ,
: null => false , : default => 0

add_index : installation_properties , [: latest],
:name => " index_properties_latest "

add_index : installation_properties , [: resolution_region],
:name => " index_properties_region "

add_index : installation_properties , [: start_at ,: end_at],
:name => " index_properties_slots "

add_index : installation_properties , [: property_type_id],
:name => " index_properties_type "

Reload schema information
InstallationProperty . reset_column_information

PropertyType. reset_column_information

Serialize all event properties into properties field
puts "−− Serializing event properties ... "
offset = 0
while(evts = Event. find (: all , : include => : event_properties ,

: limit => 1000, : offset =>offset))
evts .each do | e |

properties = {}
e. event_properties .each do | ep |

properties ["ep. property_type .key"] =
ep.send(ep. property_type . value_type)

end
e. properties = properties
e . save

end
offset += 1000

end
puts " −> Done"

Generate historical values in installation properties
puts "−−Modifying properties to use time slots ... "
InstallationProperty . destroy_all

PropertyType. update_all ([
" resolution_units = 1, resolution = ’day ’, aggregation_method = ?" ,
PropertyType :: AVERAGE_VALUE
])

Installation . process_events : no_time_limit=>true
puts " −> Done"

end

def self .down
remove_index : installation_properties , :name => " index_properties_latest "
remove_index : installation_properties , :name => " index_properties_slots "
remove_index : installation_properties , :name => " index_properties_type "
remove_index : installation_properties , :name => " index_properties_region "

remove_column :property_types , : resolution
remove_column :property_types , : resolution_units
remove_column :property_types , :aggregation_method

remove_column : installation_properties , : latest
remove_column : installation_properties , : start_at
remove_column : installation_properties , :end_at
remove_column : installation_properties , : counter
remove_column : installation_properties , : resolution_region

3.2 Properties Storage with History 23

InstallationProperty . reset_column_information
PropertyType. reset_column_information

end
end

Processing Algorithms

We need to also implement the algorithms to make the properties behave as described
above. As we have mentioned before, the properties are processed by a worker in an
asynchronous way. It will take the task to process the properties that are serialized,
get the event and call its method process_properties.

First, the country and hostwill be added to the list of properties if the installation
IP has changed. Host will be setup with the IP as value, being processed in a separate
cron task in order to save time while processing the properties. The result of that
method is that the serialized properties in the event are inserted in the installation
properties structure, following the rules that have been described above.

For each of those properties the process is:

• Get the boundaries of the slot where we are going to insert the data, based on
the property type resolution configuration.

• Get the latest slot for that property.

• If there isn’t a latest slot, we generate a new slot with the value received and a
blank slot that will start after it and has no end time.

• Else if the creation time of the event is inside that last slot, the value is merged,
the counter increased and the final empty slot updated.

• Else if creation time is newer, create a new latest slot, add an empty slot between
the latest and the new one if necessary, and updated the final empty slot.

• Else, (This case should not be reached if properties are processed chronologi-
cally):

– Look for the slot in the creation time
– If it exists merge the value and update the blank slot after it if any
– Else generate the slot and add or modify the adjacent empty slots

That insertion process is able to generate new slots based on the incoming
events. However, we have not yet implemented anything about losing resolution.
That second processing will be done by as a daily cron task, executing the method
InstallationProperty.process_regions.

For each region we get those properties that are outside their region, taking them
in groups of a constant number of properties to avoid high resource requirements.

3.3 Improved Properties Storage 24

We will go through all of them which has passed from one region to the next one,
checking if they are long enough for the new region (It’s possible that a constant
value has caused a longer slot), if not it will be merged with those properties that are
inside the new slot limits. All the changes are performed in memory and then written
to database together as a transaction for each group of properties taken from memory.

Improved Properties Storage

Once the basic behavior is in place, we are going to improve some aspects related to
the disk usage and the API response times.

Installation Tiers

We include the concept of installation tiers in Network Service. They will allow us
to distinguish between different functionality levels. Each installation tier has its
own list of metrics to be sent. These levels should be configured on client machine,
maybe modified based on the product license.

For example, the bigger installation tier will allow sending memory, cpu load and
disk usage. The ISV may decide to only monitor them for specific clients that have
purchased an extended license.

We decide to use three functionality levels:

Basic Default tier. Installations don’t send any monitoring information, only the
default properties. They only have access to the news method in the API,
getting only short notifications. Small contact rate.

Professional They have some additional services, being able to get the full list of notifications
and updates. They will send any additional application properties along with
the default ones. They contact more often with the server.

Monitoring Includes monitoring metrics. They will do a bigger number of requests to the
API in order to update the monitoring information.

Most of users will belong to Basic or Professional tier, but they have the lower
priority from the ISV’s perspective. For that reason, we should concentrate on
minimize the impact of them in the system by providing a storage engine that would
reduce the costs derived from them.

Merge Property Slots

As we have said previously, we should find ways to minimize the disk space used by
those installations without monitoring information (’Basic’ installations).

3.3 Improved Properties Storage 25

If we take a look at the metrics that we are storing in the database, we can see
that most of them remain in specific values for long periods of time. In this context,
having multiple slots of time to store the same value is not efficient. For that reason
we are going to alter our storage algorithm to only store the changes as new slots.

The idea is to merge the slots that are together and share the same value. That
way, instead of having a lot of adjacent slots storing the same value, we will have one
slot that will be growing until there’s a change in the received value.

An example of how the slots will be merged can be seen in the figure 3.5, V
represents the value and C the counter of the slot.

Figure 3.5 Property Slots Merging.

This will also reduce the required processing about regions, since they may be
big enough already to pass the test of the maximum resolution when the region limit
is reached. This avoids further unnecessary processing.

The algorithm described in 3.2.5 is modified as follows:

• Get the boundaries of the slot where we are going to insert the data, base on
the property type resolution configuration.

• Get the latest slot for that property

• If there isn’t a latest slot, we generate a new slot with the value received and a
blank slot that will start after it and has no end time.

• Else if the creation time of the event is inside that last slot, the value is merged,
the counter increased and the final empty slot updated

• Else if creation time is newer:

– If the latest slot has the same value as previous one, merge them
– Create a new latest slot.
– Add an empty slot between the latest and the new one if necessary.
– Update the final empty slot.

• Else, (This case should not be reached if properties are processed chronologi-
cally):

– Look for the slot in the creation time
– If it exists merge the value and update the blank slot after it if any

3.3 Improved Properties Storage 26

– Else generate the slot and add or modify the adjacent empty slots

Regions processing should be also changed: after the new slot is generated it will
be checked if it can be merged with the previous one (if they have the same value).

API Improvements

Add Notifications and Monitoring Methods

One of the first things we can take into account to reduce the number of requests to the
API is that Professional and Monitoring installations will ask for both messages and
updates one after the other. That’s why it’s interesting to modify the API specification
to add a commonmethod that will return both. The method will be called notifications
and the response will take the syntax:

<?xml version="1.0" encoding="UTF−8"?>
< notifications >
<message>
<guid>7</guid>
< title >Version 11.0 coming soon</ title >
< description >It will be available in a few days</ description >
< critical > false</ critical >
<created_at>Wed Jun 04 15:29:20 +0200 2011</created_at>
<updated_at>Wed Aug 27 19:35:19 +0200 2011</updated_at>
< start_date >2011−06−04</start_date>
< finish_date >2011−06−12</finish_date>
<webpage_url>http: // acme.bitrock .com/news</webpage_url>
<webpage_url_description>more info</ webpage_url_description>

</message>
<message>...</message>
...
<update>
<update_url>

http: // www.acme.bitrock.com/acme_product_10.5.bin
</ update_url>
<guid>8</guid>
< title >Acme Product 10.5 Released</ title >
< description >New version is available </ description >
< critical > false</ critical >
<created_at>Thu Jul 31 23:10:25 +0200 2011</created_at>
<updated_at>Wed Aug 27 19:45:16 +0200 2011</updated_at>
< start_date >2011−05−14</start_date>
< finish_date >2011−09−26</finish_date>
<webpage_url>http: // www.acme.bitrock.com</webpage_url>
<webpage_url_description />
<update_type>bin</update_type>
<update_os>linux</update_os>
<update_size>100</update_size>
<update_md5>9ba9801841f5fa941420f0af90e20634</update_md5>
<update_cmd_switch/>
< update_instruction >
Download the file and execute it as root

</ update_instruction >
</update>
<update> ... </update>
...

</ notifications >

The only change needed on client side is to modify the agent to send only one
request directed to notifications with the same parameters that were used before.

3.3 Improved Properties Storage 27

Figure 3.6 Agent behavior with installation tiers and monitoring API.

On the other hand, it is not really necessary to look for the notifications at the same
ratings as the monitoring properties should be gathered. For that reason, we include a
new method called monitoring that only gets the property values and returns the "200
OK" HTTP response. That reduces the load on the server side since notification filters
are not taken into account decreasing the number of database operations required.

The figure 3.6 shows a simple schema about the installation agent behavior based
on the installation tier and including the new API methods.

Avoid Sending Duplicated Notifications

We can also reduce the traffic in the API easily by not sending the notifications that
the user already has. To do that, we should send through the API the list of identifiers
of those messages and updates that are stored in the client machine. That way, we
will be able to send only those that are new to the user.

For simplicity, wewill send the list as another installation property, stored_notification_ids,
in the list of parameters:

3.3 Improved Properties Storage 28

GET https :// server_name/api /messages? installation_guid =<guid_value>&
product_guid=<guid2>&properties[key1]=value1&properties[key2]=value2&
properties [stored_notification_ids][]=1&
properties [stored_notification_ids][]=2...

Obviously, it will not be required to store the received value on the server side.
By just not defining an associated property type, we make the application ignore
them. We will check that variable before sending any notification to the end-user,
removing those that should not be resent.

Add Background Processing

In order to answer the client in the shorter time possible, we should modify the Agent
controller methods to not work on anything that is not indispensable to generate the
response. In other words, we should do any processing unrelated to the response
(like updating the property history) asynchronously.

Each time a request is received we will create an event resource with all the
information received. The identifier will be then appended to the list of events to be
processed. Finally, a separate process will take it from the list and do any pending
processing.

We will use Beanstalkd3 as the queuing system. It is a fast, distributed, in-
memory workqueue service developed by Philotic, Inc to improve the response times
in Facebook. Its interface is generic, but was originally designed for use in reducing
the latency of page views in high-volume web applications by running most time-
consuming tasks asynchronously. It’s integration with Ruby can be done easily using
beanstalk-client gem4.

It works as a daemon. Once it is started, it will be listening in a specific port
waiting for requests for putting and getting jobs from different queues.

A simple example about how a message would be inserted in the queue through
the previously mentioned gem looks like:

beanstalk = Beanstalk :: Pool .new([’ 10.0.1.5:11300 ’])
...
beanstalk . put(’ hello ’)

Meanwhile, the consumer process will look like:

beanstalk = Beanstalk :: Pool .new([’ 10.0.1.5:11300 ’])
loop do
job = beanstalk . reserve
puts job .body # prints " hello "
job . delete

end

3 Learn more about Beanstalkd in http:// kr.github.io/ beanstalkd/
4 Learn more about the beanstalk-client gem in https:// github.com/ kr/ beanstalk-client-ruby

http://kr.github.io/beanstalkd/
https://github.com/kr/beanstalk-client-ruby

3.3 Improved Properties Storage 29

We’ll initialize the beanstalk connection in a variable called "Q". We include
an initializer script to the rails application so the connection is configured when the
processes are started:

require " beanstalk−client"
Q = Beanstalk :: Pool .new([’ localhost :11300’])

We will add a background job to process the incoming property values and update
the historical data. Each time an API event gets created (that is each time that the
installation contacts the API and sends new propertie values), we will enqueue a new
element in the queue with the name of the operation "enqueue_process_properties"
and the id of the event. We don’t store the properties to be processed in the job itself
to keep the queue size small.

class Event < ActiveRecord ::Base
...
def after_create
Q.yput({:group => " events_process_properties " , : id => self . id }, 65000, 1)

end
...

end

The worker process will consist in an infinite loop that will keep waiting for jobs.
When a new job is fetched, it will check the "group" stored in the job body and based
on its value will execute the required code. If the job fails to be processed, we will
"bury" the job. This moves it to a special queue that will allow us to retry the job
once we analize the problem. Otherwise the job will be deleted from the queue.

class KermitWorker
class << self
def do
logger . info ! "Worker started "
loop do
job = nil
logger . info ! "Waiting for a job ... "
job = Q.reserve
logger . info ! "New job taken . "
job_hash = job .ybody

case job_hash [: group]
when ’ events_process_properties ’
e = Event. find job_hash [: id]
logger . info ! "#{job_hash[:group]} Event ##{e. id} STARTED!"
begin
e. process_properties !
job . delete
logger . info ! "#{job_hash[:group]} Event ##{e. id} FINISHED!"

rescue Exception => ex
job .bury # Move the job to buried state
logger . info ! "#{job_hash[:group]} Event ##{e. id} FAILED! (#{ex.to_s})"

end

Other background tasks
end

end
end

end

3.3 Improved Properties Storage 30

end

To start the background process it will only be needed to start a Rails runner that
calls the method KermitWorker.do.

$ ruby script / runner −e production "KermitWorker.do"

In order to add future background tasks, we will only need to enqueue new jobs
with a different "group" parameter and include the code to process the job in the
"case" block.

As this new process behaves as a daemon, it will need to include some signals
to stop and restart it without affecting any jobs that may be half processed. We can
add simple handlers for TERM and HUP signals as it is shown below. Basically, it’ll
just store the signal that has been received and when a new loop starts (and the last
taken jobs is fully processed) it will clean up the connections and exit the loop. If the
signal was a HUP, we’ll create a new process based on the current one.

class KermitWorker
class << self
def do
@@pid = Process.pid
logger . info ! "Worker started (pid : #{@@pid})..."

job = nil
signal_received = false
Signal . trap ("TERM") do # Stop worker gracefully

signal_received = :term
logger . info ! "TERM signal received"

end
Signal . trap ("HUP") do # Restart worker gracefully

signal_received = :hup
logger . info ! "HUP signal received "

end

loop do
if signal_received
Q.close
break

end
...

end

logger . info ! "Worker stopped"
if signal_received == :hup
Start a new worker with same parameters as current one
p1 = fork do
sleep 2
config = :: Config :: CONFIG
ruby = File :: join (config [’ bindir ’], config [’ ruby_install_name ’]) + config [’EXEEXT’]
exec("#{ruby} #{$0} #{MYARGV.join ’ ’}")

end
Process . detach(p1)

end

exit (0)
end

end
end

3.3 Improved Properties Storage 31

There is another problem that we should take into account: there is a delay
between the resource creation (the Event) and the storage in the database. This can
lead to problems if the background process tries to find the event before it is fully
stored. As a protection against it, we’ll send the job back to the queue with a small
delay if we don’t find the record:

class KermitWorker
NOT_FOUND_DELAY = 5
class << self
def do
loop do

...
when ’ events_process_properties ’
e = Event. find job_hash [: id] rescue (record_not_found(job , job_hash, "Event #{job_hash[: id]}

NOT FOUND!") ; redo)
...

end
end
...

end

private
def record_not_found job , job_hash, log_message="NOT FOUND!", removed_message=" REMOVED!",

options={}
delay = (options [: delay] || NOT_FOUND_DELAY).to_i
if (job_hash [: id]. to_i > 0 rescue false)
logger . info ! "#{job_hash[:group]} #{log_message}"
job . release (job . pri , delay)

else
logger . info ! "#job_hash[:group]}] #{log_message} #{removed_message}"
job . delete

end
end

end
end

With these changes, the API controller will only need to create the event with the
serialized properties in the database. The job will be generated and processed in the
background by a separate process. This will reduce the load in the API controller
and the response time.

Switch the API and Workers to Merb

The version of Rails that is used in our application doesn’t provide a modular initial-
ization, making it difficult to only load specific parts to save memory in background
processes or those controllers that doesn’t require all the code. We also use different
plugins that are not really needed outside the controllers and views that build the
Network Service webpage (like authentication and javascript related libraries).

For that reason, we decided to switch both the agent controller and the workers
to a smaller framework called "Merb", since they are the most critical parts in the
whole Network Service application and they don’t require any of those features.

Merb is a MVC Ruby framework much faster and smaller than Ruby on Rails, be-
ing ORM-agnostic, JavaScript library agnostic, and template language agnostic. The
main advantages in this case are its modularity and its smaller resource consumption

3.3 Improved Properties Storage 32

though. (Additional details about the Merb project and its benefits can be seen in
http://www.merbivore.com/ , [8], [7]).

We will include Merb structure in vendor/merb folder. Its structure is similar
to Rails and it has support for ActiveRecord so we can reuse all models already
implemented for Rails. To make the agent work with Merb we will link all models to
the new structure and apply some simple changes to the Agent controller.

