
Appendix A

Evolution of the expected value
of S2(t) after a leap of the mean
value

Let us consider a stochastic process whose parameters µ and σ change suddenly in
a concrete moment. May Y =X(µ1, σ1) and Z =X(µ2, σ2) be the distributions of
the process before and after the leap respectively. The variable xi can be defined
by

xi =
⎧⎪⎪⎨⎪⎪⎩

yi, if i ⩽ a;
zi, if i > a.

(A.1)

where a is the last sample before the leap.

Let us consider a sample x = {x1, . . . , xn} of size N . The expression of his
mean value x̄ can be written as follows:

x̄ = a

N
ȳ + (N − a)

N
z̄ (A.2)

Parameter a indicates the number of elements xi in x corresponding to the the
first distribution Y . As a takes values from N to 0, the expected value of x̄ evolves
linearly from µ1 to µ2.

Since in this case we are not dealing with a stationary process, the ex-
pected value of the sample variance is no longer the variance of the population
(E(S2) ≠ σ2). The new expected value is to be calculated here depending on a as
a parameter. As known, the expression of the sample variance is

S2
a ≐

1
N − 1

N

∑
i=1

(xi − x̄)2 (A.3)
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Considering (A.1) we can write:

S2
a =

1
N − 1

(
a

∑
i=1

(yi − x̄)2 +
N

∑
i=a+1

(zi − x̄)2) (A.4)

Adding and deducting µ in both addends and expanding the squares:

a

∑
i=1

(yi − x̄)2 =
a

∑
i=1

((yi − µ1) − (x̄ − µ1))2 =

=
a

∑
i=1

((yi − µ1)2 + (x̄ − µ1)2) − 2
a

∑
i=1

((yi − µ1)(x̄ − µ1)) (A.5)

N

∑
i=a+1

(zi − x̄)2 =
N

∑
i=a+1

((zi − µ2) − (x̄ − µ2))2 =

=
N

∑
i=a+1

((zi − µ2)2 + (x̄ − µ2)2) − 2
N

∑
i=a+1

((zi − µ2)(x̄ − µ2)) (A.6)

In order to find the expected value of (A.4), the expected value of the terms
in (A.5) and (A.6) are calculated.
For equation (A.5):

E [(yi − µ1)2] = σ2
1 (A.7)

Equation (A.2) is used now for the expansion of the next two terms

E [(x̄ − µ1)2] =

= E
⎡⎢⎢⎢⎢⎣
( a
N

⋅ ȳ + (N − a)
N

⋅ z̄ − µ1)
2⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
( a
N

(ȳ − µ1) +
(N − a)
N

(z̄ − µ1))
2⎤⎥⎥⎥⎥⎦

=

= a2

N2
E [(ȳ − µ1)2] + (N − a)2

N2
E [(z̄ − µ1)2] + 2

a(N − a)
N2

E [(ȳ − µ1)(z̄ − µ1)] =

= a2

N2

σ2
1

a
+ (N − a)2

N2
E [((z̄ − µ2) + (µ2 − µ1))2] + 0 =

= a2

N2

σ2
1

a
+ (N − a)2

N2
E [(z̄ − µ2)2 + (µ2 − µ1)2 + 2(z̄ − µ2)(µ2 − µ1)] =

= a

N2
σ2

1 +
(N − a)2

N2
( σ2

2

(N − a) +∆µ2 + 0) =

= a

N2
σ2

1 +
(N − a)
N2

σ2
2 +

(N − a)2

N2
∆µ2 (A.8)
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E [
a

∑
i=1

((yi − µ1)(x̄ − µ1))] =

= a ⋅E [(ȳ − µ1)(x̄ − µ1)] = a ⋅E [(ȳ − µ1)(
a

N
(ȳ − µ1) +

(N − a)
N

(z̄ − µ1))] =

= a

N
E [a(ȳ − µ1)2 + (N − a)(ȳ − µ1)(z̄ − µ1)] =

a

N
(σ2

1 + 0) =

= a

N
σ2

1 (A.9)

Doing the same with terms on equation (A.6):

E [(zi − µ2)2] = σ2
2 (A.10)

E [(x̄ − µ2)2] = a

N2
σ2

1 +
(N − a)
N2

σ2
2 +

a

N2
∆µ2 (A.11)

E [
N

∑
i=a+1

((zi − µ2)(x̄ − µ2))] =
(N − a)
N

σ2
2 (A.12)

Considering equations (A.7), (A.8), (A.9), (A.10), (A.11) and (A.12) the expected
value of S2

a results:

E [S2
a] =

a

N
σ2

1 +
(N − a)
N

σ2
2 +

a(N − a)
N(N − 1)∆µ2 (A.13)
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