Proyecto Fin de Carrera Ingeniería Industrial

Diseño según API 650 de un tanque con techo flotante interno para almacenamiento de gasolina

Autor: Ignacio Sánchez-Laulhé Carrascosa Tutor: José Manuel Galán Fernández

> Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2017

Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Proyecto Fin de Carrera Ingeniería Industrial

Diseño según API 650 de un tanque con techo flotante interno para almacenamiento de gasolina

Autor:

Ignacio Sánchez-Laulhé Carrascosa

Tutor: José Manuel Galán Fernández Profesor titular

Departamento de Ingeniería de la Construcción y Proyectos de la Ingeniería Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017

Proyecto Fin de Carrera: Diseño según API 650 de un tanque con techo flotante interno para almacenamiento de gasolina

Autor: Ignacio Sánchez-Laulhé Carrascosa

Tutor: José Manuel Galán Fernández

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2017

El Secretario del Tribunal

Para mis padres y hermana A mis abuelos A mi familia Con mis amigos A mi novia Por todos mis maestros

Gracias

Dicen que el proyecto fin de carrera debería ser un mero trámite, más tras acabar con las asignaturas de Ingeniería Industrial. En mi caso, han pasado casi tres años desde que aprobé mi última asignatura de la Escuela, los más que bien aprovechados tres créditos de Ingeniería del Transporte. Ligado al hecho de mi pronta introducción al mundo laboral, y la intensidad y ganas dedicadas a mi primer trabajo como ingeniero, han hecho que la conclusión de la carrera haya llegado más tarde de lo que siempre pensé.

Quisiera aprovechar este espacio para agradecer a todos los que siempre me han apoyado con este objetivo, tanto en la carrera como con el PFC. Uno se quedará con todo lo aprendido yendo a clase, con los buenos momentos vividos en los laboratorios estudiando con un café por delante, o las innumerables sesiones de psicoterapia con los amigos en el Alberto cuando el viento no parecía acompañar al objetivo sin más tratamiento médico que el elixir embotellado de etiqueta roja y punto azul glacial.

Me enorgullece mucho pertenecer a la Escuela de Ingenieros de la Universidad de Sevilla, y no puedo tener más que palabras de agradecimiento por lo que esta institución ha hecho brindarme la oportunidad de acceder al conocimiento mediante su personal. Concluyo que este viaje, ha merecido la pena, y que todos habéis sido culpables por dejarme siempre aprender cosas de vosotros: familia, amigos, profesores, compañeros. GRACIAS.

Ignacio Sánchez-Laulhé Carrascosa Sevilla, 2017 El siguiente proyecto trata de desarrollar todos los pasos necesarios para el diseño de un tanque de almacenamiento de gasolina con una pantalla flotante interna siguiendo las indicaciones dispuestas en la normativa americana API 650-12th Edition "Welded Tanks for Oil Storage" usada en la mayoría de aplicaciones industriales.

El procedimiento de diseño se expone en cada uno de los capítulos de este documento y se ha plasmado en un documento Excel formulado, estableciendo un ejemplo práctico de un caso de un tanque dispuesto en la ciudad de Sevilla con un volumen objetivo de 20.000 m³, con un techo fijo autosoportado y un techo flotante mediante pontonas perimetrales.

Queda fuera del alcance de este proyecto el cálculo de las tubuladuras en las virolas y techo, más allá de las aperturas de limpieza y venteos, así como un análisis optimizado de la cubierta fija, si bien se presenta un dimensionamiento para las vigas radiales mediante un modelo de elementos finitos.

Agradecimientos	9
Resumen	11
Índice	13
Índice de Tablas	16
Índice de Figuras	18
1 Introducción	21
1.1 Metodología del proyecto	21
2 Datos de diseño	23
3 Capacidad	25
3.1 Altura del tanque	25
3.2 Distribución de capacidad	26
3.3 Arreglo esquemático	27
4 Espesor de Virolas	29
4.1 Tensión admisible	29
4.2 Cálculo de espesores por el método del pie	29
4.3 Geometria y materiales para las virolas	31
4.4 Culculos - Espesor de Virola	55
5 Fondo	35
5.1 Placa de fondo	35
5.2 Placa di fullar 5.3 Cálculos - Placa de fondo y anular	35
	30
6 Puerta de Impieza 6.1 - Ruerta de limpieza (Elush tune cleanout door)	39 20
6.1.1 Cálculo del coeficiente de área para determinar el refuerzo mínimo de la puerta de limpi	22 AZ
6.2 Cálculos - Puerta de limpieza	43
7 Rigidizadores intermedios para el viento	45
7.1 Método para el cálculo del tanque equivalente	45
7.2 Ubicación de los rigidizadores secundarios	46
7.3 Módulo resistente de los rigidizadores secundarios	47
7.4 Cálculos - Rigidizadores intermedios	48
7.5 Aumento del espesor mínimo en el tanque	50
7.6 Comprobación en condiciones corroídas vs condiciones nominales	51
8 Placa del techo fijo y Placa de compresión	53
8.1 Tipos de techo	53
8.2 Placa del techo fijo	53
8.3 Placa de compresión	53
8.4 Diserio de tanques para pequenas presiones internas – Anexo F 8.5 Presión interna máxima	50 57
o.s riesion interna maxima 8.6 Cálculos - Placa del techo y placa de compresión	57 58
	50

1	1
T	4

9 Presión externa a vacío	63
9.1 Techo fijo	63
9.2 Virola	64
9.2.1 Altura transformada	64
9.2.2 Comprobaciones para rigidizar	64
9.2.3 Rigidizadores circunferenciales	65
9.2.4 Rigidizadores finales (cima y fondo)	66
9.3 Fondo	67
9.4 Cálculos – Presión externa (Anexo V)	68
10 Viento	75
10.1 Caraas de viento	75
10.1.1 Presión dinámica	75
10.1.2 Coeficientes de fuerza	76
10.1.3 Fuerzas de diseño del viento	77
10.2 Acciones sobre el tanque	77
10.2.1 Fuerzas desestabilizadoras	77
10.2.2 Fuerzas estabilizadoras	78
10.3 Comprobación de levantamiento	78
10.4 Cálculos – Viento	80
11 Sismo	83
11.1 Particularización del lugar	83
11.1.1 Clase de terreno del sitio	83
11.1.2 Grupo de uso sismico (SUG)	84
11.2 Movimiento de terreno en lugares no definidos por los metodos de ASCE 7	85
11.3 Espectro de respuesta de aceleraciones de diseno	86
11.3.1 Periodo convectivo (chapoteo)	86
11.3.2 Coeficientes del espectro de aceleraciones	86
11.4 Comportamiento dei liquido	8/
11.5 Fuerzas de diseño	90
11.5.1 Efectos sismicos verticales	90
11.5.2 Cortante total de diseno en la base (Tanque lleno)	90
11.5.3 Momento sismico de vueico	91
11.5.4 Fuerzas dinamicas circunterenciales debidas al líquido (Hoop stress)	92
11.6 Resistencia a las cargas de diseno	93
11.6.1 Anciajes	93
11.6.2 Compresion longitudinal en las virolas	95
11.6.3 Estuerzos circunterenciales (Hoop stress)	96
11.6.4 Altura libre	96
11.7 Levaniamiento	97
11.7.1 Cargas en los pernos de anciaje	99
11.7.2 Silletas de anciaje	99
11.8 Calculos – Sismo / Anciaje	103
12 Estructura del techo fijo	111
12.1 Carga sobre el techo	111
12.2 Espaciamiento entre vigas radiales	112
12.3 Modelo de la viga radial	112
12.4 Dimensionamiento del perfil	114
12.4.1 Resistencia de la sección	114
12.4.2 Resistencia al pandeo	114
12.5 Cálculos - Estructura del techo fijo	117
12.6 Cálculos - Dimensionamiento de la viga radial	119
13 Detalles del Techo Flotante Interno	121
13.1 Principios del techo flotante	121

13.	2 Tipos de techos internos flotante	122
1	L3.2.1 Techo panorámico	122
1	L3.2.2 Techo compartimentado abierto por arriba	122
1	L3.2.3 Techo con pontona metálica	122
1	L3.2.4 Techos sobre flotadores	122
1	L3.2.5 Techo de panel de abejas	122
13.	3 Espesores mínimos de material	123
13.	4 Sello periférico	123
13.	5 Geometría del diseño	125
13.	6 Cálculos - Techo flotante (Detalles)	127
14	Flotabilidad y estabilidad del TFI	129
14.	1 Flotabilidad	129
1	L4.1.1 Techo flotando bajo condiciones normales	129
1	14.1.2 Techo flotando bajo condiciones normales duplicando el peso muerto del techo	130
1	14.1.3 Techo flotando con dos compartimentos perforados	130
1	14.1.4 Techo flotando con la cubierta central y dos compartimentos perforados	131
14.	2 Estabilidad	131
14.	3 Cálculos - Flotabilidad y estabilidad	133
15	Deflexión y tensión del TFI	135
15.	1 Deflexión de la cubierta central	135
15.	2 Cálculos - Deflexión y tensión	138
16	Pandeo local en la nontona del TEI	1/1
16	1 Pandeo local en la pontona	141
10.	1611 Rigidizadores radiales en la pontona	142
16	2 Cálculos - Pandeo local en la pontona	144
17	Soportes del TFI	147
17.	1 Soporte para el tecno flotante	14/
17.	2 Cálculos Conortos TEL	148
17.	3 Culculos - Soportes TFI	150
18	Venteos	153
18.	1 Pérdida de vapor del producto	153
18.	2 Venteos atmosféricos	154
18.	3 Venteo de emergencia	156
18.	4 Venteos auto purgantes	157
18.	5 Calculos - Venteos	159
19	Apéndices	161
19.	1 Tabla de perfiles metálicos	161
1	L9.1.1 Serie UPN	161
1	19.1.2 Serie angular de lados iguales	162
1	L9.1.3 Serie IPE	163
19.	2 Tabla de área de tensión de pernos de anclajes	164
19.	3 Propiedades mecánicas de los electrodos de soldadura	165
19.	4 Tabla de espesores de tubo	165
19.	5 Coalgo ANSYS para modelo de la viga radial de la cubierta fija	167
20	Conclusiones	171
21	Bibliografía	173
		1/3

Índice de Tablas

Tabla 1-A. Distribución de celda en hoja de cálculos Excel.	21
Tabla 1-B. Formatos de celda en la hoja de cálculo Excel.	22
Tabla 4-A. Materiales permisibles para placas y tensiones admisibles.	29
Tabla 4-B. Espesores mínimos en virolas.	30
Tabla 4-C. Combinación de anchos para 11 niveles de virolas.	31
Tabla 4-D. Altura donde se alcanza el espesor mínimo.	32
Tabla 4-E. Distribución de altura y materiales de las virolas.	32
Tabla 5-A. Grupos de material.	36
Tabla 5-B. Espesor mínimo para la placa anular de fondo.	36
Tabla 6-A. Dimensiones de los accesorios puerta de limpieza tipo rasantes [mm]. (Tabla 5.9a en A	API 650). 39
Tabla 6-B. Espesores mínimos [mm] para la contrabrida, brida y placa de refuerzo de fondo para las p limpieza.	uertas de 41
Tabla 6-C. Espesores y altura de la placa de refuerzo de la virola para las puertas de limpieza.	41
Tabla 9-A. Factor de estabilidad para la combinación de viento y presión de vacío.	64
Tabla 10-A. Factor de importancia (Cargas de viento)	76
Tabla 11-A Valor de Fa en función de la Clase de Sitio.	83
Tabla 11-B Valor de Fv en función de la Clase de Sitio.	84
Tabla 11-C Factor de importancia (I) y clasificación del grupo de suelo sísmico (SUG)	84
Tabla 11-D Factores de modificación de respuesta para métodos ASD	87
Tabla 11-E Cálculo del centro de gravedad del conjunto de virola	91
Tabla 11-F Criterios de la ratio de anclaje, J.	94
Tabla 11-G Anclajes mecánicos	95
Tabla 11-H Altura libre mínima requerida.	97
Tabla 11-I. Cargas de levantamiento.	98
Tabla 12-A. Coeficientes de imperfección para las curvas de pandeo.	115
Tabla 13-A. Materiales de sellado.	125
Tabla 16-A. Constantes en función de la relación de aspecto a/b.	141
Tabla 17-A. Coeficientes de imperfección para las curvas de pandeo.	149
Tabla 18-A. Factor Y para el cálculo de VOT.	155
Tabla 18-B. Factor C para el cálculo de V _{IT} .	155

Tabla 18-C. Calor de entrada.	156
Tabla 19-A. Características dimensionales y mecánicas de la serie UPN.	161
Tabla 19-B. Características dimensionales y mecánicas de la serie angular de lados iguales.	163
Tabla 19-C. Características dimensionales y mecánicas de la serie IPE.	164
Tabla 19-D. Pernos de anclaje ASTM A36.	164
Tabla 19-E. Propiedades mecánicas de los electrodos de soldadura.	165
Tabla 19-F. Dimensiones exteriores de las tuberías según ASME B36-10M.	165
Tabla 19-G. Espesor de las tuberías [mm] según ASME B36.10M	166

Índice de Figuras

Figura 3-1. Medios de control del nivel del tanque.	25
Figura 4-1. Espesor calculado discretizando la altura total del tanque.	31
Figura 4-2. Espesor nominal VS espesores calculados cada 5 mm.	34
Figura 5-1. Perfil del anillo anular de fondo.	37
Figura 6-1. Puerta de limpieza rasante montada sobre plancha de la virola.	41
Figura 6-2. Gráfica para obtener K1, según API 650.	42
Figura 6-3. Polinomio para obtener K1 superpuesto a la gráfica API 650.	42
Figura 7-1. Fallo de la virola durante el montaje.	45
Figura 7-2. Posición del rigidizador intermedio por el viento en condiciones corroídas.	51
Figura 8-1. Representación del comportamiento de un tanque presurizado.	54
Figura 8-2. Detalle b para el anillo de compresión.	54
Figura 8-3. Detalle i para el anillo de compresión.	54
Figura 8-4. Árbol de decisión del anexo F de API 650.	56
Figura 9-1. Elementos que resisten el pandeo en la región de rigidizador intermedio.	66
Figura 9-2. Elementos que resisten el pandeo en la región del rigidizador de la cima.	67
Figura 9-3. Elementos que resisten el pandeo en la región del rigidizador del fondo.	67
Figura 9-4. Posición de los rigidizadores intermedios en condiciones corroídas.	71
Figura 9-5. Posición del rigidizador intermedio en condiciones nominales.	71
Figura 10-1. Coeficiente de exposición Kz. (Tabla 6-3 de ASCE 7-05)	75
Figura 10-2 Coeficiente de fuerza (Fig.6-21. ASCE 7-05)	76
Figura 10-3 Comprobación de vuelco en tanques sin anclajes	79
Figura 11-1 Coeficiente del periodo de chapoteo (Ks).	86
Figura 11-2 Espectro de respuesta de diseño típico para tanques de almacenamiento de líquidos (A	SCE-7). 88
Figura 11-3 Modelo de masas impulsiva y convectiva en un tanque de almacenamiento.	88
Figura 11-4 Ratio del peso de líquido efectivo.	89
Figura 11-5 Centro de gravedad de las fuerzas efectivas.	89
Figura 11-6. Geometría de la silleta de anclaje.	100
Figura 11-7. Distribución de cargas en la placa superior de la silleta – modelo de viga.	101
Figura 11-8. Silleta con anillo continuo en la parte superior.	101
Figura 11-9. Cargas en la soldadura de la silleta de anclaje.	102

Figura 12-1. Modelo ANSYS de viga radial del techo fijo.	113
Figura 12-2. Diagrames de esfuerzos axiles Nx.	114
Figura 12-3. Diagrama de momentos Mz.	114
Figura 12-4. Elección de la curva de pandeo para secciones de perfiles laminados,	115
Figura 13-1. Diferentes tipos de techos flotantes internos.	123
Figura 13-2. Junta de llanta dispuesta en líquido.	124
Figura 13-3. Junta de llanta dispuesta sobre vapor.	124
Figura 13-4. Junta tipo limpiaparabrisas.	124
Figura 13-5. Zapato mecánico.	125
Figura 13-6. Ubicación de la barra parachoques en el borde exterior del techo flotante.	126
Figura 14-1. Sector circular.	131
Figura 14-2. Área pinchada de la pontona.	132
Figura 15-1. Distribución de la carga de cubierta central en la pontona.	136
Figura 15-2. Cargas puntuales sobre el borde interior de la pontona.	136
Figura 16-1. Geometría de las placas superior e inferior de la pontona.	141
Figura 16-2. Sección efectiva resistente a la flexión de la placa superior/inferior de la pontona.	142
Figura 16-3. Porción sectorizada de la placa.	142
Figura 17-1. Pierna de apoyo del techo flotante.	147
Figura 17-2. Calcetines de las piernas de apoyo.	147
Figura 17-3. Reparto de cargas en las piernas de soportado.	148
Figura 17-4. Elección de la curva de pandeo para secciones huecas.	149
Figura 18-1. Mecanismos de perdida de vapor en un tanque.	153
Figura 18-2. Coeficientes de descarga K para dispositivos de venteos probados (Figura 2 de API 2000).	156
Figura 18-3. Posiciones del venteo auto purgante.	157
Figura 19-1. Perfil UPN	161
Figura 19-2. Perfil L.	162
Figura 19-3. Perfil IPE.	163

1 INTRODUCCIÓN

a utilización de un techo flotante interno en tanques verticales para el almacenamiento de gasolina reside en el hecho de que una gran cantidad de producto se pierde por evaporización, teniendo consecuencias tanto económicas, por la pérdida de producto, como nocivas por enriquecimiento del ambiente de esta sustancia. El desarrollo de estas pantallas se llevó a cabo poco después de la primera guerra mundial, liderada por la compañía americana Chicago Bridge & Iron Company (CB & I).

El objetivo principal del proyecto es realizar un diseño de estos tipos de tanques siguiendo las recomendaciones de la normativa API 650. El mismo será elaborado mediante una hoja de cálculo Excel, permitiendo modificar cualquier parámetro de diseño, respetando las limitaciones impuestas por el mencionado estándar americano:

- La presión interna debe ser cercana a la presión atmosférica, no superando el peso de las placas del techo fijo, o presiones superiores cumpliendo el Anexo F de la normativa.
- El fondo del tanque debe estar uniformemente soportado.
- El tanque no está refrigerado, y tiene una temperatura máxima de diseño no superior a 93°C.

Los siguientes apartados de API 650 han sido utilizadas en este diseño;

- Sección 5 Diseño.
- Anexo E Diseño sísmico de tanques de almacenamiento.
- Anexo F Diseño de tanques con presión interna pequeña.
- Anexo H Techos internos flotantes.
- Anexo V Diseño de tanques de almacenamiento para presión externa.

En la industria de tanques de almacenamiento, el estándar de la American Petroleum Institute (API) es frecuentemente empleado, si bien existen normativas de otras instituciones de reconocido prestigio con el mismo alcance, tales como el estándar europeo BS EN 14015 "Specification for the design and manufacture of site built, vertical cylindrical, flat-bottomed, abocvegorud, welded, steel tanks for the storage of liquids at ambient temperature and above".

1.1 Metodología del proyecto

En cada capítulo se detalla la teoría y las fórmulas empleadas siguiendo API 650 y/u otras normativas de aplicación. En el último apartado del capítulo se incluyen los datos de la hoja de cálculo Excel con la estructura presentada en Tabla 1-A, siguiente el criterio de formato de celda de Tabla 1-B.

Columna A	Columna B	Columna C	Columna D	Columna E	Columna F
Descripción del parámetro	Fórmula del parámetro	Símbolo del parámetro	Valor del parámetro	Unidades del parámetro	Referencias
(ejemplo)					
Parámetro vertical de aceleración sísmica	= 0,47*S _{DS} = 0,47*Q*Fa*Ss	Av	0,0823	%g	API 650, Anx. E, E.6.1.3

Tabla 1-A. Distribución de celda en hoja de cálculos Excel.

Tipo de dato	Formato en hoja de cálculos		
Datos de entrada – libres	Formato 1		
Datos de entrada - tabulados	Formato 2		
Celda formulada	Formato 3		
Comprobación – caso afirmativo	Formato 4		
Comprobación – caso negativo	Formato 5		
Texto	Formato 6		

Tabla 1-B. Formatos de celda en la hoja de cálculo Excel.

2 DATOS DE DISEÑO

Dadme un punto de apoyo y moveré el mundo. - Arquímedes de Siracusa (Siglo III a.C.) -

n el proceso de diseño, el cliente debe proporcionar al diseñador toda la información posible acerca del tanque. El anexo L de API 650 presenta un modelo de Hoja de Datos que orienta a compradores y fabricantes para la preparación y terminación de tanques de almacenamiento atmosféricos. En este capítulo se presenta un listado de características a modo resumen en las que se basará el diseño de tanque siguiendo las directrices de la citada normativa americana.

Datos de Diseño			Valor	ud.	Referencia
Conversión		1 N	0.1019	kg	
		g	9.8135	m/s2	
Densidad Acero		ρSteel	7850	kg/m3	
Tipo de Techo			Techo cónico fijo	0,	API 650, Sec
Nº denósitos			soportado en vig	ud	J.10.1.a
Máxima canacidad del denósito		Vm	21250	m3	
Capacidad del depósito (Volumen útil - neto)		Vn	20001	m3	
Diámetro interno del depósito		Di	34000	mm	
Altura del depósito hasta el bordillo del techo		Ht	25000	mm	
Relación altura diámetro		Ht / Di	0.7353		
Temperatura de diseño	(max)	Td	55	°C	
	(min)		0	°C	
Temperatura mínima de diseño del metal		MDMT	-7	°C	
Presión de operación (Interna)		Popt	ATM	barg	
Presión de diseño (interna)		Pd	0.029	barg	
			2.9	kPa	
Presión de prueba hidrostática (1.0 x Pd)		Pt	0.029	barg	
			2.9	kPa	
Presión de diseño (Externa)		Pe	0.005	barg	Anexo V
			0.5	kPa	aplicable
Producto almacenado			Fuel Oil		
Gravedad específica de diseño del producto almacenado		Sg	0.7835	-	
Gravedad específica del agua para prueba hidrosta (agua dulce)	ática	Sg1	1	-	
Nivel máximo de líquido de diseño		DLL	23500	mm	
Nivel de líquido sobre cubierta en operación norm	nal	hL	0	mm	
Nivel de líquido considerado para cálculo de espe virola	esor de	Ро	23500	mm	
Nivel de líquido en prueba hidrostática = Po / Sgl (agua dulce)	1	Ph	23500	mm	API 650, 7.3.5
Ratio de bombeo		In	420.4	m3 / h	

	Out	213	m3 / h	
Datos Sísmicos				
Grupo de uso sísmico, SUG		III		API 650 E.3.1
Clase de terreno del sitio		В		API 650, App E. E.4.4
Aceleración máxima del terreno	Sp	0.07	%g	NCSE-02 en Sevilla
http://prontuarios.inf	o/accione	es/sismo/sevilla		
Datos del Viento				
Velocidad básica del viento	V	26	m/s	DBSE-AE Anejo D
		93.60	km / h	
Carga de nieve	S	0.20	kPa	DBSE-AE Anejo D
https://www.codigotecnico.org/images/sto	ories/pdf/	seguridadEstructur	al/DBSE-	-AE.pdf
Categoría de exposición		С	-	ver en Viento
Carga viva del techo	Lr	1	kPa	Anexo V
Eficiencia de junta	Е	1		
Radiografia		-		API 650 Sec. 8
Factor de combinación de presión	Fp	0.4		API 650 5.2.2
Tolerancia de corrosión	,			
CA - Virola	C1	1.6	mm	
CA - Placa de techo / Placa de compresión	C2	1.6	mm	
CA - Fondo / Anular	C3	1.6	mm	
CA - Estructura del techo (total)	C4	1.6	mm	
CA - Techo flotante interno	C5	1.6	mm	
Material de construcción				
Virola (niveles 1:7)		A 573 Gr. 70		
Virola (niveles 8:11)		A 36		
Placa anular		A 573 Gr. 70		
Placa de fondo		A 36		
Placa de techo		A 36		
Cuellos de tubuladura (Tubos seamless)		A 106 Gr. B		
Cuellos de tubuladura (Tubos fabricados con placas)		A 573 Gr. 70		
Accesorios		A 234 WPB		
Bridas		A 105		
Bridas / tapas de boca de hombre (API)		A 573 Gr.70 / A	36	
Placa de compresión		A 36		
Placas de refuerzo		A 573 Gr. 70 / A	. 36	
Tornillería para bocas de hombre / Tubuladuras		A193 Gr. B7 & A	A194 Gr.	2H
Aparejos internos / externos		A 36		
Piernas de apoyo (techo flotante)		A 53 Gr. B		
Escalera / pasamanos		A 36 / A 53 Gr.E	3	
Juntas		CNAF (sin asbes	stos)	
Pernos de anclaje		A 36		

3.1 Altura del tanque

El objetivo del tanque es disponer de una capacidad neta de trabajo, $V_{n(obj)}$ de 20.000 m³. Con el diámetro fijado en *Di*=34 metros, el nivel neto, *dH*, que alberga dicha capacidad sería:

$$A_{i} = \frac{\pi * D_{i}^{2}}{4} = 289\pi \text{ m}^{2}$$

$$dH = \frac{V_{n(obj)}}{A_{i}} = \frac{20000 \text{ m}^{3}}{289\pi \text{ m}^{2}} = 22.0283683 \approx 22.03 \text{ m}$$
(1.1)

Por otro lado, se requiere una capacidad mínima de operación permanente en el tanque. Este parámetro puede ser definido mediante el nivel mínimo de llenado nominal, *MFL*, el cual se establecerá en 1 metro. Esta altura junto con el nivel neto establece el nivel normal de llenado, *NFL*.

$$NFL = dH + MFL = 22.03 + 1 = 23.03 \text{ m}$$
 (1.2)

De cara al diseño del tanque, se define el parámetro del nivel máximo de líquido de diseño, *DLL*, el cual debe ser igual o mayor al nivel normal de llenado. El líquido almacenado no superará jamás la cota DLL, ya que se dispondrán de medios mecánicos o electrónicos para evitarlo, tales como trampas de rebose o transmisores de nivel conectados a la admisión y/o descarga de fluido (en verde y en rojo respectivamente en la Figura 3-1. En este tanque se establece DLL en 23.5 m.

$$NFL \le DLL \rightarrow 23.03 \text{ m} \le 23.50 \text{ m}$$
 (1.3)

Figura 3-1. Medios de control del nivel del tanque.

