V.1. Propiedades básicas de los compactos obtenidos

V.1.1. Obtención experimental de la densidad de cada material

Método geométrico

De los compactos originales de cada tipo de material, ya consolidados, se han obtenido seis medidas geométricas, tanto de diámetro como de altura del cilindro, con el fin de obtener el volumen aproximado que encierra cada pieza con un pie de rey y se pesó cada muestra. El resultado promediado se muestra en la Tabla V - 1 para cada material.

Método geométrico	Diametro(cm)	Altura(cm)	Volumen(cm3)	Masa(g)
AL-AM-60min	1,19	1,35	1,49	3,94
AL-NH3-60min	1,17	1,34	1,43	3,89
AL-NH3-30min	1,17	1,35	1,44	3,91

Tabla V - 1 Resultados del método geométrico para medir la densidad experimental

Ahora, dividiendo la masa entre el volumen se obtiene la densidad experimental por el método geométrico. Los resultados se encuentran en la Tabla V - 2.

	Densidad (g/cm3)
AL-AM-60min	2,65
AL-NH3-60min	2,72
AL-NH3-30min	2,72

Tabla V - 2 Densidad y porosidad experimental obtenida a partir del método geométrico

Método de Arquímedes

Siguiendo lo que se explicó en el capítulo experimental, se han obtenido los siguientes resultados experimentales de la densidad para cada material (Tabla V - 3).

Método ASTM	Peso seco (g)	Peso sumergido (g)	Peso saturado (g)	Densidad (g/cm3)
AL-AM-60min	3,94	2,45	3,96	2,60
AL-NH3-60min	3,89	2,46	3,90	2,69
AL-NH3-30min	3,91	2,48	3,92	2,71

Tabla V - 3 Resultados y densidad experimental obtenida a partir del método ASTM

	Porosidad int. (%)	Porosidad total (%)
AL-AM-60min	1,52	3,76
AL-NH3-60min	0,75	0,38
AL-NH3-30min	0,76	-0,39

Tabla V - 4 Porosidad interconectada y total

En el caso del aluminio nitrurado y sinterizado durante 30 minutos aparece una porosidad total negativa, se considerará que no tiene porosidad, con lo cual es un compacto con un 0% de porosidad.

Los resultados que se utilizarán posteriormente serán los obtenidos por el método que marca la norma ASTM, dado que se considera más preciso.

V.1.2. Ensayos de microdureza convencional

Los resultados adquiridos en los ensayos de microdureza reflejan como materiales más duros los nitrurados, con dureza muy similar, y como era esperable, el más blando es Al-Am-60min, dado el comportamiento dúctil que se observó en los ensayos biaxiales (Tabla V - 4 y Tabla V - 5).

	d (mm)					
Carga (g)	Al-AM-60min	Al-NH3-60min	Al-NH3-30min			
100	0,04409	0,03485	0,033200			
200	0,06234	0,04706	0,046565			
300	0,08300	0,05838	0,058215			
500	0,09960	0,07729	0,074815			

Tabla V - 5 Diagonal resultante medida por medios ópticos con zoom 60x para cada material y carga

	HV					
Carga (g)	100g 200g 300g 500g					
Al-AM-60min	95	92	81	93		
Al-NH3-60min	153	167	163	155		
Al-NH3-30min	168	171	164	165		

Tabla V - 6 Dureza Vickers (HV) resultante en los ensayos de microdureza convencional para cada material y carga

Gráfica V - 1 Comparativa de la dureza HV (Vickers) por cada nivel de carga

Gráfica V - 2 Comparativa de la dureza HV (Vickers) para cada material

V.2. Comportamiento mecánico

V.2.1. Ensayos por ultrasonidos para la obtención del Módulo de Young dinámico

Se han realizado los ensayos por el procedimiento explicado en el apartado experimental con los resultados expuestos en la Tabla V - 7.

	C-Long. (m/s)	C-Trans. (m/s)	Parámetro (Pa)	Módulo de Young (Gpa)
Al-AM-60min	6370	3265	28124666,72	74,35
Al-NH3-60min	6776	3360	31005391,79	82,91
Al-NH3-30min	6759	3351	30607508,9	81,85

Tabla V - 7 Módulo de Young dinámico a partir de las velocidades longitudinales y transversales

V.2.2. Ensayos biaxiales

Los datos adquiridos a partir de los ensayos biaxiales se trataron de manera que en las gráficas de los siguientes apartados aparece la tensión teórica en el punto central de las probetas por los dos métodos explicados en el apartado teórico (Shetty y Borger) (Tabla V - 8).

	Tensión Borger (Mpa)	Tensión Shetty (Mpa)	Desplazamiento (mm)
Al-AM-60min	947,67	1206,11	0,57812
Al-NH3-60min	1668,97	2124,12	0,3334
Al-NH3-30min	1408,69	1792,86	0,29676

Tabla V - 8 Tensión teórica máxima en los ensayos biaxiales a partir de los datos de adquisición

Se puede decir que es el Al-NH3-60min el que tiene una mayor resistencia mecánica para este tipo de ensayo, a la vista de los resultados. Además se observó una rotura frágil, lo cual es necesario para poder determinar que el ensayo es correcto. El material Al-NH3-30min también obtuvo una rotura frágil con lo cual es comparable y con una menor tenacidad dado que se puede ver en los resultados que, tanto el desplazamiento como la tensión, son valores de menor valor.

V.2.2.1. Ensayo de Al-AM-60min

Se observa una evolución dúctil del ensayo que no llega a detectarse un decremento de carga (Gráfica V - 3), con lo que se detuvo el ensayo tras comprobar que la muestra ya había roto dúctilmente. Se estima la rotura en la primera cresta de nivel de tensión. Además el espesor de la muestra era menos de 1mm con lo cual se puede considerar el incremento de carga posterior debido al rozamiento y a la deformación de la muestra contra las bolas soporte.

Gráfica V - 3 Evolución de la tensión teórica máxima en ensayo biaxial para Al-AM-60min frente a desplazamiento

V.2.2.2. Ensayo de Al-NH3-60min

En relación a la pendiente de carga se advierte que decrece conforme aumenta el desplazamiento (Gráfica V - 4), lo que implica un cierto comportamiento dúctil que no se aprecia en la variante Al-NH3-30min (Gráfica V - 5).

En las Figura V - 1 y Figura V - 2 se puede ver la imagen resultante de la fractura por microscopía óptica, se advierte una rotura frágil en tres trozos. En la imagen de la derecha se advierte que no hay una deformación plástica apreciable previa a la rotura.

Gráfica V - 4 Evolución de la tensión teórica máxima en ensayo biaxial para Al-NH3-60min frente a desplazamiento

Figura V - 1 Imágenes resultantes del ensayo biaxial en Al-NH3-60min

Figura V - 2 Imagen de detalle en los puntos de apoyo, en el material Al-NH3-60min

Gráfica V - 5 Evolución de la tensión teórica máxima en ensayo biaxial para Al-NH3-30min frente a desplazamiento

En las Figura V - 3 y Figura V - 4 se puede ver la imagen resultante de la fractura por microscopía óptica, se advierte una rotura frágil en dos trozos, con un cierto nivel de deformación plástica, lo cual explica la forma en que acaba la cresta de rotura en la Gráfica V - 5.

Figura V - 3 Resultante del ensayo biaxial en al-NH3-30min

Figura V - 4 Imagen de detalle en los puntos de apoyo, en el material Al-NH3-30min

V.3. Comportamiento tribológico

V.3.1. Datos tribológicos de los ensayos continuos

Se exponen los datos adquiridos en los ensayos continuos para los tres materiales ensayados con gráficas que representan, por parejas, la penetración del indentador (LVDT) respecto a la distancia recorrida y otra que representa la evolución del coeficiente de rozamiento en función de la distancia recorrida.

V.3.1.1. Ensayos continuos de 1Km

Aquí se incluyen todos los experimentos realizados para cada carga, desde 2N hasta 15N, y para los tres materiales ensayados. Además se incluyen las gráficas correspondientes a los ensayos de 2Km pero representando solo la mitad del ensayo, con nomenclatura 2Km/2.

V.3.1.1.1. Ensayos a 2N

Es destacable la variabilidad observada en las gráficas de LVDT para 2N y la dispersión de los valores del coeficiente de rozamiento.

Gráfica V - 6 LVDT frente distancia. Ensayo continuo de 1Km con carga de 2N

Gráfica V - 7 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con carga de 2N

V.3.1.1.2. Ensayos a 5N

Gráfica V - 8 LVDT frente distancia. Ensayo continuo de 1Km con carga de 5N

Gráfica V - 9 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con carga de 5N

Gráfica V - 10 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 5N

Gráfica V - 11 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2 con carga de 5N

V.3.1.1.3. Ensayos a 10N

Gráfica V - 12 LVDT frente distancia. Ensayo continuo de 1Km con carga de 10N

Gráfica V - 13 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con carga de 5N

Gráfica V - 14 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 10N

Gráfica V - 15 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2 con carga de 10N

V.3.1.1.4. Ensayos a 15N

Gráfica V - 16 LVDT frente distancia. Ensayo continuo de 1Km con carga de 15N

Gráfica V - 17 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con carga de 15N

Gráfica V - 18 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 15N

Gráfica V - 19 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2 con carga de 15N

V.3.1.2. Ensayos continuos de 2Km

Aquí se incluyen todos los experimentos realizados para cada carga, desde 5N hasta 15N, y para los tres materiales ensayados.

V.3.1.2.1. Ensayos a 5N

Gráfica V - 20 LVDT frente distancia. Ensayo continuo de 2Km con carga de 5N

Gráfica V - 21 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con carga de 5N

V.3.1.2.2. Ensayos a 10N

Gráfica V - 22 LVDT frente distancia. Ensayo continuo de 2Km con carga de 10N

Gráfica V - 23 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con carga de 10N

V.3.1.2.3. Ensayos a 15N

Gráfica V - 24 LVDT frente distancia. Ensayo continuo de 2Km con carga de 15N

Gráfica V - 25 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con carga de 15N

V.3.2. Comparativas del coeficiente de rozamiento y LVDT final

Se representan gráficas comparativas del rozamiento en los ensayos continuos, en primer lugar, y luego, el LVDT, que representa la profundidad del surco al final de cada ensayo, estos dos parámetros se obtienen realizando un promedio de los valores de adquisición finales de cada ensayo.

No se puede definir un patrón respecto al coeficiente de rozamiento (Tabla V - 9), ya que para 1Km y 2Km aparecen valores entorno a 0,35 y 0,5 sin patrón aparente, respecto a carga o tipo de material.

	Coeficiente de rozamiento						
	1Km					2Km	
	2N	5N	10N	15N	5N	10N	15N
Al-AM-60min	0,39	0,46	0,41	0,39	0,43	0,48	0,41
Al-NH3-60min	0,46	0,50	0,48	0,47	0,37	0,44	0,40
Al-NH3-30min	0,38	0,38	0,43	0,45	0,38	0,47	0,44

Tabla V - 9 Coeficiente de rozamiento en ensayos continuos

Gráfica V - 26 Comparativa del coeficiente de rozamiento final por carga. Ensayos continuos de 1Km

Gráfica V - 27 Comparativa del coeficiente de rozamiento final por material. Ensayos continuos de 1Km

Gráfica V - 28 Comparativa del coeficiente de rozamiento final por carga. Ensayos continuos de 2Km

Gráfica V - 29 Comparativa del coeficiente de rozamiento final por material. Ensayos continuos de 2Km

El LVDT muestra unos resultados difusos en el caso de los ensayos de 1Km, pero para los ensayos de 2Km se refleja un LVDT mayor, en todos los casos para el material Al-AM-60min y similares para los otros dos materiales (Tabla V - 10).

