CAPÍTULOS:

 0 Índice. 1 Introducción. 2 Objeto de estudio. 3 Situación energética actual. 4 Solución 1: energía solar térmica. 5 Solución 2: Caldera de biomasa. 6 Conclusiones. 8 Bibliografía. 	
PLANOS:	
P1: Zona Barp Laseris P2: Centro Energía Elyo P3: Esquema de principio producción frigorífica P4: Esquema de principio producción calor P5: Soluciones posibles de implantación P6: Plano de implantación de la solución adoptada P7: Modificaciones debidas a la solución adotada	
HOJAS DE CÁLCULO:	
 Presupuesto caldera 600 kW. Presupuesto caldera 700 kW. Presupuesto asfalto. P3-P4 caldera 600 kW. P3-P4 caldera 700 kW. 	
IMÁGENES:	
 1.1 Centro técnico de ELYO, Barp. 1.2 Producción frigorífica grupo frío refrigerado por agua. 1.3 Caldera de gas natural para la producción de agua caliente. 1.4 Conjunto de dos bombas paralelas para la distribución de agua en la red del grupo caliente. 5.1 Extractor de combustible en el fondo de silo. 5.2 Instalación de contenedores con extractor integrado y sistema de transferencia del combustible. 	Pág 3 Pág 5 Pág 5 Pág 49
TABLAS:	
 2.1 Contador de calor año 2006 para el edificio Pups. 3.1 Estudio Impactos Ambientales de la Producción de Electricidad. 3.2 Comparación del impacto ambiental de las diferentes formas de producir electricidad. 3.3 Producción en términos de energía primaria. 3.4 Nuevos objetivos para las energías renovables según el PER. 	. Pág12 Pág 13 Pág 15
de la Producción de Electricidad	Pág 13 Pág 15

4.1 Características técnicas de los distintos	
fabricantes de colectores al vacío	Pág 30
4.2 Potencia máxima posible según los distintos	C
fabricantes de colectores al vacío	Pág 31
5.1 Poder Calorífico Inferior a distintos valores de	C
humedad de algunos de los recursos de biomasa	
más habituales	Pág 36
5.2 Contenido energético de algunos recursos	C
de biomasa residual humeda	Pág 36
5.3 Capacidades energéticas según las distintas	_
tecnologías de producción de energía eléctrica	Pág 38
5.4 Consumo de electricidad de los distintos elementos	C
que constituyen la caldera de 600 kW	Pág 64
5.5 Calculo margen entre compra madera y venta calor	
5.6 Tiempo de retorno en años para caldera de 600 kW	C
con un funcionamiento de 6 mese por año	Pág 66
5.7 Tiempo de retorno en años para caldera de 600 kW	C
con un funcionamiento de 6 meses por año,	
con subvenciones de ADEME del 40%	Pág 67
5.8 Necesidades energéticas (MWh) para los distintos edificios	C
en los distintos períodos	Pág 68
5.9 Margen en verano con las nuevas estimaciones de pérdidas	
5.10 Cálculo producción útil y venta de calor	_
para el período de invierno	Pág 70
5.11 Cálculo margen caso 1	
5.12 Cálculo margen caso 2 para distintas potencias y	_
cálculo de la diferencia de compra de combustible	
entre los casos 1 y 2	Pág 71
5.13 Margen en verano con el nuevo precio del combustible	Pág 88
5.14 Cálculo margen caso 2 para distintas potencias y cálculo	_
de la diferencia de compra de combustible	
entre los casos 1 y 2 con el nuevo precio del combustible	Pág 89
5.15 Consumo de electricidad de los distintos elementos	
que constituyen la caldera de 700 kW	Pág 90
5.16 Tipo de retorno en años para caldera de 700 kW	
con un funcionamiento anual	Pág 92
5.17 Tiempo de retorno en años para caldera de 700 kW	
con un funcinamiento anual, con subvenciones	
de ADEME del 40%	Pág 93
5.18 Tiempo de retorno en años para caldera de 700 kW,	
potencia máxima de 750 kW y con un funcionamiento	
anual a partir del invierno de 2007	Pág 93
5.19 Tiempo de retorno en años para caldera de 700 kW,	-
potencia máxima de 750 kW y con un funcionamiento	
anual a partir del invierno de 2007,	
con subvenciones de ADEME del 40%	Pág 94

FIGURAS:

1.1 Esquema de instalación del grupo caliente y del grupo frío	Pág 2
4.1 Radiacción solar en Europa.	Pág 19
4.2 Elementos de un colector solar de placa plana	Pág 22
4.3 Elementos de un colector de tubos de vacío	Pág 23
4.4 Colector al vacío de circulación directa	
4.5 Colector CALODUC	
4.6 Colector Efecto Termos	
4.7 Colector al vacío "Schott"	Pág 26
4.8 Planta del edifico del centro técnico de energía ELYO	
4.9 Distancia entre colectores z en función	υ
de los parámetros l, α y β	Pág 32
5.1 Esquema del aprovechamiento energético y de las pérdidas	υ
de un sistema convencional de producción de electricidad	
y producción de energía térmica por vías separadas	Pág 38
5.2 Esquema del aprovechamiento energético y	= 11.8 = =
pérdida de un sistema de cogeneración	Pág 39
5.3 Esquema planta de combustión de biomasa	
5.4 Esquema de la caldera	
5.5 Esquema de la instalación. Caldera más silo de almacenamiento	
y elemento de transferencia del combustible	_
5.6 Dimensionado de la botella de equilibrio.	
5.7 Esquema de principio de la instalación. Regulación y válvulas	
5.8 Dimensiones de la caldera de biomasa de 600 kW	
5.9 Vista perspectiva de un transportador en tres partes (45°)	
5.10 Vista del dispositivo de introducción del combustible	
5.11Vista del conjunto hogar e intercambiador	Pág 76
5.12 Esquema del funcionamiento del separador de	
partículas multiciclón	
5.13 Chimenea con aislamiento y revestimiento.	Pág 79
5.14 Vista del conjunto de tornillos sin fin para	
recogida de cenizas y hollines	
5.15 Vista de la puerta del deshollinador (posición abierta)	
5.16 Principio de regulación aplicado	Pág 83
GRÁFICOS	
3.1 Producción energía primaria 2006.	Pág 17