To make it easier a rake task has been implemented to generate Merb compatible
files from the ones written for Rails which can be reused in other projects:

rake merb: update_files_from_rails_project

The code of the task is below. It just needs to do some simple substitutions in the
Rails code.

def escape str
str .gsub (/([<:∗, " ’\\\[\]\/]) /, ’\\\\\1’)

end

def substitute_in_files files = { }, options = { }
files .each do | file , patterns |
patterns_string = ""
patterns .each do |k,v |
unless options [: pattern_space]. nil ?

patterns_string << " −e ’/#{k} _start /,/#{ k}_end/ #{v == "" ? "d" : escape("c #{v}")}’ "
else

patterns_string << " −e ’s/#{escape k}\/#{escape v}/g’ "
end

end

Dir .glob(file) .each do | f |
system "sed #{ patterns_string } −− #{f} > /tmp/temp_subst; cp −f /tmp/temp_subst #{f};"

end
end

end

namespace :merb do
desc "Update Merb Controller & View files − take it from RoR dir and substitute "
task : update_files_from_rails_project do
#agent controller
system "cp −f #{RAILS_ROOT}/app/controllers/agent_controller . rb" +
" #{RAILS_ROOT}/vendor/merb/app/controllers/agent.rb"

substitute_in_files "#{RAILS_ROOT}/vendor/merb/app/controllers/agent.rb" =>
{ "ENV[\"RAILS_ENV\"]" => "Merb.environment",
"AgentController " => "Agent",
" ApplicationController " => "Application " ,
" before_filter " => "before" ,
" after_filter " => " after " ,
"render : nothing => true" => "render \"\", : layout => false " ,
" : except =>" => ": exclude =>"

}
substitute_in_files ({ "#{RAILS_ROOT}/vendor/merb/app/controllers/agent.rb" =>
{ "remove_for_merb" => ""} }, : pattern_space => true)

#agent views
system "rm −rf #{RAILS_ROOT}/vendor/merb/app/views/agent"
system "cp −rf #{RAILS_ROOT}/app/views/agent #{RAILS_ROOT}/vendor/merb/app/views/"
substitute_in_files "#{RAILS_ROOT}/vendor/merb/app/views/agent/∗" => {
"render (" => "" , " : partial => \"" => " partial (: " ,
" \", : object " => " , :with" , " \", : collection " => ", :with"}

end

http://www.merbivore.com/

3.4 Performance Tuning 33

end

Performance Tuning

By monitoring the behavior of the system running on production, we also found some
ways to improve the performance which are described in this section.

Properties stored in separate tables

One of the first things we noticed was that the performance was worse when multiple
properties were involved in the reports and filtering operations. The main reason is
that we are storing all the property values inside a single table, requiring multiple
joins of the same big table in the MySQL queries when more than one property is
used.

For that reason, we modified the system to store each property type on a different
table. This will provide us with:

• smaller indexes.

• increased speed on property insertions.

• properties with a big number of entries don’t affect queries which they are not
involved in.

• multiple columns for different formats (’boolean_value’, ’integer_value’...)
become unnecessary.

• multiple joins of a single big table are not needed.

As a drawback, we will need to generate ActiveRecord models dynamically since
the tables will be generated for each PropertyType element and they are not static.
They can be modified, created and destroyed at runtime. This is not a big issue thanks
to Ruby flexibility. Using the methods below, we are able to define the new clases
and include them as part of the environment at runtime.

Class :: new(parent class){}
Object :: cons_set (name, value)

For simplicity, we’ll add amethod InstallationProperty[<key>] that returns
the model assigned to the specific property type key:

def [] property
property_key =
case property
when PropertyType

3.4 Performance Tuning 34

property .new_record? ? raise ("PropertyType should be stored before") :
property .key

when Integer
PropertyType. find (property , : select => "‘key‘") .key

else
PropertyType. valid_key ?(property) ? property . to_s :

raise (" Invalid Property Key")
end rescue raise (" Invalid PropertyType Id")

get_or_create_dynamic_model property_key
end

def get_or_create_dynamic_model property_key
cname = " InstallationProperty_ #{property_key}" . camelize
version = 0
begin
model = Object :: const_get (cname)

rescue
tname = " installation_properties_ #{property_key}" .downcase
model = Object :: const_set cname,
Class :: new(InstallationProperty){ set_table_name(tname) }

model. class_eval %Q{
def self .key() "#{property_key}" end
cef self . property_type_version () #{version} end

}
end
unless Installation . associated_properties . include ?("#{property_key}")

Installation .has_many " installation_properties_ #{property_key}" . to_sym,
:class_name => cname, :dependent => : destroy

Installation .has_many " latest_installation_properties_ #{property_key}" . to_sym,
:class_name => cname, : conditions => {: latest => true}

Installation . associated_properties =
(Installation . associated_properties + [property_key . to_s .downcase]). sort

end
model

end

Model associations with Installation class are generated together with the new
class and to speed up the process and avoid multiple association definitions we keep
the list of keyswhich has been already initialized inside the associated_properties
variable.

As we have said, property types will have an associated table that will be generated
when the property is created according to the property type setup. On the other hand,
each time the property is modified, the table should be updated accordingly if it is
necessary. We will need to perform schema modifications on the fly. In order to do it
we will use ActiveRecord::Schema.define {} which allows us to use migration
methods. We will need to:

• Create new table installation_properties_<key> when a new property
type is defined.

• Modify column type if it is changed in value_type field.

In both cases InstallationProperty<key>model should be generated or updated.
To achieve it the following code will be called after PropertyType is saved.

def update_or_create_property_table
type = self . value_type . to_sym

3.4 Performance Tuning 35

tname = self . associated_property_table_name
default_stdout = $stdout
$stdout = dev_null_class
res = true
begin
ActiveRecord :: Schema.define do

if table_exists ?(tname)
change_column tname, :value , type if self .changes["value_type"]

else
create_table tname, : force => true do | t |
t . integer : installation_id , : null => false
t .boolean : latest , : null => false , : default => false
t . datetime : start_at , : null => false
t . datetime :end_at , : null => false
t . datetime :extended_end_at
t . integer : resource_index , : default => 0, : null => false
case type
when :boolean then t .boolean : value , : default => false , : null => false
when : integer then t . integer : value
when : float then t . float : value
when : string then t . string : value
when : text then t . text : value
when :datetime then t . datetime : value
when :binary then t . binary : value

end
t . integer : counter , : default => 1, : null => false
t . integer : resolution_region , : default => 0, : null => false

end
add_index tname, [: installation_id , : start_at , :end_at], :name => " historical_property_index "
add_index tname, [: latest , : installation_id], :name => " latest_property_index "

end
end
InstallationProperty [self .key] # Generates specific model and installation relations

rescue Exception => err
res = nil

end
$stdout = default_stdout
res

end

One important thing that we should take into account is that these models will be
loaded as separate objects in each of the mongrels and workers. For that reason, the
modification in one of the property types must generate a global update in all of them.
To be able to do that, we use Memcache which is shared between them. Each time the
new installation property model is defined using InstallationProperty[<key>]
a version value is set up according to the value stored in Memcache. This balue is
checked each time the class is loaded and a reload is done if necessary.

That version value will be increased each time any of the fields that affects the
model definition is changed in the associated property type. In order to avoid collisions
updating the version, we use Memcache "INCR" method which is atomic. In other
words, if multiple mongrels perform a modification to a property type simultaneously,
version will be increased once per change. Taking this into account, we add the code
below to the PropertyType after_save callback

if (self .changes["key"] || self .changes["values_type"] rescue true)
M.incr(" InstallationProperty_ #{ self .key}".camelize + " :: property_type_version ")

end

3.4 Performance Tuning 36

As we have mentioned, each time the installation property model is used we
will check if the version at definition time is the same which is stored in Memcache
removing old definitions and defined relations with Installation model. To achieve
this, we include the following lines in InstallationProperty model:

def get_or_create_dynamic_model property_key
cname = " InstallationProperty_ #{property_key}" . camelize

+ version = (M.get("#{cname}:: property_type_version ") || 0 rescue 0)
begin
model = Object :: const_get (cname)

+ unless model. property_type_version == version
+ remove_dynamic_model
+ model = get_or_create_dynamic_model property_key
+ end

rescue
...

end

+ def remove_dynamic_model property_key
+ cname = " InstallationProperty_ #{property_key}" . camelize
+ Object :: instance_eval { remove_const cname } rescue nil
+ if Installation . associated_properties . include ?(property_key . to_s .downcase)
+ Installation . associated_properties . delete (property_key . to_s .downcase)
+ if e = Dependencies.loaded . find { | e | e =~ /models\/ installation$ /}
+ Dependencies.loaded . delete e
+ Dependencies.remove_constant " Installation "
+ load "app/models/ installation . rb"
+ initialize_dynamic_models
+ end
+ end
+ end

Remove Empty Slots

Another problem is that each time an operation is performed we have to check if
there is an empty slot after it. This increases the number of queries and the time
spent during the events processing.

The empty slots are basically telling us for how log the installation has not sent
a new property value. We may remove this intermediate slots if we store the same
information in the previous slot. In other words, if we store how long is the empty
space, blank slots become unnecessary.

In order to do so, we add an additional time to the installation property tables
extended_end_at which will take the same values as end_at in the equivalent
blank slot: the next slot start_at or null if there are none. This new timestamp
column will extend until new data is received from the installation. If there are no
holes in the data, it will just keep the same value as the slot end time.

The figure 3.7 shows a small example of how is the storage structure modified. V
represents the value, C the counter, E the end time and EE the extended end time of
each slot.

3.4 Performance Tuning 37

Figure 3.7 Property Empty Slots with extended end at.

Indexes Configuration

Our initial MySQL indexes configuration was mostly based on single columns. This
is not the best approach since most of the queries performed over the installation
property tables are using multiple columns in restrictions and ordering. Although
MySQL can take multiple indexes into account in a single query, we should study
the case of adding indexes based on multiple columns.

Taking a look at the different queries we do, we can identify two main types of
query

• Latest Properties: installation_id, latest

• Properties History: installation_id, start_at and,
end_at or extended_end_at

Column property_type_id was also used in both queries but it was removed with
the modification described in section 3.4.1 which will help to simplify the index.

We use a B-Tree format. It is configured as an ordered list of columns, being
used always starting from left to right. In other words, the index will be taken into
account in those cases where the first columns are used and optimized following
that order. The best approach will be the one with higher cardinality columns first
(since a higher number of rows will be discarded sooner). All fields used in the index
should be together, that is if we have and index with rules in keys col1,col2,col3
and a query uses col1,col3 only col1 will use the index. Another limitation to take
into account, is that if any of the columns is used in a range restriction (for example
col1<=1), the following columns in the index will not be used. In our case we usually
use ranges with time columns so they should be the last ones in the index.

Following that rule we will generate the following indexes for each installation
property table:

add_index tname, [: installation_id , : start_at , :end_at], :name => " historical_property_index "
add_index tname, [: latest , : installation_id], :name => " latest_property_index "

The old indexes in latest and installation_id are no longer needed since MySQL
will use its first column in a similar way if there’s only one of those in the query to
be optimized.

3.5 Storage Size Estimation 38

These configuration changes has been performed following the hints described in
[2].

Storage Size Estimation

In this section, we will try to give a simple mechanism to estimate the property storage
size that an specific configuration can cause. This will allow us to setup production
system accordingly for each specific client.

We can divide the analysis in two parts, first we will need to be able to calculate
the maximum number of rows for a given number of installations and property types,
then we will need to calculate the size of each row to get the total size.

To get the number of rows, we will consider that the property is changing its value
constantly (to get the worst case scenario). In this case, the slots are only merged
when properties came into a different region. We also consider that installations have
been active during all the time the properties are kept in the server (without ’holes’
in the data) and that they are sending all possible properties available in their tier.

We define the following parameters:

• Suffixes for tiers: monitoring M, professional P, basic B.

• Suffixes for property type: boolean: b, integer:i, float: f , string:s, text:t, datetime:d,
binary:r.

• Ix: Number of installations with tier x.

• Lx: Time in days where next region starts, last value represents the time where
property values history is discarded and L0 = 0.

• NR: Number of regions + 1

• Rx: Resolution in minutes applied to that region.

• PRx: Resolution of property x

• N: Number of properties

• Pxy: 1 if installations in tier y has property x, else 0

3.5 Storage Size Estimation 39

Table 3.1 Rails to MySQL type and storage size.

RoR Type Mysql Type Storage Size (bytes)
boolean TINYINT(1) 1
integer INT 4
float FLOAT 4
string VARCHAR(255) C · (L+1) L < 255
text TEXT L+2 L < 216

binary BLOB L+2 L < 216

datetime DATETIME 8

The maximum number of rows that can be stored for a property x can be obtained
as follows:

ROWSx = ∑
i=B,P,M

Ii ·Pxi ·
[

NR

∑
j=1

(L j−L j−1) ·24 ·60
MAX(R j,PRx)

]
(3.1)

Calling Sx to the maximum size of a property with type x and Ti to the type of
the property i, we can get the maximum size as:

SIZE =
N

∑
i=1

STx ·ROWSx (3.2)

Where we will need to investigate the values of Sx for each type (boolean, integer
...). In order to do that, we will need to use the information contained in MySQL

documentation about storage requirements, which would depend on the storage
engine used (InnoDB with compact row format in our case), the mappings performed
by ActiveRecord to store them, as well as the maximum value size that is allowed
to be stored in string, text and binary fields and text encoding. A list with that
information can be seen on table 3.1, where C represents the number of bytes used
for each character and L the string/text length. In our case, we are using utf-8 and
characters may require up to 3 bytes.

Using the table we can identify the types at MySQL level:

• 1 TINYINT(1) (latest), without null value

• 4 INT (installation_id, resource_index, counter, resolution_region),
all of them without null value.

• 3 DATETIME (start_at, end_at, extended_end_at), 2 of them without
null

• One column which changes according to property type between all types
described in table 3.1.

3.5 Storage Size Estimation 40

In our case, we are using InnoDB with COMPACT row format5:

• Each index record contains a five-byte header that may be preceded by a
variable-length header. The header is used to link together consecutive records,
and also in row-level locking.

• The variable-length part of the record header contains a bit vector for indicating
NULL columns. If the number of columns in the index that can be NULL is N,
the bit vector occupies (N+7)/8 bytes. Columns that are NULL do not occupy
space other than the bit in this vector. The variable-length part of the header
also contains the lengths of variable-length columns. Each length takes one or
two bytes, depending on the maximum length of the column. If all columns in
the index are NOT NULL and have a fixed length, the record header has no
variable-length part.

• For each non-NULL variable-length field, the record header contains the length
of the column in one or two bytes. Two bytes will only be needed if part of the
column is stored externally in overflow pages or the maximum length exceeds
255 bytes and the actual length exceeds 127 bytes. For an externally stored
column, the two-byte length indicates the length of the internally stored part
plus the 20-byte pointer to the externally stored part. The internal part is 768
bytes, so the length is 768+20. The 20-byte pointer stores the true length of
the column.

• The record header is followed by the data contents of the non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In
addition, there is a six-byte transaction ID field and a seven-byte roll pointer
field.

• If no primary key was defined for a table, each clustered index record also
contains a six-byte row ID field.

• Each secondary index record also contains all the primary key fields defined for
the clustered index key that are not in the secondary index. If any of these pri-
mary key fields are variable length, the record header for each secondary index
will have a variable-length part to record their lengths, even if the secondary
index is defined on fixed-length columns.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as
CHAR(10) in a fixed-length format. Before MySQL 5.0.3, InnoDB truncates
trailing spaces from VARCHAR columns.

5 http:// dev.mysql.com/doc/ refman/ 5.0/ en/ innodb-physical-record.html

http://dev.mysql.com/doc/refman/5.0/en/innodb-physical-record.html

3.5 Storage Size Estimation 41

Taking that into account, the size of a row of type x will be

Sx = 5+((NNF)+7/8)+FP ·NF+ ∑
i
(Fields type i)∗ (Size type i) (3.3)

where NNF is the number of fields that can be null, NF is number of fields and FP
is the field pointer (1 or 2 bytes depending on the row size).

After doing appropriate substitutions, we get the sizes for each type:

Sb = 6+1∗9+(1∗1+4∗4+3∗8+1∗1) = 53+1 = 54 bytes (3.4)

Si = 6+1∗9+(1∗1+4∗4+3∗8+1∗4) = 53+8 = 57 bytes (3.5)

S f = 6+1∗9+(1∗1+4∗4+3∗8+1∗4) = 53+8 = 57 bytes (3.6)

Sd = 6+1∗9+(1∗1+4∗4+3∗8+1∗4) = 53+8 = 57 bytes (3.7)

Ss = 6+2∗9+(1∗1+4∗4+3∗8+(L+1)∗3) = 53+8 = 65+3L bytes (3.8)

St = 6+2∗9+(1∗1+4∗4+3∗8+(L+2)∗3) = 53+8 = 68+3L bytes (3.9)

Sr = 6+2∗9+(1∗1+4∗4+3∗8+L+2) = 53+8 = 64+L bytes (3.10)

Using this values in the equation 3.2 we can get the maximum size possible.
Obviously, this is not the size that the database will have since merging operations
will reduce the number of rows for those properties which keeps certain constant
value. However, it gives us a general idea of what is the biggest we could get in case
all properties are changing constantly.

Filtering Application Users

In this chapter we will add filtering capabilities to the application. This will allow to
define groups of end-users based on the property values received from the installations.
Furthermore, the ISVs will be able to perform operations in these groups once they
are defined and to generate statistics restricted to a subset of installation groups (as
we will see in chapter 5). For instance, the user may want to send a notification to
installations located in a specific country or, get information about the impact that a
campaign is having in the number of installations in that country.

The implementation will be divided in two sections. First, a Rails plugin will
be included to extend ActiveRecord (the default database connector in Rails) with
additional filtering capabilities. By implementing it as a plugin, it will be possible to
reuse it in the future in other projects. Then, we will add the specific installations
filtering functionality in Network Service based on the new plugin.

Rails plugins structure

Rails application functionalities can be extended using pieces of code called plugins.
These extensions can be easily added, upgraded or removed from the application
through a simple script. The script takes care of updating or removing the files inside
APP_PATH/vendor/plugins and executes specific installation or uninstallation actions
contained in them.

