
Chapter 5

Statistical Analysis

In this chapter the statistical analysis of different measurement sets is carried out.
After the first inquiries about the short and long-term characteristics of the process
and about the standard deviation of the measurements, the probability density
function is compared to the normal distribution. At the end, an empirical fitting
curve is performed to enable the numerical calculation of probabilistic estimates.

5.1 Hypothesis on the process

The statistical analysis of the measurement data sets has been realized under the
following hypothesis:

1. During short time periods in which the number of pieces in the scale remains
still and in absence of induced ground vibrations, measurement reading is
considered as a stationary and homoscedastic statistical process. This means
that its variance and mean value are considered to be constant and indepen-
dent.

2. It is accepted that the variance can undergo slow variations due to a corre-
lation with the load on the scale or to the influence of the own vibrations of
the structure. This hypothesis will be reviewed later at the end of this thesis
and is based on the study of mechanical vibrations by Mohd Syazrulazwan
Mohd Zin [2].

3. After each event, the process experiments a short transient period [2] after
which it returns to be stationary around a new mean value and keeping its
variance.

In conclusion, the properties of the process will depend on the term of time in
which we are observing it. The difference between the short term and long term
characteristics (first and second hypothesis respectively) will lead us to a choice
about the kind of test to be used. As it will be shown in chapter 6, applying
the hypothesis of stationarity without taking into account the second hypothesis
will result in an inefficient test. This will be solved later in the same chapter by
introducing the variability of the variance into the main structure of the algorithm.
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5.2 Data selection and analysis of the standard devia-
tion

The statistical analysis of the measurements starts with the study of the standard
deviation of the process. Therefore 14706 measurements (9 minutes and 4 seconds)
were taken in the laboratory in different days and with different load levels of the
scale. Then, 29 sets of 51 samples corresponding to stationary situations were
selected.

First, the standard deviation is calculated for each set of measurements and
then their mean value µσ (using Fisher’s theorem) and their standard deviation
σσ. Results are shown in table 5.1. With these data, a 95% confidence interval for
σ can be calculated as follows:

I0.95(σ) = µσ ± 1.96σσ = 194.3683 ± 72.3522

= [122.0161 ... 266.7205] .

(5.1)

This interval extends ±37% over its central value, so the total relative size of
the range of possible values is near to a 74% of the mean value. This means a quite
large range of possible values (low accuracy) for σ, and will hinder the choosing of
adequate parameters for the test.

This absence of homogeneity of the measurements is on account of the already
mentioned long term changes on the value of σ, thus, it is supported by the second
hypothesis. A prove of this can be obtained by calculating the mean value and
standard deviation of si in a short term approach and comparing them with results
in (5.1). For example, considering just the first five data sets, that were taken the
same day and with similar load levels, we obtain:

µ̂σ = 1
N ⋅ c2(N)

5

∑
i=1

si = 176.9408

σ̂σ = std(si) = 23.9978 (5.2)

A 95% confidence interval for this case is: I0.95 = 176.9408 ± 47.0357. This
means a range that is smaller than a 54% of the mean value, which is much more
tight than the 74% in the long term study.

5.3 Comparison with the normal distribution

Looking for an easy way to make guesses and probability calculations, it is usual to
consider a normal distribution for the statistical process. Though, this approach
is not suitable for every real distribution and its applicability must be tested
previously. In this section the results and the procedure on applying the “χ2

Goodness of fit test” are shown.
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Table 5.1: Standard Deviation of selected measurement sets

set std(x) set std(x) set std(x) set std(x)

1 159.6377 9 139.2466 17 165.1315 25 210.9305
2 205.7948 10 155.1914 18 161.7695 26 250.6496
3 153.6584 11 187.6290 19 232.3890 27 197.0178
4 158.0584 12 188.3050 20 214.7668 28 193.5254
5 194.4694 13 248.4934 21 182.6947 29 206.3681
6 154.8957 14 162.2526 22 181.2536 30 -
7 140.0816 15 300.9723 23 170.3749 31 -
8 212.1855 16 199.6762 24 225.8919 32 -

Average value µσ = 194.3683g; Standard deviation σσ = 36.9144g

The “χ2 Goodness of fit test” (or just “χ2 test”) is one of the most extended
tests to check out the hypothesis of a certain distribution. Its fundamental is the
fact that the difference between the ideal probability density function (PDF) and
the real relative frequency of the data in any specific range value in the total range
of the measurements corresponds to a normal null-centered distribution (eq. (5.3)).
This allows us to establish bounds for the summation of the squared differences
within a determined significance level and to use these bounds to determine if the
data correspond to the tested ideal PDF.

χ2
n =

N

∑
i=1

(fid(x̂i) − f̂i)2

fid(x̂i) − f̂i = N(0,1) (5.3)

where x̂i is the normalized value of the center of each segment i and f̂i is the real
relative frequency of data into segment i.

One of the disadvantages of this test is its dependency on the chosen segments.
Anyway, it is almost guaranteed to be reliable under the following conditions:

1. The number of bins must be higher than 5.

2. Data must be segmented in such way that there are not empty bins.

In this thesis two different segmentations of 11 segments have been used and both
bring similar results.