Los materiales nitrurados muestran una disminución del LVDT al pasar a 10N de carga, para luego aumentar en los ensayos de 15N. Los valores para ambos materiales son similares.

	LVDT (mm)						
	1Km					2Km	
	2N 5N 10N 15N			5N	10N	15N	
Al-AM-60min	0,18	0,16	0,23	0,20	0,39	0,31	0,47
Al-NH3-60min	0,13	0,19	0,13	0,16	0,31	0,21	0,31
Al-NH3-30min	0,13	0,19	0,16	0,19	0,30	0,22	0,29

Tabla V - 10 Profundidad de penetración (LVDT) en ensayos continuos

Gráfica V - 30 Comparativa del LVDT final por carga. Ensayos continuos de 1Km

Gráfica V - 31 Comparativa del LVDT final por material. Ensayos continuos de 1Km

Gráfica V - 32 Comparativa del LVDT final por carga. Ensayos continuos de 2Km

Gráfica V - 33 Comparativa del LVDT final por material. Ensayos continuos de 2Km

V.3.3. Datos tribológicos de los ensayos con paradas

Se exponen los datos adquiridos en los ensayos con paradas para los tres materiales ensayados con gráficas que representan, por parejas, la penetración del indentador (LVDT) respecto a la distancia recorrida y otra que representa la evolución del coeficiente de rozamiento en función de la distancia recorrida.

No se realizaron ensayos con paradas para 2N debido a que no se advierte una zona de comportamiento no lineal al comienzo de los ensayos continuos, con lo que no se modificará ni la distancia de ensayo ni la masa inicial para los cálculos posteriores.

V.3.3.1. Ensayos a 5N

Gráfica V - 34 LVDT frente distancia. Ensayo con paradas y carga de 5N

Gráfica V - 35 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga de 5N

V.3.3.2. Ensayos a 10N

Gráfica V - 36 LVDT frente distancia. Ensayo con paradas y carga de 10N

Gráfica V - 37 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga de 10N

V.3.3.3. Ensayos a 15N

Gráfica V - 38 LVDT frente distancia. Ensayo con paradas y carga de 15N

Gráfica V - 39 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga de 15N

V.3.4. Medidas de la masa inicial y final para los ensayos continuos

Según la normativa ASTM asociada a los ensayos pin-on-disk se debe medir el peso del indentador en el comienzo y final del ensayo, pero a lo largo de todos los ensayos se ha comprobado que en ninguno de los casos su masa varía, ni siquiera en un cuarto decimal que es la mayor sensibilidad de la balanza utilizada.

	1Km			
	Masa inicial (g) Masa final (g)			
AL-AM-60min	0,6159	0,6060		
AL-NH3-60min	0,6227	0,6174		
AL-NH3-30min	0,5932	0,5869		

Tabla V - 11 Medidas de la masa inicial y final en los ensayos de 1 Km con 2N

V.3.4.2. Ensayos continuos con 5N de carga

	1Km		2K	m
	Masa inicial (g)	Masa final (g)	Masa inicial (g)	Masa final (g)
AL-AM-60min	0,7573	0,7437	0,5953	0,5639
AL-NH3-60min	0,6672	0,6564	0,7818	0,7621
AL-NH3-30min	0,6114	0,6021	0,8045	0,7839

Tabla V - 12 de la masa inicial y final en los ensayos de 1 Km y 2 Km con 5N

V.3.4.3. Ensayos continuos con 10N de carga

	1Km		2K	m
	Masa inicial (g)	Masa final (g)	Masa inicial (g)	Masa final (g)
AL-AM-60min	1,5323	1,5187	1,6342	1,6082
AL-NH3-60min	1,4850	1,4782	1,5247	1,5096
AL-NH3-30min	1,5127	1,5035	1,5602	1,5436

Tabla V - 13 Medidas de la masa inicial y final en los ensayos de 1 Km y 2 Km con 10N

V.3.4.4. Ensayos continuos con 15N de carga

	1Km		2K	m
	Masa inicial (g)	Masa final (g)	Masa inicial (g)	Masa final (g)
AL-AM-60min	1,6623	1,6480	1,7520	1,7030
AL-NH3-60min	1,7167	1,7071	1,5250	1,4970
AL-NH3-30min	1,3327	1,3230	1,7198	1,6892

Tabla V - 14 Medidas de la masa inicial y final en los ensayos de 1 Km y 2 Km con 15N

V.3.5. Cálculo de la masa de rodaje (m_r)

V.3.5.1. Cálculo de la masa promedio (m_p) a partir de la masa perdida en los ensayos de paradas

Las medidas de masa perdida se realizaron tras 100 metros recorridos en los casos de 5N y 10N, para el caso de 15N se realizaron 200 metros de ensayo previos, las masas se han medido como referencia al primer dato para acotar la dispersión en cada medida.

V.3.5.1.1. Ensayos con 5N de carga

Al-AM-60min			
Ensayo con paradas a 5N			
Distancia (m)	Pérdida de masa (g)	Masa (g)	
0	0,0000	0,6104	
100	0,0014	0,6090	
200	0,0028	0,6076	
300	0,0045	0,6059	
400	0,0061	0,6043	
500	0,0079	0,6025	
600	0,0096	0,6008	
700	0,0110	0,5994	
800	0,0126	0,5978	
900	0,0138	0,5966	
m _n (g)	0,0015		

Tabla V - 15 Pérdida de masa de Al-AM-60min en ensayo con paradas a 5N

Al-NH3-60min			
Ensayo con paradas a 5N			
Distancia (m)	Pérdida de masa (g)	Masa (g)	
0	0,0000	0,6749	
100	0,0009	0,6740	
200	0,0020	0,6729	
300	0,0027	0,6722	
400	0,0037	0,6712	
500	0,0047	0,6702	
600	0,0057	0,6692	
700	0,0067	0,6682	
800	0,0075	0,6674	
900	0,0084	0,6665	
m _n (g)	0,0009		

Tabla V - 16 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 5N

Al-NH3-30min				
Ensa	Ensayo con paradas a 5N			
Distancia (m)	Pérdida de masa (g)	Masa (g)		
0	0,0000	0,6632		
100	0,0010	0,6622		
200	0,0022	0,6610		
300	0,0037	0,6595		
400	0,0050	0,6582		
500	0,0063	0,6569		
600	0,0075	0,6557		
700	0,0087	0,6545		
800	0,0099	0,6533		
900	0,0111	0,6521		
m _p (g)	0,0012			

Tabla V - 17 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 5N

V.3.5.1.2. Ensayos con 10N de carga

Al-AM-60min				
Ensa	Ensayo con paradas a 10N			
Distancia (m)	Pérdida de masa (g)	Masa (g)		
0	0,0000	0,6366		
100	0,0016	0,6350		
200	0,0037	0,6329		
300	0,0057	0,6309		
400	0,0077	0,6289		
500	0,0102	0,6264		
600	0,0131	0,6235		
700	0,0152	0,6214		
800	0,0173	0,6193		
900	0,0208	0,6158		
m _n (g)	0,0023			

 Tabla V - 18 Pérdida de masa de Al-AM-60min en ensayo con paradas a 10N

Al-NH3-60min				
Ensa	Ensayo con paradas a 10N			
Distancia (m)	Pérdida de masa (g)	Masa (g)		
0	0,0000	0,6018		
100	0,0019	0,5999		
200	0,0042	0,5976		
300	0,0056	0,5962		
400	0,0085	0,5933		
500	0,0107	0,5911		
600	0,0126	0,5892		
700	0,0146	0,5872		
800	0,0167	0,5851		
900	0,0189	0,5829		
m _p (g)	0,0021			

Tabla V - 19 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 10N

Al-NH3-30min				
Ensa	Ensayo con paradas a 10N			
Distancia (m)	Pérdida de masa (g)	Masa (g)		
0	0,0000	0,5808		
100	0,0028	0,5780		
200	0,0043	0,5765		
300	0,0060	0,5748		
400	0,0074	0,5734		
500	0,0089	0,5719		
600	0,0109	0,5699		
700	0,0126	0,5682		
800	0,0141	0,5667		
900	0,0169	0,5639		
$m_{p}(g)$	0,0019			

Tabla V - 20 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 10N

V.3.5.1.3. Ensayos con 15N de carga

Al-AM-60min			
Ensayo con paradas a 15N			
Distancia (m)	Pérdida de masa (g)	Masa (g)	
0	0	0,4651	
100	0,0012	0,4639	
200	0,0033	0,4618	
300	0,0051	0,4600	
400	0,0071	0,4580	
500	0,0092	0,4559	
600	0,0117	0,4534	
700	0,0148	0,4503	
800	0,0183	0,4468	
900	0,0204	0,4447	
$m_{p}(g)$	0.0023		

 Tabla V - 21 Pérdida de masa de Al-AM-60min en ensayo con paradas a 15N

Al-NH3-60min				
Ensa	Ensayo con paradas a 15N			
Distancia (m)	Pérdida de masa (g)	Masa (g)		
0	0,0000	1,7704		
100	0,0013	1,7691		
200	0,0020	1,7684		
300	0,0030	1,7674		
400	0,0036	1,7668		
500	0,0046	1,7658		
600	0,0055	1,7649		
700	0,0066	1,7638		
800	0,0108	1,7596		
900	0,0119	1,7585		
m _p (g)	0,0013			

Tabla V - 22 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 15N

Al-NH3-30min			
Ensayo con paradas a 15N			
Distancia (m)	Pérdida de masa (g)	Masa (g)	
0	0,0000	1,3735	
100	0,0009	1,3726	
200	0,0018	1,3717	
300	0,0026	1,3709	
400	0,0037	1,3698	
500	0,0049	1,3686	
600	0,0057	1,3678	
700	0,0067	1,3668	
800	0,0075	1,366	
900	0,0083	1,3652	
$m_{n}(g)$	0,0009		

Tabla V - 23 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 15N

V.3.5.2. Estimación de la distancia lineal (d_l) para cada ensayo continuo y cálculo de la masa lineal (m_l) , a partir de la masa promedio (m_p)

Estas distancias se han estimado visualizando las gráficas, que muestran el LVDT de cada ensayo continuo, y reconociendo el final del comportamiento no lineal; después, se localizó en los datos de adquisición a qué distancia pertenecía. Los datos que se muestran a continuación corresponden a la distancia lineal (d_l) que se han obtenido promediando las distancias de rodaje en los ensayos de 1Km y 2Km. Hay que recordar que el primer ensayo de paradas para 15N se ha realizado hasta 200 metros, por ello, aparecen distancias más largas. En la columna central de las tablas se expone la masa total perdida en los 100 primeros metros, o los 200 en el caso de 15N, para ver cuánta masa corresponde a la zona lineal en comparación al total de ese tramo.

	$\mathbf{d}_{\mathbf{l}}\left(\mathbf{m}\right)$	$m_0 - m_{100} (g)$	m l (g)
Al-AM-60min	31,4	0,0023	0,0018
Al-NH3-60min	52,3	0,0016	0,0011
Al-NH3-30min	49,3	0,0014	0,0008

Tabla V - 24 Distancia lineal de los ensayos continuos de a 5						
	d _l (m)	m ₀ -m ₁₀₀ (g)	m l (g)			
Al-AM-60min	75.3	0.0051	0.0034			

Ν

Tabla V - 25 Distancia lineal de los ensayos continuos de a 10N

0,0026

0,0024

0,0015

0,0014

50,4

51,2

Al-NH3-60min

Al-NH3-30min

	d _l (m)	$m_0-m_{200}(g)$	m l (g)
Al-AM-60min	101,5	0,0036	0,0023
Al-NH3-60min	152,3	0,0035	0,0015
Al-NH3-30min	129,8	0,0036	0,0024

Tabla V - 26 Distancia lineal de los ensayos continuos de a 15N

V.3.5.3. Cálculo de la masa de rodaje (m_r) y volumen de rodaje (v_r)

Hay que recordar que, la masa de rodaje sumada a la masa lineal suma la masa perdida en el primer ensayo realizado a las muestras para evitar el rodaje en los ensayos de paradas. Para hallar el volumen de rodaje se divide la masa de rodaje por la densidad experimental.

