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8. DAMPING           

 
 
Appart from stiffening the structure to increase the natural frequencies of the PCB 

above the excitation frequency, the other fundamental method to protect electronic 
equipment is to reduce the resonant amplitudes by damping. It works especially well 
when applied to a PCB with a low resonant frequency, below about 100 Hz. The choice 
of the elastic and damping properties of the isolation is done according to an 
optimisation analytical procedure, which varies with the existing casuistry. During the 
process the different parts involved in the vibration will be modelled as single degree of 
freedom systems, dynamically characterized by their natural frequency Ω and loss 
factor ζ. The main differences will stem from the number of systems considered, and in 
which will be applied the isolation system. For example, in traditional design the PCB 
will be included in an electronic box, with two clearly different systems (as in 
MULTYBODY SYSTEMS), but it is also possible that the the PCB is placed in direct 
contact with the source of vibration, so only one system can be isolated and studied. 

 
 

8.1 ONE DEGREE OF FREEDOM 
 
If only one system is considered, the model 

will be the one detailed in SINGLE DEGREE OF 
FREEDOM MODEL and shown in Fig. 8.1, with 
two degrees of freedom, which are y(t), the 
absolute motion of the base, and x1(t), the motion 
of the mass, in this case the PCB. 
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Fig. 8.1 Single of freedom system

 
It has already been stated that the transmissibility and the frequency in which 

maximum relative deflection takes place are respectively 
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Introducing the latter in the former it is possible to obtain the expression for the 

maximum deflection 
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This expression can be minimized by increasing the resonant frequency or by 

adjusting the loss factor to its optimum value, which in this case is 
2

1
1 =ξ . This will 

reduce the deformation in the PCB, which is the essential aim of the design process. As 
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a guide, the equation for maximum defformation given in RESTRICTION IN 
MAXIMUM DISPLACEMENT can be used as an upper limit. 

 
It is important to mention that, according to the simple theory used, those 

measures will not have the same effect on the transmissibility. In fact, the maximum 
value of the transmissibility will remain the same, and the main effect of increasing the 
resonant frequency will be to displace the transmissibility curve to the high frequency 
range. The reason is that the maximum value of (8–1) is independant of the resonant 
frequency of the system, although experimental testing shows that in the real world an 
increase in resonant frequency produces an increase in transmissibility.  

 
 

8.2 TWO SYSTEMS 
 
This is the approach traditionally followed for 

electronic structures. Usually the systems are the 
enclosure (electronic box) as the primary system and 
the PCB inside it is the secondary system. It would be 
possible also to model any other case when there is an 
intermediary element between the excitation and the 
PCB. In any case the model is as seen in Fig. 8.2, and 
besides the absolute defelctions X1(t) and X2(t), the 
relative deflections are Z1=X1-Y and Z2=X2-Y. As it is 
usual in electronic structures it is assumed that the mass 
of the secondary system (the PCB) is small enough to 
not affect the dynamics of the primary system. The 
system can then be studied as two single degree of 
freedom systems, each of them independant of the 
other, except for the fact that the output for the primary 
system is the input of the secondary system. 
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Fig. 8.2.- Two degrees of 

freedom system.

The traditional isolator design is based on the fact that the attenuation of vibration 
starts from the frequency Ω2 . The idea is then to decrease the resonant frequency of 
the primary system, while achieving the highest resonant frequency possible for the 
secondary system. This way the primary system will act as an isolator, reducing the 
excitation in the secondary system. At the same time, the distance between both 
resonance frequencies will assure that there is no coupled amplification. 

 
The only restriction is due to the maximum displacement of the primary system, 

which still is 
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It is clear that when the resonant frequency tends to zero the denominator of the 

expression does the same. In the real world this would not automatically imply that the 
displacement tends to infinite, as the numerator also goes to zero, since Ÿ = ω2 Y. The 
usual assumption of constant Ÿ is then only realistic when frequency is not near zero. 
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Still, a very low frequency will produce a very flexible system, with great 
displacements. It is necessary to decide a limit in the form 

 
∆≤1Z             ( 8-5 ) 

 
This condition should be based on experience, regulation reliability requierements 

and spatial restrictions on the design. It can be imposed to the expression in (8-4) and 
translated into a lower limit for the frequency 
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which is again minimized when 
2

1
1 =ξ . These values give the maximum 

attenuation over the widest possible frequency range. 
 