To start creating a plugin we can use the default plugin generator:

$ script / generate plugin plugin_name
create vendor/ plugins /plugin_name/lib
create vendor/ plugins /plugin_name/tasks
create vendor/ plugins /plugin_name/ test
create vendor/ plugins /plugin_name/README
create vendor/ plugins /plugin_name/MIT−LICENSE
create vendor/ plugins /plugin_name/Rakefile
create vendor/ plugins /plugin_name/ init . rb
create vendor/ plugins /plugin_name/ install . rb
create vendor/ plugins /plugin_name/ uninstall . rb
create vendor/ plugins /plugin_name/lib /plugin_name.rb

42

4.2 Filter Models Plugin 43

create vendor/ plugins /plugin_name/tasks /plugin_name_tasks. rake
create vendor/ plugins /plugin_name/ test / plugin_name_test . rb

As we can see, it provides the basic structure to start the implementation. Every
time the application is started all the plugins are initilized loading their init file. All
class definitions and libraries that we want to be available in our application should
be loaded from it. More details can be found in the table 4.1.

Table 4.1 Rails Plugin Files.

init.rb Executed every time the Rails application is started.
install.rb It’s run once when the plugin is first installed.
uninstall.rb It’s run once when it is uninstalled
lib/ Contains the code of the plugin. Libraries and clases in this folder will

be accessible from the rails application. For some specific changes
init.rb file can be needed.

tasks/ It contains .rake files that will be added to rake tasks.
test/ Specific tests for the plugin code.
generators/ You can use it to add new code generators to the application.
rdoc/ Contains the documentation.

Filter Models Plugin

In general, any application will need to get information stored in the database based
on some rules. ActiveRecord provides tools to interact with the database and is
the default interface used by Rails applications. ActiveRecord defines a class for
every table in the database called model, which includes the methods for finding,
updating and destroying rows as well as to describe the associations between the
tables.

For example, we can look for some entries following some rules:

Person. find (: all , : conditions =>
["age < ? and genre IN(?) and times_seen BETWEEN(?)", 30,["male"],[3,5]])

or we can search them taking into account other related models:

Person. find (: all , : include => [: job], : conditions => ["jobs .name LIKE ?","a%"])

When we are implementing a web application, we will usually show the user
different search fields inside a form and, after the user has sent the information, we will
need to generate similar restrictions as the ones shown above. This is not a problem
if there are only some fields with simple rules like "field1 equals something",
"field2 contains something", "has child element with field equals something"...
and the relations between models doesn’t change.

4.2 Filter Models Plugin 44

However, if we want to add the ability to use different rules (<,>,BETWEEN...) over
the same field, we would need to include additional code to generate the needed find
parameters and we will find ourselves repeating the same code structure for different
records and search restrictions. Furthermore, a change in the location of a specific
field or the modification of the relations between models, i.e. adding an intermediate
table, would force us to modify those pieces of code.

To avoid that and speed up the process of adding any additional information with
advanced filtering rules (without the need of rewriting the code to generate queries
and form fields) we will implement a new plugin called FilterModels.

Objectives

The main goals for FilterModels plugin are the following:

• Allow to configure and store filters in the database

• Define helpers to generate forms based on defined fields

• Fetch the records that pass one or more filters.

• Count the number of records that passes one or more filters.

• Check if one model instance passes the filter.

• Check if a set of field values pass the filter (not taking into account any database
stored data) .

• Provide methods to generate specific queries based on defined fields instead of
database column names.

Implementation

The plugin will create two new concepts on top of the regular database models:

• Filterable Model: it is the model in which the filter rules will be applied.

• Filter: set of rules that may be applied on a filterable model. It can also be a
model.

Taking this into accout, the code is divided in four main files:

• filter: class to be used over any filterable model.

• filter_methods: modifications to make a stored model behave as a filter

• model_methods: model related to record that will be filtered changes

• view_helpers: tools to generate application views

4.2 Filter Models Plugin 45

In this case, we don’t need to perform any changes in the application for installing
or uninstalling the plugin. The file structure will be the following:

vendor/ plugins / filter_models /
|−− README
|−− Rakefile
|−− init . rb
‘−− lib

|−− filter_models
| |−− filter . rb
| |−− filter_methods . rb
| |−− model_methods.rb
| ‘−− view_helpers.rb
‘−− filter_models . rb

Model methods extension

In order to make the models behave as filter or filterable, we will need to extend the
default model class with specific methods. These changes shoulnd’t affect any other
models that are not involved in any filtering. We can achieve this using the Ruby
calls ’include’ and ’extend, that can add functions on the fly to the class definition
or the instances of a specific class.

Based on this, we add two new methods to the parent class for all models
(ActiveRecord::Base). When one of them is called from a model definition, they
will load the required code to make it behave as a Filter (filter_model) or as a
Filterable (filterable_model).

For example, to add an additional method filterable_model to Base, we add
a module with the structure below:

module FilterModels
module ModelMethods
def self . included (base)
base . extend ClassMethods

end

module ClassMethods
def filterable_model options={}
Any initialization code
include FilterModels ::ModelMethods::InstanceMethods
extend FilterModels ::ModelMethods::SingletonMethods

end
end

module InstanceMethods
List of methods that will be available for any instance of
the model defined as filterable

end

module SingletonMethods
Methods that will be available though model class defined
as filterable

end
end

end

4.2 Filter Models Plugin 46

It is also necessary to add the following line to the plugin init script to make the
new method available in the application.

ActiveRecord ::Base.send (: include , FilterModels ::ModelMethods)

At initialization time, the includemethodwill be called for ActiveRecord::Base
class. This will execute ModelMethods.included in its context, defining themethod
filterable_model as part of ActiveRecord::Base class. If this new method is
called from any model definition, it will include de functionality into it adding any
instance and class methods with the ’include’ and ’extend’ calls.

In order to make a specific model filterable, we just need to call the new method:

def ModelClassName << ActiveRecord::Base
filterable_model
Rest of the code

end

In other words, we have adde a trigger to all models that allow us to load the
functionality when it is needed.

Fields configuration

The fields available to be used in the filter rules should be defined. This is useful
to include additional information apart from the one stored in the database column
and to restrict the fields to a subset of them. It also behaves as a layer between the
database structure and the logic stored in the rules. In other words, It will make
possible to have alterations in the database without the need of updating the rules in
any filter, only the field definition would need to be changed.

The fields will be configured at model definition or dynamically overwriting
the method ’filter_fields’. In both cases, they should be written as a Hash
where each pair represents the unique identifier that will be used in the different rule
definitions and form inputs and the specific settings for that field:

filter_fields = { field_id => settings1 , field2_id => settings2 ... }

Settings are formatted in pairs setting-value inside a Hash. The main options
are:

• :field [needed] It should be the name of the column in the database table
described by the current model or, a route to the field taking into account the
relations between models (defined using ActiveRecord association methods).
In that case, it should be inserted as:

{assoc_name1 => {assoc_name2 => ...{assoc_name_n => :column_name}...}}

4.2 Filter Models Plugin 47

• :type value format (’string’, ’integer’, ’boolean’...). This is useful to be able
to check rules over hashes outside the database.

• :name naming that is shown to the user while through the view helpers provided
in the plugin.

• :hidden it avoids showing this field while using helpers.

• :options possible values that the field could take. It can be inserted as an
array of pairs [value,name] or as a string containing ruby code that would
generate that array dynamically.

• :conditions additional conditions that will be added to the particular joins
in the route to the field defined in ’field’ option. These restrictions are inserted
as pairs association_name, restriction inside a Hash.

• :join_name alternative naming of joined table in the SQL query to allow
multiple joins over the same table. They should be written as pairs association
name, join name in a Hash object.

A simple configuration example can be seen below:

def Writer << ActiveRecord ::Base
has_many :posts
belongs_to :group

filterable_model : filter_fields => {
:name => {: field => :name, :name => "User Name", :type => : string },
:group => {: field => :group_id, : type => : integer ,
: options => "Group.find (: all) .map{|g| [g. id , g.name]}"}

: post_title => {: field => {: posts => : title }, : type => : string },
:readers_name => {: field => {: posts => {: readers => :name}}},
: type => : string },

}
end

def Group << ActiveRecord::Base
has_many :writers

end

def Post << ActiveRecord ::Base
belongs_to : writer
has_and_belongs_to_many :readers

end

def Reader << ActiveRecord ::Base
has_and_belongs_to_many :posts

end

In this example we would be able to look for writers based on their name, group,
post title and also names of the post readers. The identifiers for the fields (the ones to
be used in the rules) are name, :group, :post_title and :post_readers. Group
values are restricted to those ids stored in database.

4.2 Filter Models Plugin 48

The settings :conditions and :join_name are useful in those cases where we
need to filter using more than one rule over an association. MySQL lacks the ability
to easily apply rules to column values in more than one joined row. For instance, in
our particular case we needed to apply rules based on the properties stored in the
’installation_properties’ table.

In other words, if we do a join between ’installations’ and ’installation_properties’
we can’t look for those installations with both property A equal something and prop-
erty B equal something else, but only for those with A equal sth OR B equal sth. The
following query will always return 0, since it’s checked row by row:

SELECT COUNT(distinct installations.id) FROM installations as i
LEFT JOIN installation_properties as ip ON ip. installation_id = i . id
WHERE (ip.property_type_id = 1 AND ip.string_value = "a") AND

(ip . property_type_id = 2 AND ip.string_value = "b")

Aswewill see later, we can definemultiple fields in this case modifying conditions
and the join_name. The cost of this will be the multiple joins over the same table
(one for each field involved). At MySQL level, the query takes the following format:

SELECT COUNT(distinct installations.id) FROM installations as i
LEFT JOIN installation_properties as ip1
ON ip1. installation_id = i . id AND property_type_id = 1

LEFT JOIN installation_properties as ip2
ON ip2. installation_id = i . id AND property_type_id = 2

WHERE ip1.string_value = "a" AND ip2.string_value = "b"

Note that these field settings are no longer needed in Network Service after the
properties storage was splitted into multiple tables as we described in section 3.4.1.

Filtering Rules Generation

Once we have defined the fields, we should be able to describe rules over them. We
will define one rule per field, as it is enough for our needs and simplifies the process.
Taking that into account, the chosen format is:

{ :field_name => [<method>, <value1>, <value2> ...], :field_name2 => ... }

.
For each field involved, we specify the comparison method to be used (:eql, neq

...) and one or more values. The complete list of methods that could be used is
described on table 4.2.

In order to check those rules over stored records we must know which joins are
necessary and which conditions should be applied.

Getting the necessary joins

4.2 Filter Models Plugin 49

Table 4.2 Filtering Operations.

:null Not value assigned.
:nnull Any not null value has been assigned.
:eql Equals at least to one of the values.
:neq Not equals to any of the values.
:lt Less than.
:gt Greater than.
:let Less or equal than.
:get Greater or equal than.
:btw Between 2 values.
:nbtw Not between 2 values.
:like Like any of the values inserted (wildcard allowed ’*’).
:regexp Pass a regular expression.
:let_ago Until some time ago (values are: number of units and time unit:days,

hours...).
:get_ago Since some time ago.

ActiveRecord allows to define relations between models. This relations are
stored as class variables in the model class that includes information about the
conditions involved, types of relation, other model classes, etc. We can access this
using the method reflect_on_association(:assoc_name), which returns an
AssociationReflection with the details. The available association types inside
ActiveRecord are shown in table 4.3.

Thanks to the data stored in the models, the list of association names used in the
field definitions are enough to fetch all the details required about the relation between
the models involved in the rules.

For each field involved in the process (which can be obtained by checking the
keys in the rule definition), we go through the steps in the field configuration getting
the needed information to join the table or tables related to that association. This
includes the name of the table to be joined and the needed ON clause, that will depend
on the type of association. This can be obtained using the method ’macro’ in the
reflection object, which returns the perspective of the relation from the current model.
This allows us to know how the table should be included in the queries:

• If it returns :belongs_to, the foreign key is stored in the table that has been
inserted in the previous step, being necessary the following SQL:

LEFT JOIN #{new_model.quoted_table_name} ON
#{previous_model.quoted_table_name}.#{ reflection .primary_key} =
#{ reflection . klass .quoted_table_name}.id

• If it returns :has_one or :has_many, foreign key is in the one that is being
inserted. In that case we will need to do:

LEFT JOIN #{new_model.quoted_table_name} ON
#{previous_model.quoted_table_name}.id =

4.2 Filter Models Plugin 50

Table 4.3 ActiveRecord Associations.

Type Configuration
one to one :belongs_to in model which table contains the foreign key and

:has_one in the other model.

class Employee < ActiveRecord::Base

has_one :office

end

class Office < ActiveRecord::Base

belongs_to :employee # foreign key - employee_id

end

one to many :belongs_to in the associated model and :has_many in the base.

class Manager < ActiveRecord::Base

has_many :employees

end

class Employee < ActiveRecord::Base

belongs_to :manager # foreign key - manager_id

end

many to many :has_and_belong_to_many in bothmodels, foreign keys are stored in
join table. It’s used when there’s no defined model for the intermediate
table.

class Programmer < ActiveRecord::Base

has_and_belongs_to_many :projects

end

class Project < ActiveRecord::Base

has_and_belongs_to_many :programmers

end

#{ reflection . klass .quoted_table_name}.#{ reflection .primary_key}

• If it returns :has_and_belongs_to_many, we should insert two tables, includ-
ing an intermediate join table that contains both foreign keys. The name of that
additional table is taken as the one specified in the options of :has_and_belongs_to_many
that can be taken from reflection.options[:table_name] or the concate-
nation of the other two table names in alphabetical order. In this case we will
have two joins:

LEFT JOIN ‘#{intermediate_table}‘ ON
#{previous_model.quoted_table_name}.id =
‘#{ intermediate_table }‘.#{ reflection .primary_key_name}

LEFT JOIN #{new_model.quoted_table_name} ON
#{ reflection . klass .quoted_table_name}.id =
‘#{ intermediate_table }‘.#{ reflection . association_foreign_key }

In all of them, previous model is modified in each step and reflection represents
the result of evaluating the method reflect_on_association in that model. The
call to reflection.klass returns the model that represents the table that is being
joined in current iteration, and the one that should be used as previous model in the
next step.

4.2 Filter Models Plugin 51

In other words, if we have a field in a filterable model defined as:

: field => {:assoc_1 => {:assoc_2 => { ... => {:assoc_N => :column_name}...}}

Where each association refers to a model called Model<i> with i=1..N and we
are generating the joins to evaluate a rule based on that field: in the first iteration,
the previous model is set to FilterableModel and reflection will take the value
returned by

reflection = FilterableModel . reflect_on_association (: assoc_1) .

After that, previous model is setup as the value returned by reflection.klass (that
will be Model<i>) and next reflection takes the value obtained from

reflection = Model<i>. reflect_on_association (: assoc_<i+1>)

This process is repeated N times, until :column_name is reached.

Each of those necessary joins in SQL format, that are generated for every field
and node until reaching the needed value, are stored in an Array in order to be able
to remove duplicates easily. This avoids the possibility of joining the same table
twice for the same field.

Getting restrictions
Apart from the needed joins, it’s necessary to obtain the different restrictions

according to the configured rules. We should transform the operations shown in table
4.2 into a valid SQL code that could be inserted as part of the WHERE clause. The field
description (table name and column) is obtained in a way similar to joins generation.

Wewill consider that the information stored in the rules as field values are probably
provided by the user. This means it could be affected by SQL injection attacks,
specially if we just join those values into a string without any further processing. For
example, we could try to drop a table or run any other sql commands:

name = "a ’; DROP TABLE users; SELECT ’a"
User. find (: first , : conditions => "name = ’#{name}’")

Fortunately, ActiveRecord provides the required protection if we use the inser-
tion methods based on question mark substitutions. The method consists in giving
the conditions parameter an array where the first element is a string which contains
the restrictions with the symbol ’?’ instead of values. Then, for each ’?’, we should
add the corresponding value to the array. Those values will be inserted in the correct
format and any security issue related to SQL injection is avoided.

4.2 Filter Models Plugin 52

For example if we have the incoming values from the user stored in ’name’ and
’email’ variables, we can find an user safely as is shown below.

User. find (: first , : conditions => ["name = ? AND email = ?", name, email])

Taking that into account, the restrictions applied will be generated as it’s shown in
table 4.4. To get the complete restriction, the strings shown as the first array element
in the table will be concatenated using AND, the rest of the elements will be added
on the same order as those concatenations. Once all the restrictions are joined, the
result will be a single array.

Table 4.4 Filtering Operations to SQL Conditions.