	$m_{l}(g)$	m _r (g)	$m_0-m_{100}(g)$	v _r (cm3)
Al-AM-60min	0,0018	0,0018	0,0023	0,0007
Al-NH3-60min	0,0011	0,0011	0,0016	0,0004
Al-NH3-30min	0,0008	0,0008	0,0014	0,0003
T 11 17 65 16	1 1 1 /			1 511

Tabla V - 27 Masa de rodaje (m_r) y (v_r) en ensayos continuos de a 5N

	$m_{l}(g)$	m _r (g)	$m_0-m_{100}(g)$	v _r (cm3)			
Al-AM-60min	0,0034	0,0034	0,0051	0,0013			
Al-NH3-60min	0,0015	0,0015	0,0026	0,0006			
Al-NH3-30min 0,0014 0,0014 0,0024 0,0005							
Tabla V - 28 Masa de rodaje (m _r) y (v _r) en ensayos continuos de a 10N							

	$m_{l}(g)$	m _r (g)	$m_0 - m_{200} (g)$	v _r (cm3)
Al-AM-60min	0,0023	0,0013	0,0036	0,0005
Al-NH3-60min	0,0020	0,0015	0,0035	0,0006

Tabla V - 29 Masa de rodaje (m_r) y (v_r) en ensayos continuos de a 15N

0.0036

0.0009

Al-NH3-30min 0,0012 **0,0024**

V.3.6. Determinación del volumen perdido a partir del ancho del surco medido con microscopía óptica en ensayos continuos

El volumen perdido en los ensayos calculado a partir del ancho del surco (v_s) se modificará restándole el volumen de rodaje (v_r) calculado en el apartado anterior. El resultado se denotará como volumen a partir del ancho del surco modificado (v_{sm})

V.3.6.1. Ensayos de 2N de carga

	1Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	1,9426	0,0040	0	0,0040
Al-NH3-60min	1,5246	0,0026	0	0,0026
Al-NH3-30min	1,6995	0,0023	0	0,0023

Tabla V - 30 Ancho del surco para ensayos continuos con 2N de carga

V.3.6.2. Ensayos de 5N de carga

	1Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	2,2917	0,0066	0,0007	0,0059
Al-NH3-60min	2,1049	0,0051	0,0004	0,0047
Al-NH3-30min	1,9012	0,0037	0,0003	0,0034

Tabla V - 31 Ancho del surco para ensayos continuos de 1Km con 5N de carga

	2Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	2,9660	0,0148	0,0007	0,0141
Al-NH3-60min	2,4105	0,0077	0,0004	0,0073
Al-NH3-30min	2,4954	0,0086	0,0003	0,0083

Tabla V - 32 Ancho del surco para ensayos continuos de 2Km con 5N de carga

V.3.6.3. Ensayos de 10N de carga

	1Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	2,3401	0,0070	0,0013	0,0058
Al-NH3-60min	1,8723	0,0035	0,0006	0,0030
Al-NH3-30min	2,0021	0,0044	0,0005	0,0038

Tabla V - 33 Ancho del surco para ensayos continuos de 1Km con 10N de carga

	2Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	2,7301	0,0114	0,0013	0,0101
Al-NH3-60min	2,2253	0,0060	0,0006	0,0055
Al-NH3-30min	2,4205	0,0078	0,0005	0,0073

Tabla V - 34 Ancho del surco para ensayos continuos de 2Km con 10N de carga

V.3.6.4. Ensayos de 15N de carga

	1Km			
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)
Al-AM-60min	2,3052	0,0098	0,0005	0,0062
Al-NH3-60min	1,9305	0,0039	0,0006	0,0033
Al-NH3-30min	2,051	0,0054	0,0005	0,0038

Tabla V - 35 Ancho del surco para ensayos continuos de 1Km con 15N de carga

	2Km				
	Ancho del surco (mm)	v _s (cm3)	v _r (cm3)	v _{sm} (cm3)	
Al-AM-60min	3,2654	0,0202	0,0005	0,0197	
Al-NH3-60min	2,7564	0,0118	0,0006	0,0106	
Al-NH3-30min	2,8512	0,0131	0,0005	0,0117	

Tabla V - 36 Ancho del surco para ensayos continuos de 2Km con 15N de carga

V.3.7. Determinación del volumen perdido a partir de la pérdida de masa en los ensayos continuos

En este apartado se va a determinar el volumen perdido de cada ensayo, para 1Km y 2Km habiendo modificado la masa inicial de ensayo, teniendo en cuenta la masa de rodaje, que no correspondería a la pérdida de masa lineal.

V.3.7.1. Ensayos continuos de 2N

Ensayos de 1Km	$m_0(g)$	m ₁₀₀₀ (g)	$\Delta m(g)$	ρ exp.(g/cm3)	ΔV (cm3)
Al-AM-60min	0,6159	0,6060	0,010	2,60	0,0038
Al-NH3-60min	0,6227	0,6174	0,005	2,69	0,0020
Al-NH3-30min	0,5932	0,5869	0,006	2,71	0,0023

Tabla V - 37 Volumen perdido a partir de la masa para ensayos continuos de 2N

Gráfica V - 40 Volumen perdido en ensayos continuos con 2N de carga

Gráfica V - 41 Volumen perdido en ensayos continuos con 2N de carga por material

V.3.7.2. Ensayos continuos de 5N

Ensayos de 1Km	$m_0(g)$	m ₁₀₀₀ (g)	$\Delta m(g)$	ρ exp.(g/cm3)	$\Delta V (cm3)$
Al-AM-60min	0,7555	0,7437	0,0118	2,5982	0,0045
Al-NH3-60min	0,6661	0,6564	0,0097	2,6896	0,0036
Al-NH3-30min	0,6114	0,6021	0,0093	2,7107	0,0034
Ensayos de 2Km	$\mathbf{m}_{0}\left(\mathbf{g}\right)$	m ₂₀₀₀ (g)	$\Delta m(g)$	$\rho \exp(g/cm3)$	$\Delta V (cm3)$
Ensayos de 2Km Al-AM-60min	m ₀ (g) 0,5935	m₂₀₀₀ (g) 0,5639	Δm (g) 0,0296	ρ exp.(g/cm3) 2,5982	ΔV (cm3) 0,0114
Ensayos de 2Km Al-AM-60min Al-NH3-60min	m ₀ (g) 0,5935 0,7807	m ₂₀₀₀ (g) 0,5639 0,7621	Δm (g) 0,0296 0,0186	ρ exp.(g/cm3) 2,5982 2,6896	ΔV (cm3) 0,0114 0,0069

Tabla V - 38 Volumen perdido en ensayos continuos a 5N a partir de la pérdida de masa

Gráfica V - 42 Volumen perdido en ensayos continuos con 5N de carga

Gráfica V - 43 Volumen perdido en ensayos continuos con 5N de carga por material

V.3.7.3. Ensayos	continuos de 10N
------------------	------------------

Ensayos de 1Km	$m_0(g)$	m ₁₀₀₀ (g)	$\Delta m(g)$	ρ exp.(g/cm3)	$\Delta V (cm3)$
Al-AM-60min	1,5289	1,5187	0,0102	2,5982	0,0039
Al-NH3-60min	1,4835	1,4782	0,0053	2,6896	0,0020
Al-NH3-30min	1,5113	1,5035	0,0078	2,7107	0,0029
Ensayos de 2Km	$\mathbf{m}_{0}\left(\mathbf{g}\right)$	m ₂₀₀₀ (g)	$\Delta m(g)$	$\rho \exp(g/cm3)$	$\Delta V (cm3)$
Al-AM-60min	1,6308	1,6082	0,0226	2,5982	0,0087
Al-NH3-60min	1,5232	1,5096	0,0136	2,6896	0,0050

Tabla V - 39 Volumen perdido en ensayos continuos a 10N a partir de la pérdida de masa

Gráfica V - 44 Volumen perdido en ensayos continuos con 10N de carga

Ensayos de 1Km	$m_0(g)$	m ₁₀₀₀ (g)	$\Delta m (g)$	ρ exp.(g/cm3)	$\Delta V (cm3)$
Al-AM-60min	1,6623	1,6480	0,0143	2,3052	0,0055
Al-NH3-60min	1,7152	1,7071	0,0081	1,9305	0,0030
Al-NH3-30min	1,3303	1,3230	0,0073	2,051	0,0027
Ensayos de 2Km	$m_0(g)$	m ₂₀₀₀ (g)	$\Delta m(g)$	$\rho \exp(g/cm3)$	$\Delta V (cm3)$
Al-AM-60min	1,7520	1,7030	0,0490	3,2654	0,0189
Al-NH3-60min	1,5235	1,4970	0,0265	2,7564	0,0099
Al-NH3-30min	1,7174	1,6892	0,0282	2,8512	0,0104

V.3.7.4. Ensayos	continuos	de 15N
------------------	-----------	--------

Tabla V - 40 Volumen perdido en ensayos continuos a 15N a partir de la pérdida de masa

Gráfica V - 46 Volumen perdido en ensayos continuos con 15N de carga

Gráfica V - 47 Volumen perdido en ensayos continuos con 15N de carga por material

V.3.8. Gráficas comparativas del volumen perdido en ensayos continuos en función de la carga aplicada

En este apartado se representan las gráficas en función de la carga para ver la evolución de la cantidad de volumen perdido de dos maneras, para cada material y para cada carga.

V.3.8.1. Ensayos de 1Km por masa

Gráfica V - 48 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos de 1Km por carga

Gráfica V - 49 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos de 1Km por material

Gráfica V - 50 Comparativa del volumen perdido a partir del surco (Vsurco) en ensayos continuos de 1Km por carga

Gráfica V - 51 Comparativa del volumen perdido a partir del surco (Vsurco) en ensayos continuos de 1Km por material

Gráfica V - 52 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos de 2Km por carga

Gráfica V - 531 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos de 2Km por material

Gráfica V - 54 Comparativa del volumen perdido a partir de la masa (Vsurco) en ensayos continuos de 2Km por carga

Gráfica V - 55 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos de 2Km por material

Gráfica V - 56 Comparativa del volumen perdido a partir de la masa (Vmasa) en ensayos continuos por material

Gráfica V - 57 Comparativa del volumen perdido a partir de la masa (Vsurco) en ensayos continuos por material

V.3.9. Evolución del volumen perdido en los ensayos con paradas

En este apartado se representa el volumen perdido a partir de la masa y del surco en gráficas separadas.

V.3.9.1. Ensayos con 5N de carga

Gráfica V - 58 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a 5N de carga

Gráfica V - 59 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas a 5N de carga

Gráfica V - 60 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a 10N de carga

Gráfica V - 61 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas a 10N de carga

Gráfica V - 62 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a 15N de carga

V.3.10. Gráficas comparativas del volumen perdido en los ensayos con paradas por material para diferentes cargas

El material Al-AM-60min apenas tiene diferencias para 10 N y 15N (Gráfica V-63).