A new approach suggested in [11] pursues a reduction of the dynamic response of 

the internal elements, that is, the PCB, with the electronic box utilized as the first level 
of vibration isolation (mechanical low-pass filter). This new method minimizes the 
vibration transmitted to the critical internal components by imposing restraints on the 
peak deflections of the electronic device. Mathematically this is expresed as 
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max2Xmin ω&&   or          ( )
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Both magnitudes can be developed as seen in MULTYBODY SYSTEMS as 
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It has been implicitly assumed that Ÿ is constant. Again, this is only realistic when 
the frequency is far from zero, which is the usual situation. In other cases, or when the 
excitation is variable on frequency, a more careful analysis will be necessary. 

 
Since the loss factor of the PCB, ξ2, is expected to be very small, the equations for 

( )
max2X ω&&  and  ( )

max2Z ω  can be expressed as 
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and 
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( 8-13 ) 

 
However, since the calculations are surely to be done numerically and the 

simplification produces no noticeable difference in computational effort, it is suggested 
to use the complete expressions. 

 
Again, a ∆≤ω

max1 )(Z  restriction must be imposed, that again gives the 
expression of the resonant frequency 
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Introducing this expression in (8-12) and (8-13) eliminates Ω1 and create two 

expressions which can be numerically minimized, finding the optimal value of the loss 
factor ξ1. 

 
 

Example 
 
The optimum damping system for a PCB of Ω2 = 350 Hz and ξ2 = 0.015 will 

be calculated. The excitation is sinusoidal vibration of g20Y0 =&&  in frequency 
range 20 – 600 Hz. The PCB will be placed in an electronic box, whose dynamic 
properties must be optimized. 

 
The results provided by both the classic and new approach are 
 
Ω1,classic = 70.5 Hz     ξ1,classic = 0.707 
Ω1,new = 104.5 Hz     ξ1,new = 0.234 
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In Fig. 8.3 the response of both configurations is shown. The maximum 
deflection obtained with the new approach is a 62.58 % of the achieved with the 
classic method, which is a noticiable improvement. 
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Fig. 8.3.- Damping effect on relative defflection for traditional and new approach 

 
 
It is important to mention that when the resonant frequency or the damping ratio 

are specially high the highest response of the secondary system might not appear at Ω2, 
but in a previous frequency such as Ω1. In that case, when using the new approach it is 
necessary then to calculate the output of the system in all the frequency range for every 
value of ζ1, checking for which one the maximum deflection is minimum. 

 
Example 
 
Considering a PCB with Ω2 = 450 Hz and ξ2 = 0.025, it is necessary to 

consider the response of the system in all the frequency range. This way the 
deflection during the resonance of the secondary system is a little higher, but the 
maximum deflection is minimum, as can be seen in Fig 8.4. 
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Fig. 8.4.- Damping effect on relative defflection for traditional and new approach 
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The results provided by each method are the following 

 
Ω1,classic = 70.5 Hz     ξ1,classic = 0.707 
Ω1,new = 114.5 Hz     ξ1,new = 0.193 
Ω1,new modified = 96.9 Hz     ξ1,new modified = 0.275 
 

 
 
8.3 SUMMARY 

 
The following is a table trying to systematize the three different cases. In the case 

of the two systems analysis, it has been assumed that the primary is the electronic 
enclosure and the secondary the PCB. 

 

Method One system Two systems 
classic approach 

Two systems 
new approach 

System 1 PCB Electronic box Electronic box 
System 2 - PCB PCB 

Aim 
Maximize Ω1 

subjected to ∆≤1Z  
Optimum value of ξ1 

Minimize Ω1 
subjected to ∆≤1Z  

 

minimize 
max2 )(X ω&&  

minimize 
max2 )(Z ω  

subjected to ∆≤1Z  

Ω1 
Variable to 
maximize 2

11

0

12

Y

ξ−ζ∆

&&
 

2
11

0

12

Y

ξ−ζ∆

&&
 

Ω2 - 

Obtained experimentally 
or estimated as seen in 

Natural frequency of the 
PCB 

Obtained experimentally 
or estimated as seen in 

Natural frequency of the 
PCB 

ξ1 2
1  

2
1  Variable to obtain during 

the process 

ξ2 - 

Calculated by curve 
fitting with the 

transmissibility as seen in 
Single degree of freedom 

model 

Calculated by curve 
fitting with the 

transmissibility as seen in 
Single degree of freedom 

model 

∆ 

Obtained from 
RESTRICTION IN 

MAXIMUM 
DISPLACEMENT. 