Por otro lado, se debe disponer de un espacio libre, $H_{f_{TFI}}$, suficiente que albergue el techo flotante y permita el movimiento natural del mismo sin interferir con el techo fijo y sus elementos acoplados. Se establece un valor de 1,5 metros. En la ecuación (1.183) se comprueba la suficiencia de esta holgura para el elemento móvil.

Con todos estos parámetros, la altura del tanque hasta la unión con el techo, H_t , resulta:

$$H_t = DLL + H_{f_{-}TFI} = 23.50 + 1.50 = 25.00 \text{ m}$$
 (1.4)

3.2 Distribución de capacidad

Cálculo de la capacidad del tanque				
Diámetro interno del depósito		Di	34000	mm
Área interna del depósito		Ai	907920277	mm2
Gravedad específica de diseño del producto al	macenado	Sg	0.7835	-
Gravedad específica del agua para prueba hidr	ostática (agua dulce)	Sg1	1	-
Nivel máximo de líquido de diseño		DLL	23500	mm
Volumen neto objetivo		Vn (obj)	20000	m3
Nivel neto (dH)		dH	22030	mm
Nivel mínimo de llenado (Nominal)		MFL	1000	mm
Nivel normal de llenado	= dH + MFL	NFL	23030	mm
Nivel normal debe ser igual o menor a	¿NFL < DLL?		Ok	
Espacio libre para techo flotante	= Ht - DLL	Hf_TFI	1500	mm
Nivel de líquido en prueba hidrostática		Hh	23500	mm
Altura del depósito hasta el bordillo del techo		Ht	25000	mm
Pandiente en al fondo dal tanque		(5:300)	0.016667	
Altura de la pendiente del fondo del tanque		(5.500) hcone	283 33	- mm
Volumen del cono resultante por la pendiente del fondo	= pi * Di ² * h1 / 12	Bvc	85.75	m3
Ángulo de la placa de fondo con la horizontal		ф	0.0167 0.9548	rad °
Ángulo entre techo y la horizontal		θ	9.5	0
Altura de cono del techo		h	2846	rad mm
Capacidad <u>neta</u> del tanque	= pi * Di² / 4 * (NFL- MFL)	Vn	20001	m3
Capacidad máxima del tanque	$= (pi * Di^2 / 4 * DLL)-Bvc$	Vm	21250	m3
Volumen durante la prueba hidrostática	= (pi * Di ² / 4 * Hh)- Bvc	Vh	21250	m3
Capacidad <u>geométrica</u> del tanque (Capacidad bruta)	= (pi * Di ² / 4 * Ht)- Bvc	Vg	22612	m3
Volumen permanente en el tanque	= pi * Di ² / 4 * (MFL)	Vmin	908	m3
Peso del fluido de operación	= Vm * Sg * 1000	Wc	16649672	kg
Peso medio de la prueba hidrostática	= Vt * Sg1 * 1000	Wh	21250378	kg

3.3 Arreglo esquemático

0		т г і	<u>к 1 г 1</u>	N. (· 1
n°		Espesor [mm]	Ancho [mm]	Material
	1	19.00	2380	A 573 Gr. 70
	2	18.00	2380	A 573 Gr. 70
	3	16.00	2380	A 573 Gr. 70
	4	14.00	2380	A 573 Gr. 70
	5	12.00	2380	A 573 Gr. 70
	6	10.00	2380	A 573 Gr. 70
	7	8.00	2380	A 573 Gr. 70
	8	8.00	2385	A 36
	9	8.00	1985	A 36
	10	8.00	1985	A 36
	11	8.00	1985	A 36

E l siguiente capítulo establece el método para calcular los espesores de las virolas del tanque, mediante el método del pie. Además, establece el número de niveles a considerar en función de la altura total del tanque, así como la elección del material que se tomará para cada uno de ellos.

4.1 Tensión admisible

La tensión máxima admisible de diseño debida al almacenamiento del producto, S_d , se muestra en la Tabla 4-A para varios materiales. Se obtiene de entre el menor valor de 2/3 partes del límite elástico y 2/5 partes de la tensión de rotura. En el uso de este valor debe usarse el espesor de virola descontando el efecto de la corrosión prevista.

La tensión máxima admisible para la prueba hidrostática, S_t , se muestra en la API 650, Tabla 4-A para varios materiales. Se obtiene de entre el menor valor de 3/4 partes del límite elástico y 3/7 partes de la tensión de rotura. En el uso de este valor debe usarse el espesor nominal de virola.

API 650, Tabla 5-2 (extracto)		Limite elástico	Limite elástico Tensión de rotura		Tensión para prueba hidrostática	
Biblioteca Grado		F _y (MPa)	F _u (MPa)	S _d (MPa)	S _t (MPa)	
Material 1	A 573 Gr.70	290	485	193	208	
Material 2	A 36	250	400	160	171	
Material 3	A 283 Gr. C	205	380	137	154	
Material 4	A 106 Gr. B	240	415	160	178	
Material 5	A 53 Gr. B	240	415	160	178	

Tabla 4-A. Materiales permisibles para placas y tensiones admisibles.

4.2 Cálculo de espesores por el método del pie

El método del pie calcula los espesores necesarios en un punto situado 300 mm (1 pie) sobre la parte más baja de cada virola. Este método no debe usarse en tanque un diámetro superior a 61 metros.

El valor mínimo para el espesor en cada virola será el mayor de los calculados para los casos de almacenamiento del producto y para el desempeño de la prueba hidrostática:

$$t_{d} = \frac{4,9*D*(H_{d} - 0.3)*S_{G}}{S_{d}} + C_{1}$$
(1.5)
$$t_{t} = \frac{4,9*D*(H_{H} - 0.3)}{S_{t}}$$
(1.6)

donde:

 t_d : espesor de virola de diseño [mm].

 t_t : espesor de virola para la prueba hidrostática [mm].

D: diámetro nominal del tanque, medido desde el punto medio de la virola más baja [m].

 H_d y H_H : columna de líquido de diseño y de prueba hidrostática, respectivamente [m].

 S_{G} : gravedad especifica de diseño del producto almacenado [-].

- C_1 : sobrespesor de corrosión para las virolas [mm].
- S_d : tensión admisible debida al almacenamiento de producto [MPa].
- S_t : tensión admisible para la prueba hidrostática [MPa].

En el cálculo del nivel de líquido para el cálculo de virola, H, debe tenerse en cuenta el efecto de la presión interna de diseño. La presión adicional en el espacio libre sobre el producto almacenado se convierte en una presión como columna de líquido H_p y H_w , añadiéndosela al nivel de líquido de diseño. De esta manera, diferenciando para los dos casos, las columnas de líquido H_d y H_H se obtiene como:

• Producto de diseño

$$H_{d} = P_{o} + H_{p} = P_{o} + \frac{(P_{d} + P_{fr})}{g * S_{G}}$$
(1.7)

Prueba hidrostática

$$H_{H} = P_{h} + H_{w} = P_{h} + \frac{(P_{t} + P_{f^{r}})}{g * S_{G1}}$$
(1.8)

donde:

 P_o y P_h : nivel de líquido considerado en cada virola durante la operación normal y durante la prueba hidrostática, respectivamente [m].

 P_d y P_t : presión interna de diseño durante la operación normal y durante la prueba hidrostática, respectivamente [kPa].

 P_{fr} : presión que ejerce el peso muerto del techo flotante sobre el líquido = W_f / A_{fr} [kg/m²], calculado en el apartado

 S_G y S_{G1} : gravedad especifica de diseño del producto almacenado, y del producto para la prueba hidrostática [-].

Independientemente del cálculo de espesores, existen unos valores mínimos de espesores nominales (incluyendo corrosión) en función del diámetro nominal del tanque, mostrados en Tabla 4-B. Estos valores están basados en requerimientos constructivos.

API 650 – 5.6.1.1									
Diámetro nominal [m]	< 15	15 - < 36	36 - 60	> 60					
Espesor mínimo [mm]	5 ^a	6	8	10					
^a Si el diámetro es mayor a 3,2 m, el espesor de la virola más baja no debe ser menor a 6 mm.									

Tabla 4-B. Espesores mínimos en virolas.

El espesor nominal será el mayor valor entre $[t_d; t_i]$ redondeado al milímetro.

En la sección 7 se comprueba la estabilidad de las virolas del tanque ante el pandeo que pueda sufrir debido a la velocidad de diseño del viento. Si fuera necesario por estabilidad pueden usarse rigidizador intermedios, aumentarse el espesor de las virolas o emplear ambas medidas.

Las cargas puntuales radiales que pueda sufrir la virola debidas a cargas pesadas en la plataformas y pasos entre tanques deben ser distribuidas mediante secciones estructurales laminadas, nervios o secciones compuestas.

4.3 Geometría y materiales para las virolas

El número de nivel de virolas se obtendrá dividiendo la altura total del tanque entre el ancho de virola comercial que se quiere emplear, minimizando el número de costuras en sentido circunfencial. El ancho de virolas objetivo son las planchas de 2400 mm (96"), por ello:

$$n^{\circ} niveles = \frac{H_t}{b_{comercial}} = \frac{25000 \text{ mm}}{2400 \text{ mm}} = 10.417 \rightarrow 11 \text{ niveles}$$
 (1.9)

Para ajustar la altura del tanque, se intercambiará el ancho de las planchas de los niveles superiores, que serán las más delgadas, por la medida comercial de 2000 mm (80"). La siguiente Tabla 4-C muestra la altura alcanzada para varias combinaciones de ancho de plancha para 11 niveles de virola:

N.º niveles	N.º planchas de 2400 mm (96")	N.º planchas de 2000 mm (80")	Altura conseguida [mm]
11	11	0	26400
11	10	1	26000
11	9	2	25600
11	8	3	25200
11	7	4	24800

Tabla 4-C. Combinación de anchos para 11 niveles de virolas.

Se opta por la solución de 8 planchas de 2400mm y 3 planchas de 2000mm. Para obtener los 25 metros exactos, se recortan 20 mm de los 7 niveles más bajas y 15 mm de los 4 restantes.

Para la asignación de materiales a los distintos niveles de virolas, se proponen dos tipos de acero al carbono, colocando el de las mejores propiedades mecánicas en las virolas más bajas, y seleccionando un acero de propiedades intermedias para el resto de virolas superiores. El cambio de material vendrá marcado por la limitación en el espesor expuesto en la Tabla 4-B, incluyendo el sobrespesor de corrosión.

El ejercicio propuesto trata de discretizar la altura total del tanque en pequeñas virolas de 5 mm de altura, realizando el cálculo de espesor mediante el método del pie en cada una de ellas en los dos materiales propuestos. Además, se calcula a qué altura se produce este hecho, extrapolando el dato al nivel de virola en el que ocurre. Los espesores calculados son redondeados al milímetro.

Figura 4-1. Espesor calculado discretizando la altura total del tanque.

Espesor mínimo + CA [mm]	Material	Grado	Altura [m]	Virola nº
8	Material 1	A 573 Gr. 70	14,255	6
	Material 2	A 36	15,890	7

Tabla 4-D. Altura donde se alcanza el espesor mínimo.

En la Figura 4-1 se observa la progresiva disminución en el espesor requerido conforme se alcanza más altura. A raíz de los datos de la Tabla 4-D, el material 2 alcanza el espesor mínimo en la virola 7, por lo que se instalara dicho material desde la virola 8 en adelante.

La distribución geométrica y asignación de materiales en las virolas resultara de la siguiente forma:

Nivel nº	Altura (m)	Material	Grade
1	2,380	Material 1	A 573 Gr. 70
2	2,380	Material 1	A 573 Gr. 70
3	2,380	Material 1	A 573 Gr. 70
4	2,380	Material 1	A 573 Gr. 70
5	2,380	Material 1	A 573 Gr. 70
6	2,380	Material 1	A 573 Gr. 70
7	2,380	Material 1	A 573 Gr. 70
8	2,385	Material 2	A 36
9	1,985	Material 2	A 36
10	1,985	Material 2	A 36
11	1,985	Material 2	A 36

Tabla 4-E. Distribución de altura y materiales de las virolas.

Adicionalmente, las virolas deber estar dispuestas del tal forma que permitan el libre movimiento vertical del techo flotante interno, debiendo quedar alineadas por la cara interior del tanque.

4.4 Cálculos - Espesor de virola

Diseño de virolas					API 650, Sec. 5.6
Diámetro nominal	=Di + tmax	D	34019	mm	
Es un cálculo iterativo, hasta que tmax coindice con el calculo	ado				
Gravedad específica de diseño del producto almacenado		Sg	0.7835	-	
Gravedad específica del agua para prueba hidrostática (agua dulce)		Sg1	1	-	
Nivel de líquido considerado para cálculo de espesor de virola		Ро	23500	mm	
Nivel de líquido en prueba hidrostática = Po / Sg1 (agua dulce)		Ph	23500	mm	
Presión interna de diseño	= Pd / g	Pi'	296	mm col.	Agua
Presión durante prueba hidrostática	= Pt / g	Pt'	296	mm col.	Agua
Presión del techo flotante sobre el liquido	= (Wf/Afr)	Prf	112	mm col. Agua	Ver Flotabilidad!
Presión de columna de líquido equivalente	=(Pi'+Pfr') / Sg	Нр	521	mm	API 650, F.2
Presión de columna de líquido equivalente en prueba hidrostática	=(Pt'+Pfr') / Sg1	Hw	408	mm	API 650, F.2
Columna de líquido de diseño	=Po + Hp	Hd	24021	mm	API 650, F.2
Columna de líquido de prueba hidrostática	=Ph + Hw	Нн	23908	mm	API 650, F.2
CA - Virola		C1	1.6	mm	
Espesor requerido (Diseño)		td - 4.9 x D x (H _d -0.3) > Sd	:Sg +	mm C ₁	API 650, Sec-5.6.3.2
Espesor requerido (Prueba hidrostática)		tt - 4.9 x D x (H _H -0.3) St		mm	API 650, Sec-5.6.3.2
Espesor mínimo requerido (corroído)		t MIN	6	mm	API 650, Sec-5.6.1.1, MDS
Espesor mínimo requerido (sin corroer)	= t MIN + C1	t MIN (CA)	7.6	mm	
Peso total de las virolas (sin corroer)		Ws	249616	kg	
Peso total de las virolas (corroído)		Ws'	216055	kg	

Nivel	Altura	Material	Grade			Diseño	=Po+Hp	Espesor requerido	Prueba hidrostática	=Ph+Hw	Espesor requerido	Espesor calculado	Espesor nominal (comercial)	Peso virola (sin corroer)	Peso virola (corroída)
nº	m	-	-	Sd [MPa]	St [MPa]	Po [m]	Hd [m]	td [mm]	Ph [m]	HH [m]	tt [mm]	[mm]	t [mm]	Ws [kg]	Ws' [kg]
1	2.380	Material 1	A 573 Gr. 70	193.33	207.86	23.50	24.02	17.62	23.50	23.91	18.93	18.93	19.00	37938	34741
2	2.380	Material 1	A 573 Gr. 70	193.33	207.86	21.12	21.64	16.02	21.12	21.53	17.02	17.02	18.00	35940	32744
3	2.380	Material 1	A 573 Gr. 70	193.33	207.86	18.74	19.26	14.41	18.74	19.15	15.12	15.12	16.00	31945	28749
4	2.380	Material 1	A 573 Gr. 70	193.33	207.86	16.36	16.88	12.80	16.36	16.77	13.21	13.21	14.00	27950	24755
5	2.380	Material 1	A 573 Gr. 70	193.33	207.86	13.98	14.50	11.19	13.98	14.39	11.30	11.30	12.00	23956	20761
6	2.380	Material 1	A 573 Gr. 70	193.33	207.86	11.60	12.12	9.59	11.60	12.01	9.39	9.59	10.00	19962	16767
7	2.380	Material 1	A 573 Gr. 70	193.33	207.86	9.22	9.74	7.98	9.22	9.63	7.48	7.98	8.00	15969	12774
8	2.385	Material 2	A 36	160.00	171.43	6.84	7.36	7.36	6.84	7.25	6.76	7.60	8.00	16002	12801
9	1.985	Material 2	A 36	160.00	171.43	4.46	4.98	5.42	4.46	4.86	4.44	7.60	8.00	13318	10654
10	1.985	Material 2	A 36	160.00	171.43	2.47	2.99	3.80	2.47	2.88	2.51	7.60	8.00	13318	10654
11	1.985	Material 2	A 36	160.00	171.43	0.49	1.01	2.18	0.49	0.89	0.58	7.60	8.00	13318	10654

Figura 4-2. Espesor nominal VS espesores calculados cada 5 mm.

Siguiendo con el código de colores de la Figura 4-2, las siguientes tablas muestran las diferencias entre la masa real del tanque (en verde), y la masa de los tanques si el tanque no tuviese restricciones constructivas y pudiesen construirse de un único material y ajustando la altura de las virolas.

En las virolas 1-7 (en azul), donde se usa el material A 573 gr.70, se observa un incremento del 5% de la masa al tener que establecer los niveles de virolas. Toda la masa que el tanque tiene de más en estos niveles se verá compensada con la disminución de soldaduras en campo que se obtiene al usar unos anchos de plancha mayores.

En las virolas 8-11 (en naranja), donde se usa el material A36, no existe empeora en la cantidad de acero a emplear, ya que el espesor mínimo exigido por API 650 gobierna en el problema desde la virola 7. Cabe destacar las ventajas de usar un acero más resistente en la parte baja del tanque, ya que, de otro modo, si se hubiese empleado este material en la totalidad del tanque, se hubiese obteniendo un incremento en masa del casi 9%, con unos espesores mayores que dificultaría aún más las labores de soldadura de las planchas.

N° virola	Grade	Suma de Masa real [kg]	Suma de Masa con A573 Gr.70 [kg]	Suma de Diferencia - Masa A573gr.70 vs Masa real [kg]	Suma de Masa con A36 [kg]	Suma de Diferencia - masa con A36 vs masa real [kg]
1	A 573 Gr. 70	37938	36918	1019	44448	-6510
2	A 573 Gr. 70	35941	33051	2890	39914	-3972
3	A 573 Gr. 70	31948	29246	2701	35379	-3431
4	A 573 Gr. 70	27895	25395	2500	30526	-2630
5	A 573 Gr. 70	23961	21775	2185	26041	-2081
6	A 573 Gr. 70	19967	18684	1284	21599	-1632
7	A 573 Gr. 70	15974	15974	0	17648	-1674
8	A 36	16007	16007	0	16007	0
9	A 36	13323	13323	0	13323	0
10	A 36	13356	13356	0	13356	0
11	A 36	13323	13323	0	13323	0
Total general		249632	237052	12580	271563	-21930
	Porcentaje		= Diferencia / Real	5.039%	= Diferencia / Real	-8.785%

I siguiente capítulo establece el método para calcular los espesores de las virolas del tanque, mediante el método del pie. Además, establece el número de niveles a considerar en función de la altura total del tanque, así como la elección del material que se tomará para cada uno de ellos.

5.1 Placa de fondo

La placa de fondo del tanque debe tener un espesor corroído de al menos 6 mm. La pendiente mínima requerida es 1:120 hacia el centro del tanque, garantizado un movimiento mínimo del fluido que evite estancamientos.

API 650 define en el anexo L algunas geometrías para diseñar esta parte del tanque. La elección el tipo de fondo será función del tanque, el fluido que se desee almacenar y la manera de disponer los sumideros para recogidas:

- Fondo plano
- Cónico, con el centro elevado, permitiendo el drenaje por la periferia del tanque.
- Cónico, con el centro bajo, permitiendo el drenaje por un sumidero en el centro del tanque.
- De lado a lado, a modo de tejado, con las caídas planas, permitiendo el drenaje por el punto bajo del tanque.
- Cónico, con el punto bajo excéntrico.

Las planchas del fondo que están más alejadas de las virolas no estarán excesivamente tensionadas a menos que ocurra un asentamiento anormal en la cimentación que esté bajo ellas.

En los extremos del fondo suele instalarse un anillo de goteo para la cimentación que previene de filtración de agua entre el fondo y la cimentación. Estas bandejas de goteo tienen los siguientes requisitos de diseño:

- Son de acero al carbono, con un espesor mínimo de 3 mm.
- Deben prolongarse al menos 75 mm desde el perímetro de la cimentación y luego plegarse interiormente hasta 90°, dejando el borde mirando hacia el suelo.

5.2 Placa anular

En tanques de gran tamaño, se suele disponer de una placa anular bajo la última virola que permita distribuir por la cimentación el peso de las mismas y que soporte las tensiones radiales de flexión originadas por la discontinuidad de la unión virola-suelo.

Cuando las virolas del nivel más bajo son de materiales pertenecientes a los grupos IV, IVA, V o VI se necesita disponer de una placa anular bajo ellas unida mediante soldadura a tope. Los materiales empleados en las virolas pertenecen a los siguientes grupos mostrados en Tabla 5-A, siendo necesario este elemento.

Extracto de la Tabla 4.4b – Grupos de materiales (API 650)	Material	Grupo
Virolas (1-7)	A573 Gr.70	IV / IVA
Virolas (8-11)	A36	I / II

Tabla 5-A. Grupos de material.

El espesor de la placa anular se obtiene entrando en la Tabla 5-B con el espesor corroído y la tensión de la virola más baja. La tensión en la virola final es el valor máximo entre la que provoca el líquido de diseño, S_{db} , y la que provoca la prueba hidrostática, S_{tb} . Se obtiene como un porcentaje del valor de la tensión usada en el cálculo de espesor, en función del espesor calculado y el espesor realmente seleccionado. Debe usarse el espesor corroído para la tensión por el producto de diseño, y el espesor nominal para la tensión en la prueba hidrostática.

$$S_{db} = \left(\frac{t_{d1} - C_1}{t_1 - C_1}\right)^* S_d$$
(1.10)
$$S_{lb} = \left(\frac{t_{l1}}{t_1}\right)^* S_l$$
(1.11)

donde:

- t_{d1} : espesor de cálculo de la virola final con la condición de diseño [mm].
- t_{i1} : espesor de cálculo de la virola final con la condición de prueba hidrostática [mm].
- t_1 : espesor nominal de la virola final [mm].
- S_d : tensión de diseño para el almacenamiento de producto en la virola final [MPa].
- S_t : tensión de diseño para la prueba hidrostática en la virola final [MPa].

(API 650 – Tabla 5.1a)	Esfuerzo	en virola fi	nal [MPa]	
Espesor de última virola [mm] - Corroído	<=190	<=210	<=220	<=250
t <=19	6	6	7	9
19 < t <=25	6	7	10	11
25 < t <=32	6	9	12	14
32 < t <=40	8	11	14	17
40 < t <=45	9	13	16	19

Tabla 5-B. Espesor mínimo para la placa anular de fondo.

Los valores para el espesor de Tabla 5-B son válidos cuando la altura efectiva de producto sea igual o menor a 23 m. En caso de no cumplirse esta máxima, se debe realizar un análisis elástico para determinar el espesor de la placa anular.

Para el cálculo del ancho radial de la placa anular, a_w , se deben tener en cuenta los siguientes requisitos. La Figura 5-1 muestra la composición de longitudes que componente este elemento.

- El ancho radial desde el interior de la virola hasta cualquier junta de solape con la placa de fondo, l_{a1} , tiene un valor mínimo de 600 mm. Esta longitud asegura que el giro en el extremo interior, que es el que está más alejado de la virola, sea prácticamente cero.
- La proyección desde la parte exterior de la virola, l_{a2}, tiene un valor mínimo de 50 mm o aquel que permita soldar adecuadamente el aparejo situado entre el nivel inferior de virola y la proyección exterior, tomando el mayor de los dos casos. Por ello, el dimensionamiento de las silletas de anclaje del apartado 11.7.2 Silletas de anclaje influirá en este valor.
- El solape de la placa de fondo sobre la placa anular, l_{a3} , se tomará como 65 mm. El solape entre las placas de fondo es 50 mm, pero se aumenta este valor para corregir la forma poligonal que conforman todas las planchas del anillo anular en su parte interna. La parte exterior si debe tener forma circular. Este solape permite que las deformaciones de las placas del fondo no se propaguen directamente por la placa anular.
- El ancho radial total, a_{w2} , tiene un valor mínimo con la siguiente expresión:
$$a_{w} \ge a_{w2} = \frac{215 * t_{b}}{\sqrt{H * G}}$$
(1.12)

donde:

 t_b : espesor nominal de la placa anular [mm].

H: nivel máximo de líquido de diseño [m].

 S_G : gravedad específica de diseño del producto almacenado [-].

Figura 5-1. Perfil del anillo anular de fondo.

La zona de la cimentación situada bajo el perímetro de las virolas tiene más criticidad ya que si se producen asientos diferenciales, el peso de las paredes y del techo se reparte de manera desigual, provocando tensiones adicionales no deseables en la unión virola-fondo.

Este problema se extiende de igual manera por todos los niveles de las virolas, ya que la perdida de circularidad crearía una incorrecta alineación de la tubuludura haciendo que la tubería conectada a ella ocasione esfuerzos no esperados concentrados en esa zona. Esta pérdida de redondez puede afectar al techo flotante causando daños en el sello o incluso dejándolo atascado sin poder ejecutar su carrera correctamente.