Gráfica V - 63 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas del Al-AM-60min por carga

Gráfica V - 64 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del Al-AM-60min por carga

Para el caso de Al-NH3-60min y Al-NH3-30min se aprecia una disminución del volumen perdido en el caso de la comparación entre 10N y 15N (Gráfica V-65).

Gráfica V - 65 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas del Al-NH3-60min por carga

Gráfica V - 66 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del Al-NH3-60min por carga

En la Gráfica V-67 se aprecia un incremento de pérdida de volumen de 5N a 10N, para luego descender por debajo de los 5N, en los ensayos de 15N

Gráfica V - 67 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas del Al-NH3-30min por carga

Gráfica V - 68 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del Al-NH3-30min por carga

V.3.11. Coeficiente de desgaste absoluto (K_{abs})

En este apartado se representa el coeficiente de desgaste absoluto de los ensayos continuos y con paradas. Las distancias lineales de ensayos, utilizadas para la obtención de este coeficiente, se representan en la Tabla V - 41.

	Distancia lineal de ensayos							
	2N	5N		1	10N		15N	
	1Km	1Km	2Km	1Km	2Km	1Km	2Km	
Al-AM-60min	1000	931,4	1931,4	975,3	1975,3	901,5	1901,5	
AI-NH3-60min	1000	952,3	1952,3	950,4	1950,4	952,3	1952,3	
AI-NH3-30min	1000	949,3	1949,3	951,2	1951,2	929,8	1929,8	
		1	• • • •	· · · ·		,	· · · ·	

Tabla V - 41 Distancia lineal de ensayos continuos

	Ensayos continuos de 1Km							
	2	2N 5N			10N		15N	
	K _{masa}	K _{surco}	K _{masa}	K _{surco}	K _{masa}	K _{surco}	K _{masa}	K _{surco}
Al-AM-60min	0,0038	0,0040	0,0049	0,0063	0,0040	0,0059	0,0055	0,0062
Al-NH3-60min	0,0020	0,0026	0,0038	0,0049	0,0021	0,0031	0,0032	0,0035
AI-NH3-30min	0,0023	0,0023	0,0036	0,0036	0,0030	0,0040	0,0028	0,0039

Tabla V - 42 Coeficiente de desgaste absoluto para ensayos continuos de 1 Km

Gráfica V - 69 Coeficiente de desgaste absoluto en ensayos continuos de 1Km

	Ensayos continuos de 2Km					
	5	N	10	N	15N	
	K _{masa}	K _{surco}	K _{masa}	K _{surco}	K _{masa}	K _{surco}
AI-AM-60min	0,0059	0,0073	0,0044	0,0051	0,0094	0,0098
AI-NH3-60min	0,0035	0,0037	0,0031	0,0028	0,0051	0,0058
AI-NH3-30min	0,0039	0,0043	0,0040	0,0037	0,0053	0,0062

Tabla V - 43 Coeficiente de desgaste absoluto para ensayos de 2Km

Gráfica V - 70 Coeficiente de desgaste absoluto en ensayos continuos de 1Km por material

A la vista de los resultados, en la Gráfica V - 71, comparándolos con los valores de los ensayos de 1 Km, Gráfica V - 69, se aprecia un incremento en el coeficiente de desgaste absoluto considerable, lo cual nos indica que durante el ensayo de 2Km cambia el ritmo de pérdida de material por metro recorrido, con lo cual se puede decir que se pierde la linealidad inicial o que su pendiente cambia, este efecto se aprecia con mayor nivel en el Al-AM-60min, comparando la Gráfica V - 70 y Gráfica V - 72.

Gráfica V - 71 Coeficiente de desgaste absoluto en ensayos continuos de 2Km

Gráfica V - 72 Coeficiente de desgaste absoluto en ensayos continuos de 2Km por material

Comportamiento tribomecánico de compactos de aluminio nanoestructurados Capítulo V: Resultados y discusión

	Ensayos con paradas				
	5N 1			N	15N
	K _{masa}	K _{surco}	K _{masa}	K _{surco}	K _{masa}
AI-AM-60min	0,0059	0,0087	0,0078	0,0099	0,0072
AI-NH3-60min	0,0035	0,0048	0,0076	0,0094	0,0040
Al-NH3-30min	0,0044	0,0053	0,0073	0,0076	0,0034

Tabla V - 44 Coeficiente de desgaste absoluto en ensayos de paradas

Gráfica V - 73 Coeficiente de desgaste absoluto en ensayos con paradas

Gráfica V - 74 Coeficiente de desgaste absoluto en ensayos con paradas por material

V.3.12. Determinación del coeficiente de desgaste normalizado (K)

Para el cálculo de este coeficiente hay que aplicar la ecuación III – 3, que se expuso en el apartado teórico de esta memoria, para ello se necesita la dureza del material, expresado en (N/cm^2) (Tabla V - 45).

	HB (N/cm2)
Al-AM-60min	93100
Al-NH3-60min	160720
Al-NH3-30min	158760

Tabla V - 45 Dureza de los materiales ensayados

V.3.12.1. Coeficiente de desgaste (K) a partir de la masa perdida y por ancho del surco en ensayos continuos

Se define una distancia de ensayo, que resulta de obtener la diferencia entre la distancia de ensayo, según sea 1Km o 2Km, menos la distancia de rodaje.

Hay un efecto reseñable, a la luz de las gráficas siguientes, que corresponde a un incremento inusual del coeficiente de desgaste normalizado (K) en los ensayos de 15N, y aparecen al comparar los resultados de 1Km con los de 2Km (Gráfica V - 82), se puede decir que hay un incremento del volumen perdido más que proporcional respecto a la distancia. Esto era predecible, ya que ocurre con $K_{abs.}$

V.3.12.1.1. Ensayos con 2N de carga

	Ensayos co	ontinuos (de 1Km
	d _{ensayo} (m)	K masa	K _{surco}
Al-AM-60min	1000	0,0007	0,0007
Al-NH3-60min	1000	0,0006	0,0008
Al-NH3-30min	1000	0,0007	0,0007

Tabla V - 46 Coeficiente de desgaste normalizado (K) para ensayos continuos de 2N

Gráfica V - 75 Coeficiente de desgaste normalizado (K) en ensayos continuos con 2N de carga

Gráfica V - 76 Coeficiente de desgaste normalizado (K) en ensayos continuos con 2N de carga por material

V.3.12.1.2. Ensayos con 5N de carga

	Ensayos continuos de 1Km				
	d _{ensayo} (m) K _{masa} K _{surco}				
Al-AM-60min	931,4	0,0009	0,0012		
Al-NH3-60min	952,3	0,0012	0,0016		
Al-NH3-30min	949,3	0,0011	0,0011		

Tabla V - 47 Coeficiente de desgaste normalizado (K) para ensayos continuos de 5N y 1Km

	Ensayos continuos de 2Km				
	densayo(m) K _{masa} K _{surco}				
Al-AM-60min	1931,4	0,0011	0,0014		
Al-NH3-60min	1952,3	0,0011	0,0012		
Al-NH3-30min	1949,3	0,0012	0,0014		

Tabla V - 48 Coeficiente de desgaste normalizado (K) para ensayos continuos de 5N y 2Km

Gráfica V - 77 Coeficiente de desgaste normalizado (K) en ensayos continuos con 5N de carga

Gráfica V - 78 Coeficiente de desgaste normalizado (K) en ensayos continuos con 5N de carga por material

	Ensayos continuos de 1Km					
	d _{ensayo} (m) K _{masa} K _{surco}					
Al-AM-60min	975,3	0,0004	0,0005			
Al-NH3-60min	950,4	0,0003	0,0005			
Al-NH3-30min	951,2	0,0005	0,0006			

V.3.12.1.3. Ensayos con 10N de carga

Tabla V - 49 Coeficiente de desgaste normalizado (K) para ensayos continuos de 10N y 1Km

	Ensayos continuos de 2Km				
	d _{ensayo} (m) K _{masa} K _{surco}				
Al-AM-60min	1975,3	0,0004	0,0005		
Al-NH3-60min	1950,4	0,0005	0,0004		
Al-NH3-30min	1951,2	0,0006	0,0006		

Tabla V - 50 Coeficiente de desgaste normalizado (K) para ensayos continuos de 10N y 2Km

Gráfica V - 79 Coeficiente de desgaste normalizado (K) en ensayos continuos con 10N de carga

Gráfica V - 80 Coeficiente de desgaste normalizado (K) en ensayos continuos con 10N de carga por material

V.3.12.1.4. Ensayos con 15N de carga

	Ensayos continuos de 1Km									
	d _{ensayo} (m)	K _{masa}	K _{surco}							
Al-AM-60min	901,5	0,0003	0,0003							
Al-NH3-60min	952,3	0,0003	0,0004							
Al-NH3-30min	929,8	0,0003	0,0004							

Tabla V - 51 Coeficiente de desgaste normalizado (K) para ensayos continuos de 15N y 1Km

	Ensayos continuos de 2Km									
	d _{ensayo} (m)	K _{surco}								
Al-AM-60min	1901,5	0,0006	0,0006							
Al-NH3-60min	1952,3	0,0005	0,0006							
Al-NH3-30min	1929,8	0,0006	0,0007							

Tabla V - 52 Coeficiente de desgaste normalizado (K) para ensayos continuos de 15N y 2Km

Gráfica V - 81 Coeficiente de desgaste normalizado (K) en ensayos continuos con 15N de carga

Gráfica V - 82 Coeficiente de desgaste normalizado (K) en ensayos continuos con 15N de carga por material

V.3.12.2. Coeficiente de desgaste (K) a partir de la masa perdida y por ancho del surco en ensayos con paradas

Para el cálculo de estos coeficientes se tomaron los datos del volumen perdido, con referencia al primer valor, y se fueron calculando los coeficientes de desgaste acumulando volumen perdido y distancia recorrida, dado que se espera una relación lineal los valores se encuentran en torno a un valor promedio que es con el que se calcula posteriormente el coeficiente de desgaste normalizado.

Además, se han representado las gráficas con los valores de (K) para ensayos continuos de 1Km, como referencia.

En todas las gráficas comparativas hay un comportamiento típico, y es que hay un aumento sensible del coeficiente de desgaste (K) normalizado. La explicación a este evento se puede tener varios mecanismos:

- Variación de la temperatura debido a las pausas realizadas cada 100m en los ensayos de paradas, que pueden causar acritud en el material por la contracción al disminuir la temperatura, sobretodo, en la superficie dañada de la muestra. De este mecanismo puede resultar un incremento de volumen perdido.
- El ajuste de la muestra puede no ser perfecto, dado que al centrar la muestra con el centro del indentador siempre se comete errores, luego el surco es excéntrico respecto a la circunferencia que forma el perímetro de la muestra, un error en la posición de la muestra para los siguientes 100m puede resultar un surco excéntrico respecto al anterior, recorriendo nuevas trayectorias con el correspondiente comportamiento no lineal. Este mecanismo puede ocurrir en mayor o menos medida.

