
Chapter 6

Test K̂σ. The Basic Algorithm

In this chapter, the double sigma test explained in section 4.4 is adapted to fulfill
the requirements of our counting scale. Then, the basic algorithm is presented and
the optimal values for its parameters are calculated depending on the variance of
the process. A solution is selected to satisfy the specifications for any value the
variance of the process can take. Finally, the test is proved with some data series
and results are shown.

6.1 Description of the algorithm

As it is said in section 4.4, the structure of the double sigma test could be suitable
for the scale we are dealing with. However, it is necessary to adapt it to satisfy the
problem specifications. More concretely, the test limits have to be changed from
2σ to a new value K to ensure the required significance level α = 0.01.

The basics of the test performance are identical to those of the double sigma
test and can be summarized in the next procedures list:

1. Estimation of the mean of the process µ̂ (i.e.: the initial average weight on
the scale). Therefor, a list of measurements have to be taken for a long time
period during which the weight on the scale should not change. Then the
counter is set to zero.

2. Calculation of the lower control limit (LCL) and the upper control limit
(UCL) depending on the chosen sample size N .

3. Reading of N weight values that make up the first sample. The sample is
loaded into a queue of size N .

4. Reading a new data xi and writing it into the queue.

5. Calculation of the new sample mean x̄i.

6. The new value is compared with the control limits:

� If x̄i > UCL, then the counter is increased in a unit and the estimated
process mean is increased in the weight of a unit: µ̂∗ = µ̂ + 147gr.
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� If x̄i < LCL, then the counter is decreased in a unit and the estimated
process mean is decreased in the weight of a unit: µ̂∗ = µ̂ − 147gr.

� Otherwise, µ̂ is corrected by filtering x̄i.

7. Values UCL and LCL are adapted to the new value of µ̂ keeping the same
width of the control area.

8. Return to step 4.

A flow diagram implementing this algorithm is presented in figure 6.1.

6.2 Correction of µ̂

On figure 6.1, the block named “Correction of µ̂” corresponds to the third case
at step 6 in the previous list. Its goal is to adapt the estimated value of the
process mean (µ̂) by filtering x̄i values. This is conceptually important due to the
special behavior counting scales must have. As is has been said in the introduction,
counting scales must register and count the leaps on the reading but not just the
total weight. So, as we constantly adapt µ̂ by filtering x̄i, we enable this variable
to take any value leaving predefined levels corresponding to undivided unitary-
weight-increments. As a consequence, slow or small increments of the weight will
not accumulate and they will not affect the units counting.

The filtering is implemented through a single real-pole:

µ̂i =K
z

z −Ax̄i; A ≤ 1.

For the filter to have unitary gain, we must set K = 1 −A. So we have:

µ̂i = (1 −A) z

z −Ax̄i (6.1)

That can be implemented through the incremental equation:

µ̂i = Aµ̂i−1 + (1 −A)x̄i (6.2)

The value of parameter A will determine the speed of the response. If the
response is too fast, weight increments might never be detected, since reference µ̂
would undergo the same variations than the sample mean. In order to select an
appropriate value for A, the response to the step has been studied. From (6.2),
and by considering: x̄i = µ̂0 +∆µ, ∀i; the response to the step can be calculated
as:

(x̄i − µ̂i) = (x̄i − µ̂i−1)A

(x̄i − µ̂i) = (x̄i − µ̂0)Ai = ∆µAi

(x̄i − µ̂i)
∆µ

= Ai. (6.3)
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As a criterion, it has been considered that, in the average delay time between
the moment when an unit falls in the scale and the moment when it is detected
(this delay time is a parameter calculated in this work), the assumed process mean
should evolve less than 1% of the weight increment. This means:

ATdelay ≥ 0.99

log10A ≥ log10 0.99
Tdelay

(6.4)

Where Tdelay is the already mentioned delay time expressed in number of samples.
Now, we present a result from chapter 7 in advance, just to show the value

this parameter finally takes: T̄delay ≈ 15samples. That leads to: A ≥ 0.9993. The
mostly used value in this work is:

A = 0.9995

6.3 Test parameters and their influence in the test re-
sponse

The condition concerning the significance level of the test can be expressed as:

P (LCL ≤ y ≤ UCL) ≥ α (6.5)

Where LCL and UCL are the lower and the upper control limit respectively, and
y = x̄n = 1

n ∑i=1..n xi.
In order to perform a general study that can easily be adapted to different

conditions, the normalized distribution is used and, therefore, normalized values
of UCL and LCL are now calculated. As it was said in section 5.4, the measure-
ments distribution is considered to be symmetric, so selected test limits are also
symmetric, resulting: UCL − µ = µ −LCL =K. Test limits can thus be expressed
through a single normalized value as:

K̂ = UCL−µ
σ

K̂ = µ−LCL
σ .

(6.6)

It is interesting to compare the new expression of the test limit, K = K̂σ, with the
value of the limits in the double sigma test, where K = 2σ. So,the double sigma
test can be considered a particular case of this test where K̂ = 2.