:null ["table.field IS NULL"]

:nnull ["table.field IS NOT NULL"]

:eql 1 value ["table.field = ?", values[0]]

>1 value ["table.field IN (?)", values]

:neq 1 value ["table.field != ?", values[0]]

>1 value ["table.field NOT IN (?)", values]

:lt ["table.field < ?", values[0]]

:gt ["table.field > ?", values[0]]

:let ["table.field <= ?", values[0]]

:get ["table.field >= ?", values[0]]

:btw ["table.field BETWEEN ? AND ?", values[0], values[1]]

:nbtw ["table.field NOT BETWEEN ? AND ?", values[0..1]]

:like ["table.field LIKE ?", values[0].gsub('*','%')]

:regexp ["table.field REGEXP(?)", values[0]]

:let_ago ["table.field <= NOW() -

INTERVAL #{values[0].to_i} #{values[1].upcase}"]

:get_ago ["table.field >= NOW() -

INTERVAL #{values[0].to_i} #{values[1].upcase}"]

When we are working with multiple filters, the relation between them should be
also configured in order to be able to join the restrictions in the correct way. Calling
restrictions<i> to the restrictions related to the filter<i> that is used in the
query, we have 3 ways to join them:

• and - all filters should be passed. The rules are joined by AND operator:

WHERE (<restrictions1>) AND (< restrictions2 >) ... AND (< restrictionsN>)

• or - at least one of them should be passed. OR operator is used:

WHERE (<restrictions1>) AND (< restrictions2 >) ... AND (< restrictionsN>)

• none - no filter is satisfied. We use NOT over OR joined restrictions:

4.2 Filter Models Plugin 53

WHERE NOT ((<restrictions1>) OR ... OR (< restrictions N>))

Furthermore, we include the ability to force the first specified filter to be passed,
which is particularly useful for those situations where we are filtering through a
HTML form some of the fields. That way, the form will be transformed into a filter
and added to the list of filters. After applying the option :force_first_filter,
the WHERE clause will take the form:

WHERE (< restrictions 1>) AND (< restrictions 2 − N joined by and,or,none methods >)

Cached rules

In those cases where the filter is stored in the database, we can speed up the process
of gathering the information by caching joins and query restrictions (once they have
been generated taking into account the reflections between models).

To be able to apply multiple filters, we should store the joins as a serialized array,
where each of the elements represents one table join. That way, it’s possible to avoid
multiple joins on the same table by removing duplicated entries between those arrays.
On the other hand, restrictions should be stored keeping the array form which was
used in previous sections (with ’?’ symbols) to prevent SQL injections.

Both elements are stored into the database at update time. They are constant once
the filter rule has been specified and while filter fields definitions are not modified. If
the object is updated the cache will be regenerated.

WillPaginate Compatibility

WillPaginate1 is one of the most common plugins used in Rails applications. It
provides the tools to paginate a list of database records in a more reliable way than
the mechanisms that Rails provides by default. These lists usually comes from a
search and, in our case from a rule definition.

We should take this into account and provide the information necessary to use its
helpers in order to get the correct representation for the paginated content. This can
be achieved easily by modifying the methods used to fetch the records.

We just need to use the method paginate instead of the default search method
(find) provided by ActiveRecord. The parameters are similar, adding just some
additional options related to pagination: the total number of entries, which is current
page or the number of elements per page.

A trigger option is included to switch between find and paginate methods in our
plugins to allow both paginated and full list results.
1 Learn more about willpaginate https:// github.com/mislav/will_paginate/wiki

https://github.com/mislav/will_paginate/wiki

4.2 Filter Models Plugin 54

Filterable Model Extensions

Models that are defined as filterable are extended with the following class and instance
methods:

Class methods
module SingletonMethods
Similar to ActiveRecord :: find , adding the rule of being inside a
filter
def find_with_filter find_mode, filter , options = {}
...
Similar to ActiveRecord :: find , adding the rule of being inside
one, all or none of the filters
def find_with_filters find_mode, filters =[], logic=FilterModels :: RULE_BOOLEAN[:and], options = {}
...
Similar to find_with_filter adding willpaginate support
def paginate_with_filters filters =[], logic=FilterModels :: BOOL[:and], options = {}
...
Similar to find_with_filters adding willpaginate support
def paginate_with_filter filter , options = {}
...
Count number of records in filter
def count_in_filter filter , options = {}
...
Count number of records in one, all or none of filters
def count_in_filters filters =[], logic=FilterModels :: BOOL[:and], options={}

end

This module contains instance methods
module InstanceMethods
Determines if current element passes a filter
def pass_filter ?(filter , field_values =nil)
...
Determines if current element is inside one, all or none of the filters
def pass_filters ?(filters =[], logic=FilterModels :: BOOL[:and], field_values=nil)
...
Returns the value stored in one of the fields
def read_field_value (field)

end

Filter Model Extensions

Models used as filter are extended with the following class and instance methods:

This module contains singleton methods for filters
module SingletonMethods
Returns the list of used fields in a list of filters
def used_fields filters
...
Returns the list of joins to be used in a list of filters
def sql_joins filters , options = {}
...
Returns the array of conditions to be applied to filter out those
elements in any, all or none of the filters
def sql_conditions filters , logic=FilterModels :: RULE_BOOLEAN[:and], options={}
...
Returns the array of conditions and joins to be applied to filter
out those elements in any, all or none of the filters
def sql_joins_and_conditions filters , logic , options = {}
...
Returns the route to specific field in SQL format
def sql_field_value filter_class , field_definition
...

4.2 Filter Models Plugin 55

Remove cache assigned to all filters
def remove_all_sql_cached
...
Checks if a list of pairs field −value passes any, all or none of
the filters
def check_field_values field_values ={}, filters =[], logic=FilterModels :: BOOL[:and]

end

This module contains instance methods for filters
module InstanceMethods
Adds an additional restriction
def add(field , rule , values)
...
Removes all restrictions over a field
def del (field)
...
Returns the fields used in current filter instance
def used_fields
...
Returns the list of joins to be used
def sql_joins options = {}
...
Returns the array of conditions to be applied
def sql_conditions
...
Returns the list of joins and conditions
def sql_joins_and_conditions filters , logic
...
Used to configure the new rules from view helpers
def rule_as_hash= rules
...
Returns the list of properties in correct format to be used in
view helpers
def rule_as_hash
...
Generate filter cache
def generate_sql_cached
...
Transforms the value to the correct format according to the format
configuration in field associated with key
def transform_value key, value
...
Transforms a list of value to the correct format according to the
format configurations in fields associated with keys
def transform_values field_values ={}
...

end

View helpers

The Filter Models plugin includes some view helpers which make it easier to create
forms based on rules. This includes the ability to select filters already stored and to
create a new set of rules on the fly. It will be possible to include this selectors in any
operations which we want to target to subsets of installations.

The process to include the new functionalities to the default view generation in
Rails will be similar to the one followed in previous sections to extend ActiveRecord.
In this case, we just need to include some classmethods to the class ActionView:Base.
However, we should take into account that Merb does not have such a class. We must
protect that modification to not be made in case ActionView is not defined. The
code in init.rb file can be seen below:

4.2 Filter Models Plugin 56

if defined? ActionView
require ’ filter_models / view_helpers’
ActionView::Base. class_eval { include FilterModels :: ViewHelpers }

end

This snippet of codewill make any public functions in themodule FilterModels::ViewHelpers
to be available in any of the html templates in the Rails application.

Input Rules
In order to be able to create and store filters, we will need a way to define a set of

rules. A new method is included in the views to insert a widget already customized
with the filter fields configuration:

module FilterModels
module ViewHelpers
def input_rules (object , params = {})

...
end

end
end

Where object should be a filter element and params allows some customizations as
selecting the fields to be included through the options :hide_fields and fields
or, modifying the name of the form parameters returned in the responses.

When this method is inserted in any view a selector with the list of available
fields (the ones defined as filter fields) will be included in the view. When one of the
fields is chosen through the interface, a new text input appears below with a set of
rules (==, !=, < ...) based on the type of field. In case of selecting a rule that allows
multiple values (like ==), two links will be shown to "add" and "remove" text inputs.
To remove an already inserted rule it is just necessary to uncheck the checkbox shown
next to the rule.

An example of how the widget looks like can be seen in figure 4.1.
The widget behaviour is written in javascript using the prototype.js library

which comes with Rails by default.
Select Filters
Another tool that will be needed in the views generation is a way to select which

already defined filters should be applied to specific actions. We will include a widget
to select the filters inside any forms used for sending information related to the
operations to be targeted to specific subsets of installations. The method will be
added as it is shown below:

module FilterModels
module ViewHelpers
Shows a form to choose between filters and the logic to be used
(any, all ,none of them should be fulfilled)
def select_filters name, filters , selected_ids , relation_name , selected_relation , options = {}

...
end

4.2 Filter Models Plugin 57

Figure 4.1 FilterModels: rule generation through view helpers..

end
end

Adding it to any view will allow us select two things. First, we can include a list of
filters to be taken into account. It will be sent to the server in the parameter specified
as name and will take one or more of the filters passed to the method. By default,
those included in the list of selected ids will be chosen. The second, is the logic to be
used between the filters (choosing if all of them, any of them or none of them should
be passed), that will be be stored in the relation_name variable, By default, it will
be set to selected_relation.

The options field allows some additional changes in the behavior. For example,
it is possible to avoid a blank selection using :noblank=>true or, alter the class
prefix used in internal javascript to allow multiple selectors per page using :class
option.

Grafically, when this method is inserted in any view, it provides two selectors
with the list of filters and available joins between them. When a filter is chosen, it is
added to a list on the left which includes a checkbox to remove any of the elements
included. An example of how it looks like can be seen in the figure 4.2.

Figure 4.2 FilterModels: selecting filters through view helpers..

4.3 Installation Filters 58

Installation Filters

Wewill now apply the plugin to the Network Service application. As we mentioned in
previous sections, our goal is to filter the installations and perform targeted operations
to the groups defined by those filters.

In our case, the Installation class will behave as a filterable model. In order to store
the filters, a new model is included, InstallationFilter, which will be configured
as a filter model. The new table just needs to have a field to store the generated rule
plus other describe fields like ’name’ or ’description’. Detailed database setup can be
seen below:

create_table " installation_filters " , : force => true do | t |
t . string "name", : default => "" , : null => false
t . text " rule " , : default => "" , : null => false
t . integer " special "
t . text " description "
t . timestamps

end

As can be seen in the migration, there is also a column called ’special’. This will be
used as an identifier in order to define specific internal filters. More details about it
will be explained later.

The model will take the form shown below, where it is defined as a filter model
for Installation elements and, some basic validations have been included.

class InstallationFilter < ActiveRecord ::Base
validates_presence_of : rule # Avoid empty rule
validates_presence_of :name # Avoid empty name
serialize : rule

filter_model :model => " Installation "
end

In order to make the installations filterable. We will need to include the field
definitions that will be avaible through the filters. In our case, the configuration will
be modified depending on the database contents, since property types will define
which tables should be used to get property values from. This makes it necessary to
overwrite the method filter_fields and perform some database queries. Taking
all this into account, the Installation model structure is modified as it is shown
below.

class Installation < ActiveRecord ::Base
...
filterable_model

def self . filter_fields option={}
if (fields = M.get(’ installation_filter_fields ’) rescue nil) .blank? || option [: reload]

fields = {
: i_guid => {:name => " Installation GUID", : field => :guid},
: i_active => {:name => " Installation Active" , : field => : active },
: i_registered => {:name => " Installation Registered " , : field => : registered },

4.3 Installation Filters 59

: i_testing => {:name => "Testing Installation " , : field => : testing },
: i_latest_contact => {:name => " Installation Last Contact" , : field => : latest_contact },
: i_created_at => {:name => " Installation First Contact" , : field => : created_at },
:version_name => {:name => "Version Name", :type => : string , : field => {: version => :name}},
: version => {:name => "Version", : type => : integer , : field => : version_id , : options => "

Version . find (: all , : include => :product , : order => ’ versions .name’).map{|p| [p. id , \"#\{ p.
product .key_name} #\{p.name}\"]}"},

: product => {:name => "Product", : type => : integer , : field => {: version => : product_id }, :
options => "Product . find (: all , : order => :name).map{|p| [p. id , p.name]}"},

}
PropertyType. find (: all) .each do | p |

fields ["prop_#{p.key}".to_sym] = {
:name => "#{(p.name.blank? ? p.key. titleize : p.name.gsub(/%.∗ /,’’))}" , : type => p.value_type .

to_sym,
: field => {" latest_installation_properties_ #{p.key}".downcase => :value}

}
end
M.set(’ installation_filter_fields ’ , fields) rescue nil

end
fields

end
...

end

Where we cache the field definitions in Memcache to reduce the number of database
queries.

From the application code perspective, this configuration allows to define rules
based on the properties using the fields prop_<key>. For example, we can count the
number of installations with a certain number of users and in specific languages:

f = InstallationFilter .new : rule => {:prop_lang => [: eql , "es" , "en", " ja"], : prop_users => [: gt , 10]}
Installation . count_in_filter (f)

However, the user will not need to use this approach, just the widgets decribed in
previous sections.

A new section is included in the interface to manage the installation filters. The
main page lists the defined filters, showing the number of active installations in each
of them. It can be seen in the Figure 4.3. When the user wants to edit or create a new
filter, a view based on the helpers included in FilterModels plugin is shown. This
page can be seen in the Figure 4.4.

Special filters

The installations that are tracked in Network Service, may be in a special status that
are important for generating statistics and performing other operations. Three special
status values are included:

• active: if it has contated the server in the last x days. By default all statistics
are based on them.

• testing: identifies the installations made with test purposes, they are ignored
by default in all the stats.

4.3 Installation Filters 60

Figure 4.3 Installation Filters: Index page..

Figure 4.4 Installation Filters: Adding a new filter..

• registered: relevant installations from the ISV perspective.

We store them as flags, which should be updated according to specific rules. Since
this rules are easily implementable with the installation filters, we include filters with
specific identifiers for each of them. The user will have limited access to them (not
being able to delete them for example).

Based on those filters, a cron task will update all installation flags. This task
basically assigns to each flag the value of evaluating the filter rules. In other words,
it should do an update silimar to:

UPDATE ‘installations‘ <JOINS> SET ‘ installations ‘.<FLAG> = (<FILTER.sql_conditions>)

4.3 Installation Filters 61

To speed up the process it will be run with Merb. It is important to note also that
only active installations should be taken into account, since the proterties haven’t
changed since the latest installation contact. If any of the special filter definitions is
modified, a new job will be generated which will reprocess every installation in the
database (including inactive).

Taking that into account, the following elements are added to InstallationFilter.

class InstallationFilter < ActiveRecord ::Base
...
after_save : process_triggers_in_background , : if => "changes.keys . include ?(’ rule ’) && changes[’rule ’][0]!=

changes[’ rule ’][1] "
def process_triggers options={}

if self . special && (field_to_update = SPECIALS[self.special][: installation_flag])
cond = self . sql_conditions
Installation . connection . execute %Q{
UPDATE LOW_PRIORITY ‘installations‘ #{self.sql_joins}
SET ‘ installations ‘.‘ #{ field_to_update }‘ = (#{ActiveRecord ::Base. instance_eval { sanitize_conditions

cond }})
#{’WHERE ‘installations ‘. active = TRUE’ unless SPECIALS[self.special][: process_inactive] ||

options [: process_inactive]}; }
end

end

def process_triggers_in_background
Q.yput {:group => "background_update", : class => " InstallationFilter " , : id => self . id , :method => :

process_triggers , :params => [{: process_inactive => true}]}, 65000, 1
end
...

end

We also include a new background job to the worker that we created in section
3.3.3.3: "background_update". That allows us to send specific method calls to be
processed in the background like the old filter triggers processing mentioned above.

class KermitWorker
class << self
def do

...
loop do

...
case job_hash [: group]
...
when ’background_update’
logger . info ! "[#{job_hash [: group]}] STARTED!"
begin
c = job_hash [: class]. constantize
if job_hash [: id]
element = c. find (job_hash [: id])
result = element.send(job_hash [:method], ∗(job_hash [: params]||[]))

else
result = c.send(job_hash [:method], ∗(job_hash [: params]||[]))

end
logger . info ! "[#{job_hash [: group]}] FINISHED!"
job . delete

rescue Exception => e
logger . info ! "[#{job_hash [: group]}] FAILED!"
notify_exception e, job_hash
job .bury

end
end
...

4.3 Installation Filters 62

end
end

end
end

Installation filters applied to notifications

Once we have defined the groups of installations we should be able to use them
in different places. For example, we are going to explain the process of making
notifications configurable with groups.

In order to do it, we should create has_and_belong_to_many relations between
the installation filters and the notification records which will need a connection
table. It will be also needed to store the logic between the selected filters inside the
notification element.

The changes in the database are shown below:

create_table " notifications_installation_filters " ,
:primary_key => " notification_id , installation_filter_id " , : force => true do | t |
t . integer " notification_id " , : null => false
t . integer " installation_filter_id " , : null => false

end
add_column : notifications , : integer , " installation_filters_relation "

The models should be updated adding the corresponding ActiveRecord relations:

class Notification < ActiveRecord ::Base
has_and_belongs_to_many : installation_filters , : join_table => : notifications_installation_filters
...

end

class InstallationFilter < ActiveRecord ::Base
has_and_belongs_to_many : notifications , : join_table => : notifications_installation_filters
...

end

Each time the list of notifications is sent to the end-user, we will need to check
if the notification is allowed to be sent to that installation. In other words, we need
to check if the filters are passed. The problem is that the properties are stored in a
background process after the notifications have already being sent.

However, we can use the method check_field_values over the yet unprocessed
properties (protecting those generated internally from being received from the client).
Taking this into account, we can define a method in Notification as follows:

def allowed_installation ? installation , new_properties={}
if new_properties .blank?

installation . pass_filters ? self . installation_filters , self . installation_filters_relation
else

InstallationFilter . check_field_values installation . latest_field_values (new_properties)
end

end

4.3 Installation Filters 63

where the new properties are the ones received through the API already filtered and
merged to the already existing values. This method is added to every API method
that sends notifications.

Finally, we should just use the view helper to choose installation filters in the
forms to edit and create messages and updates. The user will be able to define
the target to be notified as a combination between the installation versions and the
installation filters previously defined in the database. This can be seen in Figure 4.5.

Figure 4.5 Installation Filters: Choosing notification destinations..

Reports Generation

We already have the ability to store the required data in the server, tools to manage
installation groups and to perform operations and searches based on them.