5.3 Cálculos - Placa de fondo y anular

Placas de fondo 5.4					API 650, Sec 5.4
CA Fondo / Amulan		C^{2}	1.6		
CA - Fondo / Anular		0.5	1.0	mm	ADI (50
tmin + C2		umin	076	mm	API 050, sec 5.4.1
tmin + C.5		41.	7.0	mm	
Espesor dado en placa de fondo		tb (5.200)	/.0	mm	ADI (50
Pendiente en el fondo del tanque		(5:300)	0.016667	-	API 650, sec 5.4.4.
Minima pendiente requerida para el fondo		(1:120)	Cumple		
Tipo de pendiente del fondo del tanque			Cónica, con centro elevado		API 650, Anexo L, Data Sheet, Line 12
Placa anular 5.5					
Espesor de cálculo de virola final (Diseño)		td1	17.62	mm	
Espesor de cálculo de virola final (Prueba hidrostática)		tt1	18.93	mm	
Espesor Nominal para virola final		t1	19.00	mm	
Esfuerzo por el líquido de diseño en virola final	= (td1-C1) / (t1-C1) * Sd	Sdb	178.05	MPa	API 650, Tabla 5.1a
Esfuerzo por la prueba hidrostática en virola final	= (tt1 / t1) * St	Stb	207.12	MPa	API 650, Tabla 5.1a
Máximo esfuerzo entre Sdb v Stb			207.12	MPa	,
Entrando en Tabla 5.1a por:					
Espesor de última virola (mm) - Corroído	t <=19	mm			
Esfuerzo en virola final (MPa)	<=210	MPa			
El mínimo espesor requerido para la placa anular:		tbmin	6	mm	API 650, Tabla 5.1a
CA - Fondo / Anular		C3	1.6	mm	
Espesor de placa anular	= tbmin + C3	tb	7.6	mm	
Comprobación 5.5.3	$H x G \le 23 m$?	HxG	18.41	m	
			Se cumple. El espesor válido.		
Ancho de placa apular					A DI 650 sec 5 5 2
Gravadad específico de diseño del producto elmoconado		Sa	0.7825		AFT 050, Sec 5.5.2
Mínimo ancho radial de la placa anular entre la parte int	erna de la virola y cualquier	Sg	0.7855	-	
junta de solape del resto del fondo	erna de la virola y cualquier	la1	600	mm	
Proyección exterior de la placa anular		la2	50	mm	API 650, sec 5.4.2 - max (50 mm; 5.1.5.7)
Solapamiento en la placa de fondo		la3	65	mm	,
Mínimo ancho de la placa anular	= la1 + la2 + la3 + t1	aw1	734	mm	
Nivel máximo de líquido de diseño	= DLL	Н	23500	mm	
Ancho calculado de la placa anular	= 215 * tb / (H *Sg)^0,5 H en metros	aw2	381	mm	
Mínimo ancho radial requrido de la placa anular	= max (aw1,aw2)	aw	734	mm	
Bandeja de goteo 5.4.5					
Mínimo espesor de la bandeja de goteo		tdrip	3	mm	API 650, sec 5.4.5
Mínima extensión desde el borde de la cimentación		la4	75	mm	API 650, sec 5.4.5
Extensión de la cimentación sobre la placa anular		Cext	250	mm	(ver en Cimentación)

Longitud de bandeja de goteo

=Cext + 2*la4

ldrip

400 mm

6 PUERTA DE LIMPIEZA

as aperturas en las virolas de los tanques son elementos donde se producen tensiones locales debido a la interrupción de la continuidad de la chapa. El diseño de las mismas debe garantizar la seguridad del tanque y de la estanqueidad del fluido. Entre sus funciones se pueden destacar:

- Ingreso / salida de fluido.
- Instrumentación.
- Muestreo.
- Registros para mantenimiento.
- Protección contra incendios.
- Venteos.

En este capítulo se desarrolla el diseño de la puerta de limpieza tipo rasante. A grandes rasgos, no es más que una tubuladura en la parte más baja del tanque con forma rectangular que sirve para desalojar la suciedad acumulada en el fondo del tanque durante los periodos de mantenimiento. Su cierre mecánico se realizar a través de una unión bridada.

6.1 Puerta de limpieza (Flush type cleanout door)

Algunos productos almacenados contienen sedimentos arrastrados, que tienden a depositarse en el fondo de tanque tras largos periodos de tiempo. Estos sedimentos forman una capa irregular en el suelo para la que las patas de apoyo de un techo flotante no están preparadas, generando torsión en la cubierta. Este problema se acentúa en tanques de grandes de dimensiones que almacenan petróleo crudo proveniente directamente desde el yacimiento, ya que estos tanques permanecen durante muchos años en servicio antes de hacer una parada para mantenimiento.

h : altura de la apertura	203	610	914	1219°
b : ancho de la apertura	406	610	1219	1219
W : ancho del arco de la placa de refuerzo	1170	1830	2700	3200
r_1 : radio de curvatura superior de la apertura	100	300	610	610
r_2 : radio de curvatura de la placa de refuerzo en virola	360	740	1040	1310
<i>e</i> : distancia entre ejes de pernos	32	38	38	38
f_3 : ancho de brida ^a (excepto para el fondo)	102	102	114	114
f_2 : ancho de brida para el fondo	89	95	121	127
$g:$ espacio entre pernos especiales $^{ m b}$	83	89	108	114
Número de pernos	22	36	46	52
Diámetro de pernos	20	20	24	24

^a Para espesores de cuellos mayores a 40 mm, incrementar f_3 hasta conseguir una distancia libre de 1.5 mm entre la soldadura del cuello con la brida y la cabeza del perno.

^b Espacio en las esquinas más bajas de la brida de la puerta de limpieza.

^c Solo para materiales de virola del grupo I, II, III o IV.

Tabla 6-A. Dimensiones de los accesorios puerta de limpieza tipo rasantes [mm]. (Tabla 5.9a en API 650).

Para el propósito de la limpieza del fondo, se dispone de un acceso a ras del fondo, con forma rectangular excepto en las esquinas superiores, donde se redondea el borde con un radio, r_1 , recogido en Tabla 6-A según el altura de la apertura, h. En función del grupo de material al que pertenezca la virola más baja, se establece una altura

máxima de apertura, siendo:

- 1200 mm en los grupos I, II, III, o IIIA.
- 900 mm en los grupos IV, IVA, V o VI.

Al eliminar material de la virola, se requiere un área mínima de refuerzo alrededor de la puerta de limpieza. El área transversal sobre el tope de la apertura, A_{cs} , tiene un valor mínimo de:

$$A_{cs} \ge A_{cs,\min} = \frac{K_1 * h * t}{2}$$
(1.13)

donde:

- K_1 : coeficiente de área. Su cálculo se muestra en el apartado 0.
- *h* : altura libre vertical de la apertura [mm].
- t: espesor de cálculo de la virola más baja, incluyendo el sobrespesor de corrosión [mm].

El espesor nominal de la placa en el ensamble de la puerta de limpieza, $t_{cleanout}$, debe será menos tan grueso como el espesor de la placa de la virola adyacente del nivel más bajo, t_{virola} . El espesor nominal de la placa de refuerzo, t_p , y de la placa para el cuello, t_d , será como mínimo el espesor de la placa en el ensamble de la puerta de limpieza, $t_{cleanout}$.

$$[t_d; t_p] \ge t_{cleanout} \ge t_{virola} \tag{1.14}$$

El refuerzo en el plano de la virola tendrá una altura, L, sobre la parte baja de la apertura que no excederá 1,5*h salvo en caso de disponer de una apertura pequeña, donde $L-h \ge 150$ mm. En ese caso, si L resulta mayor a 1,5*h, solo se tendrá en cuenta la altura de 1,5*h como parte efectiva.

El ancho mínimo de la placa de refuerzo del fondo desde el centro de la apertura, W_{cs} , se determina como:

$$w_{cs} = 250 \text{ mm} + t_{virola} + t_p \tag{1.15}$$

El espesor nominal de la placa de refuerzo, t_{bc} , debe ser mayor que la expresión:

$$t_{bc_{min}} = \frac{h^2}{360000} + \frac{b}{170} * \sqrt{H * S_G} + C_3$$
(1.16)

donde:

b: ancho horizontal de la apertura [mm].

H: nivel máximo de diseño de producto [m].

- S_G : gravedad especifica de producto, no menos a 1 [-].
- C_3 : sobrespesor de corrosión para el fondo / anillo anular.

En API 650 se muestran las siguientes tablas que definen el resto de elementos que componen esta apertura en la virola para diferentes dimensiones nominales.

				Tama	año de la	apertura h	x b			
		200x400		600x600		900x1200		1200x1200		
H: Presión nivel de equivalente líquido [kPa] ^a máximo de diseño [m]		tc: Espesor de la brida apernada y de la contrabrida	tb: ^b Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^c Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^d Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^e Espesor de la placa de refuerzo del fondo	
6,1	60	10	13	10	13	16	21	16	22	
10,4	101	10	13	13	13	19	25	21	28	
12,5	123	10	13	13	14	22	28	22	30	
16,1	159	10	13	14	16	24	32	25	33	

				Tama	año de la	apertura h	x b		
		200x400		600x600		900x1200		1200x1200	
H: nivel de líquido máximo de diseño [m]	Presión equivalente [kPa] ^a	tc: Espesor de la brida apernada y de la contrabrida	tb: ^b Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^c Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^d Espesor de la placa de refuerzo del fondo	tc: Espesor de la brida apernada y de la contrabrida	tb: ^e Espesor de la placa de refuerzo del fondo
18,3	179	11	13	16	18	25	33	28	35
19,5	191	11	13	16	18	27	35	28	36
21,9	215	11	13	18	19	28	36	30	40
Nota A: Presión equivalente basada en la columna de agua.Nota D: Máximo de 40 mm.Nota B: Máximo 25 mm.Nota C: Máximo 28 mm.Nota C: Máximo 28 mm.Nota F: Sumar el sobrespesor de corrosion a todos los elementos en caso de definirse.									

Tabla 6-B. Espesores mínimos [mm] para la contrabrida, brida y placa de refuerzo de fondo para las puertas de limpieza.

t, td: Espesor de la	fuerzo de viro b [mm] ª	la para el							
virola más baja ^a	máximo de diseño [m]	200x400	600x600	900x1200	1200x1200 ^b				
Todos	< 22	350	915	1372	1830				
Nota A: Las dimensiones L y t_d puede variar dentro de los límites expuestos en la sección 6.1. Nota B: Las puertas de limpieza de 1200 x 1200 no se permiten en tanques con espesores en la última virola mayores a 38									

Nota B: Las puertas de limpieza de 1200 x 1200 no se permiten en tanques con espesores en la ultima virola mayore mm.

Tabla 6-C. Espesores y altura de la placa de refuerzo de la virola para las puertas de limpieza.

La puerta de limpieza y todos sus refuerzos se ensamblan en taller en la plancha de la virola, siendo este bloque sometido a un tratamiento de alivio de tensiones.

Figura 6-1. Puerta de limpieza rasante montada sobre plancha de la virola.

6.1.1 Cálculo del coeficiente de área para determinar el refuerzo mínimo de la puerta de limpieza

En la Figura 5.11 de API 650, se proporciona una gráfica para determinar el valor de K_1 , entrando con el valor de la ecuación (1.17) por el eje vertical. Ese valor es función de la altura máxima de diseño del líquido H, del diámetro del tanque D, el espesor de cálculo de la última virola t, y de la altura de la apertura h:

$$= \left[\frac{(H+8.8)*D+71.5}{1.408*h}\right]*\sqrt{\frac{123*t}{4.9*(H-0,3)}}$$
(1.17)

El valor de K_1 está comprendido entre 1 y 1.4. La curva que proporciona los valores intermedios se ha linealizado tomando puntos discretos de la misma, y obteniendo una curva aproximada mediante un polinomio de grado 6. La Figura 6-3 muestra el polinomio obtenido superpuesto a la curva de la normativa API, cuya expresión resulta:

$$K_{1} = 64,885x^{6} - 246,34x^{5} + 378,31x^{4} - 298,43x^{3} + 125,89x^{2} - 27,092x + 3,7414$$
(1.18)

Figura 6-2. Gráfica para obtener K1, según API 650.

Figura 6-3. Polinomio para obtener K1 superpuesto a la gráfica API 650.

6.2 Cálculos - Puerta de limpieza

Flush Type Clean Out Door					
Tamaño	36"x48" (900x1200mm)				
Diámetro nominal		D	34019	mm	
Nivel de líquido sobre cubierta en operación normal		Н	23500	mm	
Espesor de cálculo de la virola más baja incluyendo CA		t	18.93	mm	
Espesor nominal de la virola más baja incluyendo CA		tvirola	19.00	mm	
El material de la virola inferior es del grupo IV, IVA, V o VI					
Altura vertical libre de la apertura		h	914	mm	API 650, Table 5.9a
Ancho horizontal de la apertura		b	1219	mm	API 650, Table 5.9a
Dimensiones nominales de la puerta de limpieza OJO! La unión virola-puerta de limpieza debe ser sometio apartado 5.7.4.1	da a un tratamiento de alivio de tensiones según .	h x b API650,	900x1200		
Valor del eje vertical en la figura 5.11 para encontrar el coeficiente de area (k1)			0.706	-	API 650, Fig- 5.11
Coeficiente de Área		K1	1.161	-	API 650, Fig- 5.11
Área transversal sobre el tope de la apertura (mínima)	= k1 * h * t / 2	Acs_min	10042	mm2	API 650, Sec. 5.7.7.4
Espesor seleccionado de la placa de refuerzo en virola	Comienzo por el espesor de la virola, y voy aum SOLVER.	tp nentando hast	24 a cumplir la	mm altura L. Re	suelto con
Espesor del cuello de tubuladura		td	24	mm	
Altura mínima de la placa de refuerzo sobre la apertura	= Acs min / tp	lr	418	mm	
Altura mínima requerida de la placa	= h+td+lr	Lmin	1356	mm	
Máxima altura permitida de la placa		L	1372	mm	API 650, Table-5.11.a
	Si no se cumple, para el calculo de Acs tener solo en cuenta 1,5*h	¿Lmin < L?	OK	1.149%	
Área transversal sobre el tope de la apertura (calculada)	= tp * (L-h-td)	Acs	10416	mm	
		¿Acs_min < Acs?	OK	3.726%	
Mínimo ancho de la placa de refuerzo del fondo desde el centro de la apertura	= 250mm + tp + tvirola	wcs	293.00	mm	API 650, Sec. 5.7.7.6
Gravedad específica de diseño del producto almacenado	$SG \ge 1$ (no menor que 1)	SG	1	-	
Mínimo espesor requerido en la placa de refuerzo del fondo	= h^2 /360000 + b/170 *(H*SG)^0,5+C3	tbc_min	38.68	mm	API 650, Sec. 5.7.7.6
Mínimo espesor requerido en la placa de refuerzo del fono	do según API STD con CA	tbc	39.00	mm	API 650, Table-5.10.a <i>Teniendo en</i> cuenta el máximo

espesor, según el tamaño de placa.

7 RIGIDIZADORES INTERMEDIOS PARA EL VIENTO

E l efecto de viento actúa de manera considerable en el comportamiento de las virolas, las cuales tienden a pandear, deformando la figura recta de las paredes del tanque. En tanque con techo fijo, la acción del viento es sólo externa, mientras que en los tanques abiertos incide también en la superficie interior, pudiendo causar el efecto de carga a vacío.

El techo fijo en un tanque ayuda a mantener las virolas rígidas y la carga del viento se transmite al fondo del tanque mediante tensiones axiales. En los casos de tanques abiertos por arriba o con techo flotante exterior no ocurre esto por lo que se instala en el borde superior, y muy cerca de él, un rigidizador primario a lo largo de todo el perímetro. En muchas ocasiones, también sirve como plataforma de acceso y mantenimiento.

Figura 7-1. Fallo de la virola durante el montaje.

7.1 Método para el cálculo del tanque equivalente

Las virolas de los tanques de almacenamiento son susceptibles de pandear bajo la influencia de la presión de viento y vacío interno, sobre todo cuando se encuentran vacíos o semivacíos. Las virolas deben ser analizadas para comprobar y asegurar su estabilidad antes esas condiciones.

Las paredes del tanque están construidas de planchas con espesores que van decreciendo en altura y un análisis de estabilidad se hace complicado, por lo que API 650 propone un método equivalente por el cual se convierte el tanque real en un tanque alternativo con un espesor igual al de la virola superior y de altura reducida.

La altura transformada del tanque se calcula transformando el ancho de cada nivel de virola como sigue, y sumando todos los niveles se obtiene la altura transformada equivalente, W_T :

$$W_{tr} = W * \left(\frac{t_{uniform}}{t_{actual}}\right)^{5/2}$$
(1.19)
$$W_{T} = \sum W_{tr}$$
(1.20)

donde:

 W_{tr} : ancho transformado de cada nivel de virola [mm].

W : ancho real de cada nivel de virola [mm].

t_{uniform} : espesor nominal real en el nivel de la virola transformada [mm].

 t_{actual} : espesor nominal en cada nivel de la virola para el que el ancho transformado se calculó [mm].

Con la altura total transformada calculada, la máxima altura del tanque sin rigidizadores se obtiene de:

$$H_{1} = 9.47 * t_{uniform} * \left(\frac{t_{uniform}}{D}\right)^{3/2} * \left(\frac{190}{V}\right)^{2}$$
(1.21)

donde:

 H_1 : distancia vertical entre el rigidizador intermedio y la coronación del tanque [m].

 $t_{uniform}$: espesor nominal real en el nivel de la virola transformada [mm].

D : diámetro nominal del tanque [m].

V : velocidad de diseño del viento (ráfaga de 3 segundos) [km/h].

Para calcular la velocidad de diseño del viento habría que tener en cuenta:

- la presión dinámica del viento, q_z, evaluada a una determinada altura Z sobre el suelo. Se calcula en el apartado 10.1.1.
- La presión de diseño externa, P_e , para evaluar la condición a vacío.

Con la suma de las dos presiones obtengo una presión equivalente, Q_e , que incluye ambos efectos, y con la que se calcula la velocidad equivalente del viento para evaluar la altura libre sin rigidizadores en el tanque. La ecuación resulta de despejar V en la ecuación (1.63) de la presión dinámica del viento recogida en ASCE 7. Todos los coeficientes de la ecuación (1.22) se detallan en el apartado 10.1.1.

$$V_{d} = \sqrt{\frac{Q_{c}}{f_{Vd}}} = \sqrt{\frac{q_{z} + P_{e}}{0.613 * K_{z} * K_{zt} * K_{d} * I_{w}}}$$
(1.22)

Un dato importante a tener en cuenta en la comprobación del pandeo de las virolas es si quiere verificarse en condiciones corroídas o no. En el apartado 7.6 se hace una comparativa entre las dos opciones, manteniendo el resto de parámetros.

7.2 Ubicación de los rigidizadores secundarios

Si la altura del tanque transformado, W_T , es mayor que la altura máxima, H_1 , es necesario colocar un rigidizador intermedio. Para una estabilidad equitativa arriba y abajo del rigidizador, éste se colocará sobre la altura media transformada. La ubicación de este elemento sobre la virola real se obtiene mediante la misma relación de transformación de la ecuación (1.19). Siempre que la altura sin rigidizar en las virolas sea menor que H_1 , se puede plantear una posición alternativa para el rigidizador. Si la mitad de la altura total del tanque transformado, $W_T/2$, excede la altura máxima, H_1 , es necesario disponer de un segundo rigidizador para reducir la distancia libre.

Los rigidizadores deben colocarse sobre la virola a una distancia mínima de 150 mm de cualquier soldadura horizontal que une los diferentes niveles.

Como opción alternativa a colocar los rigidizadores se plantea en el apartado 7.5 la opción de aumentar el espesor de las virolas más altas hasta el punto en el que $W_T < H_1$, no necesitado de estos elementos. Se analiza también el incremento en peso que esta medida supone.

7.3 Módulo resistente de los rigidizadores secundarios

El módulo resistente mínimo necesario de un rigidizador intermedio se calcula como;

$$Z = \frac{D^2 * H_1}{17} * \left(\frac{V}{190}\right)^2 \tag{1.23}$$

donde:

Z: modulo resistente mínimo del rigidizador [cm³].

D : diámetro nominal del tanque [m].

 H_1 : distancia vertical entre el rigidizador intermedio y la coronación de las virolas o rigidizador inmediatamente superior.

V: velocidad del viento de diseño, según el apartado 7.1.

Los perfiles deben tener un agujero para drenar cualquier líquido que puede acumularse sobre ellos. Serán un 25 mm de diámetro, separados como máximo cada 2400 mm. El tipo de perfil con el que se harán los cálculos serán perfiles UPN.

7.4 Cálculos - Rigidizadores intermedios

iento					API 650, Sec 5.9.7
Diámetro nominal del tanque		D C1	34019	mm	
A - Virola		CI	1.0	mm	API 650, Sec 5.9.7.1
Comprobaré pandeo en condiciones corroídas? Da	ta Sheet, Line 9	¿?	SI	-	- Nota 1
- · · · · · · ·		CA	1.6	mm	
spesor nominal de la virola superior		tuniform	6.40	mm	
Para calcular la velocidad de viento de cálculo:					
La presión qz calculada según ASCE 7-05 en la po	arte superior del tanque, provocada por el vi	iento.			
Presión interna de vacío de arrastre hacia dentro Presión externa para tanques cerrado	para tanques abierto				
Treston externa para tanques cerrado.					
Velocidad de presión a la altura Z		qz	0.555	kPa	ASCE 7-05, Sec
1		1			6.5.10 Ver en Viento
Presión de diseño (Externa)		Pe	0.500	kPa	
/elocidad de presión total a la altura Z incluyendo	Qc = qz + Pe	Qc	1.055	kPa	
	= 0.613 * Kz * Kzt * Kd * Iw	fvd	0.8211	-	Ver en Viento
Velocidad del viento de diseño equivalente	= sart(Oc/(0.613 * Kz * Kzt * Kd * Iw))	Vd	35.85	m/s	ASCE 7-05, Sec
			129.05	km/h	6.5.10
			129.05	K111/11	
actor de corrección de la velocidad	$=(190/Vd)^{2}$	Hc	2.1677	-	API 650, Sec 5.9.7.1
Ancho actual de cada virola		W			
Espesor de cada virola	(tuniform) ⁵	tactual	Referencia a		
Ancho transformado de cada virola	$W_{tr} = W_{\sqrt{\frac{autom}{t_{actual}}}}$	Wtr	la tabla		API 650, Sec 5.9.7.2
					,,,

Virola nº	Ancho W	Espesor virola - CA tactual	Ancho equivalente Wtr	Peso original	Altura real acumulada	Altura transformada acumulada
-	[m]	[mm]	[m]	[kg]	[m]	[m]
1	2.380	17.40	0.195	37938	25.000	13.824
2	2.380	16.40	0.226	35940	22.620	13.628
3	2.380	14.40	0.313	31945	20.240	13.402
4	2.380	12.40	0.455	27950	17.860	13.088
5	2.380	10.40	0.707	23956	15.480	12.633
6	2.380	8.40	1.206	19962	13.100	11.926
7	2.380	6.40	2.380	15970	10.720	10.720
8	2.385	6.40	2.385	16003	8.340	8.340
9	1.985	6.40	1.985	13319	5.955	5.955
10	1.985	6.40	1.985	13319	3.970	3.970
11	1.985	6.40	1.985	13319	1.985	1.985
					0	
Ancho transformado total		$WT = \Sigma Wtr$	13.824	m 249620 k	g (virolas)	

	1º rigidizador interm	nedio	-			
	n ^o virola	Hi [m]				
	8	6.912		Inferior	Superior	
Virola nº	¿Rigidizador en virola?	Distancia transformada desde base de virola a rigidizador	Distancia real desde base de virola a rigidizador	¿Hay 150 mm entre e soldadura horizon API 650, sec	l rigidizador y la tal de virola? 5.9.7.5	Hi - Distancia entre top angle y rigidizador intermedio Ni
-	[-]	[m]	[m]	[m]	[m]	[m]
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	SI	1.428	1.428	1.428	1.428	6.912
9	-	-	-	-	-	-
10	-	-	-	-	-	-
11	-	-	-	-	-	-

	2º rigidizador interm	edio	-			
	nº virola	Hi [m]				
	N/A	A N/A		Inferior	Superior	
Virola nº	¿Rigidizador en virola?	Distancia transformada desde base de virola a rigidizador	Distancia real desde base de virola a rigidizador	Hay 150 mm entr soldadura horiz API 650,	re el rigidizador y la zontal de virola? sec 5.9.7.5	Hi - Distancia entre top angle y rigidizador intermedio Ni
-	[-]	[m]	[m]	[m]	[m]	[m]
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
9	-	-	-	-	-	-
10	-	-	-	-	-	-
11	-	-	-	-	-	-

	Ni	W/Ni	H - WT/Ni		virola nº (por cálculo)	Hi (por cálculo)	virola nº (Físico)	Hi (Físico)	Hi (relativo)	Hi debe	Z= D^2*H1/17 *(V/190)^2
int	nº rigid. ermedios	[m]	[m]	API 650 - sec. 5.9.7.2	[-]	[m]	[-]	[m]	[m]	$\operatorname{ser} \geq \operatorname{H1}$:	[cm3]
	1	13.824	-3.103	Se necesita colocar un 1º rigidizador secundario en, o aumentar espesores	8	6.912	8	6.912	6.912	OK	217.1
	2	6.912	3.809	No se necesita un 2º rigidizador secundario	N/A	N/A	N/A	N/A	N/A	N/ <mark>A</mark>	N/A
	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	-		DT/A	DT/A	DT/A	NT/A	NT/A	NT/A		T/A	NT/A

5	1N/PA	1N/A	\mathbf{N}/\mathbf{A}	1N/A	1N/A	1N/PA	1N/A	1N/A	1N/PA	IN/A	
							desde top	-			
							angle				

Dint+2*t+hperfil									
Ni	Perfil UPN	Sección perfil	Wy perfil	Z < Wy	ø rigidizador	Peso rigid. (=Area*pi*D rig*rho)			
nº rigid. intermedios	[-]	[cm2]	[cm3]	[check]	[mm]	[kg]			
1	220	37.4	245	Cumple	34236	3158			
2	N/A	N/A	N/A	N/A	N/A	N/A			
3	N/A	N/A	N/A	N/A	N/A	N/A			
4	N/A	N/A	N/A	N/A	N/A	N/A			
5	N/A	N/A	N/A	N/A	N/A	N/A			
					kg	3158			

7.5 Aumento del espesor mínimo en el tanque

Se analiza la evolución del aumento de peso al incrementar el espesor mínimo de las paredes del tanque hasta no necesitar rigidizadores intermedios.

La fotografía inicial se sitúa con un espesor nominal mínimo de 8 mm igual al que tiene las virolas (7-11).

Se aumenta el espesor nominal mínimo a los 10 mm de la virola 6.

Probar con los espesores que ya tengo (de mm en mm)	Espesor nominal mínimo	tmin+C1	10	mm	(con CA)				
(C1	1,6	mm					
		tmin	8,4	mm					
		H1	21,158	m					
Virola nº	Ancho	Espesor virola - C1	Ancho equivalente		Diferen	ncia por aument espesor	o de	Altura real acumulada	Altura transformada acumulada
-	[m]	[mm]	[m]		[Δmm]	[kg]	$[\Delta kg]$	[m]	[m]
1	2,38	17,40	0,385		0,00	37938	0	25,000	16,845
2	2,38	16,40	0,447		0,00	35940	0	22,620	16,460
3	2,38	14,40	0,619		0,00	31945	0	20,240	16,013
4	2,38	12,40	0,899		0,00	27950	0	17,860	15,394
5	2,38	10,40	1,395]	0,00	23956	0	15,480	14,495
6	2,38	8,40	2,380]	0,00	19962	0	13,100	13,100
7	2,38	8,40	2,380		2,00	19962	3992	10,720	10,720
8	2,385	8,40	2,385		2,00	20004	4001	8,340	8,340
9	1,985	8,40	1,985]	2,00	16649	3330	5,955	5,955
10	1,985	8,40	1,985		2,00	16649	3330	3,970	3,970
11	1,985	8,40	1,985]	2,00	16649	3330	1,985	1,985
				_					
		$WT = \Sigma Wtr$	16,845	m		267603	17983		
						Aumento del:	7%		

Ni	W/Ni	H - WT/Ni		virola nº (por cálculo)	Hi (por cálculo)	virola nº (Físico)	Hi (Físico)	Hi (relativo)	Hi debe ser ≤	Ζ
-	[m]	[m]	API 650 - sec. 5.9.7.2	[-]	[m]	[-]	[m]	[m]	HI:	[cm3]
1	16,845	4,313	No se necesita rigidizador secundario	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Estableciendo como mínimo espesor del tanque 10 mm ya no necesitaría ningún rigidizador que evitase el pandeo de las virolas antes la acción del viento y la presión

externa a vacío. Las planchas son suficientemente rígidas, pero penaliza la cantidad de acero a adquirir y a soldar, ya que esta medida supone un aumento del 7% del peso de las virolas del tanque, esto es unas 18 Tn adicionales. Retomando el peso del anillo rigidizador del caso original, el total suponía 3158 kg.

