

ÍNDICE

CAPÍTULO 1	. INTRODUCCIÓN Y OBJETIVOS	4
CAPÍTULO 2	. EL DISEÑO ECOLÓGICO PARA EL DESARROLLO DE PRODUCTOS	
SOSTENI	IBLES	6
2.1. Motiv	aciones del diseño ecológico	6
2.2. Ecod	iseño	9
2.3. Fases	s de ecodiseño	11
CAPÍTULO 3	. EL ANÁLISIS DEL CICLO DE VIDA. DESCRIPCIÓN GENERAL	13
3.1. Qué	es el ACV	13
3.2. Rese	ña histórica	17
3.2.1.	Estados Unidos	17
3.2.2.	Europa	22
3.2.3.	Países nórdicos	24
3.2.4.	Suiza	25
3.2.5.	Holanda	27
3.2.6.	España	27
3.3. Norm	nativa sobre el ACV	29
3.4. Fases	s del ACV	31
3.4.1.	Objetivo, marco de estudio e hipótesis	32
3.4.2.	Inventario	33
3.4.3.	Evaluación del impacto del ciclo de vida	33
3.4.4.	Interpretación de los resultados	34
3.4.5.	Revisión crítica y análisis de resultados	34
3.5. Ecoir	ndicadores estándar	35
3.6. Ecoir	ndicador´99	42
3.7. Herra	amientas para realizar el ACV	47
CAPÍTULO 4	. EL ANÁLISIS DEL CICLO DE VIDA. APLICACIÓN PRÁCTICA A TRES	;
INSTALA	CIONES PARA TRATAMIENTOS DE AGUAS RESIDUALES	49
4.1. Obje [.] 4.1.1.	tivo, marco de estudio e hipótesis Funciones que deben cumplir las alternativas objeto de análisis	
4.1.2.	Fundamentos de la mejora de la calidad del agua por proces	sos
anaerób	icos y aeróbicos	50
4.1.3.	Sistemas de los equipos	51

4.1.4. Hipótesis	54	
4.2. Inventario		
4.2.1. Descripción de los tres tipos de instalaciones escogidas	57	
4.2.1.1.Biorock	57	
4.2.1.2.Biodiscos	61	
4.2.1.3. Canal abierto de saneamiento (CAS)	64	
4.3. Evaluación del impacto del ciclo de vida		
4.3.1. Interpretación del estudio	78	
CAPÍTULO 5. CONCLUSIONES	92	
REFERENCIAS	94	
BIBLIOGRAFÍA RECOMENDADA		

<u>CAPITULO 1.</u> <u>INTRODUCCIÓN Y OBJETIVOS.</u>

En la actualidad, legar a las futuras generaciones un medio ambiente apto para la continuidad de la civilización se ha convertido en una de las principales preocupaciones de la humanidad. En el marco de la globalización de las economías no es posible estar al margen de esta preocupación. En estos días, los consumidores son más exigentes, tanto en la conservación de los recursos naturales y en la protección del medio ambiente, como en la calidad de los productos y servicios que reciben. Por tal motivo, la industria enfrenta el reto de producir con alta calidad y satisfacer las expectativas de los consumidores y de otras partes interesadas en el tema de la protección del medio ambiente.

La responsabilidad del ingeniero industrial mecánico de conocer el impacto ambiental de su diseño es por todo esto más acuciante. Los diseños se centran hasta ahora en conseguir que se resistan unas cargas aplicadas, se consiga un determinado movimiento con unas determinadas velocidades y aceleraciones y cueste lo menos posible. A esto se debe añadir un nuevo parámetro: que el impacto sobre el ambiente sea el menor posible. Sin embargo, para minimizar este factor primero hay que saber en qué consiste el impacto ambiental de un diseño y hay que cuantificarlo. En eso consiste el análisis del ciclo de vida (ACV) de un equipo o instalación industrial.

La política orientada al ecodiseño y al desarrollo de productos de menor repercusión ambiental, debe comprender y prevenir los problemas medioambientales en todo el ciclo de vida del producto, es decir, desde la producción de las materias primas, necesidades de fabricación y alteración de las mismas, hasta el momento en que éstas tengan que ser desechadas al final de su vida útil, pasando por las fases de producción, fabricación, embalaje, distribución y consumo del propio producto.

Este proyecto tiene un gran interés para el ingeniero industrial mecánico, en su faceta de diseñador, ya que introduce y orienta en la metodología y ejecución de una herramienta tan importante para estos profesionales como es el ACV dando pautas y previniendo de puntos ambiguos así como de aquellos que son críticos para la huella ecológica definitiva del diseño.

Este documento consta de dos partes diferenciadas. En primer lugar se lleva a cabo un estudio preliminar del estado del arte del análisis del ciclo de vida, aclarando

lo que éste significa, su objetivo y alcance, su metodología, su evolución histórica y marco normativo. A continuación se analiza la forma en que se cuantifica, tratando de forma más particular los ecoindicadores y la forma en que dan un valor numérico característico del impacto, siendo esto último un tema, que por su subjetividad, complica seriamente el análisis del ciclo de vida.

En la segunda parte se lleva a cabo un análisis práctico comparativo de tres opciones que resuelven un mismo problema específico, para terminar con una serie de conclusiones y observaciones prácticas.

Como se verá en el apartado de conclusiones, una de las recomendaciones que desde aquí se puede hacer al ingeniero mecánico en su faceta de diseñador, es la de tener especial cuidado y dedicación en el desarrollo y depuración del sistema y forma de trabajo, modos, maneras y costumbres de uso de los equipos en fase de diseño, de forma que consigan productos que ahorren tanto energía como materia prima a la hora de llevar a cabo sus cometidos.