However, our application still lacks an easy way to access the information. The
next step will be to add the ability to get detailed information about the installations
and their usage. This includes the following:

• Number of Installations: grouped by product, by version or by specific property
value. With the ability to filter those statistics by previously defined groups.

• Notification Reach: number of installations that have received a particular
message or update. How many are pending to be notified? How is it reaching
different versions, installation groups or installations with specific property
values?

• Evolution over time of a chosen property for a specific installation. For example,
"Free/Used RAM Memory"

• Gantt diagrams with information about release dates and time periods where
each notification is active.

We will divide the implementation in three steps. First, we will develop a plugin
which will have the common tools to store and manage the information that is going
to be presented as charts or Gantt diagrams. Then, we will implement the specific
way to store and generate the reports in Network Service context. Finally, we will
improve some aspects of the system.

Reports generation plugin

Although some parts of the reports implementation are really specific to the applica-
tion, we can identify some things that may be useful in other projects. As a first step,
we will develop a simple plugin which will be helpful to provide the necessary tools

64

5.1 Reports generation plugin 65

to store, modify and represent resolution based data as well as events with certain
duration over time. In other words, we will include the tools to generate time based
reports in different formats.

The main objectives to be fulfilled are:

• Define conventions to work with resolutions and lengths.

• Provide a common way to store numeric data over time (Datasets) to be used
in charts or events with durations (EventList) to be used in Gantt diagrams.

• Transform defined data into new lengths and resolutions.

• Merge new information over an already initialized set.

• Filter, reorder, accumulate and other simple modifications to datasets.

• Charts generation, simplifying integration process with new graphic libraries.

• Export information to different formats: CSV, XLS ...

It is important to note that gathering data is not included as part of this plugin
since it is application specific, being implemented as part of the Network Service
code as we will describe in the next sections.

The file structure that will be followed can be seen below:

vendor/ plugins / reports_generation
|−− Rakefile
|−− init . rb
‘−− lib

|−− datasets . rb
|−− event_list . rb
|−− reports_generation . rb
|−− default . rb
|−− graph
| |−− default . rb
| |−− generator_gruff . rb
| |−− generator_plotr . rb
| |−− graph.rb
| ‘−− prototype_generator . rb
|−− file_tools . rb
‘−− time_tools. rb

The main elements to consider are Datasets and EventList, which are the
classes designed to store the information with time information and events repre-
sentable on a Gantt diagram. Files inside the graph folder include the tools to generate
the charts. Each graph library will have a generator as we will see below. FileTools
and TimeTools are defined as modules with a list of helpers used by main classes.

5.1 Reports generation plugin 66

Table 5.1 AllowedResolutions.

Number Resolution Unit
1 years
1, 3, 6 months
1 days
1, 3, 6, 12 hours
1, 5, 15, 30 minutes

Conventions

We need to define a set of valid resolutions and lengths that will be used through
all the application. We represent both of them as a pair of integers, one of them
represents the time unit used (days, hours, minutes ...) and the other the number of
units. The reason for storing time units as integers, apart from reducing the storage
needs, is that we could do comparisons easily with numerical operators like ’<’, ’>’
which will be faster than using strings.

To simplify the processing and transformations between different resolutions,
we limit the possible values to a subset of those which have the property of being
a divider of bigger resolutions. In other words, it’s possible to work with 3 hours
because it is easily transformed into 1 day resolution by grouping 8 data points. The
complete list of valid resolutions can be seen in Table 5.1.

Report lengths will have similar restrictions since they are formed by a set of
points with certain resolution.

On the other hand, in order to be able to modify the resolution in the generated
reports, it will be necessary to have a set of aggregation methods to obtain the new
values based on higher resolution ones. We will include the following aggregation
methods: average, maximum, minimum, sum, last value, first value.

Datasets

Datasets object is the main element able to store and manage the different sets
of data which may be presented on a chart. It provides flexibility to store simple
information as well as to perform complex operations over data.

Data is stored following a structure based on slots. Resolution and length of the
represented data may be set, so the slots and boundaries are known before inserting
any information. Furthermore, resolutions may be defined for each section, allowing
a behavior similar to the one described in previous chapters to loose resolution as
data gets older.

The information can be inserted at once or in an incremental way. Different sta-
tuses are defined for each slot or data point (empty: null was inserted, full: something
not null inserted, loaded: something was inserted, not loaded: nothing inserted yet).

5.1 Reports generation plugin 67

They are updated based on how the information gets inserted, being possible to easily
detect which slots of time are empty and which are not loaded. This will allow us to
generate and cache reports in an incremental way as we will see later.

To be able to support average aggregation methods, a counter is associated with
every slot. It will be incremented with each insertion or can be set directly to specific
values when the data is added.

Datasets also provide some transformations:

• Alter resolution.

• Modify time boundaries or include new periods of time.

• Modify slot statuses.

• Merge sets together.

• Get n most relevant sets accumulating the rest as "others".

• Generate a "total" dataset which combines the rest.

Another important aspect is that the object has the ability to be imported and
exported as a Hash element which simplifies the storage in any database or in memory.

Graph Generation

In general we may want to use different graphic libraries minimizing the changes
in our application code in case we want to move from one to another. In order to
simplify it, we define graph generators which act as an interface between the Datasets
object and the way the library receives the information. For instance, the library
may require to write the data in JSON or just put it inside an XML separated by
whitespaces although the data to be represented is be the same.

Common configuration options such as "title", "width", "height", "type of chart"
should be mapped inside each generator to the specific library parameter. For example,
we define a type called "line" which may have different names on different libraries
and can be configured in different ways.

All generators should inherit from the prototype class, which declares the methods
that will be used to get the chart and defines a set of methods useful during any library
chart generation.

The methods to be overwritten in each generator are:

Returns the code which should be inserted where chart should appear
def generate_image
""

end

Returns any script code that should be loaded
def generate_script_code

nil

5.1 Reports generation plugin 68

end

May be used to prevent the chart to be generated multiple times
def chart_cached

false
end

The reason for having separate method for the script code is to be able to move it
to the end of the page load, which is useful to speed up rendering the page.

A couple of generators are defined as part of the plugin:

• Gruff Written by Geoffrey Grosenbach. It is based on RMagick gem and
ImageMagick library. It generates images dynamically based on the datasets
provided. As a drawback the time to generate a new chart is big compared to
other solutions and increases the load in the server. An advantage is that it
provides an easy way to cache the charts storing them as images, being only
required to check if the file already exits before creating it. It also allows the
user to see the charts without having to install flash players or any additional
software. An example of chart generated with Gruff can be seen in figure 5.1.

Figure 5.1 Example of chart generated with Gruff.

• Plotr Written by Bas Wenneker. It is based in Javascript and Prototype library.
In this case the processing of the data to generate the chart is done on client
side. It doesn’t require to have flash player installed in client side, but only
javascript which is usually included and enabled by default in modern browsers.
An example of chart generated with Plotr can be seen in figure 5.2.

5.2 Network Service Reports system 69

Figure 5.2 Example of chart generated with Plotr.

EventList

Not all the information to be shown on a report is based on having values for a set of
points. We may also be able to define "events", which are elements which happens in
a specific moment or which are active during a period of time.

In this case, the information to be stored is just a list of elements with title,
description and time boundaries, being possible to use only start time for those
without duration.

In order to represent the information contained in an EventList object we add
support to show it through "Simile Timeline" library. Written by David François
Huynh and maintained as part of Simile Project. It is based in Javascript and generates
an interactive line of time containing elements with or without duration. Those
elements may contain a description which is shown as a popup when clicking on
them. An example can be seen in figure 5.3

Network Service Reports system

On this section we are going to implement the reports data acquisition. As well as
the general structure which will be used to deal with them. Both FilterModels and
ReportsGeneration plugins will be used.

General Structure

How can we represent a report as data objects? In general, a report will consist
in a group of different elements (charts, tables) which will contain information
about a particular object (product, version, installation, notification). Each piece of

5.2 Network Service Reports system 70

Figure 5.3 Example of chart generated with Simeline Timeline.

information shown will be stored as a ReportElement and the group of elements
will form a Report.

While getting the data from the database, the information has to be filtered and
grouped in the way we are interested (by product, by version, by property value, by
property key). In order to achieve this, we use the class ReportDataFilter which
will have the methods to get the information based on InstallationFilter.

However, we will have at least two different sources to obtain the results: the
database and the cache. Each element will have one or more sources depend-
ing on the object which the report is based on. We add a new element called
ReportDataSource, which will be specific for a particular object, and chooses
between cache and the database to return the information to report elements.

The structure followed to represent a report can be seen in the diagram 5.4.
This means we will include the following elements:

• Report: is the global description, it has some general properties like the title
and the format to be used. It contains a set of report elements.

• ReportElement: presents a piece of data that is shown in the report, for
example the total number of users shown as a pie chart. It has information
about the time limits or if it represent total or latest values received. It also has
the information about the specific format to be used. A Report Element will be
associated to one or more ReportDataSource

• ReportDataSource: it represents a source of information, without any time
or format information which will be received from ReportElement requests.
It associates an object and a specific report data filter. It will take data from
cache or from database by using report filter methods.

5.2 Network Service Reports system 71

Figure 5.4 Reports General Structure.

• ReportDataFilter: it represents the restrictions and groupings necessary to
get the information from database. It can be used by one ormore ReportDataSource.

The only model which is assigned to a specific object is the source of data. That’s
why ReportDataSource elements should be generated dynamically. That way, we
can define reports that could be applied to different installations or notifications
without having to define or configure them for each element. Also, new generated
elements will have all the reports already defined for them.

To be able to behave in that way, Reportwill be customized with a specific object
at rendering time. That is, we will define reports for kinds of objects: installations,
messages, updates, products. Then, we will be able to apply those reports for any
object inside that group of elements. In this case, ReportElement should contain
a reference to the specific ReportDataFilter that should be applied to get the
information, being generated the source element as a join between that filter and the
customized object.

Filtering

We should be able to get the information we are interested in from the database.
Basically, we want to get:

• Number of installations by version and property value

• Number of installations reached by a particular notification by version and
property value

5.2 Network Service Reports system 72

• Evolution of specific property values for a given installation

Adding also the ability to use already defined installation groups or filters. That is,
the user should be able to show the stats for those inside one, none or all the filters
selected.

As we have said before, this filtering will be located inmodel ReportDataFilter.
We will define a method called get_datasets which will return the stats with and
without time information, including counters in case they are necessary. For instance,
they may be useful to perform aggregations when showing the evolution of a numeric
property over the time.

Indeed, most of the work has already been done in Filter Models plugin. Each
property is already defined as a field which may be used in the options passed to
find_with_filtermethod (select_fields, include_field and group_fields).

Using filter definitions instead of directly performing the joins manually is a
powerful way to make the reports easily adaptable to database modifications. In case
new fields are added, we just need to include a new field definition, being possible to
group or show any reports based on it after that without any other internal change.

Current statistics

The first step will consist in getting the latest stats. That is, the numbers at current
time, without showing any historical evolution. All the tools we need to get this is
FilterModels plugin and the options we have mentioned before.

For instance, to get the number of installations by operating system we may do
something as follows:

stats = Installation . find_with_filters : all , filters , filter_rule ,
: group_fields => {:prop_os=> {}},
: select_fields => {
:prop_os => {:as => "dataset_name"},
: installation => {:method => "COUNT", :distinct => true , : as => "number"}

}
result = {}
stats .each { | e | results [e[’dataset_name’]] = e[’number’] }

where filters and filter rule contains the list of filters and the rule to join them
(one,none,all).

However, additional restrictions should be made. First, some groups will be
banned by default:

• "Inactive" installations: that has not contacted the server after a period of time.

• "Testing" installations: which are done by the software provider with testing
purposes.

5.2 Network Service Reports system 73

More details about both groups may be seen in section 4.3.1. Although they are
not added by default we add a pair of checkboxes so it is possible to obtain reports
including them on a similar way as we did while we where filtering installations.

Also, it is necessary to restrict the counts to those installations which are related
to the object which is the report target (a specific product, a notification..).

To take all this into account we generate a temporary filter which will be added to
the query containing the additional rules. Using the option force_first_filter
so all installations have to pass that filter not taking into account the rule applied to
join the rest of filters.

For example, to get the numbers for a specific product we may do:

f = InstallationFilter .new
f .add : i_active , : eql , true unless include_inactive
f .add : i_testing , :neq, true unless include_testing
f .add : product , : eql , Product . find (product_id)
filters = [f] + filters
stats = Installation . find_with_filters : all , filters , filter_rule ,
: force_first_filter => true , ...

where product_id contains the identifier of the product the report will be talking
about and, include_active, include_testing allows the user to include those
groups in case it is necessary.

Following a similar approach, we are able to generate the rules for each possible
object:

case object
when Product then filter .add : product , : eql , object . id
when Installation then filter .add : installation , : eql , object . id
when Client then filter .add : client , : eql , object . id
when Notification then filter .add : notified_with , : eql , object . id
end

Evolution over time

However, we do have a problem still. How could we get historical values? All the
information we are getting until now are just the latest values. In order to obtain the
evolution over time we are going to alter the conditions generated by the FilterModels
plugin replacing the joins associated with those fields over time.

The complexity of doing so appears because the properties are stored using
variable slots as we studied in chapter 3. When we are showing the chart, the space
between the points is fixed so we need to translate the database contents to chart
space. The solution consists in generating a vector of times at SQL level which is
used to join the properties accordingly over the time:

SELECT times.start_time AS time, ... LEFT JOIN (
SELECT ’2014−10−23 00:00:00’ as start_time,

’2014−10−24 00:00:00’ as end_time UNION ALL

5.2 Network Service Reports system 74

SELECT ’2014−10−24 00:00:00’ as start_time,
’2014−10−25 00:00:00’ as end_time UNION ALL

SELECT ’2014−10−25 00:00:00’ as start_time,
’2014−10−26 00:00:00’ as end_time UNION ALL

...
) as times ...

Which provides total control over the slots of time that will be using to show the
information. We use pairs of times to make it easier to perform the operations and to
join property values. The start time of each slot is taken as the time to be returned
to represent the location over the time for each value. It’s important to note that
generating this vector doesn’t have appreciable impact in MySQL response times.

Once we have the times defined, we have to join appropriately the properties.
They will vary depending on the type of report we are doing. In order to keep using
InstallationFilters and current field definitions, we just have to replace the default
join condition "latest = true" in the generated joins:

... JOIN table_name ON AND table_name.latest = true ...

with the ranges of times where the property value should be taken from:

• Without taking into account blank spaces:

start_at < end_time AND (extended_end_at IS NULL OR extended_end_at >= end_time)

• Taking blank spaces into account:

start_at < end_time AND end_at > start_time

• Property values at installation creation time:

start_at <= installations . created_at AND (extended_end_at IS NULL OR extended_end_at > installations .
created_at)

• Property values the first time a notification was send:

start_at <= notification_reaches . first_sent_at AND (extended_end_at IS NULL OR extended_end_at >
notification_reaches. first_sent_at)

We would need to do the modifications for each property involved in the query.
We may simplify it by using regular expressions. For instance, for the second case
we may do as follows to alter join string.

join .gsub !(/\ s+(\w+)\. latest \ s∗=\s∗true /, " #{$1}. start_at < #{$1}.end_time AND #{$1}.end_at > #{$1}.
start_time")

5.2 Network Service Reports system 75

When we are talking about generating historical number of installations we may
think of two different approaches. Showing the total values over the time or the new
installations over time:

• Total values: installation should be created before the slot ends; properties are
joined without taking into account blank spaces.

• New installations: ’installation’ should be created inside the slot; properties
are joined at installation creation time.

Another aspect to take into account is that the activity of the installation varies over
the time. In other words, we can’t use the ’active’ flag to detect which are the ’active’
installations over time. On the other hand, we will assume ’testing’ flag doesn’t
change over the time, being possible to use it as we did for non historical reports.
selected.

In order to track the history of both "active" and "registered" statuses, two new
boolean properties are added. They will store the values of those flags chronologically.
Instead of using the field i_active (based on the installations column) we use a new
one defined as the rest of properties, prop_active (see section 4.3). The new rules
are just:

filter .add : prop_active , : eql , true unless include_active
filter .add : i_testing , :neq, true unless include_testing

Once we have the results from the database query, we may get a Hash representing
the values obtained:

results = {}
temp.each do | v |

results [v [:dataset_name]] ||= {}
results [v [:dataset_name]][v [: time]. to_time] = v[:number]. to_i

end

After this transformation, we have data compatible with ReportsGeneration::Datasets.

Notification reach

When we talk about a notification reach report, we are referring to get information
about how a message or update is being sent to the end-users. Each time a notification
is sent to a new installation a NotificationReach entry is generated. A counter is
incremented in case it is sent more times to the same installation, which may be
useful to track the number of downloads.

The approach to get this information is similar to the user count, joining the
properties with the first time a notification was sent (as we show in section 5.2.2.2).
Also, a specific filter field is used to restrict the results for a specific notification:

5.2 Network Service Reports system 76

: notified_with => {:name => "Received Notification " ,
: type => : integer , : field => {: notification_reaches => : notification_id }

A similar concept to "new" and "total" installations is applied to notifications
reach. In this case, it represents showing the total number of installations notified or
the number of new notified installations over time. The only difference from database
perspective is adding or not the second condition in:

WHERE ... notification_reaches . first_sent_at < end_time
AND notification_reaches . first_sent_at >= start_time ...

where start_time and end_time come from the static time vector.
As we are using installation filters all filters and groupings can be done easily as

in previous section.

Numeric property value evolution

Another special case to consider consists on getting the history of a numeric property
over time. Static values are in this case just the latest ones received, so no special
queries are required. However, evolution over time should be studied.