Extrapolated from 
experience. Otherwise use 

a modification of the 
value obtained from 
RESTRICTION IN 

MAXIMUM 
DISPLACEMENT, since 

the condition was 
intended to be applied on 

the PCB 

Extrapolated from 
experience. Otherwise use 

a modification of the 
value obtained from 
RESTRICTION IN 

MAXIMUM 
DISPLACEMENT, since 

the condition was 
intended to be applied on 

the PCB 
Table 8-1.- Summary for the different cases of damping design. 
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8.4 DAMPING FOR RANDOM VIBRATION 
 
The former procedure can be easily adapted to random vibration enviroments, as 

explained in [12]. The excitation will be characterized by the power spectral density of 
the acceleration, Pÿ. In that case the PSD of the response of the primary and secondary 
systems can be expressed as 
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The root mean square values of the variables are 
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Now the aim of the process will be 
 

2xmin &&σ   or          
2zmin σ  

 
The restriction for the maximum displacement of the primary subsystem will be 

based on the three-band technique, so it can be expressed as 
 

( ) ∆≤σ=
2z2 3zmax                   ( 8-23 ) 

 
The rest of the process is identical to the used for sinusoidal vibration. There are 

different approximations to the previous expressions, based on the singe degree of 
freedom system, as seen in [12]. It is however recomended to use the transmissibility 
curves obtained from experimental testing, especially if more than one resonant 
frequency is located in the frequency range of the excitation. 

 
 

8.5 ELECTRONIC COMPONENTS AS A SYSTEM 
 
A special adaptation of this new approach can be used in the case where there is 

no electronic box or intermediary element by considering the PCB as the primary 
system and the electronic component as the secondary system. 

 
In this case the condition  
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should use a value at least as restrictive as the one from RESTRICTION IN 
MAXIMUM DISPLACEMENT. 

 
The main backdraw is that the resonant frequency of the electronic components is 

usually very high, in the rage of the thousands of hertzs. Experimental testing in the 
usual components show no clear resonance frequencies, and the only analytical methods 
developed are complex and not general [13]. 

 
Still, it might be the case of an extraordinarily big component, whose resonant 

frequency is lower than expected and can be clearly identified. In this case, due to the 
high value of the resonant frequency of the secondary system, it would be necessary to 
calculate the output in all the frequency range, as it was explained before. 

 
 

8.6 ISOLATION CHOICE 
 
The result of the process are the resonant frequency and loss factor desired for the 

system, that is, the PCB, which will be the guiding parameters in the search of the most 
suitable damping system from the ones commercially available. It is important to 
remark that ζ1 is not the loss factor expected in the suspension, since it also includes the 
own damping of the primary system before the damping system is settled. The same 
should be said about the resonant frequency. This can be done experimentally, although 
some initial analytical estimation would be necessary. 

 
In the model used during the process, the 

addition of the suspension will be modelled like a 
new set of spring and damping, but without mass, 
as seen in Fig. 8.5. It will allow to simply obtain 
the desired characteristics of the isolation. The 
spring rate is easy to obtain from a static analysis, 
since it is known that the resultant of two springs 
added in serie is 
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Fig. 8.5.- Mass and isolator model. 

where k is the desired spring constant in the global system, equals to 2mk Ω= , 
2

11 mk Ω=  is the spring constant of the PCB and k2 the spring constant of the isolation. 
Therefore 
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It is clear that theoretically it is only possible to reduce the resonant frequency of 
the system. 

 
The values obtained through the methods explained might be difficult to achieve 

in the practice, due to different restrictions, such as space limitations. Anyway, it is still 
interesting to have the optimum value as a reference. Also, the equations provided can 
be used to evaluate the different isolators technically available, in order to select the 
best of them. 
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