V.3.12.2.1. Ensayos con 5N de carga

	Coeficiente de desgaste normalizado a partir de la masa perdida											
	100m	200m	300m	400m	500m	600m	700m	800m	900m	Promedio		
AI-AM-60min	0,0010	0,0010	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011		
Al-NH3-60min	0,0011	0,0012	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011	0,0011		
AI-NH3-30min	0,0012	0,0013	0,0014	0,0015	0,0015	0,0015	0,0015	0,0014	0,0014	0,0014		

Tabla V - 53 Coeficiente de desgaste normalizado (K) para ensayos con paradas de 5N a partir de la masa

	Coeficiente de desgaste normalizado a partir del ancho de surco											
	100m	200m	300m	400 m	500m	600m	700m	800m	900m	Promedio		
Al-AM-60min	0,0017	0,0016	0,0015	0,0015	0,0017	0,0018	0,0015	0,0017	0,0016	0,0016		
AI-NH3-60min	0,0020	0,0017	0,0014	0,0015	0,0014	0,0014	0,0015	0,0015	0,0015	0,0015		
AI-NH3-30min	0,0013	0,0011	0,0014	0,0013	0,0015	0,0016	0,0022	0,0023	0,0022	0,0017		

Tabla V - 54 Coeficiente de desgaste normalizado (K) para ensayos con paradas de 5N a partir del surco

Gráfica V - 83 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 5N de carga

Gráfica V - 84 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 5N de carga por material

V.3.12.2.2	Ensayos	con 10N	de carga
------------	---------	---------	----------

	Coeficiente de desgaste normalizado a partir de la masa perdida										
	100m	200m	300m	400 m	500m	600m	700m	800m	900m	Promedio	
AI-AM-60min	0,0006	0,0007	0,0007	0,0007	0,0007	0,0008	0,0008	0,0008	0,0008	0,0007	
Al-NH3-60min	0,0011	0,0013	0,0011	0,0013	0,0013	0,0013	0,0012	0,0012	0,0013	0,0012	
AI-NH3-30min	0,0016	0,0013	0,0012	0,0011	0,0010	0,0011	0,0011	0,0010	0,0011	0,0012	

Tabla V - 55 Coeficiente de desgaste normalizado (K) para ensayos con paradas de 10N a partir de la masa

	Coeficiente de desgaste normalizado a partir del ancho de surco										
	100m	200 m	300m	400m	500m	600m	700m	800m	900m	Promedio	
AI-AM-60min	0,0010	0,0008	0,0008	0,0008	0,0009	0,0011	0,0010	0,0009	0,0010	0,0009	
Al-NH3-60min	0,0017	0,0015	0,0013	0,0015	0,0014	0,0016	0,0015	0,0016	0,0015	0,0015	
AI-NH3-30min	0,0011	0,0012	0,0010	0,0011	0,0009	0,0015	0,0014	0,0014	0,0014	0,0012	

Tabla V - 56 Coeficiente de desgaste normalizado (K) para ensayos con paradas de 10N a partir del surco

Gráfica V - 85 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 10N de carga

Gráfica V - 86 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 10N de carga por material

V.3.12.2.3	. Ensayos con	n 15N de carga
------------	---------------	----------------

	Coeficiente de desgaste normalizado a partir de la masa perdida										
	100m	200 m	300m	400m	500m	600m	700m	800m	900m	Promedio	
AI-AM-60min	0,0009	0,0006	0,0011	0,0009	0,0008	0,0008	0,0009	0,0009	0,0009	0,0009	
AI-NH3-60min	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0005	0,0005	0,0004	
AI-NH3-30min	0,0004	0,0004	0,0003	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	

Tabla V - 57 Coeficiente de desgaste normalizado (K) para ensayos con paradas de 15N a partir de la masa

Gráfica V - 87 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 15N de carga

Gráfica V - 88 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 15N de carga por material

V.3.13. Gráficas comparativas del coeficiente de desgaste normalizado

En este apartado se exponen las gráficas con los datos de los coeficientes de desgaste normalizados pero representando los resultados para distintas cargas.

V.3.13.1. Comparación de ensayos continuos por carga

Los resultados de comparar el coeficiente de desgaste normalizado por carga refleja una variación en el mecanismo de desgaste principal, se advierte un incremento considerable del coeficiente pasando de 2N a 5N, y para los casos de mayor carga se puede ver un decremento del coeficiente. Dado que la carga se encuentra en el denominador de la ecuación que define este coeficiente se puede decir que aparece al menos un nuevo mecanismo de desgaste tras atravesar el umbral de 5N y el incremento del volumen perdido no es proporcional al incremento de carga. Por ello vemos cómo a cada aumento de carga se reduce este coeficiente

V.3.13.1.1. Ensayos de 1Km

Gráfica V - 89 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 1Km por carga

Gráfica V - 90 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 2Km por carga

V.3.13.2. Comparación de ensayos continuos por material

V.3.13.2.1. Ensayos de 1Km

Gráfica V - 92 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 1Km para Al-NH3-60min

Gráfica V - 93 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 1Km para Al-NH3-30min

Gráfica V - 94 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 1Km

V.3.13.2.2. Ensayos de 2Km

Gráfica V - 95 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 2Km para Al-AM-60min

Gráfica V - 96 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 2Km para Al-NH3-60min

Gráfica V - 97 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 2Km para Al-NH3-30min

Gráfica V - 98 Comparativa del coeficiente de desgaste normalizado (K) en ensayos continuos de 2Km para Al-NH3-30min

Evaluando el coeficiente de desgaste en los ensayos de paradas, aunque a otra escala, llegamos a la misma conclusión respecto a los ensayos continuos. El volumen perdido aumenta menos que proporcional respecto al nivel de carga.

Gráfica V - 99 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas a partir de la masa y el surco por carga

Gráfica V - 100 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas de 1Km a partir de la masa por carga

Gráfica V - 101 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas de 1Km a partir del surco por carga

Gráfica V - 102 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas de Al-AM-60min a partir de la masa y el surco

Gráfica V - 103 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas de Al-NH3-60min a partir de la masa y el surco

Gráfica V - 104 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas de Al-NH3-30min a partir de la masa y el surco

Gráfica V - 105 Comparativa del coeficiente de desgaste normalizado (K) en ensayos con paradas por material

V.3.14. Relación entre el coeficiente de desgaste normalizado vs tipo y mecanismo de desgaste

Se han obtenido imágenes de las muestras al final de cada ensayo, a partir de estas imágenes, que se exponen a continuación, se tomaron las medidas oportunas para la evaluación del volumen perdido por el ancho de surco. Además, se han obtenido imágenes por microscopía SEM que permiten una definición del daño más precisa, a la hora de identificar el tipo y mecanismo de desgaste.

Acompañando esta identificación, a nivel microscópico, con el coeficiente de desgaste normalizado se puede llegar a otro nivel de evaluación, comparándolo con el coeficiente de desgaste absoluto.

En las Gráfica V - 106, Gráfica V - 107 y Gráfica V - 108 se observa que todos los valores entran en un rango entre 10^{-4} y 10^{-3} , donde, los ensayos continuos de 5N y la gran mayoría de los ensayos con paradas, son los que se encuentran en 10^{-3} . Según la Gráfica V - 109, a los materiales ensayados le pueden corresponder los siguientes tipos de desgaste:

- Desgaste adhesivo
- Fatiga superficial
- Fatiga térmica

Gráfica V - 106 Comparativa de coeficientes de desgaste normalizado para ensayos continuos de 1Km

Gráfica V - 107 Comparativa de coeficientes de desgaste normalizado para ensayos continuos de 2Km

Gráfica V - 108 Comparativa de coeficientes de desgaste normalizado para ensayos con paradas

Gráfica V - 109 Relación entre tipo de desgaste y valor del coeficiente de desgaste normalizado

V.3.14.1. Influencia de la carga sobre los compactos

Al-AM-60min

Este material presenta, para 2N, en un primer acercamiento degaste adhesivo/abrasivo observando las imágenes de microscopía óptica, Figura V - 5. Al observar imágenes realizadas por SEM (Figura V - 6), se observa un claro desgaste adhesivo mediante un mecanismo principal de ludimiento, o adhesión parcial; acompañado de desgaste abrasivo, dados los pequeños surcos que se pueden ver en todas las imágenes. Para un siguiente nivel de carga (5N), sólo observando las imágenes ópticas (Figura V - 7) se aprecia un mayor nivel de daño, mediante SEM se puede decir que aparece *pitting* en el surco ensayado, lo cual indica un nivel más severo de desgaste adhesivo. Para 10N de carga desaparece el *pitting* para dar lugar a un efecto de ludimiento de mayor extensión (Figura V - 9 y Figura V - 10).

Figura V - 5 Imagen por microscopía óptica de Al-AM-60min para ensayos continuos de 1Km a 2N de carga

Figura V - 6 Imágenes con zoom 125x por SEM de Al-AM-60min para ensayos continuos de 1Km a 2N de carga

Figura V - 7 Imágenes por microscopía óptica de Al-AM-60min para ensayos continuos de 1Km a 5N de carga

Figura V - 8 Imagen con zoom 100x por SEM de Al-AM-60min para ensayo continuo de 1Km a 5N de carga

Figura V - 9 Imágenes por microscopía óptica de Al-NH3-60min para ensayos continuos de 1Km a 10N de carga

Figura V - 10 Imágenes con zoom 100x y 125x por SEM de Al-AM-60min para ensayos continuos de 1Km a 10N de carga

Al-NH3-60min

Este material nitrurado presenta desgaste adhesivo/abrasivo (Figura V - 11) para una carga de 2N, en concreto se aprecian zonas de material adherido, además de un efecto global de ludimiento, Figura V - 12. Para 5 N se observa un protagonismo de adhesión, mediante el mecanismo de ludimiento (Figura V - 14). Al pasar a 10N se puede evaluar el daño entre adhesión, en este caso un nivel severo de adhesión dadas las pequeñas grietas que se pueden ver, acompañadas de *pitting*; y fatiga térmica, se aprecian zonas de material deformado plásticamente por la temperatura (Figura V - 16).

Figura V - 11 Imágenes por microscopía óptica de Al-NH3-60min para ensayos continuos de 1Km a 2N de carga

Figura V - 12 Imágenes con zoom 125x por SEM de Al-NH3-60min para ensayos continuos de 1Km a 2N de carga

Figura V - 13 Imágenes por microscopía óptica de Al-NH3-60min para ensayos continuos de 1Km a 5N de carga

Figura V - 14 Imagen de surco con zoom 125x por SEM de Al-NH3-60min para ensayos continuos de 1Km a 5N de carga

Figura V - 15 Imágenes por microscopía óptica de Al-NH3-60min para ensayos continuos de 1Km a 10N de carga

Figura V - 16 Imágenes con zoom 100x y 125x por SEM de Al-NH3-60min para ensayos continuos de 1Km a 10N de carga

Al-NH3-30min

Esta variante nitrurada presenta desgaste adhesivo/abrasivo para 2N de carga, en la Figura V - 18 se aprecia efectos de ludimiento de bajo nivel como efecto global. Al ensayarlo con 5N (Figura V - 20), se observa un incremento en el nivel de adhesión, dada la aparición de pitting y el incremento de área afectada por ludimiento. Al pasar a 10N de carga (Figura V - 22), se observan cambios en cuanto a tipos y mecanismos de desgaste. Por un lado, además de aumentar el área de ludimiento y aparecer grietas por niveles altos de adhesión, aparece desgaste del tipo fatiga superficial, en concreto con el mecanismo de delaminación, y además, un cierto nivel de fatiga térmica, que se presenta como deformación plástica.

Figura V - 17 Imágenes por microscopía óptica de Al-NH3-30min para ensayos continuos de 1Km a 2N de carga

Figura V - 18 Imágenes con zoom 125x por SEM de Al-NH3-30min para ensayos continuos de 1Km a 2N de carga

Figura V - 19 Imágenes por microscopía óptica de Al-NH3-30min para ensayos continuos de 1Km a 5N de carga

Figura V - 20 Imagen de surco con zoom 100x por SEM de Al-NH3-30min para ensayos continuos de 1Km a 5N de carga

Figura V - 21 Imágenes por microscopía óptica de Al-NH3-30min para ensayos continuos de 1Km a 10N de carga

Figura V - 22 Imágenes con zoom 100x y 250x por SEM de Al-NH3-30min para ensayos continuos de 1Km a 10N de carga

V.3.14.2. Influencia del material

Para los ensayos de 2 N y 5N, todos los materiales se comportan de manera similar y los tipos/mecanismos de desgaste globales son similares. Pero, al compararse los materiales en ensayos de 10N aparecen diferencias claras en cuanto a desgaste.