Instead of counting different installation ids, we should get the values inside
the slots defined in the time vector applying appropriate aggregation methods. To
simplify the processing, the values shown will belong to a single installation.

This time, we should include additional information which has not been taken
into account. On one hand, we should be able to distinguish different resources.
For instance, if we are receiving the disk usage property for different disks (C:, D:),
values are stored with different resource indexes.

A new field is added for each property so we are able to filter them properly:

fields ["prop_#{p.key}_resource" . to_sym] = {
: type => : integer , : field => { :hidden => true ,
" latest_installation_properties_ #{p.key}".downcase =>
: resource_index }

}

Each time a report is generated, this resource index may be specified, being 0
taken as default. All affected properties will be filtered with that index:

filter .add "prop_#{p.key}_resource" . to_sym, : eql , resource_index

On the other hand, counters should be also included in the response. This provides
the ability to perform aggregations over the results without doing additional requests
to the database. Those counters should be scaled based on the length of the new
slots, that is, if we are representing a big stored slot with several small ones, counters
should be distributed accordingly. In other words, if counter has value 10 and a

5.2 Network Service Reports system 77

length of 10 days, and we are representing it with 1 day resolution, the counters for
each day should take one as value. The reason why we can suppose that uniform
distribution came from the fact that the agent is using a constant rate to contact the
server. Mathematically, for each slot, limited by start_time and end_time, we should
sum all counters partially inside:

C = ∑
i

counteri ·
MIN(end_time,endi)−MAX(start_time,starti)

endi− starti

In order to translate this into a MySQL query, we need to simulate minimum and
maximum between columns. Also, it will be required to transform time objects to
numbers so we are able to divide and multiply.

SELECT CAST(
SUM({table}.counter ∗ (
TIME_TO_SEC(TIMEDIFF(
IF({ table }.end_at < end_time, {table}.end_at , end_time),
IF({ table }. start_at < start_time , start_time , {table}. start_at)

)) /
TIME_TO_SEC(TIMEDIFF({table}.start_at, {table}.end_at))

)
AS UNSIGNED
) AS {prop_key}_counter

Where {table} and {prop_key} should be filled for each involved property with
the table name containing the values and the property key. CAST method has been
added to obtain an unsigned integer as result.

Multiple properties may be gathered together. Since we are performing the
analysis over a single installation and installation filters are not required, we are able
to get all of them with a single database query. In order to achieve this, we select
the fields (value and counter) with names identified by property: <key>_value and
<key>_counter.

It’s important to notice that properties should be joined taking blank spaces into
account as we specified in section 5.2.2.2. This join selects for each slot all the
properties that are partialy inside it. Blank spaces will contain a nil value as no
values are joined.

Once we are able to get the counters we should perform the aggregations taking
into account the aggregation settings stored in PropertyType objects:

• Maximum / minimum value
In this cases scaled counter is not necessary to obtain the values, we can directly
use MySQL aggregation methods MAX and MIN:

SELECT MAX({table}.‘value‘) AS {prop_key}_value, ...
SELECT MIN({table}.‘value‘) AS {prop_key}_value, ...

5.2 Network Service Reports system 78

• First / last value
To get the last and first value inside a slot we use that applying MAX method
to a list with NULL and NOT NULL elements will return non NULL as result.
We just force to NULL all the elements but the first or the last inside the slot:

// First
MAX(IF({table}.‘ start_at ‘ <= start_time , {table }.‘value ‘, NULL))
// Last
MAX(IF({table}.‘end_at‘ >= end_time, {table }.‘value ‘, NULL))

• Average
In this case, we generate the average using the scaled counter, which is defined
above but removing CAST and SUM methods.

SUM({table}.‘value‘ ∗ { scaled_counter }) / SUM({scaled_counter})

• Sum
To keep sums coherent, we should take scaled counter into account. We
distribute the area uniformly. That way, if we get the report with a big resolution
and then transform it into one with bigger slots the numbers are correct.

SUM({table}.‘value‘ ∗ { scaled_counter })

For each property we should include two elements in SELECT statement, one
for the counters and another for the aggregated value. In both of them {table} and
{prop_key} should be modified.

After the query is executed, we will get a Hash containing the results for each
property in separated keys. We may get the results with a simple loop:

query_results .each do | v |
time = v[: time] && v[:time]. to_time (: utc) . localtime
properties .each do | prop |
results [prop. id] ||= {}
counters [prop. id] ||= {}
if v["#{prop.key}_value" . to_sym]
results [prop. id][time] = v["#{prop.key}_value" . to_sym]
counters [prop. id][time] = v["#{prop.key}_counter" . to_sym]

end
end

end

Both results and counters may be directly used to initialize a Datasets object after
this change.

5.2 Network Service Reports system 79

Background Processing

Some reports may have complex rules which translates in long loading times. If we
generate them directly while loading the view the page may time out. In order to
avoid this, we will generate the reports in a background process.

When a report is loaded through the browser, a new job is generated with infor-
mation about the time limits. After that, using AJAX, the server will be polled, being
shown to the user as soon as the data gets loaded.

To not affect to API processing we will use Beanstalk "tube" feature: we may
insert the jobs in different queues called tubes. Then, we could have specific workers
listening to one or several of them using Q.watch(tube) configuration method.

We add a new tube called "reports" with multiple workers. This tube will be use
to process slow operations which does not have tight time restrictions: generating
reports, exporting installation lists to csv or xml, etc. This way, background processing
related with the API will not be affected since different workers will take care of
them.

This method is not perfect though. If the report is taking a long time the user
may think than the server has failed and he may try refreshing the page several times.
The result is that the queue may be full with the same long processing report cloned
jobs. Being possible to affect the processing of any other unrelated reports or doing
exports. For that reason, we have to improve it by avoiding repeated jobs and not
processing any already loaded sections.

Iterative Loading and caching slots

As we have said before, complex reports may take some time to be processed. Fur-
thermore, we don’t have any way to avoid generating the same reports multiple times.
This may be resolved by inserting a cache system. This new element should take into
account how the reports are shown and how data is being changed.

In our case, the information is being inserted chronologically. After some time,
data become constant, being only modified in those cases where we are loosing
resolution of property history. Usually, when an user shows a chart old points will
get the same result being only necessary to load certain sections. This specially true
if we are preloading the reports, having to load the most recent data only.

How could we track those sections to be loaded? As we described in section 5.1.2,
we included the ability to track time slot statuses in ReportsGeneration::Datasets.
Our cache will use this feature, following this process while loading the information
at source level:

• Datasets element will be stored in Memcache, being imported and exported
in Hash format.

5.2 Network Service Reports system 80

• Each time the source of data is used it will try to import the existent Datasets,
else a new one will be generated with appropriate resolution.

• Resolution is updated to force loosing resolution in case.

• All missing time slots which are going to be represented are added in NO_LOADED
state.

• Cut anything outside of report scope.

• Get list of NO_LOADED slots.

• Generate a new job with that list.

• Return Datasets object with the slots already loaded.

Aswe can see, ReportDataSourcewill return a Datasets object to ReportElement
with already loaded information, generating any jobs necessary to load pending data.
Then, ReportElement is able to use any generators to represent that information.

On client side, the webpage should be able to detect the processing status. If any
report element is not fully loaded, a javascript timer is started. Each time it ends, an
AJAX request will be sent to the server. It will answer sending the code to update
the ReportElement in case new data is available. When the element is fully loaded,
the code received should stop the timer. Using this approach the user is able to see
loading status.

To identify which is the exact request an unique key is generated. That key will
be sent to the server as parameter with all the AJAX requests. It will also used as key
in Memcache to store the state of loading process. Below can be seen how the state
value is modified by both client and workers:

• On each client request:

– Initial request & pending slots→ STATE = 1

– STATE > LIMIT→ STATE = 1 & regenerate jobs
– STATE == NEW_DATA→ STATE = 1

– STATE == FINISHED→ delete STATE
– else→ STATE += 1

• Each time worker loads a chunk of data:

– STATE has expired→ remove job
– Pending slots to load→ STATE = NEW_DATA

– else→ STATE = FINISHED

5.2 Network Service Reports system 81

When a new request is performed, state is set to 1, being incremented each time
the client polls the server and the worker has not loaded new data. If it reaches certain
limit we suppose that the worker has had some kind of problem and regenerate the
jobs restarting the state to 1. Each time a worker processes a chunk of information
it will set the status to a know code called NEW_DATA if it is not finished yet or, to
FINISHED if that’s the case.

When the client polls the server and it is at NEW_DATA state the chart is updated
and state is set to 1 again. However, if it is at FINISHED state the chart will be loaded,
the poll stopped and state removed.

As we have said, pending slots are processed by workers. That is, a new job with the
list of time slots pending to be processed is generated. In order to prevent processing
multiple times the same slots, we introduce a shared array of pending slots which
will be stored in Memcache.

Each worker will behave as follows:

• Get the job from the queue.

• Look for the affected source.

• Take a number of slots from the job which are present in shared list.

• Update shared list.

• Get their data and update source element:

– Source cache gets loaded adding new time section
– Do the database query
– Update real user access time
– Export the source to cache

• Update loading state.

• Generate a new job with the rest of the slots, removing those which are no
longer in shared list.

This iterative loading allows us to provide feedback to the user about the progress.
It also avoids long queries keeping workers busy: if there are multiple elements to
be loaded all of them are progressing simultaneously. Additionally, it provides the
ability to stop loading them in case they are no longer needed. For instance, user may
stop it, change the time boundaries or close the page, not being longer necessary to
show the result.

Even though we are using a cache to avoid reprocessing already shown sections, it is
important to assure that we reload the values which are not definitive. In our case the

5.2 Network Service Reports system 82

information is inserted chronologically, which means that the most recent slots are
the ones that may vary.

We should set a reasonable expiration time for those slots so they are reloaded in
the near future. In order to do so, we store the time when it was loaded. If current time
is greater than a margin those final slots will be removed and reprocessed, storing
the new time as the new loading time. Expiration time should be set according to the
resolution being at least 1.5 ·SlotTime.

Memcached Collisions

We use Memcached for loading state and shared slots variables because it provides
shared storage between the different processes: Rails mongrels and Merb workers.
Using this shared space may cause collision problems which should be taken into
account. SET and DELETE are not atomic operations.

However, we may use ADD which is atomic to define locks which will prevent
multiple processes collisions while modifying other entries with SET, DELETE. The
idea consists in storing a new key: "lock::{key}" which existence means that a
process has taken control over the entry {key} in Memcache.

If two processes run ADD simultaneously only one will receive "STORED\r\n"
message. We may add a couple of methods to MemCache class as follows:

def get_lock key, options={}
opt = {: release_time => 10, :wait_time => 0.25, : wait_limit => 5}.merge(options)
waiting = 0
while add("lock ::#{key}", true , opt [: release_time]) != "STORED\r\n"
sleep (opt [: wait_time])
waiting += opt [: wait_time]
return nil if waiting > opt [: wait_limit]

end
true

end

def remove_lock key
delete ("lock ::#{key}")

end

Each time a shared key is going to be modified, a call to get_lock should be
made. The lock may have an expiration time avoiding orphan lock keys if the process
got killed for some reason. Also, we may configure how many times should retry
getting the lock and which interval to use. As soon as it is possible remove_lock
should be called to free the key.

Cache Preloading

The number of users in Network Service frontend is reduced. For that reason, it is
important to have a way to speed up the process that is not based on "the first request
generates the cache and the following ones are faster". We are going to simulate that
first user by a cron task which refresh the last data in the reports. That way, when a
user comes to the server, he can see information faster.

5.3 Views Generation 83

Since the user may be using any combination of filters, we can’t cache all possible
reports. Instead of doing so, we restrict the operation to the sources which are being
used. Each time a real user gets a report, we update a time stamp in the related source.
The information is preloaded unless that time stamp is older than a certain limit. In
that case, all associated cache is removed.

During the preloading, old cached points get removed unless the report has been
recently used. Basically, we limit the total number of points stored in cache. This is
useful to prevent it from growing indefinitely.

In order to have full access to all the cached information, a new element is defined
in Memcache space. It will store the list of keys that contain report information.
Following this approach, we are able to use the vector to easily detect all the sources
that may be preloaded. It also provides the ability to remove all cached information
related to reports easily, removing the keys contained in it. It is not necessary to store
that vector in a persistent database since losing the information stored in Memcache
would mean to lose all the described cache as well.

Views Generation

In this section we are going to describe how the reports are included as part of Network
Service interface. As we described when we started talking about the reports, we
will have three kinds of report:

• Number of Installations: how much people is using the application.

• Notification Reach: how much people received a notification.

• Property type evolution: how is a property changing.

Chart generation

We decide to use Plotr graphic library as the default chart generation. Between the
advantages we may list the following ones:

• Since it is based on Javascript, it will reduce the load in the server - no image
generation is needed at server side.

• No additional software required. Javascript is fully supported by default in
most of the browsers.

• Better user interaction.

Each time a chart is rendered a set of controls will be added to allow the user
vary the information shown:

5.3 Views Generation 84

• let you move to the previous or next values in time.

• allows you to choose the time interval to be shown.

• changes the chart type (line, area, bars, etc.).

• switches between the total number or accumulated values view to
changes or new entries view.

• increases or decreases resolution

When we are talking about showing accumulated or new values, we are referring
to alter the view between absolute values or the increments over time. In other words,
if we are representing the number of users we may get the total number of users or
how many new users do we have for each day

While the chart is being processed, a loading message will appear instead of the
controls. Next to that text, a stop button allows to cancel the operation and switch to
the control list so the user may vary the conditions.

Number of Installations

A really important information from ISVs perspective is the number of users they have
and how it is changing over time. We include a new main section called "Reports"
which objective is to provide that information.

Initially, only a report with the number of installations by product version. To
simplify the process of adding new reports, we implement a default template that
allows the user to define new reports by only choosing the property to use to group
the users by. In other words, the number of users will be presented by the different
values contained in that property. For instance, we may get the statistics by country
or by operating system.

This template includes a report with two report elements. The first one shows a
pie chart with the latest values. The second element represents the evolution in the
number of users in the last 30 days. In order to get more exact information, a table
with the all current values is included next to the pie chart.

When entering the reports section a list with all the defined reports is shown.
Report elements are shown using a smaller size. This view provides a general
overview about what is going on. You can see how it looks like at figure 5.5.

Each report has also its own page accessible using a menu which appear in main
view. The main difference is that report elements are shown in greater detail. An
example can be seen on figure 5.6.

Furthermore, all defined reports can be applied to any specific group of users
defined as installation filters or, as a combination of them (using OR, AND and

5.3 Views Generation 85

Figure 5.5 Reports: number of users, main view..

NAND rules). In order to do so, we apply the same form helpers that we used to
search installations described in section 4.2.2.8. For example, we can get the number
of installations by operating system on a specific country.

By default both testing and active installations are not taken into account. However,
we also include the possibility to count them in the statistics by selecting their
associated checkboxes in customization form.

Notification Reports

A similar approach to main reports section is followed. We also define a template
which includes both latest and evolution over time elements. Installation filters can
be also applied and active and testing installations may be taken into account.

In this case, the main view is just the total number of installations that have
received the notification over time and a small table with information about the status.
As you can see in figure 5.7, it includes the number of is installations that have been
and are pending to be notified. Those numbers take into account the versions and
filters that were configured during notification definition.

Other specific reports will have a similar view to the one used for number of
installations.

5.3 Views Generation 86

Figure 5.6 Reports: number of users, detailed view..

Figure 5.7 Reports: notification reach, main report..

5.3 Views Generation 87

Property value evolution

Another important aspect is to be able not only to check current status for a specific
installation but also check the evolution over the time. This is particularly useful to
track the end-user machine behaviour (memory, cpu, disk usage).

In this case, we show a report element which shows the evolution over time of a
group of properties. We also include a table with the latest received values and latest
contact time.

We show groups of properties instead of separated charts for each one because it
is more useful to represent the properties related to the specific resources together.
That way, we can have a chart showing memory stats together as we can see in figure
5.8. Similar charts may be added for disk and cpu usage or other properties.

Figure 5.8 Reports: property value evolution..

In order to clearly show empty regions, we have extended Plotr library to make
it able to paint grey regions. We use that ability to mark periods of time without
information, where installation has not contacted the server, to warn the user about
the fact that the value has been guessed according to adjacent points.

While using different resolutions the aggregations used will be the ones configured
in property types.

Conclusion

In general, both the present project and the global Network Service solution, have
been implemented and put into production successfully. Achieving all the goals that
we described in the initial chapters of this document. Which we could resume as:

- Gathering, storage and analysis of real end-user based on custom properties.
- Property-based and controlled percentage messages and updates notifications. -
Reusable data filtering and graphics and reports generation.

The project has also been really interesting. For example, evolving the storage
architecture, as it was required to apply advanced indexing structures and to improve
the queries and the background data processing, trying to reach an acceptable perfor-
mance without moving away of the SQL technologies. As well as discovering Ruby,
Rails and the Merb frameworks, which have demonstrated how powerful they are
for implementing fast evolving projects without a big team of developers behind the
implementation (In comparison of other strict languages as Java).

Although some of the newer technologies available nowadays, will certainly
help evolve the system into a more robust and scalable solution (i.e. applying new
NoSQL and big data technologies), the system has been deployed and maintained
in production with the described architecture successfully, processing hundreds of
millions of property events without the need of any mayor redesign.