7.6 Comprobación en condiciones corroídas vs condiciones nominales

Diái	metro non	ninal del t	tanque			D		34019	mm		
CA	- Virola					C1		1,6	mm		
¿Co Data	mprobaré a Sheet, L	pandeo e ine 9	en condiciones	corroídas	?	¿? NO		-	API 63 5.9.7.1	API 650, Sec 5.9.7.1 - Nota 1	
						CA		0	mm		
Espesor nominal de la virola superior			tuniform		8,00	mm					
Mín	ima altura	de virola	sin rigidizar			H1		18,728	m	API 65	50, Sec 5.9.7.1
Anc	ho transfo	rmado tot	al			$WT = \Sigma V$	Wtr .	14,541	m		
Ni	W/Ni	H - WT/Ni		virola nº (por cálculo)	Hi (por cálculo)	virola n ^o (Físico)	Hi (F	ísico)	Hi (relativo)	Hi debe	Z= D^2*H1/17 *(V/190)^2
•	[m]	[m]	API 650 - sec. 5.9.7.2	[-]	[m]	[-]	[m]		[m]	H1:	[cm3]
1	14,541	4,187	No se necesita rigidizador secundario	N/A	N/A	N/A	N/A		N/A	N/A	N/A
2	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A
4	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A

El resultado de no restar el sobrespesor de corrosión en la virola es el siguiente:

En condiciones nominales no sería necesario colocar anillo de rigidizadores. La siguiente figura muestran la posición del rigidizador UPN 220 cuando se tiene en cuenta el efecto de la corrosión:

Figura 7-2. Posición del rigidizador intermedio por el viento en condiciones corroídas.

8 PLACA DEL TECHO FIJO Y PLACA DE COMPRESIÓN

Todo sistema físico tiende a disminuir su energía, tomando la forma donde la relación entre la superficie y el volumen es menor: una esfera.

- Principio físico -

E ste capítulo trata el diseño de la placa de la cubierta, así como la problemática en la unión de la cubierta con las paredes de la virola debido a la tendencia del tanque a adquirir una forma redonda cuando está sometido a presión interna.

8.1 Tipos de techo

API 650 define las siguientes tipologías de techo fijo, no siendo una clasificación limitante:

- a) Techo cónico soportado: está formado por una superficie aproximadamente cónica que está soportada principalmente tanto por estructuras de vigas en el plano, como por celosías con o sin columnas.
- b) Techo cónico auto-soportado: está formado por una superficie aproximadamente cónica que está sólo soportada por su periferia.
- c) Domo auto-soportado: está formado por una superficie aproximadamente esférica que está solo soportada por su periferia.
- d) Techo geodésico: es un techo tipo domo formada de tal manera que cualquier sección horizontal es un polígono regular con tantos lados como placas en el techo haya que está solo soportado por su periferia.

Para los cálculos de este tanque se ha considerado un techo soportado sobre una estructura de vigas bajo la superficie cónica de la placa.

8.2 Placa del techo fijo

Las placas del techo deben tener un espesor nominal mínimo, t_{min} , de 5 mm. Al especificarse un sobreespesor de corrosión para el techo, C_2 , este debe añadirse al espesor de la placa, t_h .

$$t_h = t_{\min} + C_2 \tag{1.24}$$

Para los techos cónicos soportados, la pendiente del techo deberá ser al menos 1:16.

8.3 Placa de compresión

Todos los tanques cerrados sometidos a una presión interna que excede el peso de las placas del techo tienden a adoptar una forma esférica, por lo que las tensiones meridionales y latitudinales en cualquier punto de contención tienden a igualarse. Este efecto es más acusado allí donde se acentúan las discontinuidades en la geometría del tanque, por lo que se diferencian dos claras zonas de distorsión:

- La unión virola-fondo.
- La unión techo-virola

En la Figura 8-1 se observa el efecto en un tanque cilíndrico de almacenamiento vertical con techo cónico. La acción de la presión bajo el techo provoca un esfuerzo de compresión en la unión techo-virola. Por ello, el área que compone esta zona debe ser suficientemente rígida para soportar esta tendencia del tanque y evitar posibles problemas de inestabilidad.

Figura 8-1. Representación del comportamiento de un tanque presurizado.

El área de compresión de la unión techo-virola puede dividida en tres elementos:

- El área de la placa del techo participante.
- El área de la plancha de la virola participante.
- En caso de no ser suficiente los dos elementos anteriores, se añaden secciones de acero en la unión, incrementando el área de compresión. También se puede prescindir de esta tercera parte aumentando el espesor de las dos primeras áreas.

La disposición de los elementos del anillo de compresión se detalla en la Figura F-2 de API 650, donde la zona participante aparece delimitada en varios arreglos. Las siguientes figuras muestran algunos ejemplos:

Figura 8-2. Detalle b para el anillo de compresión.Figura 8-3. Detalle i para el anillo de compresión.Particularizando el diseño del tanque para el detalle i, se establecen los siguientes parámetros:

- θ : ángulo que forman el techo y la horizontal.
- R_c : radio de la virola corroído.
- R_2 : longitud de la normal al techo medida desde la línea central vertical del tanque = $R_c / \sin \theta$.
- t_h : espesor de las placas del techo.

 t_b : espesor de la placa de compresión (o techo en caso de no disponer de elemento intermedio entre techo y virola). t_{bc} : en condiciones corroídas.

 L_e : longitud considerada de la placa de compresión proyectada fuera del tanque.

 W_{h2} : ancho interior participante del techo. El menor valor entre: $[0.6*\sqrt{R_2*t_{bc}}, 0.9*\sqrt{R_c*t_{bc}}]$.

 W_h : ancho total participante de la placa de compresión = $L_e + W_{h2}$.

 t_c : espesor corroído de la virola más alta.

 W_c : ancho total participante de la virola = $0.6 * \sqrt{R_c * t_c}$.

La suma de las áreas del techo y de la virola resulta el área total disponible en el anillo de compresión, A_v , cuyo valor debe ser mayor al área requerida por las comprobaciones del apartado 8.4. Se trata de un proceso iterativo donde se irá aumentando el espesor de la placa de compresión, t_b , partiendo como dato inicial del espesor colocado a las placas del techo, t_h . Las dos condiciones a cumplir son:

• El área del anillo de compresión debe ser mayor que la mínima requerida en API 650, sección 5.10.5.2, cuya expresión es:

$$A_{r1} = \frac{p^* D^2}{8^* F_a^* tg\theta} \tag{1.25}$$

donde:

D: diámetro nominal del tanque.

 F_a : la tensión de rotura permisible de los peor de los materiales de la unión techo virola, cuyo valor es el 60% de su límite elástico, $0.6 * F_v$.

 θ : ángulo que forma el techo con la horizontal.

T: la mayor de las combinaciones de carga gravitatorias entre T_1 y T_2 .

$$T_{1} = D_{R} + (L_{r} \circ S_{u} \circ S_{b}) + 0.4 * P_{e}$$

$$T_{2} = D_{R} + P_{e} + 0.4 * (L_{r} \circ S_{u} \circ S_{b})$$
(1.26)

 D_R : presión debida al peso muerto de techo.

 L_r : carga viva del techo.

 S_u : carga de nieve desequilibrada.

 S_b : carga de nieve equilibrada.

 P_e : presión de diseño externa.

 Con la presión interna establecida, no superando el valor máximo del apartado 8.5, el área total de compresión requerida según el Anexo F de API 650 se calcula como:

$$A_{r2} = \frac{200 * D^2 * \left(P_i - \frac{0.00127 * D_{LR}}{D^2}\right)}{F_y * tg\theta}$$
(1.27)

donde:

 P_i : presión de diseño interna, [kPa].

 D_{LR} : peso muerto de techo, [N].

8.4 Diseño de tanques para pequeñas presiones internas – Anexo F

Como regla general, la normativa API 650 es de aplicación para tanques de almacenamiento de líquido no refrigerados, con una temperatura de diseño menor a 93°C y una presión interna cercana a la atmosférica, que no debe exceder el peso de las placas del techo. Sin embargo, el anexo F de API 650 indica las pautas de diseño a tener en cuenta para tanques con techo cerrado sometidos a una pequeña presión interna. El siguiente árbol de decisión resume a grandes rangos los pasos a seguir:

Figura 8-4. Árbol de decisión del anexo F de API 650.

Los casos en los que un diseño básico no es suficiente son los siguientes:

1. Cuando la presión interna multiplicada por el área seccional del diámetro nominal del tanque no sobrepasa el peso corroído del metal en las virolas, W_S , el techo, W_P y marcos soportados por ellos, W_R , hay que seguir los requerimientos definidos en API 650, anexo F.2 a F.6. La estabilidad al vuelco

respecto a las condiciones sísmicas se determinará independientemente del levantamiento por presión interna. El diseño sísmico cumplirá los requerimientos del Anexo E de API 650, descritos en el apartado 1 de este trabajo.

$$W_T = W_S + W_P + W_R \tag{1.28}$$
$$P_i * A_t \le W_T \tag{1.29}$$

2. Si la presión interna excede el peso nominal de las virolas, techo y marcos soportados por ellos, pero no sobrepasa 18 kPa(g), el tanque debe anclarse mediante un contrapeso, tal como un anillo de compresión en la cimentación, y deben seguirse las pautas del caso 1 añadiendo los requerimientos para tanques anclados por presión interna.

$$P_i * A_i > W_T$$
, siendo $Pi \le 18$ kPa(g) (1.30)

3. En caso de superar los 18 kPa(g) como valor de presión interna, se debe diseñar con la normativa de tanques de almacenamiento a baja presión API 620.

8.5 Presión interna máxima

La presión interna máxima, *P*, de un tanque ya construido o que tiene los detalles de diseño establecidos, se calcula de manera general como:

$$P = \frac{A^* F_y^* tg\theta}{200^* D^2} + \frac{0.00127^* D_{LR}}{D^2}$$
(1.31)

donde:

A: área resistente a la compresión, [mm²].

 F_{v} : menor límite elástico de los materiales en la unión techo-virola [MPa].

 θ : ángulo que forman el techo y la horizontal.

D : diámetro nominal del tanque, [m].

 D_{LR} : peso muerto de techo, [N].

En el caso de tanques sin anclajes, la presión interna máxima, P_{nax} , está limitada por el levantamiento de base de la virola y no debe exceder el siguiente valor:

$$P_{\max} [kPa] = \frac{0.000849 * D_{LS}}{D^2} + \frac{0.00127 * D_{LR}}{D^2} - \frac{0.00153 * M_w}{D^3}$$
(1.32)

siendo:

 D_{LS} : peso muerto de las virolas y sus aparejos, [N].

 D_{LR} : peso muerto de techo, [N].

 M_W : momento provocado por el viento, calculado en el capítulo de viento mediante la ecuación (1.69)

El fallo en la unión techo-virola ocurre generalmente cuando la tensión en el área del anillo de compresión alcanza el límite de elasticidad. API 650 proporciona la fórmula de la presión a la que el fallo ocurre, P_f , en función de la presión interna:

$$P_f = 1.6 * P_i - \frac{0.000746 * D_{LR}}{D^2}$$
(1.33)

En los casos en los que el diseño considera un techo frágil, esto es, la unión techo-virola está diseñada para fallar antes que la unión virola-fondo en el supuesto de una presión interna excesiva, se limita la presión interna máxima a un 80% de la presión de fallo calculada en (1.33).

$$P_{\max} \le 0.8 * P_f \tag{1.34}$$

8.6 Cálculos - Placa del techo y placa de compresión

Cálculo de la placa de techo y placa de compresión
--

Densidad Acero		ρSteel	7850	kg/m3	
Mínimo espesor		tmin	5	mm	API 650, Sec 5.10.2.2
CA - Placa de techo / Placa de compresión		C2	1.6	mm	
Espesor mínimo requerido	tmin + C2	tmin c	6.6	mm	
Mínimo espesor dado en Placa de techo		th	6.6	mm	
Diámetro nominal		D	34019	mm	
Radio horizontal interno		Ro	17000	mm	
Ángulo entre techo y la horizontal		θ	9.5	0	
			0.1658	rad	
Mínima pendiente del techo	1:1	16	1/16	-	API 650, Sec 5.10.4.1 (Supported Cone Roofs)
Mínima ángulo del techo			0.0624	rad	
			3.5763	0	
Comprobación del ángulo del techo:	OK. El ángulo del techo es mayo Sec 5.10.4.1	or que en mín	imo indicado en	API 650,	
Altura de cono del techo	$= D/2*tg\Theta$	h	2846	mm	
Generatriz del cono del techo	=[h^2+(D/2)^2]^0,5	gen	17246	mm	
Área superficial de la placa cónica del techo	$= \pi^{*}[D/2-(Wh2^{*}\cos\Theta)]^{*}(gen-Wh2)$	Aroof	870.00	m2	
Presión de diseño (Externa)		Pe	0.5	kPa	
Presión de diseño (interna)		Pi	2.9	kPa	
Carga viva del techo		Lr	1.0000	kPa	
Carga de nieve		S	0.2	kPa	
Carga de nieve balanceada (Sb)	= 0,84*S	Sb	0.1680	kPa	
Carga de nieve desequilibrada (Su)	$\Theta < 10^{\circ} : = Sb$ $\Theta > 10^{\circ} : =1,5*Sb$	Su	0.2000	kPa	
			(Sin corroer)	(Corroído)	
Carga muerta debida al peso de las placas del techo	=Aroof *th*pSteel =Aroof *(th-C2)*pSteel	Wp	56984	45054	kg
% diferencia de peso en condiciones corroídas				79%	
Peso del techo estructural		Rsw	46444.15815	kg	Ver Estructura del techo
Peso de tubuladuras y misceláneos del techo		Rnw	3000	kg	Ver Estructura del techo
Peso de plataformas y railes		Prw	10000	kg	Ver Estructura del techo
Carga muerta debida a aparejos del techo + plataformas	Wr = Rsw + Rnw + Prw	Wr	59444.15815	46999	kg
Área seccional del tanque	$At = pi*Ro^2$	At	907.92	m2	

Tabla resumen - Árbol de decisión del Anexo F para presión interna.

Condición	Descripción	Resultado	Observación
1	¿Tiene presión interna el tanque?	SI	Siguiente paso
2	¿La presión interna excede el peso de las placas del techo?	SI	Siguiente paso
3	¿La presión interna excede el peso del techo, virolas y marcos?	NO	Diseño básico + anexo F.1-F.6. Anclajes por presión interna no requeridos. No exceder Pmax. Limitar el área de compresión techo/virola según F.5
4	¿La presión interna excede 18 kPa?	N/A	N/A

Árbol de decisión - anexo F - figura F.1

Cálculo de la placa de techo y placa de compresión				
Espesor nominal de la placa de techo		tr	6.6 mm	
Espesor nominal de la placa de techo (corroído)		th	5 mm	
Espesor nominal de la virola superior		ts	<mark>8</mark> mm	
Espesor nominal de la virola superior (corroído)		tc	6.4 mm	
Mitad del ángulo del vértice del cono		α	80.5 °	
-			1.4050 rad	
Radio de virola - corroído		Rc	17002 mm	
Longitud de la normal al techo, medida desde la línea central vertical del tanque	$=$ Rc / Sen Θ	R2	103010 mm	API 650, App-F Fig F-2 Detalle-i
Le Kanana a	Wh ROOF PLATE			

Espesor de la placa de compresión / techo	Sin corroer	tb	19 mm	Solver
Resuelto con SOLVER para cumplir con los criterios de: API 650 5.10.5.2 , F.5.1 , F.6	Corroída	tbc	17.4 mm	
Máxima longitud sin rigidizar de la placa de compresión por el lado exterior del tanque (Material de techo)	= tbc * 0,56 * (E/Fy)^0,5	Lemax	274.91 mm	AISC 360, tabla B4.1a, caso 1

Longitud considerada del anillo de compresión proyectada fuera del tanque			250	mm	
Ancho interior participante del techo min.	0,6 * sqrt (R2 * tbc) 0,9 * sqrt (Rc * tbc)	Wh2	490 803 490	mm mm mm	
Ancho total participante del techo-placa de compresión	=Le + Wh2+ts	Wh	748 (Sin] mm (Corroído)	
Peso de la placa de compresión	$= Wh^*tb(c)^*2^*\pi^*Ro^*\rho_{steel}$		11909 116868	10906 107026	kg N
Ancho participante de la virola	=0,6 * sqrt (Rc*tc)	Wc	198	mm	
Área dada por techo (corroída) Área dada por virola (corroída) Área total disponible	= Wh * tbc = Wc * tc = a1 + a2	al a2 Av	13007 1267 14273	mm2 mm2 mm2	
Anexo F.1 - F.6 + diseño básico					
API 650 - 5.10.5.2 Peso nominal de techo y sus aparejos estructurales (aparejos permanentes + tubuladuras)	= Wp + Wr	Dlr	116428	kg	
Carga muerta del techo	Dlr / At	Dr	1142569 128.24 1.258	N kg/m2 kPa	
Combinación de carga T1	=DR+(Lr)+0,4*Pe	T1.1	2.458	kPa	API 650, 5.2.2.e(1.1)
	=DR+(Su)+0,4*Pe	T1.2	1.626	kPa	API 650, 5.2.2.e(1.2)
	=DR+(Sb)+0,4*Pe	T1.3	1.658	kPa	API 650, $5.2.2 e(1.3)$
Combinación de carga T2	=DR+Pe+0,4*(Lr)	T2.1	2.158	kPa	API 650,
	=DR+Pe+0,4*(Su)	T2.2	1.826	kPa	API 650, 5 2 2 e(2 2)
	=DR+Pe+0,4*(Sb)	T2.3	1.838	kPa	API 650,
Máximo entre las combinaciones T1 y T2		Т	2.458	kPa	API 650, 5.10.5.1
Limite elástico del peor material en la unión techo-virola	A 36	Fy	250 250000	Mpa kPa	
Limite elástico permisible del material de la unión	= 0,6 * Fy	Fa	150 150000	Mpa kPa	
Mínima área requerida en la unión techo-virola	$= (T^*D^2) / (8^*F_a * tg \Theta)$	Arl	14168	mm2	API 650, Sec 5.10.5.2
Se comprueba si el área disponible participante en la unión tech requiere en 5.10.5.2.	o-virola es mayor que la que API	¿Ar1< Av?	OK	1%	0.101012
API 650 - Anexo F.5.1					
Mínima área requerida en la unión techo-virola	= [200*D^2 *(Pi- (0,00127*DLR)/D^2)] /[Fy*tgθ]	Ar2	9107	mm2	API 650. Appendix-F, Sec F.5.1
Se comprueba si el área disponible participante en la unión tech requiere en el anexo F.	o-virola es mayor que la que API	¿Ar2 < Av?	OK	57%	
API 650 - Anexo F.4					
Máxima presión de diseño y prueba según F.4.1	P = (1) + (2)	Р	3.834	kPa	API 650. Appendix-F, Sec F.4.1
	$= Av*Fy*tg\Theta / [200*D^{2}]$	(1)	2.580	kPa	

	= 0,00127*DLR/D^2	(2)	1.254	kPa	
Máxima presión de diseño y prueba según F.4.2 (tanques sin anclaje)	¿El tanque está anclado?	SI: No se a cálculo.	plica el		
Peso nominal de las virolas y sus aparejos		DLS	263829 2589098	kg N	[1] + [9] + [10] + [11] + [16]
Momento por el viento		Mw	1.21E+07	N*m	(calculado en Viento)
	= 0.000849*DLS/D^2 +0.00127*DLR/D^2 - 0.00153*Mw/D^3	Pmax_4.2	N/A	kPa	API 650. Appendix-F, Sec F.4.2
Máxima presión en tanques con unión frágil según F.4.3	¿Unión frágil?	NO			
Si se considera una unión frágil, se recomienda limitar la presión máxima de diseño a 0,8 Pf.	\leq 0,8*Pf	Pmax_4.3	N/A	kPa	API 650. Appendix-F, Sec F.4.3
Presión interna máxima final	=min [P; Pmax_4.2; Pmax_4.3]	Pmax	3.834	kPa	

Se comprueba que la presión interna de <u>diseño</u> es menor a la presión máxima.		¿Pdiseño < Pmax?	OK	32%	
Se comprueba que la presión interna en la <u>prueba hidrostática</u> es menor a la presión máxima.		¿Ptest < Pmax?	OK	32%	
API 650 - Anexo F.6	- 1.6*D; 0.000746*DI D/D^2	De	2 002	1-Do	API 650. Appendix E. See
Minima presión de fano carculada	- 1,0°F1 - 0,000740°DEK/D°2	ri -	3.905	кга	F.6
Se comprueba que la presión interna de <u>diseño e</u> s menor a la presión de fallo.		¿Pdiseño < Pf?	OK	35%	
Se comprueba que la presión interna en la <u>prueba hidrostática</u> es menor a la presión de fallo.		¿Ptest < Pf?	OK	35%	

El siguiente apartado explica la consideraciones a tener en cuenta cuando el tanque está sometido a una presión externa que pueda causar vacío dentro del mismo en condiciones normales de operación, siguiendo las indicaciones de API 650 en su anexo V. La presión externa debe estar entre 0,25 kPa sin exceder los 6,9 kPa.

Se definen los siguientes parámetros aplicables en todo el capítulo:

 F_{v} : límite elástico del componente a la máxima temperatura de diseño [MPa].

f: tensión admisible de rotura menor de los materiales de la placa del techo, las virolas o los rigidizadores perimetrales a la máxima temperatura de operación [MPa].

 f_c : tensión admisible compresión menor de los materiales de la placa del techo, las virolas, el fondo o los rigidizadores perimetrales a la máxima temperatura de operación [MPa]. Su valor depende de la zona de estudio:

- Región de los rigidizadores intermedios y en el fondo: $0.4 * F_v$, no mayor que 103 MPa.
- Región del rigidizador superior: $0.6 * F_v$, no mayor que 140 MPa.

9.1 Techo fijo

La carga total de diseño debida a la presión externa sobre el techo, P_r , se calcula como:

$$P_{r} = \max \begin{bmatrix} D_{L} + L_{r} + 0.4 * P_{e} \\ D_{L} + P_{e} + 0.4 * L_{r} \end{bmatrix}$$
(1.35)

donde:

 D_L : carga muerta del tanque, incluyendo el peso de las virolas y elementos estructurales [kPa].

 L_r : carga viva de sobre el techo proyectada horizontalmente [kPa].

 P_e : presión externa de diseño [kPa].

Centrando la vista en el tipo de techo elegido, es decir, el techo soportado, la placa de techo que se extiende entre las vigas radiales puede diseñar como una viga simple, una viga de catenaria o un diafragma apoyado en varios puntos de soportado. Independientemente del modelo elegido, se deben abordar las siguientes consideraciones:

- Tensión admisible para esfuerzos de membrana y de flexión.
- Eficiencia junta en las soldaduras que unen las placas del techo.
- Condiciones de contorno asumidas en los extremos de la placa (viga).
- Criterio de deflexión admisible.
- Posibilidad de reversión del esfuerzo y carga por fatiga de las soldaduras en y entre los soportes de la placa del techo (en caso de diseño mediante viga de catenaria).

Este diseño de desarrolla con más profundidad en el apartado 12 Estructura del techo fijo.

9.2 Virola

9.2.1 Altura transformada

Para el análisis del efecto de la presión externa en un tanque con virolas de diferentes espesores se utiliza el espesor nominal de la virola más delgada, t_{smin} ó t_{s1} , y un método de transformación de la altura del tanque, H_{TS} , creando un modelo analítico de tanque que se supone con la misma resistencia al pandeo ante la presión externa que el tanque real.

El ancho transformado de cada nivel de virola se calcula multiplicando la altura real de la plancha, h_{act} , por el ratio $(t_{s1} / t_{act})^{2.5}$, siendo t_{act} el espesor real de cada virola. La altura total transformada se obtiene de la siguiente expresión:

$$H_{TS} = h_1 * \left(\frac{t_{s1}}{t_{s1}}\right)^{2.5} + h_2 * \left(\frac{t_{s1}}{t_{s2}}\right)^{2.5} + \dots + h_n * \left(\frac{t_{s1}}{t_{sn}}\right)^{2.5}$$
(1.36)

9.2.2 Comprobaciones para rigidizar

Se define un factor de estabilidad, ψ , que es función del valor de la presión externa de diseño, P_e . Las virolas deben comprobarse para dos condiciones, cuyo valor ψ resulta:

1. Combinación de viento y vacío.

Presión externa de diseño P_a	Factor de estabilidad ψ
$P_e \leq 0,25$	1
$0,25 < P_e \le 0,70$	$(P_e + 0,70) / 0,95$
0,70 < P_e	P_e /0,48 < 2,5

Tabla 9-A. Factor de estabilidad para la combinación de viento y presión de vacío.

La presión externa total para el diseño de la virola, P_s , con la que se comprueba esta condición es el mayor valor entre los siguientes:

$$P_{s} = \max \begin{bmatrix} P_{e} \\ W + 0.4 * P_{e} \end{bmatrix}$$
(1.37)

donde:

 P_e : presión externa de diseño especificada [kPa].

W: máxima presión consistente de viento con la velocidad de diseño de viento, V, calculada en el apartado 7.1, mediante la ecuación (1.22).

$$W = 1.48 * \left(\frac{V}{190}\right)^2 \tag{1.38}$$

2. Sólo vacío.

$$\psi = 3 \tag{1.39}$$

Esta condición de vacío se comprueba con la presión externa de diseño especificada, P_e .