Ensayos de 10N

En este nivel de carga aparecen diferencias entre los materiales nitrurados y el material no nitrurado. En concreto, el Al-AM-60min continua con un desgaste

adhesivo con mecanismo principal de ludimiento, esto se puede deber a un incremento de la temperatura, con lo que la ductilidad del material aumenta y deriva en un ludimiento a gran escala.

En el caso de los materiales nitrurados, cambian sus tipos de desgaste principales, pasan a niveles de adhesión altos pero compartido con fatiga térmica, para ambos nitrurados, y superficial, para el caso del Al-NH3-30min.

V.4. Conclusiones y trabajos futuros

En el Grupo de Ciencia de los Materiales e Ingeniería Metalúrgica de la Escuela Técnica Superior de Ingenieros de la Universidad de Sevilla, se avanza en la investigación de materiales pulvimetalúrgicos, en concreto del aluminio. Con la idea de aportar nuevas líneas de investigación se realizaron compactos nitrurados de aluminio pulvimetalúrgico.

El aluminio presenta debilidades mecánicas en servicio debido a la pérdida de propiedades conforme aumenta su temperatura. Este material, que se está tratando de mejorar debido a la reducción de peso que supone y la resistencia a la corrosión, se quiere destinar a sustituir elementos de acero, tanto en aviones como en el sector del transporte. Las condiciones de servicio en estos ámbitos implican exposición a la corrosión, solicitaciones mecánicas a altas temperaturas y condiciones de fricción. Por ello, para mejorar las propiedades mecánicas se realiza el procesado pulvimetalúrgico del metal.

En este proyecto se tiene como objetivo completar la caracterización tribomecánica de estos nuevos materiales y describir las diferencias respecto a los aluminios pulvimetalúrgicos, que no han sido tratados con nitruración.

En cuanto al *comportamiento mecánico* se obtienen las siguientes conclusiones:

- Se determina que la *densidad* medida por el método de Arquímedes es más preciso, además, se obtienen niveles de porosidad casi nulos en los aluminios nitrurados.
- Los ensayos de *microdureza* reflejan un incremento sustancial de la dureza de los compactos nitrurados. El aluminio **nitrurado** de menor tiempo de sinterizado presenta un leve incremento en los niveles de dureza.

- La determinación del módulo de Young dinámico por ultrasonidos presenta un incremento de éste para los aluminios **nitrurados**, se puede decir que el nitrurado de mayor tiempo de sinterización incrementa levemente su módulo de Young respecto a la otra variante.
- Los ensayos biaxiales determinan que el aluminio no nitrurado presenta un comportamiento dúctil y las dos variantes nitruradas rompen frágilmente. En concreto se comprueba que el aluminio nitrurado de mayor tiempo sinterizado es el que soporta una mayor tensión biaxial.

En lo referente al *<u>comportamiento tribológico</u>*, se exponen las conclusiones:

- El <u>coeficiente de rozamiento</u> se mantiene entre los valores 0,37 y 0,50. Sin aparente dependencia con el nivel de carga, ni la distancia recorrida.
- El comportamiento de los valores de penetración (<u>LVDT</u>) obtenidos difieren al comparar los aluminios nitrurados con el de referencia.
 - Para los ensayos de 1Km no se detecta un patrón claro de comportamiento.
 - En los ensayos de 2Km se desmarca el aluminio no nitrurado con los mayores valores de LVDT.
- El volumen perdido a partir del ancho del surco es siempre mayor, esto se debe a que no contamos con al deformación plástica que sufre el material, resultando un flujo lateral de material que hace que el ancho del surco no sea completamente referente a material perdido, sino deformado, en parte.
 - En todos los ensayos continuos, es el aluminio **no nitrurado** es el de mayor volumen perdido.
 - Existe una desproporción entre el volumen perdido en los ensayos de 1Km y 2Km, siendo este último más que proporcional, respecto a la pérdida de volumen de 1Km para los tres materiales.

La evolución del volumen perdido en los ensayos con paradas toma tendencias propias, y hay ciertas diferencias con su análogo de 1Km continuo:

- Para los aluminios **nitrurados** muestra diferencias en su tendencia, respecto a los ensayos continuos, en cuanto al incremento de la carga, el volumen perdido para los ensayos de 10N obtiene los valores más altos.
- En el caso del aluminio **no nitrurado** se obtiene un volumen perdido superior al resto en todos los casos, exepto para 10N, donde todos los materiales tienen un valor similar.

Estas diferencias se pueden deber al efecto de la temperatura, dado que cada 100 metros se para el ensayo y la muestra se enfría, con lo cual hay una

ciclo térmico con los consiguientes efectos de contracción y tensión superficial para el nuevo ensayo. Además, debido a pequeños errores a la hora de volver a situar la muestra en el mismo punto puede haber tramos en los que el surco no se genera en la misma trayectoria con el consiguiente tramo de ajuste similar al de rodaje.

Se puede decir que, este cambio en las condiciones de operación afecta a los materiales nitrurados, especialmente para 10N de carga.

- El coeficiente de desgaste absoluto sigue las mismas tendencias que el volumen perdido, ya que las distancias lineales son todas muy parecidas. Es importante recordar, que para ensayos de 2Km, se pierde la linealidad. Estos ratios de pérdida de volumen son mayores en ensayos de 2Km.
- El coeficiente de desgaste normalizado permite acotar los posibles tipos y mecanismos de desgaste. Se comprueba que, acompañados con imágenes SEM, se logra identificar el tipo y mecanismo de desgaste global.

- <u>Ensayos continuos</u>: Todos los ensayos de 1 Km coinciden en que los valores críticos se encuentran a 5 N de carga, en concreto el **Al-NH3-60min** es el más afectado para este nivel de carga. A partir de este valor de la carga su valor disminuye. Los ensayos de 2Km muestran a 15 N un incremento del coeficiente, siendo, en todos los casos mayores que en los ensayos de 1 Km.

- <u>Ensayos paradas</u>: Estos ensayos obtienen valores mayores que los continuos y no lleva la misma tendencia que los ensayos de 1Km o de 2 KM, aparece un valor umbral de 10N de carga, donde hay un máximo de nivel de desgaste.

- Las imágenes de microscopía electrónica de barrido (SEM) muestran una serie de cambios en función de la carga y el material.
 - Para el aluminio no nitrurado se advierte, para 2N de carga, mecanismos de ludimiento (adhesivo) y microcortes (abrasivo); con 5N de carga, aparece un nuevo mecanismo de "pitting" en el surco, además de los anteriores; para el caso de 10N, hay una disminución microcortes y casi todo el desgaste es adhesivo por ludimiento.
 - Para los aluminios nitrurados, con 2N y 5N son similares al no nitrurado, aunque disminuido, pero se denota un cambio de mecanismos de desgaste al llegar a los 10N, en el que se puede ver, además de desgaste abrasivo un desgaste adhesivo, mediante ludimiento y grietas, propias de un efecto adhesivo severo. En concreto, para el caso nitrurado de 30 minutos de sinterizado se advierten zonas delaminadas, con lo que además se cuenta con desgaste por fatiga superficial.
- El coeficiente de desgaste normalizado con interpretación del daño en cada material tras ensayar, y esto lo aplicamos a la ¡Error! No se encuentra el

origen de la referencia., podemos verificar los tipos de desgaste. El coeficiente de desgaste normalizado, tomando como referencia los ensayos continuos de 1Km, están entre 10^{-3} y 10^{-4} . Para este rango de desgaste tenemos diferentes tipos de desgaste posibles, que se identificará con las imágenes de microscopía electrónica:

- **Al-AM-60min:** Este material presenta un incremento de la severidad de desgaste adhesivo con la carga, con lo que se puede decir que pasa de desgaste adhesivo suave a severo con la carga
- Al-NH3-60min: En este caso hay un umbral de comportamiento frente desgaste de 10N, en el que cambia el comportamiento. Aparecen pequeñas grietas sobre el surco que son producto de un desgaste por fatiga superficial. Además hay evidencias de desgaste por fatiga térmica, mediante un mecanismo de deformación plástica en diversas zonas.
- Al-NH3-30min: La evolución del comportamiento frente a desgaste con la carga en este material es análogo al anterior, con la salvedad, de que en este material aparecen claramente zonas superficiales ya desprendidas del surco. Para este material también se observa fatiga térmica mediante deformación plástica.

Este cambio de tipo de desgaste en los materiales **nitrurados** es una evidencia por la cual se comportan mejor frente a desgaste, si comparamos los coeficientes de desgaste absolutos o tasa de desgaste, otra razón es, evidentemente, la mayor dureza obtenida en los materiales **nitrurados**. Por otro lado, la razón por la que en Al-NH3-60min que se mantiene en una fase más leve de desgaste por fatiga superficial puede delegarse en que posee una mayor tenacidad que Al-NH3-30min, esto se puede observar en las curvas de ensayos biaxiales, donde se observa un comportamiento más frágil en el caso de Al-NH3-30min.

Como estudios futuros a este proyecto final de carrera se proponen las siguientes líneas de investigación, con la idea de caracterizar completamente el comportamiento de estos nuevos materiales:

- a) Realizar un mayor número de ensayos para obtener un estudio estadístico de los parámetros que se comparan en esta memoria. Como la distancia de rodaje, el LVDT o el coeficiente de rozamiento.
- b) En el caso de los aluminios nitrurados realizar ensayos de desgaste para localizar la carga de transición, que provoca salto a fatiga superficial de desgaste, entre 5N y 10N.
- c) Realizar estudios sobre imágenes SEM sobre muestras ensayadas de 15N, para ver qué tipo de desgaste gobierna el comportamiento frente a desgaste de los materiales de este proyecto.
- d) Realizar ensayos de microdureza para obtener el grado de acritud en los surcos resultantes de los ensayos, y así evaluar posibles razones en las diferencias del volumen perdido de los ensayos de paradas, con respecto a los continuos.
- e) Completar la caracterización tribológica con ensayos de rallado (scracht) y rebote.

f) Realizar los ensayos con control de temperatura para poder evaluar las condiciones reales de contacto.