On the other hand, the decision of adding the complexity of including both Rails
and Merb frameworks (with the automated scripts we added to avoid supporting two
different code bases), probed to be correct, as we were able to take advantage of both
the Rails Web extensions and the powerful modularity of Merb for the background
processing. As it also demonstrates the fact that both frameworks themselves decided
to join their code bases in the more recent Rails versions to put these advantages
together.

About the project organization, the SCRUM methodology proved to be helpful
in order to move fast and help focusing in the implementation of all the features.
However, it required some time to adapt the rules to our specific needs, evolving
the initial method philosophy to the reality of the team in each moment. SCRUM

88

89

helped this evolution thanks to the applied retrospectives and continuous incremental
analysis of itself.

In other words, this project has been really useful internally and externally to the
company involved in it, BitRock S.L, and its clients through a productized application.
As well as a good starting point to get real world knowledge about SQL databases in
production environments and helping introducing myself in the Ruby language and
frameworks.

I would like to thank again BitRock S.L. for the opportunity of being involved in
this project and allowing me to grow as a professional.

Bibliography

[1] Sam Ruby, Dave Thomas, David Heinemeier Hansson, Agile Web Development
with Rails. The Pragmatic Bookshelf, 3rd edition.

[2] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy D. Zawodny, Arjen
Lentz and Derek J. Balling, High Performance MySQL. O’Reilly, 2nd Edition.

[3] Dave Thomas, Andrew Hunt, Programming Ruby: The Pragmatic Programmers’
Guide. Addison-Wesley Professional.

[4] David Flanagan, Yukihiro Matsumoto, Why The Lucky Stiff, The Ruby Program-
ming Language. O’Reilly.

[5] Russ Olsen, Design Patterns in Ruby. Addison-Wesley Professional Ruby Series.

[6] Chad Fowler, Rails Recipes (Pragmatic Programmers). Pragmatic Bookshelf.

[7] Foy Savas, The Merb Way. Addison-Wesley Professional Ruby Series.

[8] Aaron Farnham, Brian W. Smith, Ben Burket,Merb: What You Need To Know.
Apress.

[9] Matt Pelletier, Zed Shaw, Mongrel: Serving, Deploying, and Extending Your
Ruby Applications. Pearson Education.

[10] Ken Schwaber, Agile Project Management with Scrum. Microsoft Press.

[11] Rahul Sharma, Nginx High Performance. Packt Publishing.

[12] Leonard Richardson, Sam Ruby, RESTful Web Services. O’Reilly.

[13] David Chelimsky, Dan North, Aslak Hellesoy, Dave Astels, Bryan Helmkamp,
Zach Dennis, Jacquelyn Carter, The RSpec Book. Pragmatic Bookshelf.

[14] Jamis Buck, Aaron Huslage, Beyond Rails with Capistrano: Managing Produc-
tion Systems with Ruby, Python, Perl and More. Addison Wesley.

90

Network Service User Manual

91

Contents

1 General Definitions 1
1.1 General Resources . 1
1.2 Active, Registered and Testing Installations . 1
1.3 Installation Filter / Installation Group . 1
1.4 Notifications, Messages and Updates . 1
1.5 Default Message/Update . 1

2 How to create a . . . 2
2.1 New Product . 2
2.2 New Product Version . 2
2.3 New Message . 3
2.4 New Update . 3
2.5 New Default Message or Update . 4
2.6 New Alarm . 4
2.7 New Client . 5
2.8 New Installation Filter . 5
2.9 Export a File With Installation Data . 6

3 How to view data on . . . 7
3.1 Number Of Installations . 7
3.2 Installation Status and Monitoring Properties . 7
3.3 Delivery of Specific Update or Message Notification . 7

4 How to configure . . . 8
4.1 My Account Properties . 8
4.2 Installation Filters/Groups . 8
4.3 Alarm Definitions . 8
4.4 Testing or Registered Installations . 8

5 Section Descriptions 9
5.1 General View . 9
5.2 General Controls . 9
5.3 Start Page . 10
5.4 Products . 10

5.4.1 Main view . 10
5.4.2 Show Product And Manage Versions . 11
5.4.3 New Product . 11
5.4.4 Edit Product . 12

5.5 Messages . 12
5.5.1 Main view . 13
5.5.2 Show Message . 13
5.5.3 New Message . 13
5.5.4 Edit Message . 15
5.5.5 Message Reports . 16

5.6 Updates . 17
5.6.1 Main view . 17
5.6.2 Show Update . 18
5.6.3 New Update . 18
5.6.4 Edit Update . 21
5.6.5 Update Reports . 22

5.7 Reports . 23
5.7.1 Main View . 23
5.7.2 Detailed Report . 24
5.7.3 Gantt . 25

ii

CONTENTS

5.8 Installations . 26
5.8.1 Export Installations to CSV or XLS . 27
5.8.2 Installation Dashboard . 27
5.8.3 Installation Monitoring . 29
5.8.4 Installation Alarms And Events . 30
5.8.5 Manage Filters . 30

5.8.5.1 Main View . 31
5.8.5.2 Special Filters . 31
5.8.5.3 New / Edit Installation Filter . 31

5.8.6 Mass Tagging . 32
5.8.7 Tag List . 33
5.8.8 Tag Cloud . 33

5.9 Clients . 33
5.9.1 Main view . 33
5.9.2 Show Client Details . 34
5.9.3 New Client . 34
5.9.4 Import Clients List . 35
5.9.5 Edit Client . 35

5.10 Alarms . 35
5.10.1 Show Alarm . 36
5.10.2 Alarms Definitions . 36

5.10.2.1 Main View . 36
5.10.2.2 Show Alarm Definition . 36
5.10.2.3 New / Edit Alarm Definition . 37

5.11 Administration . 37
5.11.1 My account . 38

iii

Chapter 1

General Definitions

1.1 General Resources

Basic resources are Products, Versions and Installations.
Product identifies the application.
Version identifies a specific application release.
Installation represents an end user which has succesfully performed the application setup.

1.2 Active, Registered and Testing Installations

They define general groups of installations which are used throughout the application. Their definitions
can be seen in Installations → Manage Filters → Special Filters.

Active installations: Installations which has contacted the server in the last 30 days. Exact definition
can be seen in "Active Installations" special filter. By default, all listings and reports take only this
installations into account.

Registered installations: They are the ones which passes the rule defined by the user in the special
filter "Registered Installations". It could be used to distinguish between free users and those which owns
a license.

Testing installations: This group is used to filter out those installations which are generated during
application tests. They will not be shown in the lists or reports. It’s defined as a special filter called "Test
Installations". For example, it could filter out those installations comming from certain IPs.

1.3 Installation Filter / Installation Group

We call installation groups to those groups of intallations which passes a serie of rules, the rules are
stored inside an object which we call installation filter and it can take into account any received property
or installation status field.

Groups are useful to perform operations to specific subsets of users (like sending messages or up-
dates) or to get reports based on them.

To manage the defined filters you should go to Installations → Manage Filters

1.4 Notifications, Messages and Updates

We call Notifications to both messages and updates that are sent to the user.
Messages are used to give information about the product.
Updates are used to notify the user about new releases or upgrades.

1.5 Default Message/Update

This is only used in very specific case in which the application only accepts one simple notification. In
that case, Default Message/Update is the one that will be sent to end users. Only one Message or Update
per product can be defined as default.

1

Chapter 2

How to create a . . .

2.1 New Product

1. Go to the Products section

2. Select New Product

3. Fill in all required fields, which are denoted with an asterisk (*)

• You may use the Archived status instead of deleting a product - all product data will be kept
on the server

• Choose Default message - it will be sent to your basic tier users.

4. Click on Create to finish

NOTE

This feature is currently only available to Network Service administrators.

2.2 New Product Version

1. Select the product in the Products section or from the Start Page

2. Select Product Versions and click on the New button

3. Fill in all required fields, which are denoted with an asterisk (*)

• Product GUID is the unique ID used to identify your product version. You should use the
same value in your application configuration to let your users properly connect to Network
Service Server.

4. Click on Create to finish.

WARNING

Please do not change the Product GUID once the Product Version is in use and the first
end user installations are already created.

2

CHAPTER 2. HOW TO CREATE A . . . 2.3. NEW MESSAGE

2.3 New Message

1. Select the Messages tab

2. Click on New Message in the left menu

3. Fill in all notification fields:

a. Enter Title and Webpage

b. Click Next to continue creating the Update

c. Choose which versions of the product should receive that message

d. Select the installation groups that should receive the message. (You can manage those groups
called Installation Filters in Installations → Manage Filters)

e. Click Next to continue creating the Update

f. Select the Status. An Archived message will be saved on the system but is no longer active.
The Draft status enables you to enter messages to be sent at a future date into the system.
Messages are sent to the specified end users when they are set to Active.

g. Select the appropiate option in the Critical field. Critical messages will be denoted with an
exclamation point (!) when displayed to the end user.

h. Select the time period during which the message should be active and sent to your end users
by clicking on the calendar icons and selecting the appropiate start and finish dates.

4. Click on Create to finish

2.4 New Update

1. Select the Updates section

2. Click on New Update in the left menu

3. Fill in all notification fields:

a. Enter Title and Webpage

b. Click Next to continue creating the Update

c. Select which versions of your product hould receive the message

d. Select the installation groups that should receive the message. (You can manage those groups,
called Installation Filters, in Installations → Manage Filters)

e. Click Next to continue creating the Update

f. Select the Status. An Archived update will be saved on the system but is no longer active. The
Draft status enables you to enter updates to be sent at a future date into the system. Updates
are sent to the specified end users when they are set to Active.

g. Setup the critical field. Critical updates will be denoted with an excalamation point (!) when
displated to the end user.

h. Select the time period during which the message should be active and sent to your end users
by clicking on the calendar icons and selecting the appropriate start and finish dates.

i. Click Next to continue creating the Update

4. Fill in all Update fields: the URL to the file, the type of file, MD5, instructions to perform the update
and other information

5. Click on Create to finish

3

CHAPTER 2. HOW TO CREATE A . . . 2.5. NEW DEFAULT MESSAGE OR UPDATE

2.5 New Default Message or Update

1. Create a new update or message as described above

2. Select the product in Products section or on the Start Page

3. Click on the edit button

4. Use the Default Message selector to choose the message / update you want to send.

5. Click the Save button to finish

NOTE

The default message / update notification will be sent to your basic tier users. It will be the
same notification for all versions inside a product. If you want the default message to only
be delivered to certain types of users, you can specify the user group by applying one or
more filters in the destinations on the update or message destination page. To learn how
to create a new filter, see the "How to Create New Installation Filter" section.

2.6 New Alarm

1. Go to the Alarms section

2. Choose Alarm Definitions in left menu

3. Click on New

4. Fill in all required fields, which are denoted with an asterisk (*)

• The alarm notification will be sent via email if you check the option Do you want to notify?. It
will be sent to the address that has been setup in the Main Settings as Contact Mail Address -
only administrators may change this email address.

• The Priority drop down menu allows you to select a number from 1 to 10, with 1 being the
highest priority and 10 being the lowest.

• Alarm definition is based on specific group of installations which is identified by the In-
stallation Filter you need to choose. Use Manage Filters in the Installations section to modify
Installation Filters.

• You can add different Alarm Rules. The rule may be based on numeric or string comparisons
or you can compare event names.

5. Click on Create to finish

For example, let’s say we want to raise an alarm for all those installations of our application with the
number of configured users greater than 10. We want to take into account only Windows installations.
First we need to create installation filter to cover only Windows machines as it was explained in section
"How to Create Installation Filter". Create the alarm definition and add this filter. Then choose numeric
comparison and set the number_of_users property to be greater than 10. Make the alarm definition active.
Right now, new alarm will be generated for each event triggered by the Windows installation with
number_of_users property greater than 10.

If we want to generate alarms also for all Windows installations with our special property status
including string "activated". This property may be longer and have other values as well that is why
we will use regular expressions. Create new alarm definition and add previously generated installation
filter. Choose string comparison for property status and use the following regiular expression: ".*acti-
vated.*". Right now, new alarm will be generated for all Windows installations with status property
including "activated" string.

4

CHAPTER 2. HOW TO CREATE A . . . 2.7. NEW CLIENT

The last example covers the case when we want to generate an alarm for all Windows installations
with Commercial support when they are checking for updates. First create proper installation filter with
operating system property equals "Windows" and your special property commercial_support equals 1.
Create alarm definition, use previously generated installation filter and choose events name comparison
with "get_updates" value.

2.7 New Client

You can import a list of clients using a CSV file or add clients individually.
Importing clients from a CSV file:

1. Prepare a CSV file with the list of clients you want to import in the following format: client_name,
binding_property_value, email, description

2. Go to the Clients section

3. Click on Import Clients in left menu

4. Select the Binding Property - it is used to bind clients and installations. For example, it may be
license_id, which should be available as an Installation Property for all your installations.

5. Select the CSV file.

6. Click the OK button

Creating a new client:

1. Go to the Clients section

2. Choose New Client in left menu

3. Fill in all client data

4. Select Binding Property

5. Add any binding rules (will be checked with the values of the binding property).

6. Click on Create to finish

2.8 New Installation Filter

1. Go to the Installations section

2. Choose Manage Filters in left menu

3. Click on New button

4. Insert a name for the filter

5. Using add filter selector, add the properties that will be used in rules

6. For each of them choose one or more property values

7. Click on Create to finish

5

CHAPTER 2. HOW TO CREATE A . . . 2.9. EXPORT A FILE WITH INSTALLATION . . .

2.9 Export a File With Installation Data

1. Go to the Installations section

2. If you only want to export data for certain types of installations, click on Advanced Search. Then,
specify which filters, tags, product versions or other variables that you want to filter the installa-
tions list by and click Apply.

3. Click on .CSV or .XSL to start exporting.

4. A new download link will appear on left menu in showing that the file is in a loading state.

5. When the checkbox appears, the file is ready to download. Click to download the file.

If desired installations are stored inside a filter, they can be also obtained through the links CSV and
XSL in Installations → Manage Filters.

6

Chapter 3

How to view data on . . .

3.1 Number Of Installations

Some basic information can be taken from the front page. We can get the total number, and the number
of active and registered installations for each product as well as a small chart with the number of active
installations over the time for each product version.

For more detailed information, we recommend that you use the Reports section. You will get to-
tal values and historical views ofthe number of installations by current product versions and different
property values there. The main page in the Reports section shows a general view of all reports. Using
left menu, you can select a specific report to view a larger version of the chart.

Installation Filters can be applied to the reports to view collected data on specific groups of users.

IMPORTANT

Inactive and testing installations are not included in the reports by default.

3.2 Installation Status and Monitoring Properties

If you are looking for a specific client, type the client’s name into the search box in the Installations section
to locate the client. Otherwise, you can use the Advanced Search functionality to search for users that
meet certain criteria. Once you have identified the installation you want to view, click on the Show
button to view the installation state and its properties, such as the operating system, version installed
and the time of the last contact with that installation. Depending on the functionality present in your
Network Service installation, you may also be able to view data such as disk space, swap, and other
system properties. To view a chart of how the installation’s environment has changed over time, click
on Monitoring Data in the left menu.

3.3 Delivery of Specific Update or Message Notification

To view delivery information for a specific update or message, click on the Report button next to the
update or message listing on the Start Page, Messages or Updates sections.

The default report shows the number of active installations reached over time and the number of:
Unique Installations Notified, Delivered Notifications, Installations to Notify and the Percentage of Installations
Notified. It is possible to run additional reports based on property values.

7

Chapter 4

How to configure . . .

4.1 My Account Properties

1. Go to Administration

2. Click on Edit

3. Change the parameters of your account

4. Save the changes

4.2 Installation Filters/Groups

1. Go to Installations

2. Choose Manage Filters in left menu

4.3 Alarm Definitions

1. Go to Alarms

2. Choose Alarm Definitions in left menu

3. The list of current alarm definitions will be shown

4.4 Testing or Registered Installations

1. Go to Installations

2. Choose Manage Filters → Special Filters

3. Click on Edit or Activate button in the Testing Installations or Registered Installations filter

4. Modify the rule as desired

8

Chapter 5

Section Descriptions

5.1 General View

The Network Service portal has common design for all sections. You can navigate through different
sections using top main menu. Clicking one of the main menu links, you will get customized left menu
including operations links specific for current section. There are three links in the top right corner: Main
account, which gives you access to your Settings, a Log out link, which lets you safely quit the Network
Service Portal, and Help, which links to this User Guide.

If you have more than one Product configured, you will see the Current Product selector on the top
right side just below the main menu. Select one of your products to filter all messages, reports and other
data by, or the All entry, which will display data for all products..

5.2 General Controls

Here is a list of buttons used throughout the Network Service and their function:

Controls used in any elements list

• allows you to edit an item.

• goes to detailed view of the element.

• removes the element.

• creates or activates an element.

• goes to the report page for the element.

• shows a calendar to allow you to select a date

Chart Controls

• let you move to the previous or next values in time.

• allows you to choose the time interval to be shown.

• changes the chart type.

• switches to total number / accumulated values view.

• switches to changes / new entries view.

• increases / decreases resolution

9

CHAPTER 5. SECTION DESCRIPTIONS 5.3. START PAGE

Others

• extend an element to show more details, transform a single option selector to a multi-
option selector

5.3 Start Page

The Start Page gives you general information about your products, notifications and updates sent and
number of installations:

• Current version and Release date

• Number of installations: total, active and registered

• Recent activity: latest updates and messages related with the product

• A small chart that shows the number of active installations over time by version

5.4 Products

In this section you can :

• Manage Products: Add new products, edit them, and remove them.

• Manage Versions: In subsection Show Product/Product Versions.

• Setup Default Notification: In subsection Edit Product.

