INDICE DE FIGURAS

Figura I.1-1. Calidad de los huesos en función de la edad y el sexo del ser humano	.14
Figura I.1-2. Esperanza de vida y calidad de los tejidos (adaptado)	.15
Figura I.1-3. Crecimiento de tejido fibroso	.16
Figura I.1-4. Fallo por fatiga de un biomaterial	.17
Figura I.1-5. Reabsorción ósea del hueso	.18
Figura I.1-6. Porcentaje de supervivencia por tiempo de implantación	.18
Figura I.1-7. Influencia del estado de carga en la degradación del tejido óseo	.19
Figura I.2-1. Equilibrio mecánico y biofuncional	.22
Figura II.1-1. Ejemplos de prótesis en el cuerpo humano	.28
Figura II.4-1. Composición ósea base	.40
Figura II.4-2. Morfología del Hueso	.41
Figura II.4-3. Ensayo real sobre una prótesis y esquema de la influencia de la direcc	ión
de la aplicación de la carga en las curvas esfuerzo deformación [62]	.43
Figura II.4-4. Curva tensión-deformación para distintas densidades óseas	.44
Figura II.4-5. Influencia de la edad del hueso en el comportamiento mecánico	del
mismo [62]	.44
Figura II.4-6. Configuración de cargas en el hueso	.45
Figura II.4-7. Semejanzas del hueso con estructuras ingenieriles	.45
Figura II.5-1: Situación del elemento Titanio (Ti) en la tabla periódica de los elemen	itos
	.46
Figura II.5-2: Martin Heinrich Klaproth	.47
Figura II.5-3: Evolución del precio del Titanio en el año 2009	.48
Figura II.5-4: Estructuras cristalinas del Ti. Izquierda: αTi (HC). Derecha: βTi (CC)	.49
Figura II.5-5: Ejemplo de microestructuras de aleaciones de Ti	.49
Figura II.5-6: Rangos de variación de los valores de límite elástico específico de distin	ntas
familias de aleaciones en función de la temperatura	.51
Figura II.5-7: Esquema de obtención del titanio según el proceso Kroll	.54
Figura II.5-8: Materia prima de Titanio	.55
Figura II.5-9: Ejemplo de piezas moldeadas	.56
Figura II.5-10: Ejemplo de piezas fabricadas por fundición	.56
Figura II.5-11: Titanio en polvo	.57
Figura II.5-12: Proceso de obtención de Titanio por pulvimetalurgia convencional	.58
Figura II.5-13: Pieza de Titanio obtenida por forja	.59
Figura II.5-14: Soldado del titanio	.60
Figura II.5-15: Recubrimiento con óxido de titanio	.61
Figura II.5-16: Tipo de aleación dependiendo de la temperatura y la cantidad	de
estabilizador beta	62

Figura II.5-17: Influencia de la temperatura de conformado sobre las propie	dades
Figura II 5, 18: Esquema del diagrama de equilibrio pseudo binario del sistema ti	itanio-
estabilizadores beta con la cunva Ms y los rangos de formación de	la faco
alfa y bota superpuestas	
Figura II 5-19: Influencia de la presencia de aluminio en la propiedades a trac	00 ción a
elevada temperatura en las aleaciones alfa-heta	68
Figura II 5-20: Influencia de la temperatura de conformado sobre las propie	
mecánicas y el tamaño de grano de las aleaciones alfa-beta	68
Figura II 5-21: Efecto de los elementos de aleación en la microestructura (de las
propiedades del titanio	70
Figura II 6-1: Clasificación de tratamientos empleados en el Ti op para imp	lantes
dentales	76
Figura III.1-1.Diagramas de fases en equilibrio: (a) sistema Ti-O. (b) sistema Ti-	-N. (c)
sistema Ti-Fe v (d) sistema Ti-Si	82
Figura III.1-2: Distribución granulométrica del polvo	82
Figura III.1-3: Morfología de los polvos de Titanio SE-JONG 4 obtenida me	diante
microscopía electrónica de barrido (SEM)	83
Figura III.1-4: Microscopía óptica de los polvos de Titanio SE-JONG 4. Ataque Krol	l83
Figura III.1-5. (a) Montaje, (b) Fluidímetro de Hall	84
Figura III.1-6. Curva de compresibilidad del polvo del titanio	85
Figura III.1-7: Composición granulométrica del 'Space Holder'	87
Figura III.2-1. Túrbula T2C	88
Figura III.2-2 Curvas de compresibilidad. Variación de la densidad relativa con la p	resión
y % de espaciador	89
Figura III.2-3 Variación de la porosidad en verde con la presión y % de espaciador	90
Figura III.2-4 Esquema de las probetas y nomenclatura utilizada	90
Figura III.2-5. SUZPECAR 600 kN	92
Figura III.2-6. MALICET ET BLIN U-30	92
Figura III.2-7: Extracción del agua destilada	94
Figura III.2-8: Recisplac P SELECTA	94
Figura III.2-9: Estufa CARBOLITE	95
Figura III.3-1: Horno de sinterización CARBOLYTE STF con sistema de vacío	96
Figura III.3-2 Rampa de Calentamiento	96
Figura III.3-3: Colocación de las probetas dentro del horno de sinterización	97
Figura III.4-1. Balanza OHAUS EXPLORER PRO	99
Figura III.5-1 Equipo de ultrasonidos KRAUTKRAMER USM 35	101
Figura III.5-2 (a) Palpador PANAMERIC S-NDT PF4R-10; (b) Palpador PANAME	FRIC S
V153	101
Figura III.6-1: Ilustración del proceso de corte	103
Figura III.6-2 Cortadora STRUERS SECOTOM-10	103