Para comprobar que el pandeo que pueda producirse en las virolas del tanque sin rigidizadores ocurre en el régimen elástico debe cumplirse la ecuación (1.40). En caso contrario, habría que evaluar los efectos de la presión externa siguiendo *ASME Boiler and Pressure Vessel Code, Section VIII, Division 1*.

$$\left(\frac{D}{t_{s\min}}\right)^{0.75} \left[\left(\frac{H_{TS}}{D}\right)^* \left(\frac{F_y}{E}\right)^{0.5} \right] \ge 0.00675$$
(1.40)

Para comprobar si la altura libre del tanque es suficiente como para no colocar rigidizadores intermedios, la presión de las combinaciones 1 y 2 deben ser menor que el máximo indicado en la ecuación (1.41). Dicha comprobación puede hacerse de forma análoga, comprobando que el espesor del tanque de altura equivalente, $t_{s\min}$, no excede el límite de la ecuación (1.42).

$$P_{s} \circ P_{e} \leq \frac{E}{15203^{*}\psi^{*}\frac{H_{TS}}{D}^{*}\left(\frac{D}{t_{smin}}\right)^{2.5}}$$
(1.41)
$$t_{smin} \geq \frac{47.07^{*}[\psi^{*}H_{TS}^{*}(P_{s} \circ P_{e})]^{0.4} * D^{0.6}}{E^{0.4}}$$
(1.42)

9.2.3 Rigidizadores circunferenciales

El máximo espaciamiento entre los rigidizadores intermedios, H_{safe}^{Max} , puede calcularse reescribiendo la ecuación de la presión externa máxima, estableciendo la altura como incógnita:

$$H_{safe}^{Max} = \frac{(t_{smin})^{2.5} * E}{15203 * D^{1.5} * P_s * \psi}$$
(1.43)

Con este valor máximo y la altura transformada del tanque se calcula el número de rigidizadores intermedios necesarios, N_s , y el espaciamiento real al establecer el número entero de rigidizadores, H_{safe} . Este valor debe extrapolarse deshaciendo la relación de transformación de altura del tanque, obteniendo el espaciamiento real para cada espesor de virola, L_{sx} , y el espaciamiento intermedio arriba y debajo de un rigidizador, L_s :

$$N_s \ge \frac{H_{TS}}{H_{safe}^{\max}} - 1 \tag{1.44}$$

$$H_{safe} = \frac{H_{TS}}{N_s + 1} \tag{1.45}$$

$$L_{sx} = H_{safe} * \left(\frac{t_{sx}}{t_{s1}}\right)^{2.5}$$
(1.46)
$$L_{s} = \frac{L_{sx} + L_{s(x+1)}}{2}$$
(1.47)

Conociendo la localización de los rigidizadores intermedios, los parámetros necesarios para su diseño son los siguientes:

 Número de olas, N, en la que la virola pandeará teóricamente bajo una presión externa uniforme. Para el diseño, este valor tendrá un valor mínimo de 2 y un máximo de 10. Se usa el mismo valor para el diseño tanto de los rigidizadores intermedios como los de los rigidizadores finales.

$$N^{2} = \sqrt{\frac{445 * D^{3}}{t_{s\min} * H_{TS}}} \le 100$$
(1.48)

- Carga radial impuesta por la virola en el rigidizador, Q:

$$Q = 1000 * P_s * L_s \tag{1.49}$$

En la región del rigidizador, una parte de la virola, W_{shell} (a cada lado del rigidizador) contribuye a resistir el

pandeo, obteniendo un momento de inercia combinado, I_{act} , de la sección compuesta:

Figura 9-1. Elementos que resisten el pandeo en la región de rigidizador intermedio.

El área requerida, A_{reqd} , y el momento de inercia requerido, I_{reqd} , en la zona del rigidizador intermedio se calculan como:

$$A_{reqd} = \frac{Q * D}{2 * f_c}$$
(1.51)
$$I_{reqd} = \frac{37.5 * Q * D^3}{E * (N^2 - 1)}$$
(1.52)

Además, también se establece un área seccional requerida sólo para el perfil del rigidizador, Astiff :

$$A_{stiff} = A_{read} - 26.84 * t_{shell} * \sqrt{D * t_{shell}}$$
(1.53)

Con todos los parámetros previamente definidos, el perfil metálico que formará el rigidizador intermedio a lo largo de todo el perímetro del tanque se debe escoger teniendo en cuenta las siguientes condiciones:

- a) La inercia real del conjunto debe ser mayor que la inercia requerida en la región: $I_{act} \ge I_{read}$.
- b) El área real del rigidizador debe ser mayor que el área requerida para el rigidizador: $A_{perfil} \ge A_{stiff}$.
- c) El área real del rigidizador debe ser mayor que el área total requerida en la región de que se opone al pandeo: $A_{perfil} \ge 0.5 * A_{read}$.

9.2.4 Rigidizadores finales (cima y fondo)

En estos rigidizadores, la carga radial impuesta por la virola, V_1 se determina con la ecuación (1.54), valiendo el mismo valor del número de olas, N, del caso de los rigidizadores intermedios.

$$V_1 = 250 * P_s * H \tag{1.54}$$

La virola también opone cierta resistencia al pandeo, esta vez sólo por un lado del rigidizador, una distancia w_{shell} obteniendo un momento de inercia combinado, I_{act} , de las secciones compuestas. En la zona de la cima, se considera que el techo no interviene en la sección efectiva. En la zona del fondo, el ancho de la placa de fondo que se considera actuando como rigidizador es una distancia máxima de 16 veces el espesor de la placa anular.

Rigidizador en la cima:	Rigidizador en el fondo:
$w_{shell} = 13.4 * \sqrt{D * t_{s1}} \tag{1.55}$	$w_{shell} = 13.4 * \sqrt{D * t_{sn}}$ (1.56)

El área requerida, A_{reqd} , y el momento de inercia requerido, I_{reqd} , en la zona de los rigidizadores de la cima y el fondo se calculan como:

$$A_{reqd} = \frac{V_1 * D}{2 * f} \tag{1.57}$$

$$I_{reqd} = \frac{37.5 * V_1 * D^3}{E * (N^2 - 1)}$$
(1.58)

Además, también se establece un área seccional requerida sólo para el perfil del rigidizador, A_{stiff} :

Para rigidizadores de la parte alta en techos cónicos:

$$A_{stiff} = A_{reqd} - t_{cone} * X_{cone} - t_{s1} * X_{shell}$$
(1.59)

Para rigidizadores de la parte alta en domos o techos sombrilla:

$$A_{stiff} = A_{reqd} - t_{dome} * X_{dome} - t_{s1} * X_{shell}$$
(1.60)

Para rigidizadores en la parte baja:

$$A_{stiff} = A_{reqd} - t_b * X_{btm} - t_{sn} * X_{shell}$$
(1.61)

El perfil metálico que formarán los rigidizadores finales a lo largo de todo el perímetro del tanque se debe escoger teniendo en cuenta las siguientes condiciones:

- a) La inercia real del conjunto debe ser mayor que la inercia requerida en la región: $I_{act} \ge I_{read}$.
- b) El área real del rigidizador debe ser mayor que el área requerida para el rigidizador: $A_{perfil} \ge A_{stiff}$.

9.3 Fondo

El fondo del tanque debe comprobarse a presión externa cuando se cumple alguna de las condiciones siguientes, evaluando los esfuerzos de membrana del fondo sometido a una carga uniforme y restringido por la placa anular del anillo de compresión en la unión virola-fondo:

- 1) Si la presión externa total de diseño, P_r , en el fondo excede la suma del peso de las placas del fondo y peso del líquido bajo el nivel mínimo de diseño. La corrosión debe ser también considerada.
- 2) Si el área alrededor del tanque puede inundarse de líquido, debe garantizarse que el depósito contiene suficiente líquido para contrarrestar el levantamiento provocado.

9.4 Cálculos – Presión externa (Anexo V)

Anexo V: Diseño de tanques de almagenemiente nere anoi	ón externo				
Presión de diseño (Externa)	on externa	Pe	0.005	barg	
			0.5	kPa	
<i>Aplica si 0,25 < Pe < 6,9 kPa</i>		¿Aplicar anexo V?	SI		
PARA VIROLA					
EL anexo V utiliza el espesor nominal de la virola más dels Rigidizadores Intermedios. Las virolas deberán ser comprobadas para dos condicione. 1 2	gada y el método s: Combinación de Sólo Vacío	de la virola transj e Viento + Vacío	formada para es.	tablecer el nú	imero y la localización de
Condición 1	Combinación de	e Viento + Vacío			
Factor de estabilidad		Ψ	1.2632	-	API 650, Anexo V, Sec V.8.1
	D				
$\frac{\text{API 650, Anexo V, Sec V.8.1}}{\text{Pe} < 0.25}$	Pe 1	Ψ 1.0000			
$0.25 \le P_0 \le 0.70$	(Pe + 0,70) /	1.0000	0.25		
$0,23 < Fe \le 0,70$	0,95	1.2032	0.25		
$0,70 \leq \text{Pe}$	Pe /0,48 < 2,5	1.0417	0.7		
Condición 2 Factor de estabilidad	Sólo Vacío	Ψ	3.0000	-	API 650, Anexo V, Sec V.8.1
<u>rigidizar</u> Pandeo elástico ocurrirá si se cumple la siguiente ecuación:		0.05042	>=	0.00675	
$\left(\frac{D}{t_{smin}}\right)^{0.75} \left[\left(\frac{H_{TS}}{D}\right) \left(\frac{F_y}{E}\right)^{0.5} \right] \ge 0.00675$		El pandeo ocurri elásticamente	rá		
Límite de elasticidad del componente a la máxima tempera operación	tura de	Fy	250	MPa	
donde fc=0,4Fy (no menor que 103 Mpa)	0,4*Fy= 100	fc	103	MPa	Rigidizadores intermedios y en el
donde fc=0,6Fy (no menor que 140 Mpa)	0,6*Fy=150	fc	150	MPa	Rigidizadores superiores
Diámetro nominal	-	D	34.019	m	-
Altura del tanque		H	25.000	m MD-	
Modulo de elasticidad del material de techo		E	199000	MPa	API 650, app M.6, table M.2a
CA - Virola CA - Placa de techo / Placa de compresión CA - Fondo / Anular		C1 C2 C3	1.6 1.6 1.6	mm mm mm	
¿Comprobaré pandeo en condiciones corroídas? Data Sheet	t, Line 9	2?	SI	-	API 650, Sec 5.9.7.1 - Nota 1
Espesor nominal de la virola superior		CAvirola tsmin CAtecho	1.6 6.40	mm mm	
Equation nominal dal tanka			1.0		
Espesor nominal del tecno		tcone	5.00	mm	
Espesor nominal de la placa de compresión		tcone tcompresion	5.00 17.40	mm mm	

	H (Aı	ncho)	ts1	tact (Espesor virola - CA)	$X = (ts1/tact)^2,5$	Ancho transformado HTS = X*H	Lsx = Hsafe2*[tsx/tsmin)^2,5]
Virola nº	[m]		[mm]	[mm]	[-]	[m]	[m]
	1	2.380	6.400	17.40	0.082	0.195	56.159
	2	2.380	6.400	16.40	0.095	0.226	48.435
	3	2.380	6.400	14.40	0.132	0.313	34.991
	4	2.380	6.400	12.40	0.191	0.455	24.077
	5	2.380	6.400	10.40	0.297	0.707	15.511
	6	2.380	6.400	8.40	0.507	1.206	9.094
	7	2.380	6.400	6.40	1.000	2.380	4.608
	8	2.385	6.400	6.40	1.000	2.385	4.608
	9	1.985	6.400	6.40	1.000	1.985	4.608
	10	1.985	6.400	6.40	1.000	1.985	4.608
	11	1.985	6.400	6.40	1.000	1.985	4.608

Comprobación - Requerimiento de rigidizador intermedio para tanque sin rigidizar

La presión externa de diseño (usando ψ apropiado de V8.1) y la presión externa especifica (vacío) (usando ψ =3) para un tanque sin rigidizar debe cumplir lo siguiente:

Presión externa de diseño		= Pe ó W+0,4Pe	Ps	0.883	kPa
	donde:		Pe	0.500	kPa
		=1,48 (V/190)^2	W	0.683	kPa
$B = B \leq E$			W+0,4P	0.883	₽ ₽
P_s of $P_e \leq \frac{15,203 \psi \left(\frac{H_{TS}}{D}\right) \left(\frac{D}{t_{smin}}\right)^{2.5}}{15,203 \psi \left(\frac{H_{TS}}{D}\right) \left(\frac{D}{t_{smin}}\right)^{2.5}}$			e	0.005	KI a
Presión externa especificada (vacío)			Pe	0.500	kPa
con Ps - condición.1 (viento + vacío)		0.883	<=	0.391	
		NO se cumple el requisito de rigio	dizadores interme	dios	
con Pe - condición 2 (sólo vacío)		0.5	<=	0.165	
		NO se cumple el requisito de rigio	dizadores interme	dios	

Espesor nominal de la virola más delgada requerida para la presión externa:

API 650, App-V, Sec	۲ د
8.1.3	

API 650, App-V, Sec V

8.1.2

	tsmir	ı			
$t_{smin} \ge \frac{47.07(\psi H_{TS}P_s)^{0.4} D^{0.6}}{(D_s)^{0.4}}$	6.40) >=	8.86	mm	
con Ps - continuous (viento) vacio)	NO se cumple el requisito de rigi	dizadores i	ntermedios		
	6.40) >=	9.98	mm	
con Pe - condición 2 (sólo vacío)	NO se cumple el requisito de rigi	idizadores i	ntermedios		
Máximo espaciamiento de rigidizadores intermedios	= (tsmin)^2,5*E / [15203*(D^1,5)*Ps*]	Hsafe	6.131	m	API 650, App-V, Sec V 8.2.1.2
Número de rigidizadores intermedios requeridos basado en Hsafe	Ns+1 = HTS / Hsafe	Ns	1.25485	-	API 650, App-V, Sec V 8.2.1.3
Espacio actual entre rigidizadores (transformado)		Ns Hsafe2	2 4.608	- m	
Nº de olas con las que una virola pandearía bajo presión ext	erna uniforme				API 650, App-V, Sec V 8.2.2.1
	= [445*D^3 / (tsmin*HTS^2)]^0,5≤100	N^2	119.69	-	
	por diseño: 2 <n<10< td=""><td>) N²</td><td>100</td><td>-</td><td></td></n<10<>) N ²	100	-	
	-	Ν	10	-	
Carga radial impuesta en el rigidizador intermedio por la virola	= 1000*Ps*Ls	Q	(tabla)	N/m	API 650, App-V, Sec V 8.2.2.3
Ancho contribuyente de virola en cada lado del rigidizador intermedio	= 13,4*(D*tshell)^0,5	wishell	(tabla)	mm	API 650, App-V, Sec V 8.2.2.4
Momento de inercia requerido en la región del rigidizador intermedio	=37,5*Q*D^3 / [E*(N^2-1]	Iireqd	(tabla)	cm4	API 650, App-V, Sec V 8.2.2.5

Área total requerida en la región del rigidizador intermedio	= Q*D/(2*fc)	Aireqd	<i>(tabla)</i> mm2	API 650, App-V, Sec V 8.2.2.6.1
Área total requerida del rigidizador intermedio - Sólo perfil estructural	= Areqd- 26,84*tshell*(D*tshell)^0.5	Aistiff	<i>(tabla)</i> mm2	API 650, App-V, Sec V 8.2.2.6.1

Ni: nº rigid. Interm	¿Hace falta?	virola nº (por cálculo)	Lsi acumulado (por cálculo)	virola nº (Físico)	Lx acumulado	Lx (relativo)	Lx debe ser ≤ Lsx:	Qi	tshell	wishell	Iireq	Aireq	Astiff	Perfil puesto	Area	Yi	D rigidizador	Peso rigid. (=Area * pi *D rig*rho)
		[-]	[m]	[-]	[m]	[m]		$[N \cdot m]$	[mm]	[mm]	[cm4]	[mm2]	[mm2]	[-]	[cm2]	[cm]	[cm]	[kg]
1	SI	9	4.608	9	4.608	4.608	OK	4067.53	6.4	197.72	304.82	672	-1863	L 80x10*	15.1	5.66	3412.6	1270.8
2	SI	7	9.216	7	9.216	4.608	OK	4067.53	6.4	197.72	304.82	672	-1863	L 80x10*	15.1	5.66	3412.6	1270.8
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

b	Ancho del área respectiva
d	Profundidad del área respectiva
Y	Distancia desde X-X hasta el centro de gravedad de cada pieza
In	Momento de inercia de cada pieza en el eje paralelo a la virola
y2	Distancia desde el centro de gravedad del conjunto hasta X-X: Σ A Y / Σ A
y1	Distancia el centro de gravedad de cada pieza al centro de gravedad del conjunto
Iact	Momento de inercia de cada pieza en X-X: Σ (In + A y1 ²). Respecto a la cara interna de la virola.
Ymax	Distancia del borde más lejano a X-X hasta el centro de gravedad del conjunto
Z	Modulo resistente: I / Ymax

Piezas (para el rigidizador nº)	bi [cm]	di [cm]	Yi [cm]	Ai [cm2]	In [cm4]	Ai · Yi [cm3]	Y2 [cm]	y1 [cm]	Iact [cm4]
1	Ancho	Profundidad						= Y2 - Yi	
1	39.54	0.64	0.32	25.31	0.86	8.10	-	2.00	101.64
2	L 80x10*		5.66	15.1	87.5	85.47	-	-3.34	256.41
Total]			40.41]	93.56	2.32]	358.05
Perfil elegido:	L 80x10*	como rigidizador i	intermedio						
Área - Aperfil	15.1	cm2							
Momento de inercia respecto al eje paralelo a la virola	87.5	cm4							
	Valora		Valor a						
	valor a		comparar						
	comparar 1	_	2						
Iact ≥ Iireq ?	358.05	> = [cm4]	304.82	Cumple	API 650, Ap	p-V, Sec V 8.2	2.2.4		
Aperfil \geq Aistiff req ?	15.10	> = [cm2]	-18.63	Cumple	API 650, Ap	p-V, Sec V 8.2	2.2.6.2		
Aperfil ≥ 0.5 *Aireqd?	15.10	> = [cm2]	3.36	Cumple	API 650, Ap	p-V, Sec V 8.2	2.2.6.2		

El cálculo y ubicación de estos rigidizadores intermedios se ha hecho en condiciones corroídas. En caso realizar el estudio con los espesores nominales, tanto el número como el perfil varían. Las siguientes figuras muestran la ubicación de los perfiles según los casos:

- En condiciones corroídas se necesitan 2 rigidizadores intermedios, L 80x8.

- En condiciones nominales se necesita 1 rigidizador intermedio, L 90x10.

Figura 9-4. Posición de los rigidizadores intermedios en condiciones corroídas.

Figura 9-5. Posición del rigidizador intermedio en condiciones nominales.

Rigidizadores finales (tope y fondo)					
Carga total externa en el techo	= max [DL+Lr+0,4*Pe ; DL+0,4*Lr+Pe]	Pr	4.530	kPa	API 650, App-V, Sec V.7
Área seccional del tanque	-	At	907.92	m2	
Peso de virolas, techo, estructura de techo (corroído)		Wt	3023.62	kN	
Carga muerta del tanque		DL	3.330	kPa	
		Lr + 0,4 Pe	1.200	kPa	
Combinaciones de carga viva y presión externa:		0,4 * Lr + Pe	0.900	kPa	
Espesor de la virola más elevada		ts1	6.400	mm	
Espesor de la virola más baja		tsn	17.400	mm	
Ancho contribuyente de virola en el rigidizador superior	= 13,4*(D*ts1)^0,5	wshell_top	197.72	mm	API 650, App-V, Sec V 8.2.3
Ancho contribuyente de virola en el rigidizador inferior	= 13,4*(D*tsn)^0,5	wshell_btm	326.02	mm	API 650, App-V, Sec V 8.2.3
Carga radial impuesta en el rigidizador final por la virola	= 250*Ps*H	V1	5517	N∙m	API 650, App-V, Sec V 8.2.3.1
Momento de inercia requerido en la región del rigidizador final	=37,5*V1*D^3 / [E*(N^2-1]	Iireqd	413.45	cm4	API 650, App-V, Sec V 8.2.3.2
Área total requerida en la región del rigidizador final	= V1*D/(2*f)	Aireqd_top	625.62	mm2	API 650, App-V, Sec V 8.2.3.3.1
		Aireqd_btm	911.10	mm2	API 650, App-V, Sec V 8.2.3.3.1
Espesor nominal de la placa de compresión	max(12,5mm) =83*D/senΘ*(Pr/(1,72*E))^0, 5	tcone	12.50	mm	API 650, App-V, Sec V 7.2.1
Longitud de techo en la region del anillo de tensión/compresión	=13,4 [D*tcone/sin Θ]^0,5	Xcone	680.17	mm	API 650, App-V, Sec V 7.2.3
Área total requerida del rigidizador superior - Sólo perfil estructural	= Areqd - ts1*wshell_top - tcone*Xcone	Aistiff	-9142	mm2	API 650, App-V, Sec V 8.2.3.3.2
Espesor nominal del fondo		tb	6.00	mm	
Longitud de la placa de fondo en la region del anillo de	= 16*tb	Xbtm	121.60	mm	

tensión/compresión= 16*10Xbim121.00 mmÁrea total requerida del rigidizador inferior - Sólo perfil
estructural= Areqd - tsn*wshell_btm -
tb*XbtmAistiff-5491 mm2API 650, App-V, Sec V
8.2.3.3.2

tigid. Finales	¿Hace falta?	virola nº (por cálculo)	tshell	wishell	V1	Iireq	Aireq	tcone - tbtm	Xcone - Xbtm	Astiff	Perfil puesto	Area	Yi	D rigidizador	Peso rigid. (=Area * pi *D rig*rho)
Ľ.		[-]	[mm]	[mm]	[N·m]	[cm4]	[mm2]	[mm]	[-]	[mm2]	[-]	[cm2]	[cm]	[cm]	[kg]
Тор	SI	11	6.4	197.72	5517.11	413.45	626	12.50	680.2	-9142	L 100x8*	15.5	7.26	3415.8	1305.7
Bottom	SI	1	17.4	326.02	5517.11	413.45	911	6.00	121.6	-5491	N/A	0	0	3403.48	0.0

	b	Ancho del área respectiva
	d	Profundidad del área
	Y	Distancia desde X-X hasta el centro de gravedad de cada pieza
	In	Momento de inercia de cada pieza en el eje paralelo a la virola
	y2	Distancia desde el centro de gravedad del conjunto hasta X-X: Σ A Y / Σ A
	y1	Distancia el centro de gravedad de cada pieza al centro de gravedad del conjunto
P	I1	Momento de inercia de cada pieza en X-X: Σ (In + A y1 ²)
y2	Ymax	Distancia del borde más lejano a X-X hasta el centro de gravedad del conjunto
	Z	Modulo resistente: I / Ymax

Piezas (para el rigidizador nº)	bi [cm]	di [cm]	Yi [cm]	Ai [cm2]	In [cm4]	Ai · Yi [cm3]	Y2 [cm]	y1 [cm]	I1 [cm4]
ТОР	Ancho	Profundo						= Y2 - Yi	
Virola sup - 1	19.77	0.64	0.32	12.65	0.43	4.05	-	3.82	185.16
Rigidizador - 2	L 100x8*		7.26	15.5	145	112.53	-	-3.12	295.81

Total]		28.15	116.58	4.14	480.97
Perfil elegido: Área Momento de inercia en el eje paralelo a la virola	L 100x8* 15.5 145	como rigidizador top cm2 cm4				

	Valor a comparar 1		Valor a comparar 2	
Iact ≥ Iireq ?	480.97	>=[cm4]	413.45 Cumple	API 650, App-V, Sec V 8.2.3
Aperfil \geq Aistiff req ?	15.50	>=[cm2]	-91.42 Cumple	API 650, App-V, Sec V 8.2.3.2
		D ''		
		Provección ex	terior de la placa anular	Se modifica en

la2	Proyección exterior de la placa anular =	5.00 cm	Se modifica en Anclajes!
b	Ancho del área respectiva		-
d	Profundidad del área respectiva		
Y	Distancia desde X-X hasta el centro de gra de cada pieza	avedad	
In	Momento de inercia de cada pieza en el ej paralelo a la virola	e	
y2	Distancia desde el centro de gravedad del A Y / Σ A	conjunto hasta X-X	Κ: Σ
y1	Distancia el centro de gravedad de cada pi conjunto	ieza al centro de gr	avedad del
I1	Momento de inercia de cada pieza en X-X A y1 ²)	$\Sigma \Sigma (In +$	
Ymax	Distancia del borde más lejano a X-X hast gravedad del conjunto	ta el centro de	
Z	Modulo resistente: I / Ymax		

Piezas (para el rigidizador nº)	bi [cm]	di [cm]	Yi [cm]	Ai [cm2]	In [cm4]	Ai · Yi [cm3]	Y2 [cm]	y1 [cm]	I1 [cm4]
BOTTOM	Ancho	Profundo						= Y2 - Yi	
Virola - 1	32.60	1.74	5.87	56.73	14.31	332.99	-	0.61	35.70
Fondo - 2	0.6	19.06	9.53	11.44	346.21	108.99	-	-3.05	452.31
Rigidizador - 3	N/A		0	0	0	0.00	-	0.00	0.00

Total

W_{3shell}

16tb

68.16

441.97 6.48

Perfil elegido:	N/A		como rigidizador para el bottom
Área		0	cm2
Momento de inercia en el eje paralelo a la virola		0.00	cm4

	Valor a comparar 1		nparar 2	
Iact ≥ Iireq ?	488.01	> = [cm4]	413.45	Cumple
Aperfil \geq Aistiff req ?	68.16	> = [cm2]	-54.91	Cumple

API 650, App-V, Sec V 8.2.3 API 650, App-V, Sec V 8.2.3.2
PARA FONDO						API 650, App-V, Sec V 9.1
Densidad del producto	= Sg *1000		rho_p	784	kg/m3	
Volumen permanente en el tanque	= pi * Di ² / 4 * (MFL)		Vmin	908	m3	
Peso del producto retenido en el tanque	= rho_p * Vmin		Wrem	711356	kg	
Peso de las placas de fondo			Wb	43432	kg	
Presión externa de diseño			Pr	4.530	kPa	
Área seccional del tanque			At	908	m2	
Carga en el tanque debida la presión externa	$= Pr^*At$		W_Pr	4113	kN	
				419128	kg	
El fondo del tanque deberá ser evaluado para presión ext condiciones es aplicable:	erna si alguna de las siguientes					
Condición 1	F1: Presión externa de diseño en el fondo		>	F2: Peso de las del líquido bajo	placas del for el nivel míni	ndo y peso mo de diseño
	W_Pr			Wb+Wrem		
	41912	28	>	754787	kg	
			F1 < F2: la placa evaluación de los	de fondo es segu esfuerzos de me	ira y NO se ne mbrana	ecesita una
Condición 2						
¿Área alrededor del tanque es inundable?	NO		NO se necesita un esfuerzos de men	na evaluación de nbrana	los	

Cálculo de pesos

Descripción	n°	Sin corroer [kg]	Corroído [kg]	
Virola	[1]	249616	216055	
Angular en la cima	[2]	0	0	
Placa de fondo / Placa anular	[3]	55013	43432	
Placa de techo fijo (incluyendo placa de compresión)	[4]	56984	45054	
Conjunto estructural del techo	[5]	46444	40200	
Conjunto del techo flotante interno (TFI)	[6]	99747	86335	
Plataforma / pasos	[7]	10000	10000	Estimado
Escalera espiral	[8]	6000	6000	Estimado
Rigidizadores externos por vacío (Anexo V)	[9]	3847	3847	
Rigidizadores por viento intermedios	[10]	3158	3158	
Tubuladuras y piping interno - Virolas	[11]	6000	5400	Estimado
Tubuladuras y piping interno - Techo	[12]	6000	5400	Estimado
Soportes para PCI	[13]	4000	3600	Estimado
Bandeja de goteo (Drip tray)	[14]	1022	1022	
Pozo medidor y Anti Rotación para el TFI	[15]	2500	2250	Estimado
Puerta de limpieza	[16]	1208	1045	
Misceláneos	[17]	6200	6200	Estimado
Peso total en vacío y para montaje	[18]	557739	478997	
Peso del contenido	[19]	16649672	16649672	
Peso del agua durante la hidráulica	[20]	21250378	21250378	
Peso total durante operación	[21]	17207410	17128669	[18]+[19]
Peso total durante prueba hidráulica	[22]	21808117	21729376	[18]+[20]

Las cargas de viento se imponen sobre el tanque para comprobar la estabilidad al vuelco.