5.4.1 Main view

The main view shows the list of products. Click on the icons on the right side of each product to view
additional product details, edit their properties, remove the product or view a report on the number of
installations.

10

CHAPTER 5. SECTION DESCRIPTIONS 5.4. PRODUCTS

5.4.2 Show Product And Manage Versions

Click on the product name or Show button to get to the screen below.

This screen shows a more detailed view of the product and lets you edit its versions using the Product
Versions tab. Inside that subsection, you can view a list of the different product versions and you can
add, edit and remove versions.

All versions have a GUID that is automatically generated by the application. That identifier is used
by the installations to contact Network Service.

5.4.3 New Product

Access this screen by clicking on the New Product link on left menu.

11

CHAPTER 5. SECTION DESCRIPTIONS 5.5. MESSAGES

At a minimum, you must setup a name and a unique key to generate the new product.
The default message will be sent to all users upon installation of your software and/or activation of

the Network Service. The same message will be shown for all versions of the product. If you want the
default message to only be delivered to certain types of users, you can specify the user group by applying
one or more filters in the destinations on the update or message destination page.

The status must be set to Active in order for messages to be sent to new product installations. The
"archive" function can be used to de-activate a message while preventing the loss of data.

5.4.4 Edit Product

From the Product page, click Edit button to make changes to a product. Then, you can modify the Default
Message, the status and other product-related properties.

5.5 Messages

This section allows you to manage the Messages that will be delivered to end users.

12

CHAPTER 5. SECTION DESCRIPTIONS 5.5. MESSAGES

5.5.1 Main view

Clicking on the icons to the right of each message to view message details, edit its properties, remove
the message or show related reports.

At the bottom, a timeline chart displays recent messages. To view past/future messages, use the
mouse to scroll to the left and right.

5.5.2 Show Message

To view details of a message, click on its title or the Show button.

5.5.3 New Message

To create a new message, click on the New Message link on left menu.
Follow these steps to generate a new message:

• Insert title, message contents and a webpage link to additional details

13

CHAPTER 5. SECTION DESCRIPTIONS 5.5. MESSAGES

• Choose which product versions and installation groups should receive this message

– Installations groups are defined in Installations → Manage Filters

• Insert status, duration and critical properties

– Critical will mark the message in client application as important if it is supported

14

CHAPTER 5. SECTION DESCRIPTIONS 5.5. MESSAGES

• After clicking on Create the message will be created

NOTE

Notification will be sent only if the status is set to active, the current time is between the
specified notification dates, the installation has one of the designated versions and meets
the criteria set by the installation filters.

5.5.4 Edit Message

Click Edit to get to the edit message screen.
It has two sections:

• Notification: In the notification section, you specify the message title, contents, duration, status
and other information.

15

CHAPTER 5. SECTION DESCRIPTIONS 5.5. MESSAGES

• Destination: The destination section allows you to specify which product versions and installation
groups should receive the message.

5.5.5 Message Reports

Reports on the uptake of messages can be viewed byclicking on the Report button or using the links in
left menu while viewing a message.

16

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

Message reports show you the uptake on a specific message. By default, the chart shows the number
of installations that have received the message over time. The table displays the number of active instal-
lations that have received the message, the percentage of active installations that number represents, the
number of current active installations that should receive the message and the total installation count
(including inactive).

The reports can be customized based on installation filters, product versions or can take inactive
installations into account. To customize the message reports, click on the "Customize >>" link. If addi-
tional filters based on property values have been defined, they will be available as links on left menu.

In this subsection you can get information about how is the message being delivered. By default
you’ll get the evolution over the time about the number of active installations that has received the mes-
sage and a table which represents: number of active installations notified, percentage of active installa-
tions, current active installations that could receive the message and total count (including inactive).

It is possible to obtain reports based on installation filters or take into account inactive installations
on the historical chart through "Customize >>" link in a similar way as it is done in Reports section.
If additional filters based on property values have been defined, they will be available as links on left
menu.

5.6 Updates

The Updates section allows you to define and manage the Updates that will be delivered to the final
users.

5.6.1 Main view

The main page shows a list of current product updates.

17

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

Click on the icons to the right of each update to view update details, edit its properties, delete the
update or show related reports.

At the bottom, a timeline chart displays recent messages. To view past/future messages, use the
mouse to scroll to the left and right.

5.6.2 Show Update

To view update details, click on the update’s title or on the Show button.

5.6.3 New Update

To create a new update, click on the "New Update" link on left menu.
Follow these steps to generate a new update:

• Insert notification details: provide the update title, content and a webpage link to additional infor-
mation.

18

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

• Choose which product versions and installation groups should receive the update

– Installations groups are defined in Installations → Manage Filters

• Insert the update status, duration and specify whether or not the update should be displayed as
“important”

– Important will mark the update in client application as important if it is supported

19

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

• Enter the update information: the URL to the file, the type of file, MD5, instructions to perform
the update and other information

• After clicking on create,the update will be generated

NOTE

Notification will be sent only if the status is set to active, the current time is between date
limits, the installation has one of the specified versions and the installation filter criteria
are passed.

20

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

5.6.4 Edit Update

Click on Edit to edit an update.
It has three sections:

• Notification: The notification tab allows you to specify properties including the update. title,
contents, duration, status and other information

• Destination: The destination tab allows you to specify which installations receive the update.

21

CHAPTER 5. SECTION DESCRIPTIONS 5.6. UPDATES

• Update: The update tab allows you to specify which product versions should receive the update,
as well as update information such as the URL to the file, the file type, the MD5 and other infor-
mation.

5.6.5 Update Reports

To access update reports, click on the report button or use the links on left menu while viewing the
update.

22

CHAPTER 5. SECTION DESCRIPTIONS 5.7. REPORTS

This section provides information on update delivery. By default, the chart shows the number of in-
stallations that have received the update over time. The table displays the number of active installations
that have received the update, the percentage of active installations that number represents, the number
of current active installations that should receive the message, and total installation count (including
inactive).

The reports can be customized based on installation filters, product versions or can take inactive
installations into account. To customize the message reports, click on the "Customize >>" link. If addi-
tional filters based on property values have been defined, they will be available as links on left menu.

5.7 Reports

The reports section allows you to view detailed information about the end users of your product.

5.7.1 Main View

The main view shows the total number of installations by version and other collected property val-
uesover time.

The main page consists of a small pie chart, a table with total values and a chart that shows how the
property has changed over time.

23

CHAPTER 5. SECTION DESCRIPTIONS 5.7. REPORTS

You can also use the installation filters to restrict the reports to a specific group. To do so,click on
"Customize >>", choose the required filters and select whether each installation must meet all or just one
of the specified filters.

5.7.2 Detailed Report

To view detailed reports, use the links on the menu.

24

CHAPTER 5. SECTION DESCRIPTIONS 5.7. REPORTS

The same modifications, as in Main view, could be made through the "Customize >>" link.

5.7.3 Gantt

Click on the "Gantt Diagram" link on the left menu.

The Gantt chart shows information about messages, updates and the publish dates of product ver-

25

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

sions over the time. Use your mouse to scroll to the left and right to view past and future information.

5.8 Installations

The installations section allows you to view information about a specific installation.

The main view contains a full list of installations. You can search for specific installations using the
filters at the top of the page:

• Status: Allows you to specify whether you want to view registered or unregistered installations.

• Include Installations: Check this box if you want to view inactive or testing installations (by default
inactive and testing installations are not included in the list).

• Client Name and Installation GUID: wildcards * can be used in searches.

• Tags: select installations by selecting one or more of the tags.

• Product Version

• Installation Tier: it could be basic, pro and monitoring

• Installation Filters: usage of filters defined in Installations → Manage Filters

26

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

To view more detailed information regarding the specific installation, click on the host link or show
button. Basic details can be viewed by using the triangle button next to each entry in the list.

5.8.1 Export Installations to CSV or XLS

The list of installations can be exported in CSV or XLS formats. In order to export the data, click either
the CSV or XLS button below the list. After you click on the appropriate button, a new entry will
be shown on left menu, inside the "Exported Files" list. The file will first appear in a loading state
represented by a small, moving document icon. Once the file is generated, the icon will change to a
check mark. Click on the link that appears to download the file. The Exported Files list is shown in
throughtout the whole application, so you can perform other operations while exporting data.

5.8.2 Installation Dashboard

The installation dashboard is displayed whenever you are viewing the details on a specific installation.

27

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

This view provides the following information:

• Client’s name if it has been binded.

• Installation Tier: Monitoring Professional Basic

• Operating System:

• Product and Version

• Host and Country

• Any set of configured property values with small sparkline charts

• Number of unacknowledged Alarms and Events related with that installation

The information ondisk space, memory and swap usage will be shown only for installation with the
monitoring profile. In that case, you will also see a set of pie charts.

More system information can be seen by clicking more link.

In the Latest Properties tab you can view a complete list of all information received from the installa-
tion during last contact.

28

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

5.8.3 Installation Monitoring

From the Installation Dashboard, you can get additional information on monitored metrics if that is
enabled in your Network Service installation.

To view them,get it you should click Monitoring on left menu or on any of the configured properties
shown as sparklines in the Dashboard.

The monitoring screen shows a list of the latest values reported by the agent, as well as charts with
the historical values over time. Periods of time without received data are illustrated by grey areas.

29

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

5.8.4 Installation Alarms And Events

You can view a list of the latest alarms and events related to a specific installation by clicking on the
Alarms or Events tabs in the Installation Dashboard.

To acknowledge an alarm or the event, check the corresponding checkbox and click Acknowledge.
After alarms have been acknowledged, they will not be taken into account by the counters on the dash-
board.

5.8.5 Manage Filters

Click on Manage Filters in the left menu in the Installations section to manage your filters.
In this section, you can manage the installation filters, which define different groups of installations

based on property values. Filters can be used throughout the application to define which specific user
groups should receive messages and updates and to filter the report results.

30

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

5.8.5.1 Main View

The main view shows a list of current user defined installation filters.

Using the icons to the right of each entry, you can view additional details, edit their properties, or to
delete a filter. For each entry, the count of active installations which pass the filter is shown. Clicking on
it will display the complete list of those installations. .

It is also possible to export a filtered list of active installations directly into a .CSV or .XLS file using
the links in the active installations column. After clicking one of the links, a new entry is added to
"Exported Files" section on left menu in a loading state. Once the file has been generated, a link to the
file will appear in that section and for you to download.

5.8.5.2 Special Filters

Click on the "Special Filters" tag in the main view to arrive at the special filters tab.

On the special filters tab, you will see a list of predefined filters with programmed behaviors. If you
want to activate any of them, click on its activate icon and insert the desired rule in a similar way to any
other filter. After clicking on Create the filter will be active and you you’ll get information about the
number of active installations affected by it and the links to export them similar to the ones from the
user defined filters section.

5.8.5.3 New / Edit Installation Filter

To create an installation filter, click on New.

31

CHAPTER 5. SECTION DESCRIPTIONS 5.8. INSTALLATIONS

To create a new filter, complete the form by defining the rules that you want to apply for the filter.
Select one or more properties and one or more possible values for each of property for the rule logic.

To add another property, use the "add filter" selector. A new element will appear below with options
for that particular property.

The installation group will include all installations that meet the criteria that you have specified.

NOTE

Be careful when modifying filters because they affect not only reports, but also which
installations receives certain messages and updates.

5.8.6 Mass Tagging

The "Mass Tagging" feature allows you to apply multiple tags to a group of installations. To use the
feature, click on the Mass Tagging link in left menu inside the Installations.

Then, specify the list of tags to be assigned by typing a comma-separated list into the “Tags” field.
Then, click on browse to select the CSV file you want to import. The first column in the CSV file mustin-
clude the GUIDs of the installations that you want to tag.

32

CHAPTER 5. SECTION DESCRIPTIONS 5.9. CLIENTS

5.8.7 Tag List

Click on the "Tag List" link in left menu inside the Installations section to view a list of tags. From here,
you can rename or remove tags. You can also access the list of active installations for a certain tag export
them directly into a CSV or XLS file, similar to the Installation Filters section.

5.8.8 Tag Cloud

By clicking on Tag Cloud, you can view a cloud of all tags. The larger the text for a tag, the more active
installations the tag applies to. By clicking on the tag, you can view a list of active installations that the
tag has been applied to..

5.9 Clients

The Clients allows you to manage your clients and which installations are bound to them. You can also
view information regarding the number of installations and machines assigned to a specific client.

5.9.1 Main view

The main view shows a list of current clients and the number of installations (total and active) that are
assigned to each client.

The icons to the right of each entry allow you to view additional information, edit the client proper-
ties, or remove the client.

33

CHAPTER 5. SECTION DESCRIPTIONS 5.9. CLIENTS

5.9.2 Show Client Details

To view details on a specific client, click on the client name or on show.

On the Client Detail screen, you can view the number of installations and machines detected, as well
as how the installations distributed across those machines. To view details on a particular installation,
click on the host name..

5.9.3 New Client

To create a new client, use the "New Client" link on left menu. It allows you to create a new client and
assign it to one or more installations.

Select the binding property and add a list of rules to setup the installations of the new client. Use
the "add binding" or "remove" controls to add or delete those rules. If any of the rules are met, the

34

CHAPTER 5. SECTION DESCRIPTIONS 5.10. ALARMS

installation will be assigned to that client.

5.9.4 Import Clients List

Use the "Import Clients" link on left menu to import a client list.

To import the clients, select the binding property and provide a CSV file formatted as follows: client
name, binding property value, email, description.

5.9.5 Edit Client

Click edit to make changes to a client.
The form is similar to the one used to add new clients. It allows you to edit client properties and

which conditions must be met to attach an installation to the owned by current client.

5.10 Alarms

The Alarms section shows a completelist of alarms for all installations. Alarms can be filtered by priority,
product version, client name and installation groups. From this page, you can view, acknowledge and
deactivate alarms.

To access this section, use the Alarms tab in main menu.

35

CHAPTER 5. SECTION DESCRIPTIONS 5.10. ALARMS

5.10.1 Show Alarm

By clicking on an alarm, you can view the following details about a specific alarm:

• Alarm name

• Counter of number of checks done while alarm has been mantained as active

• Start and End times of the alarm condition

• Installation and Client information

NOTE

By default, inactive and testing installations are not included in the list.

5.10.2 Alarms Definitions

Use the "Alarm Definitions" link in the left menu in the Alarms section to manage defined Alarms..

5.10.2.1 Main View

The main view shows a list ofcurrently defined alarms and the controls to show, edit or remove them.

5.10.2.2 Show Alarm Definition

Clicking on “Show Alarm Definition”, you can view details on a specific alarm definition.

36

CHAPTER 5. SECTION DESCRIPTIONS 5.11. ADMINISTRATION

5.10.2.3 New / Edit Alarm Definition

Click on Edit to edit an alarm definition. To enter in a new alarm, click New at the bottom of the list. In
both cases the same form is used.

The alarm definition will be applied to a specific group of installations and the alarm will be created
automaticaly when the related rule is passed.

A new alarm will be created for a specific installation when the following conditions are satisfied:
the alarm definition is active, the installation belongs to the configured installation group and the rule
is passed. A rule is defined as a numeric or string comparison with any of the property values, or a
specific event name. The active status is configured using checkbox "Do you want to activate it?".

When alarms are triggered, an email notification can be sent. To trigger email notifications, check the
checkbox next to "Do you want to notify?" and insert the notification name, which will be used in the
mail subject.

5.11 Administration

The Administration section allows you to configure other aspects of the application.

37

CHAPTER 5. SECTION DESCRIPTIONS 5.11. ADMINISTRATION

5.11.1 My account

Access the "My account" by clicking on My Account at the top of the page or in the left menu inside the
Administration section.

The administration allows you to see and modify the information about your Network Service user
account.

38

	Introduction
	Network Service: general objectives
	Updates and Messages
	Marketing Tool
	Additional Services for End-users

	Project Scope
	Project Management: SCRUM

	Environment and Technologies
	Technologies
	Ruby
	Ruby on Rails
	MVC Architecture
	Components of Rails
	File Structure

	RSpec
	Nginx
	MySQL
	Capistrano
	God.rb
	RESTful Design

	Initial Data Structure

	Properties Storage System
	Receiving Metrics. Simple storage system
	Short API description
	Initial Properties Storage
	API Modifications

	Properties Storage with History
	Time Slots
	Empty Slots
	Losing Resolution
	Database Migration
	Processing Algorithms

	Improved Properties Storage
	Installation Tiers
	Merge Property Slots
	API Improvements
	Add Notifications and Monitoring Methods
	Avoid Sending Duplicated Notifications
	Add Background Processing
	Switch the API and Workers to Merb

	Performance Tuning
	Properties stored in separate tables
	Remove Empty Slots
	Indexes Configuration

	Storage Size Estimation

	Filtering Application Users
	Rails plugins structure
	Filter Models Plugin
	Objectives
	Implementation
	Model methods extension
	Fields configuration
	Filtering Rules Generation
	Cached rules
	WillPaginate Compatibility
	Filterable Model Extensions
	Filter Model Extensions
	View helpers

	Installation Filters
	Special filters
	Installation filters applied to notifications

	Reports Generation
	Reports generation plugin
	Conventions
	Datasets
	Graph Generation

	EventList

	Network Service Reports system
	General Structure
	Filtering
	Current statistics
	Evolution over time
	Notification reach
	Numeric property value evolution

	Background Processing
	Iterative Loading and caching slots
	Memcached Collisions

	Cache Preloading

	Views Generation
	Chart generation
	Number of Installations
	Notification Reports
	Property value evolution

	Conclusion
	Bibliography
	Network Service User Manual
	End/Last page
	First page