Figura III.6-3.	Empastilladora BUEHLER/METASERV PNEUMET	104
Figura III.6-4:	Lijadora STRUERS KNUTH-ROTOR-3	105
Figura III.6-5:	Microscopio NIKON EPIPHOT 20	106
Figura IV.1-1:	Esquema de las muestras y nomenclatura utilizada	109
Figura IV.2-1:	Resumen de gráficas para evaluación de la reproducibilidad del	protocolo
	de eliminación de NaCl planteado	110
Figura IV.2-2:	Influencia de la presión de compactación en la eliminación del N	aCl112
Figura IV.2-3:	Influencia del diseño de las muestras en la eliminación del espac	iador.114
Figura IV.2-4:	Resumen de la influencia del diseño de las muestras	115
Figura IV.2-5:	Estado de las muestras en cada paso de los ciclos	116
Figura IV.3-1	Porosidad Total (PT) y Porosidad interconectada encontrac	la en las
	probetas comparadas con la porosidad teórica	118
Figura IV.3-2:	a) Comparación de la PT y PI de de las probetas de combinacio	nes de 30
	y 50%, b) Comparación de la PT y PI de las pro	betas de
	combinaciones de 50 y 70%, c) Comparación de la porosidad to	otal frente
	al diseño de la muestra	119
Figura IV.4-1	Fotografías a vista de microscopio (5X) de las muestras	cortadas
	longitudinalmente	121
Figura IV.4-2:	Detalle del aspecto de las muestras a vista de microscopio	122
Figura IV.5-1:	Resultados ensayo a compresión	124
Figura IV.5-2:	Efecto de la presión de compactación de las muestras en los	ensayos a
	compresión	125
Figura IV.5-3:	Influencia de los diseños en el ensayo a compresión	126
Figura IV.5-4	Tensión de fluencia en función de la combinación de capas f	rente a la
	porosidad total calculado por Arquímedes	128
Figura IV.6-1	Valores del modulo de Young dinámico en términos de porosic	lad de las
	muestras	129
Figura IV.6-2:	Diagrama de comparación del módulo de Young de los valores o	obtenidos
	a través de la metalurgia de polvos convencionales y por la t	écnica de
	espaciadores	130
Figura IV.7-1	Relación entre el módulo de Young dinámico y el obtenido	mediante
	ensayos de compresión	131
Figura IV.7-2:	Diagrama de comparación del módulo de Young dinámico de le	os valores
	obtenidos a través de la metalurgia de polvos convencionales	s y por la
	técnica de espaciadores	132

INDICE DE TABLAS

Tabla II.1-1. Propiedades y aplicaciones de los biomateriales
Tabla II.1-2. Propiedades mecánicas de los biomateriales comúnmente más utilizado
[54]
Tabla II.2-1. Estadística sobre la cantidad de aparatos biomédicos consumidos en
E.E.U.U. en al año 1997 según el national Institutes of Health (NIH) [55]34
Tabla II.2-2. Estadística sobre el mercado de los biomateriales y de la salud en genera
en E.E.U.U. [53]
Tabla II.4-1. Propiedades Mecánicas del hueso cortical [62].
Tabla II.4-2 Propiedades Mecánicas del hueso trabecular [62]42
Tabla II.5-1: Propiedades físicas del titanio
Tabla II.5-2: Características mecánicas del titanio puro y de algunas de sus aleacione
[65]52
Tabla II.5-3: Clasificación del Titanio según la norma ASTM F6753
Tabla II.5-4: Resumen y comparación de las principales propiedades de las aleacione
de titanio69
Tabla II.5-5: Composición química del Ti-6AI-4V7
Tabla II.5-6: Principales propiedades de la aleación Ti-6AI-4V72
Tabla III.1-1. Composición en tanto por ciento (%p/p) de los polvos de titanio79
Tabla III.1-2. Composición química (% en peso) de los cuatro grados de Ti c.p. para
aplicaciones biomédicas80
Tabla III.1-3. Propiedades mecánicas requeridas a los cuatro grados de Ti c.p. para
aplicaciones médicas80
Tabla III.1-4. Propiedades de los polvos8
Tabla III.1-5. Composición en tanto por ciento (%p/p) del NaCl utilizado86
Tabla III.1-6. Propiedades físicas del NaCl80
Tabla III.2-1. Masa de Ti y NaCl según sus porcentajes87
Tabla III.2-2: Densidad relativa y porosidad en verde estimada a partir de las curvas de
compresibilidad de Ti+NaCl89
Tabla III.2-3: Masa de la Mezcla92
Tabla III.2-4 Parámetros utilizados en la eliminación de espaciador93
Tabla IV.2-1: Porosidades teóricas de las muestras113
Tabla IV.3-1: Resultados de porosidad obtenidos mediante Arquímedes11
Tabla IV.5-1 Porosidad total, módulo de Young corregido y sin corregir calculada a
partir del ensayo a compresión12
Tabla IV.5-2 Porosidad total y tensión de fluencia calculada a partir del ensayo a
compresión128
Tabla IV.6-1 Valores de Módulo de Young y porosidad total129