10.1 Cargas de viento

Para el cálculo de las cargas de viento de diseño sobre el tanque tanto horizontal como vertical se siguen las directrices de ASCE 7-05, en el apartado 6.5.15 *Cargas de viento de diseño en otras estructuras*, cuya fórmula reza:

$$F = q_z * G * C_f * A_f \tag{1.62}$$

donde:

 q_z = presión dinámica evaluada una altura z del centroide del área A_f usando la exposición definida en el apartado 6.5.6.3 de ASCE 7-05.

G = factor de ráfaga, definido en el apartado 6.5.8 de ASCE 7-05, con valor 0,85 para estructura rígidas.

 C_f = coeficiente de fuerza, definido en las Figuras 6-21 de ASCE 7-05.

 A_f = área proyectada normal al viento, siendo:

- D * H para el viento horizontal. En D se suma la proyección del ancho de la escalera.
- $\frac{\pi * D^2}{4}$ para el viento vertical.

10.1.1 Presión dinámica

La presión dinámica por el viento evaluada a una altura z se calcula mediante la siguiente ecuación:

$$q_z = 0.613 * K_z * K_{zt} * K_d * V^2 * I_w \tag{1.63}$$

K_z es el coeficiente de exposición de la presión dinámica a una determinada altura sobre el suelo.
 Dependiendo de la categoría de exposición, la tabla 6-3 de ASCE 7-05 recoge los siguientes valores que se muestran en la gráfica:

Para todas las categorías de exposición el comportamiento aumenta cada vez con menor pendiente

conforme se evalúa en un punto más elevado. La categoría de exposición depende de la rugosidad de la superficie en la dirección contraria al viento. Las categorías de rugosidad de la superficie se clasifican según:

- B: áreas urbanas y suburbanas, boscosas u otros terrenos con numerosos obstáculos cercanos entre ellos que tiene tamaño de viviendas unifamiliares o más grandes.
- C: terreno abierto con obstáculos dispersos con alturas generalmente inferiores a 9,1 metros. Esta categoría incluye campo abierto, praderas y las superficies de agua en las regiones propensas a los huracanes.
- D: áreas planas, sin obstáculos y superficies de agua fuera de las regiones propensas a los huracanes. Esta categoría incluye suelos lisos de barro, salinas y hielo sin romper.
- K_{zt} es el factor topográfico, cuyo valor se toma igual a 1, al suponer que el tanque no se ubicará en zonas con colinas o escarpadas próximas.
- K_d es el factor de direccionalidad del viento. La tabla 6-4 de ASCE 7-05 define este parámetro en función de la tipología de la estructura. Para tanques circulares, se fija el valor en 0.95.
- *V* es la velocidad básica del viento.
- I_wes el factor de importancia para las cargas de viento. Se obtiene de la tabla 6-1 de ASCE 7-05. Varía en función de la categoría de estructura, definida en la tabla 1-1 de ASCE 7-05, y de la característica del emplazamiento a ser más propenso a huracanes. La categoría IV recoge los tanques de almacenamiento de combustible.

ASCE 7.05 – Tabla 6-1		Factor de importancia (cargas de viento) - Iw			
	Categoría	Ι	Π	III	IV
Regiones no propensas a huracanes y regiones a huracanes con V= 137-160 km/h y Alaska	propensas	0,87	1	1,15	1,15
Regiones propensas a huracanes con V> 160km	n/h	0,77	1	1,15	1,15

Tabla 10-A. Factor de importancia (Cargas de viento)

10.1.2 Coeficientes de fuerza

La figura 6.21 de ASCE 7-05 indica los coeficientes de fuerza según el área transversal a la que el viento se enfrenta en chimeneas, tanques, dispositivos en techos y estructuras similares.

Cuese Section	Tupo of Suufaaa		h/D	
Cross-Section	Type of Surface	1	25	
Square (wind normal to face)	All	1.3	1.4	2.0
Square (wind along diagonal)	All	1.0	1.1	1.5
Hexagonal or octagonal	All	1.0	1.2	1.4
Round $(D\sqrt{q_z} > 2.5)$ $(D\sqrt{q_z} > 5.3, D \text{ in m}, q_z \text{ in N/m}^2)$	Moderately smooth	0.5	0.6	0.7
	Rough ($D'/D = 0.02$)	0.7	0.8	0.9
	Very rough (D'/D = 0.08)	0.8	1.0	0.2
Kound $(D_{\sqrt{q_z}} \leq 2.5)$	All	0.7	0.8	1.2
$(D_{\sqrt{q_z}} \le 5.3, D \text{ in m}, q_z \text{ in N/m}^2)$				

Notes:

3. Notation:

D: diameter of circular cross-section and least horizontal dimension of square, hexagonal or octagonal cross-sections at elevation under consideration, in feet (meters);

 q_z : velocity pressure evaluated at height z above ground, in pounds per square foot (N/m²).

Figura 10-2 Coeficiente de fuerza (Fig.6-21. ASCE 7-05)

The design wind force shall be calculated based on the area of the structure projected on a plane normal to the wind direction. The force shall be assumed to act parallel to the wind direction.

^{2.} Linear interpolation is permitted for h/D values other than shown.

D': depth of protruding elements such as ribs and spoilers, in feet (meters); and

h: height of structure, in feet (meters); and

Para la carga de viento horizontal sobre las virolas, el viento se encontrará con un área redondeada de proyección H*D, por lo que el coeficiente de fuerzas horizontal, C_{fh} , se marca en amarillo en la tabla.

Para la carga de viento vertical sobre el techo, el viento se encontrará con el área del techo cónico, por lo que el coeficiente de fuerzas vertical, C_{fv} , se marca en rojo en la tabla, dependiendo del valor $D * \sqrt{q_z}$. Al no definirse en tabla claramente como identificar el techo cónico, se identifica como una superficie plana, lo cual es más restrictivo.

10.1.3 Fuerzas de diseño del viento

La fuerza resultante horizontal del viento actuando sobre las virolas del tanque se calcula como sigue:

$$F_{H} = q_{z} * G * C_{fh} * A_{f}$$
(1.64)

La fuerza resultante vertical del viento actuando sobre el techo fijo del tanque se obtiene como:

$$F_{V} = q_{z} * G * C_{fv} * A_{roof}$$
(1.65)

10.2 Acciones sobre el tanque

10.2.1 Fuerzas desestabilizadoras

Para comprobar si un tanque necesita disponer de anclajes mecánicos debido al momento de vuelco que se produce en la unión entre el fondo y las virolas, deben tenerse en cuenta las siguientes fuerzas estabilizadoras y desestabilizadoras.

- Presión interna de diseño

La presión interna de diseño, P_i , ejerce una fuerza sobre el techo del tanque. El momento M_{Pi} que provoca en la junta del fondo con la virola se calcula por la ecuación (1.66). Este momento siempre tendrá carácter desestabilizador.

$$M_{P_i} = P_i * \frac{D}{2} * \frac{\pi * D^2}{4}$$
(1.66)

- Carga de viento horizontal y vertical de diseño

La carga de viento horizontal, F_H , actuando sobre las virolas origina un momento de vuelco desestabilizador con resultante en la altura media del tanque, M_{WH} .

$$M_{WH} = F_H * \frac{H}{2}$$
(1.67)

La carga de viento vertical, F_V , actuando sobre el techo origina un momento de vuelco desestabilizador con resultante en el centro del tanque, M_{WV} .

$$M_{WV} = F_V * \frac{D}{2}$$
 (1.68)

El momento de vuelco total debido a la presión del viento por efecto de empuje horizontal en las virolas y levantamiento del tanque, M_W , se calcula como la suma de ambos efectos.

$$M_{W} = M_{WH} + M_{WV} \tag{1.69}$$

10.2.2 Fuerzas estabilizadoras

- Peso de las virolas y elementos estructurales unidos a ellas

El peso muerto de las virolas y todos aquellos elementos estructurales unidos a ellas, D_s , provoca un momento estabilizador en la junta del fondo de la virola, M_{DL} , con la siguiente expresión:

$$M_{DL} = D_s * g * \frac{D}{2}$$
(1.70)

Peso del líquido almacenado

El peso del líquido por unidad de longitud perimetral, w_L , se estima usando una gravedad especifica de 0.7 y con el tanque lleno hasta la mitad del nivel máximo de llenado, H_f . Su valor es el menor de los siguientes:

$$w_{L} = \min \left\{ \frac{140.8 * H_{f} * D}{59 * t_{b} * \sqrt{F_{by} * H_{f}}} \right\}$$
(1.71)

 F_{by} es el límite elástico de la placa bajo la virola. El espesor de esta placa, t_b , debe considerarse sin el sobrespesor de corrosión y su valor no debe exceder el valor de la virola más baja corroída. En caso de que la placa bajo las virolas sea más gruesa que el resto de la placa de fondo, la proyección mínima de la placa más gruesa hacia dentro debe ser el mayor entre 450 mm o L_b , sin exceder 0,035*D:

$$L_b = 0.0291 * t_b * \sqrt{\frac{F_{by}}{H}} \le 0.035 * D \tag{1.72}$$

Para calcular el momento estabilizador que el peso de líquido ejerce sobre el tanque, M_F , se opera como:

$$M_F = w_L * \pi * D \tag{1.73}$$

- Peso del techo y sus elementos estructurales vinculados

El peso muerto de la chapa del techo y todos aquellos elementos unidos a ella, D_r , provoca un momento estabilizador en la junta del fondo de la virola, M_{DLR} , con la siguiente expresión:

$$M_{DLR} = D_r * g * \frac{D}{2}$$
(1.74)

10.3 Comprobación de levantamiento

Las comprobaciones para un tanque sin anclajes ante un posible levantamiento son las siguientes. En caso de no cumplirse alguna de las mismas, el tanque deberá se anclado mecánicamente.

1) Tanque vacío

$$0,6*M_{w} + M_{Pi} < \frac{M_{DL}}{1.5} + M_{DLR}$$
(1.75)

2) Tanque lleno

$$M_{w} + F_{p} * M_{Pi} < \frac{(M_{DL} + M_{F})}{2} + M_{DLR}$$
(1.76)

3) Tanque vacío en combinación con viento horizontal

Figura 10-3 Comprobación de vuelco en tanques sin anclajes

10.4 Cálculos - Viento

Horizontal

Análisis de Viento			API 650, sec 5.11
			ASCE 7-05
Altura del depósito hasta el bordillo del techo	Ht 2500	<mark>0</mark> mm	
Altura de cono del techo	h 284	<mark>6</mark> mm	
Espesor de la virola más gruesa (sin corroer)	tmax 19.0	<mark>0</mark> mm	
Diámetro interno del depósito	Di 3400	<mark>0</mark> mm	
Diámetro nominal	D 3401	9 mm	
Diámetro exterior del depósito	Do 3403	<mark>8</mark> mm	
			ASCE 7-05, Sec. 6.5.3 Design Procedure
Velocidad básica del viento	V 93.6	0 km / h	Tiocedure
	26.0	0 m/s	DBSE-AE Anejo D
Factor de direccionalidad del viento	Kd 0.9	5	Table 6-4, ASCE 7-05
			Chimneys, Tanks, and Similar Structures - Round
Categoría de clasificación de edificios y estructuras	Seleccionar IV	-	Table 1-1. ASCE 7-05

Ancillary structures (including, but not limited to, communication towers, fuel storage tanks, cooling towers, electrical substation structures, fire water storage tanks or other structures housing or supporting water, or other fire-suppression material or equipment) required for operation of Occupancy Category IV structures during an emergency Aviation control towers, air traffic control centers, and emergency aircraft hangars

		Seleccionar :	Regiones propensas	no prope a huraca	nsas a huracanes y regiones mes con V= 137-160 km/h y Alaska
Factor de Importancia (cargas de viento)		Iw	1.15		Table 6-1 - ASCE 7.05
Rugosidad del terreno			С	-	ASCE 7.05, Sec 6.5.6.2 Surface Roughness Categories.
Categoría de exposición del viento		Seleccionar :	С	-	ASCE 7.05, Sec 6.5.6.3 Exposure Categories.
Altura de la cimentación sobre el nivel del terreno		zf	1	m	(suposición)
Altura total sobre el nivel del terreno	=Ht + zf	Z	26	m	indice en Tabla 6.3 - ASCE 7.05
Coeficiente de exposición de la presión dinámica	(calculado para z total)	Kz	1.226	-	Table 6.3 de ASCE 7-05
Factor topográfico	,	Kzt	1		ASCE 7-05, Sec 6.5.7.2 Topographic Factor.
Factor de ráfaga (gust factor)		G	0.85		ASCE 7-05, Sec 6.5.8.1 & API 650 Sec 5.9.7.1
Presión dinámica a la altura Z	= 0,613 * Kz * Kzt * Kd * V ² *	qz	555.03	N/m2	ASCE 7-05, Sec 6.5.10
	Iw	1			
			0.56	kPa	
Ratio Ht/D			0.7353	-	
Valor D * $\sqrt{(qz)}$			801	N/m2	> 5,3
Coeficiente de fuerza	Horizontal	Cfh	0.5	-	ASCE 7-05, Figura 6-21, Round Moderately Smooth surface
	Vertical	Cfv	1.3	-	ASCE 7-05, Figura 6-21, Square

sections normal to face

(Factor vertical = 1,3 considerado como una aproximación conservadora de ASCE 7-05, Figura 6-21, ya que no está claramente definido para techo cónicos)

Diámetro del tanque (incluyendo ancho para la escalera)		Dd	34838	mm	
- ancho de escalera			800	mm	(suposición)
Área proyectada normal a la dirección del viento	= Dd * Ht	Af	871	m2	
Altura media del tanque desde la base	= Ht / 2	Hm	12500	mm	
Área proyectada del techo sobre la base	$=\pi * D^{2}/4$	Aroof	909	m2	
Carga de viento horizontal de diseño	= qz * G * Cfh * Af	FH	205	kN	ASCE 7-05, Sec 6.5.15 Design Wind Loads on Other Structures
Carga de viento vertical de diseño	= qz * G * Cfv * Aroof	FV	557	kN	ASCE 7-05, Sec 6.5.15 Design Wind Loads on Other Structures
Momento de vuelco (@ virola - fondo) debido a la presión de viento	= FH * Hm	MWH	2568	kN * m	

80

Momento de vuelco (@ virola - fondo) debido a la presión de viento Vertical	= FV * D/2	MWV	9482	kN * m	
Momento de vuelco total debido a MWH + MWV	= MWH + MWV	MW	12050	kN * m	
Cortante total en la base debido al viento		FW	205	kN	
Comprobación para los anclajes requeridos debido al viento					API 650, sec 5.11.2
Presión interna de diseño		Pi	2.9	kPa	
Peso de las virolas + techo estructural soportado por las virolas que no es	tá anclado al techo	Ds	249616	kg	(1) + (2)
Peso de la placa del techo + cualquier elemento estructural asociado a ella		Dr	103428	kg	(4) + (5)
Factor de combinación de presión Se define como el ratio entre presión normal de operación y presión de d barg). 0,4 es un valor de minoración de las fuerzas estabilizadoras.	iseño, con un mínin	Fp no de 0,4. Ei	0.4 n otro caso,	- resultaría	API 650, sec 5.2.2 a ATM / Pdiseño (=0barg/0,029
Fuerza debida a la presión interna de diseño sobre el techo	= Pi * Aroof	Fpi	2636 268599	kN kg	
Momento sobre la junta virola-fondo debido a la presión interna de	= Fpi * D/2	Mpi	44836	kN * m	API 650, Sec 5.11.2
			4568743	kg * m	
Momento de vuelco total debido al viento sobre la virola y la junta con el	fondo, resultante	MW	12050	kN * m	
de la presión del viento horizontal + vertical			1227918	kg * m	
Momento sobre la junta virola-fondo debido al peso de virolas + techo estructural soportado por las virolas que no está anclado al techo	= Ds * D/2	MDL	41667	kN * m	API 650, Sec 5.11.2
			4243040	ĸgʻili	
Fuerza resistente del líquido por unidad circunferencial de virola usada para resistir el momento de vuelvo en la virola	= min (A1, A2)	wL	27134	N/m	API 650, Sec 5.11.2.3
wI = 50 * th * sort(Eby * Hf)		Δ 1	2765	kg/m N/m	
valor de 140 8 Hf * D		A1 A2	112562	N/m	
siendo the el espesor corroído de la placa de fondo baio las virolas		tb	6	mm	
Fby: Límite elástico de la placa de fondo		Fby	250	Mpa	
		2	36259	Psi	
Hf: altura de líquido de diseño		Hf	23500	mm	=DLL
Momento sobre la junta virola-fondo debido al líquido (wL)	$= (wL * \pi * D)*D/2$	MF	49325 5026253	kN * m kg * m	API 650, Sec 5.11.2
Momento sobre la junta virola-fondo debido al peso de la placa del techo + cualquier elemento estructural asociado	= Dr * D/2	MDLR	17265	kN * m	API 650, Sec 5.11.2
teeno + euarquier elemento estructurar asociado			1759254	kg * m	
Momento de vuelco (@ virola - fondo) debido a la presión de viento	= FH * Hm	MWS	2568	kN * m	
			261689	kg * m	
Tanques sin anclajes deben cumplir los siguientes criterios de levantamiento:		[kN *m]	[kN *m]		
Momento desestabilizador < Momento estabilizador		M desestab.	< M estab.		1
0.6 MW + MPi < MDI / 1.5 + MDI R	1) Tanque vacío	52066	45042	No	

l anexo E de API 650 proporciona una serie de pautas mínimas para el diseño sísmico de tanques soldados de acero para almacenamiento . El objeto principal de esas directrices es la protección de vidas humanas y la prevención fallos catastróficos en el tanque.

Dicho anexo E está basado en métodos de diseño mediante tensiones admisibles (ASD) para la combinación de carga definida en el mismo, los cuales usan un análisis de fuerza lateral equivalente que aplica fuerzas laterales estáticas equivalentes sobre un modelo matemático lineal del tanque basado en una pared rigida y fija.

Los requisitos para el movimiento de terreno se derivan de ASCE-7, que se basa en un determinado movimiento sísmico de tierra máximo definido como el movimiento debido a un evento que ocurre con una probabilidad del 2% de excedencia durante un período de 50 años (un intervalo de recurrencia de aproximadamente 2500 años).

Los procedimientos de diseño pseudo-dinámicos descritos en el anexo E están basados en métodos analíticos de espectros de respuesta y consideran dos modos de respuesta del tanque y su contenido:

- Modo impulsivo
- Modo convectivo

Se determinan la fuerza sísmica lateral equivalente y el momento de vuelco a aplicar en las paredes del tanque, que son consecuencia de la respuesta de las masas al movimiento lateral del terreno. Tambien se toman medidas para asegurar la estabilidad de las paredes del tanque ante el vuelco y para resistir el pandeo de las mismas ante el resultado de la compresión longitudinal.

Los procedimientos de diseño se basan en espectros de respuesta amortiguada ajustados a las características específicas del terreno particular:

- Modo impulsivo: espectro de respuesta amortiguada del 5%.
- Modo convectivo: espectro de respuesta amortiguada del 0,5%.

11.1 Particularización del lugar

11.1.1 Clase de terreno del sitio

El tipo de terreno sobre el que se construye el tanque influye en el espectro de respuesta de aceleraciones. Las aceleraciones máximas consideradas de la respuesta espectral de terremoto para la aceleración pico de terreno, serán modificadas por los coeficientes de sitio apropiados La máxima respuesta espectral de aceleraciones máxima considerada en terremotos para la acelaración pico del terreno se modifica con los coeficientes de sitio Fa y Fv según Tabla 11-A y Tabla 11-B, recogidas en API 650, anexo E (E.4.4).

Aceleración máxima considerada de la respuesta espectral de terremoto en periodos cortos							
Site Class	Ss =< 0,25	Ss = 0,5	Ss = 0,75	Ss = 1,0	Ss >= 1,25		
Α	0,8	0,8	0,8	0,8	0,8		
В	1	1	1	1	1		
С	1,2	1,2	1,1	1	1		
D	1,6	1,4	1,2	1,1	1		
E	2,5	1,7	1,2	0,9	0,9		
F	а	А	а	а	а		
 a) Se requiere investigación geotécnica especifica del sitio y análisis de respuesta dinámica 							

Tabla 11-A Valor de Fa en función de la Clase de Sitio.

	Aceleración máxima considerada de la respuesta espectral de terremoto en periodos de 1-seg							
Site Class	S1 =< 0,1	S1 = 0,2	S1 = 0,3	S1 = 0,4	S1 >= 0,5			
Α	0,8	0,8	0,8	0,8	0,8			
В	1	1	1	1	1			
С	1,7	1,6	1,5	1,4	1,3			
D	2,4	2	1,8	1,6	1,5			
E	3,5	3,2	2,8	2,4	2,4			
F	а	А	а	а	а			
a) Se requiere investigación geotécnica especifica del sitio y análisis de respuesta dinámica								

Tabla 11-B Valor de Fv en función de la Clase de Sitio.

Las clases del terrero del sitio (Si v_s te Class) se clasifican según:

- A) Roca dura con velocidad de onda de cizallamiento medida, $\overline{v_s} > 1500$ m/s.
- B) Roca 760 m/s < $\overline{v_s} \le 1500$ m/s.
- C) Suelo muy denso y roca blanda con 360 m/s $< \overline{v_s} \le 760$ m/s, o bien con resistencia de penetración estándar, N > 50 o $\overline{s_u} > 100$ kPa.
- D) Suelo rígido con 180 m/s $\leq \overline{v_s} \leq 360$ m/s, o bien con $15 \leq N \leq 50$ ó 50 kPa $\leq \overline{s_u} \leq 100$ kPa.
- E) Un perfil de suelo con $\overline{v_s}$ < 180 m/s, o con N <15, $\overline{s_u}$ <50 kPa, o cualquier perfil con más de 3 m de arcilla blanda definida como suelo con índice de plasticidad, IP> 20, contenido de humedad, w ≥ 40% y $\overline{s_u}$ <25 kPa.
- F) Suelos que requieren evaluaciones específicas del sitio:
 - a. Suelos vulnerables a posibles fallas o colapsos bajo cargas sísmicas tales como suelos licuables, arcillas rápida y altamente sensibles, suelos plegables débilmente cementados. Sin embargo, dado que los tanques suelen tener un período impulsivo de 0,5 segundos o menos, no se requieren evaluaciones específicas del sitio, pero se recomienda determinar aceleraciones espectrales para los suelos licuables.
 - b. Turbas y / o arcillas altamente orgánicas ($H_s > 3$ m de turba y / o arcilla altamente orgánica, donde H_s = espesor de suelo).
 - c. Arcillas de plasticidad muy alta ($H_s > 8 \text{ m}$, con IP>75).
 - d. Arcillas muy gruesas, de rigidez baja/media ($H_s > 36$ m).

11.1.2 Grupo de uso sísmico (SUG)

En funcion de tipo de servicio que presta y el risego hacia el público, los tanques se clasifican en Grupos de Uso Sísmico (SUG). La elección de un SUG mayor implica un valor más alto del Factor de Importancia (I), usado para definir los parámetros de aceleración de diseño. La Tabla 11-C descrita en API 650, Anexo E (E.5.1.2) indica el valor de I en función de SUG tomado.

SUG	1
I	1
II	1,25
III	1,5

Tabla 11-C Factor de importancia (I) y clasificación del grupo de suelo sísmico (SUG)

11.1.2.1 Grupo de uso sísmico III

Este grupo engloba aquellos tanques cuya función se considera esencial en el medio para la seguridad pública o aquellos cuyo contenido pueda plantear un riesgo serio al público ante posibles vertidos y falta de control del contenido o protección. Si no existen fuentes alternativas o redundantes, los tanques con el siguiente servicio se pueden considerar SUG III:

- Estaciones de bomberos, rescate y policía.
- Hospitales e instalaciones de servicio de emergencia.
- Estaciones de generación de potencia u otros servicios requeridos como instalaciones de respaldo ante emergencias en instalaciones catalogadas como SUG III.
- Centros de comunicaciones designados como esenciales.
- Estructuras que contengan suficiente cantidad de tóxicos o sustancias explosivas consideradas peligrosas para el público, pero que carecen de salvaguardias secundarias para evitar una exposición pública generalizada.
- Instalaciones de producción, distribución o tratamiento de agua requeridas para mantener la presión de agua para la extinción de incendios en ámbitos de dominio municipal o público (no industrial).

No es frecuente considerar SUG III los tanques de almacenamiento en terminales petroleras, gaseoductos de instalaciones de almacenamiento y otros emplazamientos industriales, a menos que existan circunstancias extenuantes.

