ÍNDICE DE FIGURAS

Figura 2-1. Modelo del problema.	28
Figura 2-2. Modelo de sección neta.	33
Figura 2-3. Modelo de concentrador.	34
Figura 2-4. Región de tensiones de fallo para un material isótropo.	35
Figura 3-1. Horno.	37
Figura 3-2. Laminado calcinado.	37
Figura 3-3. Secuencia de apilado.	37
Figura 3-4. Material a empastillar.	38
Figura 3-5. Resina acrílica.	38
Figura 3-6. Paños de desbaste.	38
Figura 3-7. Equipo de pulido.	38
Figura 3-8. Micrografía de la secuencia de apilado del laminado A.	39
Figura 3-9. Material de trabajo.	39
Figura 3-10. Mecanizado.	39
Figura 3-11. Fibra de vidrio.	39
Figura 3-12. Pegado de tacos.	39
Figura 3-13. Calibre de altura.	40
Figura 3-14. Probetas de tracción.	40
Figura 3-15. Rotura.	40
Figura 3-16. Curvas de ensayo del laminado A.	40
Figura 3-17. Barras de resistencia a tracción del laminado A.	41
Figura 3-18. Curvas de ensayo del laminado B.	42
Figura 3-19. Barras de resistencia a tracción del laminado B.	42
Figura 3-20. Micrografía de la secuencia de apilado del laminado B.	43
Figura 3-21. Esquema probeta MT.	44
Figura 3-22. Agujero-entalla laminado A.	46
Figura 3-23. Agujero-entalla laminado A.(II)	46
Figura 3-24. Agujero-entalla laminado B.	46
Figura 3-25. Agujero-entalla laminado B.(II)	46
Figura 3-26. Rotura de la probeta MT para el laminado B.	47
Figura 3-27. Esquema probeta DENT.	47
Figura 3-28. Fresadora.	48
Figura 3-29. Indentación.	48
Figura 3-30. Probeta DENT.	49
Figura 3-31. Detalle entalla DENT.	49

Figura 3-32. Rotura de la probeta DENT para el laminado A.	49
Figura 4-1. Esquema del tamaño y zona de agarre de la probeta.	50
Figura 4-2. Campaña de ensayos A.	51
Figura 4-3. Campaña de ensayos B.	51
Figura 4-4. Campaña de ensayos B. (II)	51
Figura 4-5. Ensayos de la evolución de la resistencia a tracción con agujero frente al tamaño del agujero para el W/2R=2 para el laminado anisótropo A.	un ratio 53
Figura 4-6. Ensayos de la evolución de la resistencia a tracción con agujero frente al tamaño del agujero para el W/2R=5 para el laminado anisótropo A.	un ratio 53
Figura 4-7. Ensayos de la evolución de la resistencia a tracción con agujero frente al tamaño del agujero para e W/2R=10 para el laminado anisótropo A.	un ratio 54
Figura 4-8. Valores medios de las evoluciones de la resistencia a tracción con agujero frente al tamaño del aguj ratios W/2R=2, 5 y 10 en el laminado anisótropo A.	ero para 54
Figura 4-9. Región de tensiones últimas para el laminado anisótropo A.	55
Figura 4-10. Superficie de rotura para ratio 10 del laminado A.	56
Figura 4-11. Superficie de rotura para ratio 10 del laminado A. (II.	56
Figura 4-12. Superficie de rotura para ratio 5 del laminado A.	57
Figura 4-13. Superficie de rotura para ratio 5 del laminado A. (II)	57
Figura 4-14. Superficie de rotura para ratio 2 del laminado A.	58
Figura 4-15. Superficie de rotura para ratio 2 del laminado A. (II)	58
Figura 4-16. Ensayos de la evolución de la resistencia a tracción con agujero frente al tamaño del agujero para W/2R=2 para el laminado cuasisótropo B.	un ratio 59
Figura 4-17. Ensayos de la evolución de la resistencia a tracción con agujero frente al tamaño del agujero para W/2R=4 para el laminado cuasisótropo B	un ratio 60
Figura 4-18. Valores medios de las evoluciones de la resistencia a tracción con agujero frente al tamaño del aguj ratios W/2R=2 y 4 en el laminado cuasisótropo B.	ero para 60
Figura 4-19. Región de tensiones últimas para el laminado cuasisótropo B.	61
Figura 4-20. Superficie de rotura para ratio 2 y 4 del laminado B.	62
Figura 4-21. Superficie de rotura para ratio 2 y 4 del laminado B.(II)	62
Figura 4-22. Superficie de rotura para ratio 2 del laminado B.	63
Figura 4-23. Superficie de rotura para ratio 2 del laminado B. (II)	63
Figura 4-24. Superficie de rotura para ratio 4.	64
Figura 4-25. Superficie de rotura para ratio 4.(II)	64
Figura 5-1. Predicciones en la región de tensiones para el laminado cuasisótropo B.	65
Figura 5-2. Criterio acoplado para el laminado cuasisótropo B.	66
Figura 5-3. Criterio acoplado para el laminado anisótropo A.	67
Figura 5-4. Criterio acoplado para el laminado anisótropo A.(II)	67
Figura 5-5. Longitudes críticas para el laminado anisótropo A.	68
Figura 5-6. Longitudes críticas para el laminado cuasisótropo B.	69
Figura 5-7. Mallado en Patran.	69
Figura 5-8. Campo de tensiones normales en el eje y.	70

xviii

Figura 5-9. Evolución de la tensión crítica de fallo estimada en función del tamaño del agujero para el laminado A. 70

Figura 5-10. Evolución de la tensión crítica de fallo estimada en función del tamaño del agujero para el laminado B.

71

Figura 5-11. Validación del modelo para ratio 5 en el laminado anisótropo A.	73
Figura 5-12. Validación del modelo para ratio 10 en el laminado anisótropo A.	73
Figura 5-13. Validación del modelo para ratio 2 en el laminado cuasisótropo B.	74
Figura 5-14. Validación del modelo para ratio 4 en el laminado cuasisótropo B.	75
Figura 5-15. Validación del modelo para ratio 4 en el laminado cuasisótropo B.	77
Figura 5-16. Validación del modelo para ratio 4 en el laminado cuasisótropo B.	77
Figura 5-17. Predicción con weakest link para ratio 4 en el laminado cuasisótropo B.	78
Figura 5-18. Validación del modelo para ratio 4 en el laminado cuasisótropo B.	79