Índice del capítulo V: Resultados y discusión

V.1. Propiedades básicas de los compactos obtenidos	82
V.1.1. Obtención experimental de la densidad de cada material	82
V.1.2. Ensayos de microdureza convencional	83
V.2. Comportamiento mecánico	85
V.2.1. Ensayos por ultrasonidos para la obtención del Módulo d	le Young
dinámico	85
V.2.2. Ensayos biaxiales	85
V.2.2.1. Ensayo de Al-AM-60min	86
V.2.2.2. Ensayo de Al-NH3-60min	86
V.2.2.3. Ensayo de Al-NH3-30min	88
V.3. Comportamiento tribológico	89
V.3.1. Datos tribológicos de los ensayos continuos	89
V.3.1.1. Ensayos continuos de 1Km	89
V.3.1.1.1. Ensayos a 2N	89
V.3.1.1.2. Ensayos a 5N	91
V.3.1.1.3. Ensayos a 10N	93
V.3.1.1.4. Ensayos a 15N	95
V.3.1.2. Ensayos continuos de 2Km	97
V.3.1.2.1. Ensayos a 5N	97
V.3.1.2.2. Ensayos a 10N	98
V.3.1.2.3. Ensayos a 15N	99
V.3.1.3. Comparativas del coeficiente de rozamiento y LVDT final	100
V.3.1.4. Datos tribológicos de los ensayos con paradas	104
V.3.1.4.1. Ensayos a 5N	105
V.3.1.4.2. Ensayos a 10N	106
V.3.1.4.3. Ensayos a 15N	107
V.3.2. Medidas de la masa inicial y final para los ensayos continuos	108
V.3.2.1. Ensayos continuos con 2N de carga	108
V.3.2.2. Ensayos continuos con 5N de carga	108
V.3.2.3. Ensayos continuos con 10N de carga	108
V.3.2.4. Ensayos continuos con 15N de carga	108
V.3.3. Cálculo de la masa de rodaje (mr)	109
V.3.3.1. Cálculo de la masa promedio (mp) a partir de la masa perdi	ida en los
ensayos de paradas	109
V.3.3.1.1. Ensayos con 5N de carga	109
V.3.3.1.2. Ensayos con 10N de carga	110
V.3.3.1.3. Ensayos con 15N de carga	
V.3.3.2. Estimación de la distancia lineal (dl) para cada ensayo continuo	y cálculo
de la masa lineal (ml), a partir de la masa promedio (mp)	112
V.3.3.3. Calculo de la masa de rodaje (mr) y volumen de rodaje (vr)	113
V.3.4. Determinacion del volumen perdido a partir del ancho del surco m	iedido con
<i>microscopia optica en ensayos continuos</i>	115
v.5.4.1. Ensayos de 2N de carga	115
V.3.4.2. Ensayos de SIN de carga	115
V.5.4.5. Ensayos de IUN de carga	114
v.3.4.4. Ensayos de 151N de carga	114

V.3.5. Determinación del volumen perdido a partir de la pérdida de	masa en los
ensayos continuos	114
V.3.5.1. Ensayos continuos de 2N	115
V.3.5.2. Ensayos continuos de 5N	116
V.3.5.3. Ensayos continuos de 10N	117
V.3.5.4. Ensavos continuos de 15N	118
V.3.6. Gráficas comparativas del volumen perdido en ensavos continuo	os en función
de la carga aplicada	 119
V.3.6.1. Ensayos de 1Km por masa	119
V.3.6.2. Ensayos de 1Km por surco	120
V.3.6.3. Ensayos de 2Km por masa	121
V.3.6.4. Ensayos de 2Km por surco	122
V.3.6.5. Gráficas comparativas del volumen perdido	123
V.3.7. Evolución del volumen perdido en los ensavos con paradas	124
V.3.7.1. Ensayos con 5N de carga	124
V.3.7.2. Ensayos con 10N de carga	125
V.3.7.3. Ensayos con 15N de carga	126
V.3.8. Gráficas comparativas del volumen perdido en los ensavos con	paradas por
material para diferentes cargas	126
V.3.9. Coeficiente de desgaste absoluto (Kabs)	129
V.3.10. Determinación del coeficiente de desgaste normalizado (K)	133
V.3.10.1. Coeficiente de desgaste (K) a partir de la masa perdida y j	oor ancho del
surco en ensayos continuos.	133
V.3.10.1.1. Ensayos con 2N de carga	133
V.3.10.1.2. Ensayos con 5N de carga	134
V.3.10.1.3. Ensayos con 10N de carga	135
V.3.10.1.4. Ensayos con 15N de carga	137
V.3.10.2. Coeficiente de desgaste (K) a partir de la masa perdida y	oor ancho del
surco en ensayos con paradas	138
V.3.10.2.1. Ensayos con 5N de carga	139
V.3.10.2.2. Ensayos con 10N de carga	140
V.3.10.2.3. Ensayos con 15N de carga	141
V.3.11. Gráficas comparativas del coeficiente de desgaste normalizado	143
V.3.11.1. Comparación de ensayos continuos por carga	143
V.3.11.1.1. Ensayos de 1Km	143
V.3.11.1.2. Ensayos de 2Km	144
V.3.11.2. Comparación de ensayos continuos por material	144
V.3.11.2.1. Ensayos de 1Km	144
V.3.11.2.2. Ensayos de 2Km	146
V.3.11.3. Comparación de ensayos con paradas por carga	148
V.3.11.4. Comparación de ensayos con paradas por material	150
V.3.12. Relación entre el coeficiente de desgaste normalizado vs tipo	y mecanismo
de desgaste	152
V.3.12.1. Influencia de la carga sobre los compactos	154
V.3.12.2. Influencia del material	159
V.4. Conclusiones y trabajos futuros	161

Índice de tablas del capítulo V: Resultados y discusión

Tabla V - 1 Resultados del método geométrico para medir la densidad experimental	. 82
Tabla V - 2 Densidad y porosidad experimental obtenida a partir del método geométri	ico
	. 82
Tabla V - 3 Resultados y densidad experimental obtenida a partir del método ASTM.	. 83
Tabla V - 4 Porosidad interconectada y total	. 83
Tabla V - 5 Diagonal resultante medida por medios ópticos con zoom 60x para cada	
material v carga	. 83
Tabla V - 6 Dureza Vickers (HV) resultante en los ensavos de microdureza	
convencional para cada material y carga	83
Tabla V - 7 Módulo de Young dinámico a partir de las velocidades longitudinales y	05
transversales	85
Table V 8 Tensión teórica máxima en los ensavos biaviales a partir de los datos de	. 05
adauisición	85
Table V $= 0$ Coeficiente de rezemiente en enseves continues	100
Table V $-$ 9 Coefficiente de lozamiento en ensayos continuos	100
Table V - 10 Profundidad de penetración $(L \vee D T)$ en ensayos continuos	102
Tabla V - 11 Medidas de la masa inicial y final en los ensayos de 1 Km con $2N$	108
Tabla V - 12 de la masa inicial y final en los ensayos de 1 Km y 2 Km con 5N	108
Tabla V - 13 Medidas de la masa inicial y final en los ensayos de 1 Km y 2 Km con	
10N	108
Tabla V - 14 Medidas de la masa inicial y final en los ensayos de 1 Km y 2 Km con	
15N	108
Tabla V - 15 Pérdida de masa de Al-AM-60min en ensayo con paradas a 5N	109
Tabla V - 16 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 5N	109
Tabla V - 17 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 5N	110
Tabla V - 18 Pérdida de masa de Al-AM-60min en ensayo con paradas a 10N	110
Tabla V - 19 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 10N	110
Tabla V - 20 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 10N	111
Tabla V - 21 Pérdida de masa de Al-AM-60min en ensayo con paradas a 15N	111
Tabla V - 22 Pérdida de masa de Al-NH3-60min en ensayo con paradas a 15N	111
Tabla V - 23 Pérdida de masa de Al-NH3-30min en ensayo con paradas a 15N	112
Tabla V - 24 Distancia lineal de los ensayos continuos de a 5N	112
Tabla V - 25 Distancia lineal de los ensayos continuos de a 10N	112
Tabla V - 26 Distancia lineal de los ensayos continuos de a 15N	112
Tabla V - 27 Masa de rodaje (m_r) y (v_r) en ensavos continuos de a 5N	113
Tabla V - 28 Masa de rodaie (m_r) v (v_r) en ensavos continuos de a 10N	113
Tabla V - 29 Masa de rodaie (m_r) v (v_r) en ensavos continuos de a 15N	113
Tabla V - 30 Ancho del surco para ensavos continuos con 2N de carga	113
Tabla V - 31 Ancho del surco para ensayos continuos de 1Km con 5N de carga	113
Tabla V - 32 Ancho del surco para ensavos continuos de 2Km con 5N de carga	114
Table V $_{-32}$ Ancho del surco para ensavos continuos de 1Km con 10N de carga $_{-11}$	11/
Tabla V - 34 Ancho del surco para ensavos continuos de 2Km con 10N de carga - 1	11/
Table V 25 Ancho del surco para ensavos continuos de 1Km con 15N de carga	114
rabia v - 55 Ancho del surco para ensayos continuos de 1Km con 151N de carga	114

Tabla V - 36 Ancho del surco para ensayos continuos de 2Km con 15N de carga 114
Tabla V - 37 Volumen perdido a partir de la masa para ensayos continuos de 2N 115
Tabla V - 38 Volumen perdido en ensayos continuos a 5N a partir de la pérdida de masa
Tabla V - 39 Volumen perdido en ensavos continuos a 10N a partir de la pérdida de
masa
Tabla V - 40 Volumen perdido en ensayos continuos a 15N a partir de la pérdida de
masa
Tabla V - 41 Distancia lineal de ensayos continuos 129
Tabla V - 42 Coeficiente de desgaste absoluto para ensayos continuos de 1 Km 129
Tabla V - 43 Coeficiente de desgaste absoluto para ensayos de 2Km
Tabla V - 44 Coeficiente de desgaste absoluto en ensavos de paradas
Tabla V - 45 Dureza de los materiales ensavados
Tabla V - 46 Coeficiente de desgaste normalizado (K) para ensavos continuos de 2N133
Tabla V - 47 Coeficiente de desgaste normalizado (K) para ensavos continuos de 5N y
18m
Tabla V - 48 Coeficiente de desgaste normalizado (K) para ensavos continuos de 5N y
2Km
Tabla V - 49 Coeficiente de desgaste normalizado (K) para ensavos continuos de 10N y
1Km
Tabla V - 50 Coeficiente de desgaste normalizado (K) para ensavos continuos de 10N v
2Km
Tabla V - 51 Coeficiente de desgaste normalizado (K) para ensavos continuos de 15N y
1Km
Tabla V - 52 Coeficiente de desgaste normalizado (K) para ensavos continuos de 15N y
2Km
Tabla V - 53 Coeficiente de desgaste normalizado (K) para ensavos con paradas de 5N a
nartir de la masa
Tabla V - 54 Coeficiente de desgaste normalizado (K) para ensavos con paradas de 5N a
nartir del surco
Tabla V - 55 Coeficiente de desgaste normalizado (K) para ensavos con paradas de 10N
a partir de la masa
Tabla V - 56 Coeficiente de desgaste normalizado (K) para ensavos con paradas de 10N
a partir del surco
Tabla V - 57 Coeficiente de desgaste normalizado (K) para ensavos con paradas de 15N
a partir de la masa

Índice de figuras del capítulo V: Resultados y discusión

Figura V - 5 Imagen por microscopía óptica de Al-AM-60min para ensayos continu	os
de 1Km a 2N de carga	. 154
Figura V - 6 Imágenes con zoom 125x por SEM de Al-AM-60min para ensayos	
continuos de 1Km a 2N de carga	. 155
Figura V - 7 Imágenes por microscopía óptica de Al-AM-60min para ensayos conti	nuos
de 1Km a 5N de carga	. 155
Figura V - 8 Imagen con zoom 100x por SEM de Al-AM-60min para ensayo contin	uo
de 1Km a 5N de carga	. 155
Figura V - 9 Imágenes por microscopía óptica de Al-NH3-60min para ensayos	
continuos de 1Km a 10N de carga	. 155
Figura V - 10 Imágenes con zoom 100x y 125x por SEM de Al-AM-60min para	
ensayos continuos de 1Km a 10N de carga	. 156
Figura V - 11 Imágenes por microscopía óptica de Al-NH3-60min para ensayos	
continuos de 1Km a 2N de carga	. 156
Figura V - 12 Imágenes con zoom 125x por SEM de Al-NH3-60min para ensayos	
continuos de 1Km a 2N de carga	. 156
Figura V - 13 Imágenes por microscopía óptica de Al-NH3-60min para ensayos	
continuos de 1Km a 5N de carga	. 157
Figura V - 14 Imagen de surco con zoom 125x por SEM de Al-NH3-60min para	
ensayos continuos de 1Km a 5N de carga	. 157
Figura V - 15 Imágenes por microscopía óptica de Al-NH3-60min para ensayos	
continuos de 1Km a 10N de carga	. 157
Figura V - 16 Imágenes con zoom 100x y 125x por SEM de Al-NH3-60min para	
ensayos continuos de 1Km a 10N de carga	. 157
Figura V - 17 Imágenes por microscopía óptica de Al-NH3-30min para ensayos	
continuos de 1Km a 2N de carga	. 158
Figura V - 18 Imágenes con zoom 125x por SEM de Al-NH3-30min para ensayos	
continuos de 1Km a 2N de carga	. 158
Figura V - 19 Imágenes por microscopía óptica de Al-NH3-30min para ensayos	
continuos de 1Km a 5N de carga	. 158
Figura V - 20 Imagen de surco con zoom 100x por SEM de Al-NH3-30min para	
ensayos continuos de 1Km a 5N de carga	. 159
Figura V - 21 Imágenes por microscopía óptica de Al-NH3-30min para ensayos	
continuos de 1Km a 10N de carga	. 159
Figura V - 22 Imágenes con zoom 100x y 250x por SEM de Al-NH3-30min para	
ensayos continuos de 1Km a 10N de carga	. 159