11.1.2.2 Grupo de uso sísmico II

Se incluyen en este grupo aquellos tanques que deben continuar prestando servicio tras ocurrir un sismo para el bienestar público o aquellos cuyo contenido pueda plantear un riesgo moderado al público ante posibles vertidos y falta de control del contenido o protección. Si no existen fuentes alternativas o redundantes, los tanques con el siguiente servicio se pueden considerar SUG II:

- Estaciones de generación de potencia y otras instalaciones de servicio público no incluidas en SUG III y que requieran de operación continua.
- Instalaciones de tratamiento de agua y efluentes necesarios una tratamiento primario y desinfección de agua potable

11.1.2.3 Grupo de uso sísmico l

SUG I es la clasificación más frecuente. Si no existen fuentes alternativas o redundantes, los tanques con las siguientes aplicaciones se pueden considerar SUG I:

- Tanques de almacenamiento en terminales o áreas industriales aisladas del acceso público que tienen medidas secundarias de prevención y control de derrames.
- Tanques sin medidas secundarias de prevención y control de derrames que están suficientemente apartadas de zonas de acceso público reduciendo al mínimo el peligro.

11.2 Movimiento de terreno en lugares no definidos por los métodos de ASCE 7

En función del parámetro de aceleración de diseño pico del terreno para sitios no abordados por métodos ASCE, S_p , se definen el parámetro de respuesta de aceleración, 5% amortiguado, para periodos cortos S_s , y el parámetro de respuesta de aceleración, 5% amortiguado, para un periodo de 1 segundo S_1 .

$$S_{S} = 2,5*S_{P}$$
 (1.78)
 $S_{1} = 1.25*S_{P}$ (1.79)

Para obtener el máximo espectro de respuesta de aceleración del sitio para periodos cortos S_{MS} , y para periodo

igual a 1 segundo S_{M1} se hace:

$$S_{MS} = F_a * S_S \tag{1.80}$$

11.3 Espectro de respuesta de aceleraciones de diseño

El método analítico pseudo-dinámico desarrollado en API 650, Anexo E se basa en el periodo natural de la estructura del tanque. A menos que se lleve a cabo análisis específico del sitio o una evaluación de la interacción de la estructura del suelo, este método es independiente del periodo del modo impulsivo. Dicho valor es casi siempre menor que T_s , situándolo en la zona plana con los valores máximos de los espectros de respuesta.

11.3.1 Periodo convectivo (chapoteo)

El periodo natural del primer modo de chapoteo o periodo convectivo de comportamiento del producto almacenado, T_c , se calcula con la ecuación (1.81), K_s donde es el coeficiente del periodo de chapoteo, definido en la ecuación (1.82) y representado en Figura 11-1. Se aprecia que cuanto más alta sea la relación D/H, más influencia tendrá la parte convectiva, esto es, en los tanques más aplastados el chapoteo cobra mayor relevancia.

Figura 11-1 Coeficiente del periodo de chapoteo (Ks).

11.3.2 Coeficientes del espectro de aceleraciones

En regiones fuera de EE.UU. donde los requisitos regulatorios para determinar el movimiento de terreno de diseño son diferentes a los métodos de ASCE 7, el periodo transitorio dependiente de la zona para movimientos de terreno de larga duración, T_L , es igual a 4 segundos. Además, se define el factor de escala, Q, con valor 1 cuando ASCE 7 no es de aplicación. El parámetro K está definido en API 650 como el coeficiente para ajustar la aceleración espectral de 5% a 0,5% amortiguado, con un valor igual a 1,5 si no se especifica lo contrario.

$$T_L = 4 \text{ segundos}$$
 (1.83)
 $Q = 1$ (1.84)

$$K = 1,5$$
 (1.85)

El parámetro T_s relaciona la amplitud del espectro de respuesta de aceleraciones entre el periodo corto y el periodo de 1 segundo, adaptando estas aceleraciones a la clase de terreno del sitio mediante la ecuación (1.86):

$$T_{S} = \frac{F_{v} * S_{1}}{F_{a} * S_{S}}$$
(1.86)

Por otro lado, según la manera de anclar el tanque al terreno, se obtienen los factores de modificación de respuesta (impulsivo y convectivo) para métodos de diseño mediante tensiones admisibles (ASD), recogidos en la Tabla 11-D.

Sistema de anclaje	Rwi	Rwc
	(impulsivo)	(convectivo)
Autoanclado	3,5	2
Mecánicamente anclado	4	2

Tabla 11-D Factores de modificación de respuesta para métodos ASD

En los casos donde solamente se ha definido la aceleración pico del terreno S_P , puede sustituirse por S_0 en las ecuaciones indicadas en API 650, E.4.6.1 para el cálculo de los parámetros espectrales de aceleración impulsivo y convectivo, A_i y A_c , respectivamente.

Parámetro espectral de aceleración impulsiva, A_i :

$$A_{i} = 2,5 * Q * F_{a} * S_{p} * \left(\frac{I}{R_{wi}}\right) \ge 0.007$$

y para $S_{1} \ge 0.6$; (1.87)
 $Ai \ge 0.625 * Sp * \left(\frac{I}{R_{wi}}\right)$

Parámetro espectral de aceleración convectiva, A_c :

Para
$$T_C \leq T_L$$
; $A_c = 2,5 * K * Q * F_a * S_p * \left(\frac{T_s}{T_c}\right) * \left(\frac{I}{R_{wc}}\right) \leq A_i$
Para $T_C > T_L$; $A_c = 2,5 * K * Q * F_a * S_p * \left(\frac{T_s * T_L}{T_c^2}\right) * \left(\frac{I}{R_{wc}}\right) \leq A_i$

$$(1.88)$$

11.4 Comportamiento del líquido

La manera en la que se comporta un líquido en un contenedor cilíndrico vertical ante un movimiento sísmico se puede dividir en dos componentes: componente impulsiva y componente convectiva.

La **componente impulsiva** es la parte del líquido en la zona baja del tanque que se mueve solidariamente a él. Experimenta las mismas aceleraciones y desplazamientos que el tanque y el subsuelo sobre el que se cimenta. Se presupone que el tanque es rígido. El periodo natural de vibración asociado a esta componente es función del tamaño y la rigidez del propio tanque, y suele encontrarse entre 0,1 y 0,4 segundos. En la Figura 11-2 se muestra un espectro de respuesta sísmica. La componente impulsiva y su frecuencia natural asociada estarán sujetas a aceleraciones cercanas a los valores máximos mostrados.

Figura 11-2 Espectro de respuesta de diseño típico para tanques de almacenamiento de líquidos (ASCE-7).

La componente convectiva es la parte del líquido en la zona más alta del tanque que se mueve libremente formando olas y chapoteando. Tiene un periodo natural de respuesta mucho más largo que la parte impulsiva y suele encontrarse en torno a 5-10 segundos, dependiendo del tamaño del tanque. La Figura 11-2 muestra que esta parte del líquido está sujeta a aceleraciones menores.

El modelo que representa el comportamiento del tanque se muestra en Figura 11-3. La componente impulsiva se representa unida rígidamente a las paredes del tanque mientras que la componente convectiva están unida mediante resortes.

Figura 11-3 Modelo de masas impulsiva y convectiva en un tanque de almacenamiento.

La proporción de líquido que se reparte entre la parte impulsiva y la convectiva depende de la relación de forma diámetro/altura (D/H) del tanque. El anexo E de API 650 no tiene en cuenta la altura del tanque, y determina las masas efectivas y la altura de sus centros de gravedad como se representa en Figura 11-4 y Figura 11-5, respectivamente. Según las figuras, para un mismo volumen a almacenar, el tanque con más altura tendrá mayor componente impulsiva, mientras que la parte convectiva será más importante en un tanque más bajo.

Figura 11-5 Centro de gravedad de las fuerzas efectivas.

Las expresiones para calcular el peso efectivo impulsivo W_i en función del peso total del líquido W_p , y su centro de acción para las fuerzas efectivas laterales respecto al anillo perimetral X_i o respecto a la losa de cimentación X_{is} , se muestran en las ecuaciones (1.89) (1.90) (1.91) (1.92) (1.93) (1.94), respectivamente. Dependiendo de la relación diámetro-altura, se tienen diferentes ecuaciones:

 $D/H \ge 1.333$

-

$$W_{i} = \frac{\tanh\left(0.866 * \frac{D}{H}\right)}{0.866 * \frac{D}{H}} * W_{p}$$
(1.89)

$$X_i = 0.375 * H \tag{1.90}$$

$$X_{is} = 0.375 * \left[1.0 + 1.333 \left(\frac{\tanh\left(0.866 * \frac{D}{H}\right)}{0.866 * \frac{D}{H}} - 1.0 \right) \right] * H$$
(1.91)

- D/H < 1.333

$$W_{i} = \left(1 - 0.218 * \frac{D}{H}\right) * W_{p}$$
(1.92)

$$X_{i} = \left(0.5 - 0.094 * \frac{D}{H}\right) * H$$
 (1.93)

$$X_{is} = \left(0.500 + 0.060 * \frac{D}{H}\right) * H$$
 (1.94)

Las expresiones para calcular el peso efectivo impulsivo W_c en función del peso total del líquido W_p su centro de acción para las fuerzas efectivas laterales respecto al anillo perimetral X_c o respecto a la losa de cimentación X_{cs} , se muestran en las ecuaciones (1.95) (1.96) (1.97), respectivamente.

$$W_{c} = 0.230 * \frac{D}{H} * \tanh\left(\frac{3.67 * H}{D}\right) * W_{p}$$
(1.95)
$$X_{c} = 1.0 - \left[\frac{\cosh\left(\frac{3.67 * H}{D}\right) - 1}{\frac{3.67 * H}{D} * \sinh\left(\frac{3.67 * H}{D}\right)}\right] * H$$
(1.96)

$$X_{cs} = \left[1.0 - \frac{\cosh\left(\frac{3.67^*H}{D}\right) - 1.937}{\frac{3.67^*H}{D} * \sinh\left(\frac{3.67^*H}{D}\right)} \right] * H$$
(1.97)

11.5 Fuerzas de diseño

11.5.1 Efectos sísmicos verticales

El efecto vertical de las aceleraciones debe ser considerado actuando tanto hacia arriba como hacia abajo combinado con los efectos de las aceleraciones laterales mediante la raíz de la suma de cuadrados. Estos efectos no tienen por qué ser combinado simultáneamente para determinadas cargas, fuerzas y en la resistencia al vuelco del tanque si se siguen las ecuaciones expresadas en el Anexo E de API 650. El valor de la fuerza vertical sísmica se representa en la ecuación (1.98), y se obtiene multiplicando el peso efectivo por un parámetro vertical de aceleración sísmica, que es función del espectro de respuesta de aceleración considerado para periodo corto 5% amortiguado.

$$F_{\nu} = \pm A_{\nu} * W_{\text{eff}} \tag{1.98}$$

$$A_{v} = 0.47 * S_{DS} = 0.47 * (Q * F_{a} * S_{s})$$
(1.99)

Otro factor a considerar es la gravedad específica efectiva incluyendo los efectos sísmicos vertical se calcula como:

$$G_e = G^* (1 - 0.4^* A_v) \tag{1.100}$$

11.5.2 Cortante total de diseño en la base (Tanque lleno)

El método para diseñar tanques de almacenamiento que resistan las fuerzas sísmicas convierte la masa efectiva y presión dinámica del fluido en fuerzas laterales equivalentes y una distribución lateral de fuerzas. El cortante sísmico en la base del tanque, V, se calcula mediante la combinación de la raíz cuadrada de la suma de los cuadrados de los componentes impulsivos e convectivos, mediante la ecuación (1.101).

$$V = \sqrt{V_i^2 + V_c^2}$$
(1.101)

El cortante de diseño en la base debido a la componente impulsiva por el peso efectivo del tanque y su contenido, V_i , considera las virolas y sus aparejos, la placa del techo y sus aparejos fijos, la estructura del techo, el fondo del tanque y el líquido efectivo impulsivo. Se calcula mediante la ecuación (1.102).

$$V_i = A_i * (W_s + W_r + W_f + W_i)$$
(1.102)

El cortante de diseño en la base debido a la componente convectiva por el peso efectivo chapoteo, V_c , se calcula mediante la ecuación (1.103).

$$V_c = A_c * W_c \tag{1.103}$$

11.5.3 Momento sísmico de vuelco

El momento sísmico de vuelco se aplica en la base del tanque, y se determina mediante la combinación de la raíz cuadrada de la suma de los cuadrados de los componentes impulsivos e convectivos multiplicados por el respectivo brazo al centro de acción de cada fuerza.

Dependiendo del lugar respecto al cual se toman los momentos, se diferencia entre:

- Momento de vuelco en el anillo perimetral, M_{rw} : se aplica en la base del perímetro donde apoyan las virolas del tanque. Este momento se utiliza para determinar las cargas en el anillo perimetral de la cimentación, las fuerzas en los anclajes del tanque y para comprobar la compresión longitudinal en las virolas. Su expresión es:

$$M_{rw} = \sqrt{\left[A_i * \left(W_i * X_i + W_s * X_s + W_r * X_r\right)\right]^2 + \left[A_c * \left(W_c * X_c\right)\right]^2} \quad (1.104)$$

 Momento de vuelco en la losa, M_s: se aplica en la base de la cimentación. Este momento también tiene en cuenta la presión de la base del tanque sobre el terreno, y se utiliza para diseñar la cimentación del depósito.

$$M_{s} = \sqrt{\left[A_{i} * \left(W_{i} * X_{is} + W_{s} * X_{s} + W_{r} * X_{r}\right)\right]^{2} + \left[A_{c} * \left(W_{c} * X_{cs}\right)\right]^{2}} \quad (1.105)$$

Los centros de acción para las partes impulsiva y convectiva del líquido almacenado, $X_{i(is)} / X_{c(cs)}$ fueron detallados en el apartado 11.4.

El centro de acción de las virolas X_s se calcula hallando la componente vertical del centro de gravedad de conjunto de paredes sin corroer.

$$X_{s} = \frac{\sum_{i=1}^{n} (W_{i} * Y_{i})}{\sum_{i=1}^{n} W_{i}}$$
(1.106)

# Virola	Peso virola [kg]	C.G. virola [m]	(Peso virola) *(C.G. virola) [kg*m]
1	W_1	<i>Y</i> ₁	$W_1 * Y_1$
2	<i>W</i> ₂	<i>Y</i> ₂	$W_2 * Y_2$
N	W _n	Y _n	$W_n * Y_n$

Tabla 11-E Cálculo del centro de gravedad del conjunto de virola

El centro de acción del techo fijo X_r se estima considerando que se sitúa a dos terceras parte de la altura del

cono que forma.

$$X_{r} = H + \frac{2}{3} * \left[\frac{D}{2} * tg(\theta) \right]$$
(1.107)

El momento de vuelvo se debe definir en la parte baja de cada virola que compone el tanque mediante interpolación lineal atendiendo a las siguientes consideraciones:

- Si el tanque tiene techo fijo, el cortante y el momento de vuelco impulsivos se aplican en parte superior de la virola.
- El cortante y el momento de vuelco impulsivos para cada virola se incluyen teniendo en cuenta el peso y centro de gravedad de cada nivel de virola.
- El momento de vuelco debido al liquido almacenado se aproxima mediante una distribución lineal donde el valor máximo es el calculado en el anillo perimetral M_{rw} y el valor cero se encuentra a la altura del nivel máximo de líquido.

11.5.4 Fuerzas dinámicas circunferenciales debidas al líquido (Hoop stress)

Los esfuerzos dinámicos circunferenciales producido por el líquido almacenado debido a un movimiento sísmico se calculan de la siguiente manera, dependiendo de las relaciones de forma entre el diámetro y la altura del tanque, D/H, y la distancia desde el nivel máximo de producto hasta el punto de análisis de fuerzas, Y.

Esfuerzo impulsivo circunferencial de membrana en la virola, N_i :

-
$$D/H \ge 1.333$$

$$N_i = 8.48 * A_i * G * D * H * \left[\frac{Y}{H} - 0.5 * \left(\frac{Y}{H}\right)^2\right] * \tanh\left(0.866 * \frac{D}{H}\right) (1.108)$$

- D/H < 1.333 y Y < 0.75*D

$$N_i = 5.22 * A_i * G * D^2 * \left[\frac{Y}{0.75 * D} - 0.5 * \left(\frac{Y}{0.75 * D} \right)^2 \right]$$
(1.109)

- D/H < 1.333 y Y \ge 0.75*D

$$N_i = 2.6 * A_i * G * D^2 \tag{1.110}$$

Esfuerzo convectivo circunferencial de membrana en la virola, N_c :

$$N_{c} = \frac{1.85 * A_{c} * G * D^{2} * \cosh\left[\frac{3.68 * (H - Y)}{D}\right]}{\cosh\left[\frac{3.68 * H}{D}\right]}$$
(1.111)

En la comprobación de ambos esfuerzos circunferenciales impulsivo y convectivo en la base de cada virola se aprecia cómo N_i va disminuyendo su valor cuanto más alta sea la virola de estudio, mientras que N_c muestra un efecto contrario.

Por otro lado, el esfuerzo circunferencial debido a la presión hidrostática del fluido almacenado N_h se obtiene a partir de la fórmula empleada en el cálculo de espesores de virola mediante el método del pie, donde la altura de líquido incluye la presión interna del tanque como presión hidrostática.

$$N_h = 4.9 * D * (H_d - 0.3) * G \tag{1.112}$$

Finalmente, la tensión circunferencial total se determina combinando los esfuerzos dinámicos circunferenciales con la presión hidrostática de diseño que origina el líquido almacenado. La ecuación también incluye el efecto de la aceleración vertical.

$$\sigma_T = \sigma_h + \sigma_s = \frac{N_h \pm \sqrt{N_i^2 + N_c^2 + (A_v * N_h / 2.5)^2}}{t}$$
(1.113)

11.6 Resistencia a las cargas de diseño

11.6.1 Anclajes

La resistencia que un tanque de almacenamiento opone al momento sísmico de vuelco en la base de las virolas M_{nv} puede provenir de dos fuentes:

- El peso de las virolas, el peso del techo sobre las virolas y el peso parcial de contenido del tanque adyacente a las virolas en aquellos que no dispongan de anclajes.
- Sistemas mecánicos de anclaje.

11.6.1.1 Tanques auto-anclados

En los tanques auto-soportados, una parte del contenido puede ser empleado para resistir el vuelco. El anclaje del tanque depende de las dimensiones de la placa anular del fondo que se disponga para evitar el levantamiento debido al momento de vuelco. Dicha placa puede ser parte del tanque o un elemento adicional que se suelde. La fuerza estabilizadora ante el vuelco por unidad de longitud perimetral en la zona de la placa anular, W_a viene dada por la siguiente ecuación (1.114):

$$w_a = 99*t_a*\sqrt{F_y*H*G} \le 201.1*H*D*G_e \tag{1.114}$$

Este valor máximo está basado en una dimensión máxima radial asociada al resistir el levantamiento en el fondo del tanque equivalente al 3.5% del diámetro del tanque. Si se alcanza el valor máximo de W_a , se fija el valor del ancho del anillo anular medido desde la parte interior de la virola, L, en 0035*D. Se puede usar un valor de L llamado L_s , que es menor que el determinado en la ecuación (1.117). Si este valor reducido L_s se usa, W_a también deberá ser reducida mediante la siguiente ecuación (1.115):

$$w_a = 5742^* H^* G_e^* L_s \tag{1.115}$$

Para que un tanque puede ser considerado auto-anclado, deben cumplirse las siguientes condiciones:

- a) La fuerza estabilizadora en adecuada para asegurar la estabilidad del tanque. Esto significa tener una ratio de anclaje $J \le 1.54$.
- b) El ancho máximo de la placa anular considerado para resistir el levantamiento es 3.5% del diámetro del tanque.
- c) Se cumple la condición de tensión admisible en los esfuerzos longitudinales de compresión (ecuación (1.123)).
- d) El espesor de la placa anular no es mayor que el espesor de la virola más baja.
- e) Se satisfacen los requisitos de flexibilidad de tuberías expuestos en la sección E.7.3 de API 650.

Se define el ratio de anclaje como la relación entre el momento de vuelco y las fuerzas estabilizadoras que lo impiden, mediante la ecuación (1.116):

$$J = \frac{M_{rw}}{D^2 * \left[w_t * (1 - 0.4 * A_v) + w_a - 0.4 * w_{int} \right]}$$
(1.116)

donde W_t es la fuerza por unidad de longitud perimetral debida al peso de las virolas y el techo actuando sobre la base del tanque, y W_{int} es la fuerza de diseño de levantamiento por unidad de longitud perimetral debida a la presión del producto almacenado. Si el valor de W_{int} resulta negativo, no se tiene en cuenta para el cálculo de la ratio de anclaje.

Ratio de anclaje, J	Criterio
<i>J</i> ≤0.785	Levantamiento no calculado bajo el momento de vuelco sísmico de diseño. El tanque está auto-anclado. La carga de compresión en las virolas se distribuye linealmente sobre el diámetro del tanque como en flexión simple. El eje neutral de tanque permanece en la posición central.
0.785 < <i>J</i> ≤ 1.54	El tanque se levanta y se crea un esfuerzo por el balanceo de líquido, pero es estable para la carga de diseño siempre que se cumplan los requisitos de esfuerzos longitudinales de compresión. El tanque está auto-anclado. El eje neutral del tanque se mueve progresivamente hacia afuera y la compresión en la virola se concentra en una porción menor de perímetro.
J>1.54	 El tanque no es estable estructuralmente y no está auto-anclado para la carga de diseño. Las posibles acciones a llevar son: Incrementar el espesor de la placa anular para aumentar la fuerza estabilizadora para retener el producto si no se ha llegado a la condición de L<0.035*D. Incrementar el espesor de la virola. Esto implica tener que aumentar consecuentemente el espesor de las virolas superiores en la misma proporción. Cambiar las proporciones del tanque para hacer mayor el diámetro y reducir la altura máxima de llenado. Añadir anclajes mecánicos.

Tabla 11-F Criterios de la ratio de anclaje, J.

El espesor de la placa de anular del fondo bajo las virolas puede ser mayor o igual al espesor de la placa de fondo general con los requisitos que se listan, independientemente del modo de anclaje:

- El espesor t_a que se usa en la ecuación de w_a , (1.114) ó (1.115), no debe ser mayor que el espesor de la virola inferior t_s corroída.
- El espesor t_a que se usa en la ecuación de w_a , (1.114) ó (1.115), no debe exceder el espesor real de la placa puesta bajo las virolas descontando el sobrespesor de corrosión del fondo.
- Cuando la placa puesta bajo las virolas es más gruesa que el resto del fondo del tanque, la proyección de la placa desde el interior de las virolas hacia afuera, L, debe ser mayor de 0.45 metros o del valor de la ecuación (1.117). Sin embargo, L no puede ser mayor a 0,035*D.

$$L = 0.01723 * t_a * \sqrt{\frac{Fy}{H * G_e}}$$
(1.117)

11.6.1.2 Tanques mecánicamente anclados

Si la configuración del tanque hace que no se cumplan los requisitos para considerar el auto-anclaje, éste debe ser anclados mediante dispositivos mecánicos como pernos de anclaje o pletinas. El eje neutral del tanque ante el vuelco permanece en el centro del tanque. El peso resistente del producto no se usa para reducir la carga de levantamiento en los anclajes, cuyo diseño debe proporcionar la siguiente resistencia por unidad de longitud perimetral:

$$w_{AB} = \frac{1.273 * M_{rw}}{D^2} - w_t * (1 - 0.4A_v)$$
(1.118)

más el levantamiento debido a presión interna de diseño. La carga de viento no necesita ser incluida en la combinación con las cargas sísmicas.

La carga de anclaje de diseño se define en la ecuación (1.119), donde n_A es el número de anclajes equiespaciados sobre el perímetro del tanque:

$$P_{AB} = w_{AB} * \left(\frac{\pi * D}{n_A}\right) \tag{1.119}$$

Los embebidos en la cimentación y aparejos que componen el anclaje se diseñan con la carga de aparejos de anclaje, P_L , que es la menor entre el límite elástico multiplicado por el área del anclaje o tres veces P_{AB} .

La tensión máxima admisible para los anclajes no debe exceder los siguientes valores cuando se diseña sólo para la carga sísmica o en combinación con otras combinaciones de carga:

- Para pernos de anclaje y pletinas, la tensión admisible será un 80% de límite elástico del material. De esta manera, estos elementos plastificarán antes de que los aparejos fallen. Así se indica en la Tabla 11-I. Cargas de levantamiento.
- Para otras partes, 133% de la tensión admisible en previsión a concentraciones locales de tensión.
- La máxima tensión admisible en la virola para los aparejos del anclaje se limita a 170 MPa sin incremento para la carga sísmica. Estas tensiones pueden ser usadas en combinación con otras cargas para cargas sísmicas cuando la carga combinada domine.

El número mínimo de anclajes para un tanque debe ser seis y no debe haber más de 3 metros entre cada uno de ellos. Al usar pernos de anclaje, el diámetro corroído no debe ser menor a 25 mm. Las pletinas de acero al carbono deberán tener un espesor nominal de al menos 6 mm, con un sobrespesor de corrosión de 1.5 mm en cada superficie para una distancia de al menos 75 mm, pero no mayor de 300 mm sobre una superficie de hormigón.

Tabla 11-G Anclajes mecánicos

Los embebidos de los anclajes en la cimentación deben ser suficientemente rígidos para soportar hasta el límite elástico especificado del anclaje.

11.6.2 Compresión longitudinal en las virolas

11.6.2.1 Tanques auto-anclados

La tensión de compresión longitudinal máxima que se da en la base de las virolas en un tanque cuando no se hace cálculo de levantamiento, esto es, J < 0.785, se determina mediante la ecuación (1.120):

$$\sigma_{c} = \left(w_{t}^{*}(1+0.4^{*}A_{v}) + \frac{1.273^{*}M_{rw}}{D^{2}}\right)^{*}\frac{1}{1000^{*}t_{s}}$$
(1.120)

La tensión de compresión longitudinal máxima que se da en la base de las virolas en un tanque cuando si se requiere un cálculo de levantamiento, esto es, J > 0.785, se determina mediante la ecuación:

$$\sigma_c = \left(\frac{w_t^* (1+0.4^*A_v) + w_a}{0.607 - 0.18667^* J^{2.3}} - w_a\right)^* \frac{1}{1000^* t_s}$$
(1.121)

11.6.2.2 Tanques mecánicamente anclados

La tensión de compresión longitudinal máxima que se da en la base de las virolas en un tanque mecánicamente anclado se determina mediante la ecuación (1.122):

$$\sigma_{c} = \left(w_{t}^{*}(1+0.4*A_{v}) + \frac{1.273*M_{rv}}{D^{2}}\right) * \frac{1}{1000*t_{s}}$$
(1.122)

11.6.2.3 Tensión de compresión longitudinal máxima admisible

La tensión longitudinal máxima de compresión en las virolas, σ_c , debe ser menor que la tensión longitudinal admisible por sismo, F_c , detallada en API 650, cuya fórmula tiene en cuenta la mayoración del 33% para los métodos de diseño mediante tensiones admisibles (ASD). El peor escenario para analizar estos esfuerzos ocurre cuando el tanque está lleno hasta el máximo nivel de diseño.

$$\sigma_c \le F_c \tag{1.123}$$

Si
$$\frac{G^*H^*D^2}{t_s} \ge 44;$$
 $F_C = \frac{83^*t_s}{D}$ (1.124)

Si
$$\frac{G^*H^*D^2}{t_s} < 44;$$
 $F_C = \frac{83^*t_s}{2.5^*D} + 7.5^*\sqrt{G^*H} < 0.5^*F_{ty}$ (1.125)

Estas ecuaciones tienen en cuenta la reducción del valor admisible por el pandeo que se produzca debido a imperfecciones en el proceso de fabricación de las virolas, al no ejecutarse perfectamente cilíndricas, y considera también el efecto de la presión interna dentro del tanque.