To find the appropriate value of K̂ for our test, expression (6.5) is written now
as:

P (−K̂ ≤ ŷ ≤ K̂) ≥ α (6.7)

Where: ŷ = y−µ
σy

.
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Figure 6.1: Flow diagram describing the algorithm for the test
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Letting D(0,1) denote the normalized empirical probability density function
(PDF) calculated in chapter 5, we have:

P (−K̂ ≤D(0,1) ≤ K̂) ≥ α (6.8)

Now, by numerically solving equation (6.8) with α = 0.01, we obtain:

K̂ = 3.3418

Once we set the value of K̂, the probability of type I errors is fixed to 1%,
but we still have to choose a value for the sample size N . This additional degree
of freedom is used to optimize the probability of type II errors (β). However,
since there is no specification for this parameter, it is necessary to find a practical
rule based on the common sense that tells us if the reached value of β is good
enough for the test. That is the reason that the duration of type II errors (i.e.,
the number of consecutive type II errors) is used in this thesis as criterion instead
of using directly the value of β.

The duration of type II errors (or the delay time of the test’s response) is
strongly related to β. The average value of the delay time1 corresponds to the mean
value of a PDF describing the first success of a sequence of Bernoulli experiments
with different success probability each time (Similar to a Pascale distribution).

Dependency of the delay time on N

Low values of N lead to high values of σ and, as a consequence, to wide control
areas. When the control band is too wide compared to the size of the step, it is
easy that new measurements are still inside the control area after a step on the
reading occurs. So low values of N , lead to high values of β and long delay times.

On the other hand, too high values of N produce a slow transition of the sample
mean to its new value, what also increases the delay time. Thus, there must be
an optimal value of N that minimizes the delay time of the test response.

Dependency of the delay time on σproc

In expresion (5.1) a confidence interval for the standard deviation of the process
was established. Now, a specific value must be chosen as well to be used as estima-
tion of σ. As the definition of K̂ shows, the higher the estimation of σ is, the wider
the control area results, and vice versa. So, if the value of the real standard devi-
ation is higher than the estimated one, the number of type I errors will increase,
thereby the estimated value must be high enough to respect the significance level
α. On the other hand, if the estimated value is much higher than the real value,
the control area will be too wide, leading to very long delay times.

1The delay time depending on σ, σ̃, µ and µ̃ is calculated in the function “expectedtimeII.m”
using “pascalemean.m” as well. Both are MATLAB functions. See appendix C.1
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Thus, choosing the average value of the confidence interval of σ as estimation
of the real value will lead to a test with a significance level α ≤ 0.01 just 50% of the
time (medium test). To ensure this significance level for a 97.5% of the cases, the
highest value of the confidence interval in (5.1) should be used rather as estimation
for σ (wide test).

Figure 6.2 shows the average delay time for different values of N when the
value of σ̃proc used to calculate K is set to the average value of the confidence
interval (i.e.: σ̃proc = 194.3683). In the same way, figure 6.3 shows the average
delay time using the highest value of the confidence interval: σ̃proc = 266.7210.
Curves in both figures have a minimum as predicted.

As figures 6.2 and 6.3 show, the expected delay time is higher when using the
wide test, but, any way, it is necessary to use it to ensure that the number of tipe
I errors remains under control. Furthermore, even when we use the highest value
of σ as estimation to calculate the test limits, it is possible that the real σ takes
the lower values. Thus, taking N = 10 (minimizer of the red curve on figure 6.3)
could lead to extremely long delay times if the real standard deviation takes low
values (green curve). As a consequence, a value N ≥ 23 must be used despite the
average delay time becomes higher for lower values of σ (red and blue lines).

In conclusion, the highest value of σ must be used to calculate K = K̂σ̃ and
the lowest must be considered to choose N.

Finally, the test parameters in our case are:

σ̃proc = 266.7210, N = 23

σ̃y = σ̃proc
√

N
= 55.6151

CL = µ̃y ± K̂σ̃y = µ̃y ± 185.8547

(6.9)

It must be noted that the delay time is actually a statistical variable and should be
described by a PDF, in spite of the fact that here it is treated within a deterministic
framework. This means that delay time values higher than those predicted on
figure 6.3 are actually expected to be obtained, while the predicted delay is just
the average. This deterministic approach is justified by the fact that there is no
specification for the maximal delay time for any significance level and by the fact
that, as long as we minimize the average value, the maximal delay time is also
minimized.

6.4 Results and discussion

The test has been implemented in function "simulationSampleMean.m" for MAT-
LAB2. The function has been tried for its validation with real data sets including
2See appendix C.2
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Figure 6.2: Delay Time vs. N with a medium test

Figure 6.3: Delay Time vs. N with a wide test
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some that were not used in the statistical analysis. Results can be seen on next
figures including a label with information on the average real standard deviation
of the process for each experiment. Figure 6.4 shows the response of the test when
the real standard deviation of the process is relatively close to the estimated value
σ̃proc used in (6.9) (σreal ≈ 219). Figure 6.5 shows the behavior of the test when
the real standard deviation is much lower than the mentioned σ̃proc.

Regardless of the good behavior of the test when the standard deviation of the
process is close to the estimation used in the algorithm, results are not adequate
for the rest of situations. Delay times, even when limited, are too long in many
occasions for low real standard deviation values. In conclusion, the test would be
suitable for this application if the range of possible standard deviation values were
not so wide. Next chapter introduces a modification to solve this problem trough
an on-line estimation of the standard deviation and adapting the test parameters
to this temporary value.
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Figure 6.4: Basic algorithm applied to a data set with high standard deviation.

Figure 6.5: Basic algorithm applied to a data set with low standard deviation
results in long delay times
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