At first, 1497 of the data used in the analysis of the standard deviation are
selected and distributed among 20 equal-spaced segments along the range of values
they take obtaining the histogram on figure 5.1.a. Since empty bins are obtained
with this partition, some of them at extremes are joined resulting in an 11 non-
equal-spaced bins histogram shown on figure 5.1.b.
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Figure 5.1: Two data histograms compared to the normal distribution

aFigure 5.1.a bFigure 5.1.b

aNull-centered segmentation using 23 equal-spaced bins

bSame bins are used, but the first 6 and last 8 bins are joined in this case

Figure 5.2: 11 equal-spaced bins data histogram

This has been repeated using directly 11 equal-spaced bins, as shown in fi-
gure 5.2. In both cases, the χ2 test (see table 5.2) is much higher than the lowest
limit. In conclusion, the χ2 test gives negative results.

In view of these results, it is decided to look for any empirical approximation
function to the probability density function, that allows the probability estimation
and the calculation of the test parameters.

5.4 Empirical adjustment of the probability density
function

The adjustment starts as well with the realization of the binned distribution of
data relative frequency. This time nineteen equal-spaced segments were chosen of
whom the one at the middle is null-centered. The resulting histogram comes out
to be quite symmetric, so it is concluded that small asymmetries are just the result
of the statistics while the real distribution is considered to be symmetric. Thus,
data are changed taking now for each bin the mean value between the original and
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Table 5.2: results of the χ2 test

Degrees of freedom χ2 χ2
(α)

α = 0.01
χ2
(α)

α = 0.05
H0

10 350.42 2.558 3.940 Rejected
10 (equal spaced segments) 45787.00 2.558 3.940 Rejected

Figure 5.3: Symmetric relative frequency distribution

the one of the respective symmetric bin, resulting in the completely symmetric
histogram on figure 5.3.

Like all probability density functions, the fitting curve we are looking for must
have an area equal to one under itself. Further more, the area must be equal to the
cumulative relative frequency at the end of the segment (right extreme). Thus, the
aim is to find at first a curve that steps over the points defined by the cumulative
summation of the histogram data. Then, by derivation, the probability density
function can be obtained.

Since derivatives increase high frequency errors, it is necessary to be careful
while selecting the fitting method for the cumulative summation. Concretely,
broken lines must be avoided since their derivatives would have discontinuities.
Two methods are proposed here that ensure smooth derivatives:

Low-Pass filter interpolation. The low-pass effect avoids high frequency com-
ponents and, therefore, broken lines.

Spline interpolation. This method enforces the slope of the curve to be the same
at both sides of the input points and, since it is made up of polynomials, its
derivative is always smooth.

Both of them produce a curve that fits the empirical data, and both allow
smooth derivatives. Graphical results are shown on figures 5.4 and 5.5. Though
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Figure 5.4: Low-pass filter fitting curve

Figure 5.5: Spline fitting curve

they are very similar, the use of splines presents some advantages, like the possibil-
ity of enforcing a null slope in the infinite1. Besides, interpolation and derivation
with the use of splines is much easier and faster once the coefficients are calculated.
Therefore, the spline method has been selected.

Figure 5.6 is presented here to justify that both results are very similar, so the
argued reasons to choose the spline method have importance enough. It shows the
difference between both probability distribution curves. This is not higher than
0.25% and, in the range of values X > 2, where it is going to be calculated, it is
even lower than 0.03%.

The coefficients used for the spline fitting curve are shown in table 5.3.

1Values X = −10 and X = 10 are considered to be high enough compared to the maximal values
and have been used to impose the boundary conditions
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Table 5.3: coefficients for the polynomials of the spline approximation

f(x) = a0x
3 + a1x

2 + a2x + a3

xi0 a0 a1 a2 a3 xif

-7.00 -0.0003 0.0003 0.0000 0.0000 -5.88
-5.88 0.0020 -0.0006 -0.0003 0.0000 -5.32
-5.32 -0.0043 0.0028 0.0010 0.0000 -4.76
-4.76 0.0073 -0.0043 0.0001 0.0007 -4.20
-4.20 -0.0056 0.0079 0.0022 0.0007 -3.64
-3.64 0.0018 -0.0016 0.0057 0.0034 -3.08
-3.08 0.0195 0.0015 0.0057 0.0064 -2.52
-2.52 -0.0338 0.0343 0.0258 0.0135 -1.96
-1.96 0.1079 -0.0224 0.0325 0.0328 -1.40
-1.40 -0.1166 0.1588 0.1088 0.0629 -0.84
-0.84 0.4241 -0.0371 0.1770 0.1531 -0.28
-0.28 -0.8040 0.6754 0.5344 0.3151 0.28
0.28 0.4241 -0.6754 0.5344 0.6849 0.84
0.84 -0.1166 0.0371 0.1770 0.8469 1.40
1.40 0.1079 -0.1588 0.1088 0.9371 1.96
1.96 -0.0338 0.0224 0.0325 0.9672 2.52
2.52 0.0195 -0.0343 0.0258 0.9865 3.08
3.08 0.0018 -0.0015 0.0057 0.9936 3.64
3.64 -0.0056 0.0016 0.0057 0.9966 4.20
4.20 0.0073 -0.0079 0.0022 0.9993 4.76
4.76 -0.0043 0.0043 0.0001 0.9993 5.32
5.32 0.0022 -0.0029 0.0009 1.0000 5.88
5.88 -0.0006 0.0008 - 0.0002 1.0000 6.44
6.44 0.0002 -0.0002 0.0001 1.0000 7.00
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Figure 5.6: Difference between both fitting methods
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