Índice de gráficas del capítulo V: Resultados y discusión

Gráfica V - 1 Comparativa de la dureza HV (Vickers) por cada nivel de carga	. 84
Gráfica V - 2 Comparativa de la dureza HV (Vickers) para cada material	. 84
Gráfica V - 3 Evolución de la tensión teórica máxima en ensayo biaxial para Al-AM-	
60min frente a desplazamiento	. 86

Gráfica V - 4 Evolución de la tensión teórica máxima en ensayo biaxial para Al-NH3-
60min frente a desplazamiento
Gráfica V - 5 Evolución de la tensión teórica máxima en ensayo biaxial para Al-NH3-
30min frente a desplazamiento
Gráfica V - 6 LVDT frente distancia. Ensayo continuo de 1Km con carga de 2N 90
Gráfica V - 7 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con
carga de 2N
Gráfica V - 8 LVDT frente distancia. Ensayo continuo de 1Km con carga de 5N 91
Gráfica V - 9 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con
carga de 5N
Gráfica V - 10 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 5N 92
Gráfica V - 11 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2
con carga de 5N
Gráfica V - 12 LVDT frente distancia. Ensayo continuo de 1Km con carga de 10N 93
Gráfica V - 13 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con
carga de 5N
Gráfica V - 14 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 10N.94
Gráfica V - 15 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2
con carga de 10N
Gráfica V - 16 LVDT frente distancia. Ensayo continuo de 1Km con carga de 15N 95
Gráfica V - 17 Coeficiente de rozamiento frente distancia. Ensayo continuo de 1Km con
carga de 15N
Gráfica V - 18 LVDT frente distancia. Ensayo continuo de 2Km/2 con carga de 15N.96
Gráfica V - 19 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km/2
con carga de 15N96
Gráfica V - 20 LVDT frente distancia. Ensayo continuo de 2Km con carga de 5N 97
Gráfica V - 21 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con
carga de 5N97
Gráfica V - 22 LVDT frente distancia. Ensayo continuo de 2Km con carga de 10N 98
Gráfica V - 23 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con
carga de 10N
Gráfica V - 24 LVDT frente distancia. Ensayo continuo de 2Km con carga de 15N 99
Gráfica V - 25 Coeficiente de rozamiento frente distancia. Ensayo continuo de 2Km con
carga de 15N
Gráfica V - 26 Comparativa del coeficiente de rozamiento final por carga. Ensayos
continuos de 1Km 100
Gráfica V - 27 Comparativa del coeficiente de rozamiento final por material. Ensayos
continuos de 1Km 101
Gráfica V - 28 Comparativa del coeficiente de rozamiento final por carga. Ensayos
continuos de 2Km 101
Gráfica V - 29 Comparativa del coeficiente de rozamiento final por material. Ensayos
continuos de 2Km 102
Gráfica V - 30 Comparativa del LVDT final por carga. Ensayos continuos de 1Km 103

Gráfica V - 31 Comparativa del LVDT final por material. Ensayos continuos de 1Km
Gráfica V - 32 Comparativa del LVDT final por carga. Ensayos continuos de 2Km. 104
Gráfica V - 33 Comparativa del LVDT final por material. Ensayos continuos de 2Km
Gráfica V - 34 LVDT frente distancia. Ensayo con paradas y carga de 5N 105
Gráfica V - 35 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga
de 5N
Gráfica V - 36 LVDT frente distancia. Ensayo con paradas y carga de 10N 106
Gráfica V - 37 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga
de 10N
Gráfica V - 38 LVDT frente distancia. Ensayo con paradas y carga de 15N 107
Gráfica V - 39 Coeficiente de rozamiento frente distancia. Ensayo con paradas y carga
$\frac{10}{115}$
Grafica V - 40 Volumen perdido en ensayos continuos con 2N de carga
Grafica V -41 volumen perdido en ensayos continuos con 2N de carga por material 115
Gráfica V -42 Volumen perdido en ensayos continuos con 5N de carga nor material 116
Gráfica V - 43 Volumen perdido en ensavos continuos con 10N de carga 117
Gráfica V - 45 Volumen perdido en ensavos continuos con 10N de carga por material
117
Gráfica V - 46 Volumen perdido en ensavos continuos con 15N de carga
Gráfica V - 47 Volumen perdido en ensayos continuos con 15N de carga por material
Gráfica V - 48 Comparativa del volumen perdido a partir de la masa (Vmasa) en
ensayos continuos de 1Km por carga
Gráfica V - 49 Comparativa del volumen perdido a partir de la masa (Vmasa) en
ensayos continuos de 1Km por material119
Gráfica V - 50 Comparativa del volumen perdido a partir del surco (Vsurco) en ensayos
continuos de 1Km por carga120
Gráfica V - 51 Comparativa del volumen perdido a partir del surco (Vsurco) en ensayos
continuos de 1Km por material120
Gráfica V - 52 Comparativa del volumen perdido a partir de la masa (Vmasa) en
ensayos continuos de 2Km por carga 121
Gráfica V - 531 Comparativa del volumen perdido a partir de la masa (Vmasa) en
ensayos continuos de 2Km por material 121
Gráfica V - 54 Comparativa del volumen perdido a partir de la masa (Vsurco) en
ensayos continuos de 2Km por carga
Gráfica V - 55 Comparativa del volumen perdido a partir de la masa (Vmasa) en
ensayos continuos de 2Km por material
Granca v - 56 Comparativa del volumen perdido a partir de la masa (Vmasa) en 122
ensayos continuos por material
Cranca v = 57 Comparativa dei volumen perdido a partir de la masa (v surco) en
ensayos continuos por materiar

Gráfica V - 58 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a
5N de carga
Gráfica V - 59 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas a
5N de carga
Gráfica V - 60 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a
10N de carga
Gráfica V - 61 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas a
10N de carga
Gráfica V - 62 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas a
15N de carga
Gráfica V - 63 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas
del Al-AM-60min por carga126
Gráfica V - 64 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del
Al-AM-60min por carga
Gráfica V - 65 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas
del Al-NH3-60min por carga
Gráfica V - 66 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del
Al-NH3-60min por carga
Gráfica V - 67 Volumen perdido a partir de la masa (Vmasa) en ensayos con paradas
del Al-NH3-30min por carga
Gráfica V - 68 Volumen perdido a partir del surco (Vsurco) en ensayos con paradas del
Al-NH3-30min por carga
Gráfica V - 69 Coeficiente de desgaste absoluto en ensayos continuos de 1Km 130
Gráfica V - 70 Coeficiente de desgaste absoluto en ensayos continuos de 1Km por
material
Gráfica V - 71 Coeficiente de desgaste absoluto en ensayos continuos de 2Km 131
Gráfica V - 72 Coeficiente de desgaste absoluto en ensayos continuos de 2Km por
material
Gráfica V - 73 Coeficiente de desgaste absoluto en ensayos con paradas
Gráfica V - 74 Coeficiente de desgaste absoluto en ensayos con paradas por material 132
Gráfica V - 75 Coeficiente de desgaste normalizado (K) en ensayos continuos con 2N
de carga
Gráfica V - 76 Coeficiente de desgaste normalizado (K) en ensayos continuos con 2N
de carga por material
Gráfica V - 77 Coeficiente de desgaste normalizado (K) en ensayos continuos con 5N
de carga
Gráfica V - 78 Coeficiente de desgaste normalizado (K) en ensavos continuos con 5N
de carga por material
Gráfica V - 79 Coeficiente de desgaste normalizado (K) en ensavos continuos con 10N
de carga
Gráfica V - 80 Coeficiente de desgaste normalizado (K) en ensavos continuos con 10N
de carga por material
Gráfica V - 81 Coeficiente de desgaste normalizado (K) en ensavos continuos con 15N
de carga

Gráfica V - 82 Coeficiente de desgaste normalizado (K) en ensayos continuos con 15N
de carga por material138
Gráfica V - 83 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 5N de
carga139
Gráfica V - 84 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 5N de
carga por material
Gráfica V - 85 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 10N
de carga
Gráfica V - 86 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 10N
de carga por material
Gráfica V - 87 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 15N
de carga142
Gráfica V - 88 Coeficiente de desgaste normalizado (K) en ensayos con paradas a 15N
de carga por material
Gráfica V - 89 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 1Km por carga
Gráfica V - 90 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 2Km por carga 144
Gráfica V - 91 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 1Km para Al-AM-60min
Gráfica V - 92 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 1Km para Al-NH3-60min
Gráfica V - 93 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 1Km para Al-NH3-30min
Gráfica V - 94 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 1Km
Gráfica V - 95 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 2Km para Al-AM-60min
Gráfica V - 96 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 2Km para Al-NH3-60min
Gráfica V - 97 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 2Km para Al-NH3-30min
Gráfica V - 08 Comparativa del coeficiente de desgaste normalizado (K) en ensavos
continuos de 2Km para. Al NH3 30min
Gráfica V - 99 Comparativa del coeficiente de desgaste normalizado (K) en ensavos con
perades a partir de la masa y el surza por corra
paradas a partir de la masa y el surco por carga
Granca v - 100 Comparativa del coefficiente de desgaste normanzado (K) en ensayos
con paradas de 1Km a partir de la masa por carga
Granca v - 101 Comparativa del coefficiente de desgaste normalizado (K) en ensayos
con paradas de TKIII a partir del surco por carga
Granca v - 102 Comparativa del coefficiente de desgaste normalizado (K) en ensayos
con paradas de Al-AM-60min a partir de la masa y el surco 150
Grafica v - 103 Comparativa del coeficiente de desgaste normalizado (K) en ensayos
con paradas de AI-NH3-60min a partir de la masa y el surco

Gráfica V - 104 Comparativa del coeficiente de desgaste normalizado (K) en ensayo)S
con paradas de Al-NH3-30min a partir de la masa y el surco	. 151
Gráfica V - 105 Comparativa del coeficiente de desgaste normalizado (K) en ensayo)S
con paradas por material	. 151
Gráfica V - 106 Comparativa de coeficientes de desgaste normalizado para ensayos	
continuos de 1Km	. 152
Gráfica V - 107 Comparativa de coeficientes de desgaste normalizado para ensayos	
continuos de 2Km	. 153
Gráfica V - 108 Comparativa de coeficientes de desgaste normalizado para ensayos	con
paradas	. 153
Gráfica V - 109 Relación entre tipo de desgaste y valor del coeficiente de desgaste	
normalizado	. 154