11.6.3 Esfuerzos circunferenciales (Hoop stress)

La máxima tensión admisible por la combinación la presión hidrostática y los esfuerzos circunferenciales de membrana del líquido debido al sismo, σ_a será la menor de los siguientes casos:

- La máxima tensión admisible de diseño para el producto del material de la virola, incrementada un 33%.
- El 90% del límite elástico del material de la virola indicado en API 650, tabla 5.2, por la eficiencia de junta, E.

Se debe comprobar que este valor admisible es mayor que los esfuerzos circunferenciales totales debido almacenamiento y movimiento del líquido en la base de cada una de las virolas mediante la ecuación (1.113).

$$\sigma_T \leq \sigma_a \tag{1.126}$$

11.6.4 Altura libre

La ola de chapoteo del líquido debe tenerse en cuenta para determinar la altura libre requerida sobre la altura del nivel máximo de llenado. En los tanques con SUG I es opcional realizar este cálculo, mientras que en SUG II y SUG III esta comprobación es necesaria. La altura de la ola de chapoteo sobre la altura de diseño del producto se estima con la siguiente ecuación (1.127):

$$\delta_s = 0.42 * D * A_f \tag{1.127}$$

El coeficiente de aceleración para el cálculo de la ola de chapoteo, A_f , se estima dependiendo del SUG asignado y el valor del periodo convectivo.

Para SUG I y II:

Si
$$T_C \le 4$$
; $A_f = 2.5 * K * Q * F_a * S_P * I * \frac{T_S}{T_C}$ (1.128)

Si
$$T_C > 4$$
; $A_f = 2.5 * K * Q * F_a * S_P * I * \frac{4 * T_S}{T_C^2}$ (1.129)

Para SUG III:

Si
$$T_C \le T_L$$
; $A_f = 2.5 * K * Q * F_a * S_P * \frac{T_S}{T_C}$ (1.130)

Si
$$T_C \le T_L$$
; $A_f = 2.5 * K * Q * F_a * S_P * \frac{T_S * T_L}{T_C^2}$ (1.131)

La siguiente tabla muestra valores mínimos a considerar para la altura de la ola de chapoteo.

Valor de SDS = Q*Fa*Ss	SUG I	SUG II	SUG III			
<0,33g%	(a)	(a)	$\delta_{\!_{s}}$ (c)			
≥ 0,33g%	(a)	$0.7*\delta_{s}$ (b)	$\delta_{\!_{s}}$ (c)			
 (a) Se recomienda una altura libre de 0,7*δs para consideraciones económicas, pero no es obligatoria. (b) Se requiere una altura libre igual a 0,7*δs a menos que se dé una de las siguientes condiciones: Se proporciona un contenedor secundario para controlar el derrame del producto. El techo y las paredes están diseñadas para contener el chapoteo del líquido. (c) Se requiere una altura libre igual a δs, a menos que se dé una de las siguientes condiciones: Se proporciona un contenedor secundario para controlar el derrame del producto. El techo y las paredes están diseñadas para controlar el derrame del producto. Se proporciona un contenedor secundario para controlar el derrame del producto. El techo y las paredes están diseñadas para contener el chapoteo del líquido. 						

Tabla 11-H Altura libre mínima requerida.

En tanques con techos flotante es habitual disponer suficiente altura libre para asegurar que los sellos del techo permanecen entre la altura de las virolas. No se considera que la presencia del elemento flotante modifique o inhiba el comportamiento del chapoteo del producto almacenado.

11.7 Levantamiento

Cuando el tanque requiera estar anclado, ya sea por estabilidad al vuelco debido a la presión por el viento (apartado 10.3 Comprobación de levantamiento), por requisitos ante sismo según el Anexo E de API 650 (apartado 11.6.1 Anclajes), por la presión interna de diseño según el Anexo F de API (apartado 8.4), o por otras razones, deben cumplirse una serie de requisitos mínimos descritos en este apartado.

Caso de carga de levantamiento	Fórmula neta de levantamiento, U [N]	Tensión admisible en los pernos de anclajes, F _{ba} [MPa]	Tensión admisible en los aparejos del anclaje, [MPa]
Presión de diseño	$[(P-0.08*t_h)*D^2*785]-W_1$	$\frac{5}{12} * F_y$	$\frac{2}{3}F_{ty}$
Presión de prueba	$\left[\left(P_t - 0.08 * t_h \right) * D^2 * 785 \right] - W_1$	$\frac{5}{9} * F_y$	$\frac{5}{6}F_{ty}$

Caso de carga de levantamiento	Fórmula neta de levantamiento, U [N]	Tensión admisible en los pernos de anclajes, F _{ba} [MPa]	Tensión admisible en los aparejos del anclaje, [MPa]
Presión de fallo ^a	$\left[\left(1.5^* P_f - 0.08^* t_h\right)^* D^2 * 785\right] - W_3$	F_y	F _{ty}
Carga de viento	$P_{WR} * D^2 * 785 + \left[4 * \frac{M_{WH}}{D}\right] - W_2$	$0.8 * F_y$	$\frac{5}{6}F_{ty}$
Carga sísmica	$\left[4*\frac{M_{rw}}{D}\right] - W_2*(1-0,4*A_{v})$	$0.8 * F_{y}$	$\frac{5}{6}F_{ty}$
Presión de diseño ^b + Viento	$\left[\left(F_{p} * P + P_{WR} - 0.08 * t_{h} \right) * D^{2} * 785 \right] + \left[4 * \frac{M_{WH}}{D} \right] - W_{1}$	$\frac{5}{9}*F_y$	$\frac{5}{6}F_{ty}$
Presión de diseño ^b + Sismo	$\left[\left(F_{p}*P-0.08*t_{h}\right)*D^{2}*785\right]+\left[4*\frac{M_{rw}}{D}\right]-W_{1}*(1-0,4*A_{v})$	$0.8 * F_y$	$\frac{5}{6}F_{ty}$
Presión de fragilidad ^c	$\left[\left(3*P_f - 0.08*t_h \right) * D^2 * 785 \right] - W_3$	F_y	F _{ty}

Tabla 11-I. Cargas de levantamiento.

- ^{a.} La presión de fallo aplica a tanques fallando bajo el caso 3 del apartado 8.4 (F.1.3 en API 650). Esto es que la presión interna excede 18 kPa. La presión de fallo se calcula usando espesores nominales.
- ^{b.} F_p se define como el ratio entre la presión de operación y la presión de diseño, con un valor mínimo de 0,4.
- ^{c.} La presión de fragilidad aplica sólo a los tanques diseñados con un techo cuya unión virola-techo se haya diseñado para ser frágil. La presión de fragilidad se calcula usando espesores nominales.

Los parámetros definidos en la Tabla 11-I son:

- A_{v} : parámetro vertical de aceleración sísmica, [%g].
- D: diámetro del tanque, [m].
- F_p : factor de combinación de presión, [-].
- F_{tv} : límite elástico del material de la virola más baja, [MPa].
- F_{v} : límite elástico del material de los pernos de anclaje, [MPa].
- H: altura del tanque, [m].

 M_{WH} : momento de vuelco (@ virola - fondo) debido a la presión de viento horizontal, igual a $P_{WS} * D * \frac{H^2}{2}$, [N*m].

 $M_{_{TW}}$: momento sísmico en el anillo, [N*m].

- P: presión de diseño, [kPa].
- P_f : presión de fallo, [kPa].

 P_t : presión de prueba, [kPa].

 P_{WR} : presión de viento para levantamiento del techo, [kPa].

 P_{WS} : presión de viento sobre las virolas, [N/m²].

 t_h : espesor de la placa del techo (corroído cuando se usa con W_l y nominal cuando se usa con W_3), [mm].

 W_1 : peso muerto de las virolas (corroídas) y cualquier carga muerta, exceptuando la placa del techo (corroída), [N].

 W_2 : peso muerto de las virolas (corroídas) y cualquier carga muerta, incluyendo la placa del techo (corroída), [N].

 W_3 : peso muerto de las virolas (sin corroer) y cualquier carga muerta, exceptuando la placa del techo (sin corroer), [N].

11.7.1 Cargas en los pernos de anclaje

Los anclajes dispuestos deben resistir cada una de las combinaciones de carga descritos en la Tabla 11-I. La carga en cada anclaje, T_b , es:

$$T_b = U / N_a \tag{1.132}$$

donde:

U: la carga neta de levantamiento descrita en la Tabla 11-I.

 N_a : número de anclajes.

Se define el diámetro del circulo de pernos de anclajes, *BCD*, añadiendo dos veces al diámetro exterior del tanque, *Do*, la distancia hasta el centro de los pernos, *e*:

$$BCD = D_{a} + 2*e$$
 (1.133)

El diámetro mínimo de perno de anclaje y la distancia mínima entre ellos se indicaba en el apartado 11.6.1.2 Tanques mecánicamente anclados. El área sometida a tensión de cada perno, A_s , se obtiene del apartado 19.1. Con esta área se obtiene un diámetro equivalente del área tensionada, d_s , al cual se le descuenta el espesor de corrosión considerado, llegando a un diámetro equivalente del área tensionada corroída, $d_{(s-C4)}$.

$$d_{(s-CA)} = \left(\frac{4*A_s}{\pi}\right) - CA = d_s - CA \qquad (1.134)$$

La tensión real cada uno de los pernos, σ_b , será la distribución de la carga en cada anclaje, T_b , en el área equivalente tensionada corroído de cada perno. Esta tensión real deberá ser menor que la tensión admisible en los pernos de anclajes, F_{ba} . Se escogerá el tamaño nominal de perno que, con menor área, satisfaga la ecuación (1.135).

$$\sigma_{b} = \frac{T_{b} * 4}{\pi * d_{(s-CA)}^{2}} \le F_{ba}$$
(1.135)

11.7.2 Silletas de anclaje

Los aparejos de anclaje unen físicamente pernos de anclaje con la virola. Cuando se requieren pernos de anclajes para soportar las virolas del tanque, las silletas de anclaje son necesarias para distribuir la carga sobre las virolas. Su uso minimiza las flexiones secundarias en las virolas cuando el tanque se está llenando o cuando la presión

del viento o un sismo actúa en el mismo.

La carga de diseño del perno de anclaje para el cálculo del aparejo, P_L , será el valor mínimo de los siguientes, indicado en el apartado 11.6.1.2:

$$P_{L} = \min\left[F_{ba} * A_{s} ; 1.5 * T_{b}\right]$$
(1.136)

En el diseño de la silleta debe evaluarse la ubicación del perno de anclaje para evitar la interferencia con la placa de fondo o anular que esté bajo las virolas. Se define una tolerancia para la ubicación del perno, ξ_b , que también será usada para definir el diámetro del agujero para alojar el perno.

La geometría de las silletas se define mediante Figura 11-6.

Figura 11-6. Geometría de la silleta de anclaje.

 d_b : diámetro del perno.

 d_h : diámetro del agujero para alojar el perno.

a: ancho de la placa superior de la silleta (sobre la virola).

b: longitud de la placa superior de la silleta (dirección radial).

e: excentricidad del perno de anclaje en dirección radial desde el exterior de la virola $(e_{\min} = 0.886 * d_b + 0.572")$.

f: distancia radial desde el exterior de la placa al contorno del agujero $(f_{\min} = d_b/2 + 1/8'')$.

g : distancia en las caras internas de las chapas verticales $(g_{\min} = d_b + 1")$.

m: espesor de la placa anular / de fondo sobre la que apoya la silleta.

 a_n : proyección de la placa anular / de fondo más allá de la virola.

- h: altura de la silleta.
- *t* : espesor corroído de la virola final.
- c: espesor de la placa superior de la silleta.
- *j*: espesor de la placa vertical $(j_{\min} = \max [1/2"; 0,04*(h-c)])$
- k: ancho medio de las placas verticales.

La tensión crítica en la placa superior de la silleta ocurre entre el agujero y los bordes libres de la placa. Se puede considerar como una viga con los extremos parcialmente fijos, con una carga parcial de la carga del perno distribuida a lo largo de parte del tramo, como se muestra en la Figura 11-7. El espesor de la placa superior de la silleta, *c*, se calcula con la fórmula:

$$c = \sqrt{\frac{P_L}{S^* f}} * (0.375^* g - 0.22^* d) \tag{1.137}$$

Figura 11-7. Distribución de cargas en la placa superior de la silleta – modelo de viga.

La altura de la silleta debe suficientemente alta para distribuir la carga del perno de anclaje a la virola sin provocarle sobresfuerzos. Se origina una flexión causada por la excentricidad del perno de anclaje respecto a la virola, al no estar alineado el perno con la virola. Excepto en caso usarse un anillo continuo como parte superior de las silletas, la tensión máxima ocurre en la dirección vertical y es la combinación de la flexión más el propio esfuerzo de levantamiento. Una aproximación de este comportamiento se representa con la siguiente ecuación:

$$S = \frac{P_L * e}{t^2} * \left[\frac{1.32 * Z}{\frac{1.43 * a * h^2}{R * t} + \sqrt[3]{4 * a * h^2}} + \frac{0.031}{\sqrt{R * t}} \right]$$
(1.138)

donde el factor reductor, Z, se expresa como:

$$Z = \frac{1}{\frac{0.177 * a * m}{\sqrt{R * t}} * \left(\frac{m}{t}\right)^2 + 1}$$
(1.139)

La tensión máxima recomendada en AISI E-2 Parte VII es $S_{max} = 172$ MPa. Es una tensión local que ocurre justo encima de la parte superior de la silleta. Ya que disminuye rápidamente lejos de la silleta, se justifica una tensión admisible superior a la normal, pero no se recomienda un aumento para cargas temporales, como terremotos o vientos. Recomendaciones:

La altura máxima de silleta recomendada es $h_{max} = 3 * a$. La altura mínima de silleta, h_{min} debe ser:

- 150 mm, ó
- 300 mm cuando la placa de fondo / anular sea menor o igual a 9.5 mm y se considera más de 160 m/h en terremotos y vientos.

Si la altura de silleta calcula es excesiva, se reduciría la excentricidad *e* si fuese posible, o se usarían más pernos de menor diámetro. Otra solución sería usar una placa superior de silletas continua alrededor del perímetro del tanque. Ello requeriría comprobar la tensión máxima en dirección circunferencial, considerando el anillo como si estuviese sometido a cargas puntuales equiespaciadas iguales a P * e / h. Se considera como parte del anillo las zonas de la virola situadas a 16*t arriba y debajo del anillo en la silleta.

Figura 11-8. Silleta con anillo continuo en la parte superior.

El espesor de la placa vertical, j, debe ser al menos el mayor de los valores en la ecuación (1.140), y cumplir la ecuación (1.141). Estos límites aseguran un máximo valor de L/r =86.6 para que el pandeo se produzca en el régimen elástico, y una tensión media máxima en las chapas verticales de 86 MPa, incluso asumiendo que ninguna carga se transmite a la virola a través de la soldadura.

$$j_{\min} = [13 \text{ mm} ; 0,04^*(h-c)]$$
(1.140)
$$j^*k \ge P_i / 25$$
(1.141)

Se asume una distribución de cargas como la mostrada en la Figura 11-9, donde habría una bisagra en la parte baja de la silleta. De esta manera, la placa de fondo o anular sólo recibe empuje horizontal, sin momento. Las cargas son en términos de tensión por unidad de longitud de soldadura, cuyas expresiones son:

$$W_V = \frac{P_L}{a+2*h} \tag{1.142}$$

$$W_{H} = \frac{P_{L} * e}{a * h + 0.667 * h^{2}}$$
(1.143)

$$W = \sqrt{W_V^2 + W_H^2}$$
(1.144)

Figura 11-9. Cargas en la soldadura de la silleta de anclaje.

El límite de resistencia a la tracción del material de soldadura dependerá del tipo de electrodo seleccionado. En la Tabla 19-E se muestran las propiedades mecánicas de algunos tipos de electrodos de soldadura. El tamaño del filete de soldadura, W_s , será 6 mm (1/4").

La tensión admisible del filete de la soldadura, W_{adm} , se calcula minorando la tensión nominal de la soldadura, $F_{nBM} = 0.6 * f_{Exx}$, multiplicada por el área de la sección transversal sobre la base de metal, A_{BM} , con un factor de seguridad $\Omega = 2$.

$$F_{nBM} = 0.6* f_{Exx}$$
(1.145)

$$A_{BM} = \frac{1}{\sqrt{2}} * w_s \tag{1.146}$$

$$W_{adm} = \frac{F_{nBM} * A_{BM}}{\Omega} \tag{1.147}$$

La tensión admisible debe ser menor o igual que la tensión real en la soldadura:

$$W \le W_{adm} \tag{1.148}$$

11.8 Cálculos – Sismo / Anclaje

Anexo E - Diseño sísmico de tanque de almacenamiento					API 650, Anexo-E
Altura del depósito hasta el bordillo del techo Altura de cono del techo Diámetro nominal Nivel máximo de líquido de diseño		H1 H2 D H	25000 2846 34019 23500	mm mm mm	
Clase de terreno del sitio	Clasificación definic	la en API 650,	В	-	-
Grupo de uso sísmico, SUG		App E. E.4.4	III	-	-
Factor de importancia, establecido por el SUG		Ι	1.5	-	API 650, Tabla E-5
Aceleración máxima del terreno		SP	0.07	%g	NCSE-02 en Sevilla
Parámetro de respuesta con un 5% de amortiguamiento para periodo corto (0,2 seg)	= 2,5 * Sp	Ss	0.175	%g	API 650, App.E, E.4.3-1
Parámetro de respuesta con un 5% de amortiguamiento para 1 seg	= 1,25 * Sp	S 1	0.0875	%g	API 650, App.E, E 4 3-2
Coeficiente de ampliación de aceleración del sitio (periodo de 0,2-seg) Coeficiente de ampliación de velocidad del sitio (periodo de 1-seg)		Fa Fv	1 1	-	API 650, Tabla E-1 API 650, Tabla E-2
Máximo espectro de respuesta de aceleración considerado para periodo corto Máximo espectro de respuesta de aceleración considerado para periodo de 1-s	= Fa * Ss = Fv * S1	Sмs Smi	0.175 0.0875	%g %g	-
Periodo convectivo de chapoteo Coeficiente de periodo de chapoteo	$K_z = \frac{0.578}{\sqrt{\tanh\left(\frac{3.68H}{2}\right)}}$	Ks	0.5816	-	API 650, Anx E, E.4.5.2
Periodo del primer modo de chapoteo	$T_c = 1.8K_c\sqrt{D}$	Tc	6.106	S	API 650, Anx E, E.4.5.2
Periodo de transición para largos periodos de movimientos de terreno		Tl	4	s	API 650, Anx E, E.4.6.1
El modo convectivo de vibración del líquido genera una ola sísmica que debe ser	menor que el espacio i	libre de líquido	del tanque.		
Factores de modificación de respuesta					
¿Tipo de anclajes del tanque?		Mecánic ancla	amente ado		
Factor reductor de fuerza para modo impulsivo usando métodos de esfuerzos de c	liseño admisible	Rwi	4	-	API 650, Anx E,
Factor reductor de fuerza para modo convectivo usando métodos de esfuerzos de	diseño admisible	Rwc	2	-	E.5.1.1 API 650, Anx E, E.5.1.1
Para sitios donde sólo se define la aceleración máxima de terreno (Sp), se sustitu respuesta de aceleración impulsiva y convectiva (Ai; Ac)	ye S0 por Sp en las ecu	uaciones para co	alcular los	parám	etros de espectro de

		especif en la aplicar,	Q=1, si no se ica otro valor a normativa a donde ASCE 7 no aplica.	
Valor de factor de escala		Q	1.000	API 650, Anx E, E.4.6.1
	= (Fv*S1) / (Fa*Ss)	TS	0.500	API 650, Anx E, E.2.2

Parámetro de espectro de aceleración impulsiva	Ai	0.0656 %g	
	= SDS * (I/Rwi) $= 2.5*O*Fa*Sn*(I/Rwi)$	0.0656 %g	API 650, Anx E, E.4.6.1
a) $Ai \ge 0,007$	0.007	0.0656 %g	Linon
Si S1 > = $0,6$	0.6 ¿Se cumple?	NO	
b) Ai >= 0,5*S1*(I/Rwi)	0.0164	0.0656 %g	
Coeficiente para ajustar la aceleración espectral de 5% a 0,5% amortiguado	K	1.5 -	API 650, Anx E, E.2.2
Parámetro de espectro de aceleración convectivo	Ac	0.0106 %g	API 650, Anx E, E.4.6.1
a) Para Tc <= TL	Ac = 2,5 * K * Q* Fa* Sp* (Ts/Tc) * (I/Rwc)	0.0161 %g	
	$iAc \le Ai?$	0.0161 %g	

	Ac = 2.5 * K * O* Fa*	Sn*			
b) Para $Tc > TL$	$(Ts*TL/Tc^2) * (I/Rwc)$	0.0106	%g		
	¿Ac <= Ai?		0.0106	%g	
¿Te vs TL?	b) Para Tc > TL		0.0106	%g	
Parámetro vertical de aceleración sísmica	$= 0.47 * S_{DS} =$ 0.47*0*E2*Ss	Av	0.0823	%g	API 650, Anx. E,
Gravedad específica del fluido	= Sg	G	0.7835	-	L.0.1.5
Gravedad específica efectiva incluvendo el efecto vertical del sismo	= G * (1 - 0.4 * Av)	Ge	0.7577	_	API 650, Anx. E,
Gravedad especifica creed va mondychdo er creedo vertical del sismo	- G (1-0,4 <i>AV</i>)	Ge .	0.7577		E.2.2
<u>Pesos</u> Virola			249616	ka	[1]
Tubuladuras y piping interno - Virolas			6000	kg	[1]
Peso total de Virolas y sus aparejos		Ws	255616	kg	[]
			2509	kN	
Placa de techo fijo (incluyendo placa de compresión)			56984	kg	[4]
Conjunto estructural del techo			46444	kg	[5]
Adjuntos permanentes del techo (plataforma + tubuladuras)			12500	kg	[7] + [15]
Peso total del techo fijo incluyendo marcos + adjuntos permanentes		Wr	115928	kg	
			1138	kN	
Peso total del suelo		Wf	55013	kg	[3]
			540	kN	
Peso total del contenido del tanque		Wn	16749418	ko	[6] + [19]
r eso total del contenido del anque		пр	164371	kN	[0] / [19]
Ratio D/H		D/H	1.448	-	1.33
	$\tanh\left(0.866\frac{D}{T}\right)$				
a) $r = D/H > -1.22$	$W_i = \frac{H}{D} W_p$		11247217	ka	API 650 Anx E,
a) si $D/\pi \ge 1,55;$	$0.866\frac{D}{H}$		1154/21/	кg	E.6.1.1-1
b) si D/H < 1,33;	$W_i = \left[1.0 - 0.218 \frac{D}{T}\right] W_p$		11463628	kg	API 650 Anx E, E.6.1.1-2
Peso efectivo impulsivo del liquido		Wi	11347217	ko	API 650, Anx E,
reso erectivo impulsivo dei nquido		** 1	111256	1-NI	E.6.1.1
			111330	KIN	
$W_c = 0.230 \frac{D}{H} \tanh\left(\frac{3.67H}{D}\right) W_p$					
Peso efectivo convectivo (chapoteo) del liquido		Wc	5507145	kg	API 650, Anx E, E 6 1 1
			54045	kN	L.0.1.1
La fuerza de diseño sísmica equivalente se calcula como $F = A^*Weff$, donde:					API 650, Sec- E.5.1
- A es el coeficiente de aceleración lateral, %g					
- Weff es el peso efectivo					
Cortante total de diseño en la base (Tanque lleno)					API 650. Sec- E.6.1
Cortante de diseño en la base debido a la componente impulsiva por el peso	= Ai *	V:	770654	le ~	000, See 1.0.1
efectivo del tanque y su contenido	(Ws+Wr+Wf+Wi)	V I	112034	ĸg	
Contente de diseño en la base debide a la companya de servicio de la			7582	kN	
efectivo del chapoteo	= Ac * Wc	Vc	58163	kg	
			571	kN	

7604 kN

774840 kg

Cálculo del momento sísmico para las condiciones de operación

Cortante total de diseño en la base

Altura desde el final de virola hasta el centro de acción de la fuerza lateral sísmica relativa a Wi por el momento del anillo

- a) si D/H >= 1,3333; Xi = 0,375*H
- b) si D/H < 1,3333; Xi = (0,5-0,094*D/H) * H

 $=\sqrt{(Vi^2+Vc^2)}$

 \mathbf{V}

Xi

8.813 m

8.813 m

8.552 m

1.3333

API 650 Anx E, E.6.1.2.1-1 API 650 Anx E, E.6.1.2.1-2

Altura desde el final de virola hasta el centro de acción de la fuerza lateral sísmica relativa a Wc por $X_c = \begin{bmatrix} 1.0 - \frac{\cosh(\frac{3.67H}{D}) - 1}{\frac{3.67H}{D}\sinh(\frac{3.67H}{D})} \end{bmatrix} H$

Xc 15.592 m API 650 Anx E, E.6.1.2.1-3

Cálcul	o del centro d	e gravedad de las virolas	А	В	,		A * B		
Nivel	Altura [m]	Altura acumulada [m]	Peso [kg]	C.d.g. virola [m] C.	.d.g acun n]	nulado	[kg * m]		
1	2.380	2.380	37938	1.190		1.190	45146	5	
2	2.380	4.760	35940	1.190		3.570	128300	5	
3	2.380	7.140	31945	1.190		5.950	19007	1	
4	2.380	9.520	27950	1.190		8.330	232824	4	
5	2.380	11.900	23956	1.190		10.710	256566	5	
6	2.380	14.280	19962	1.190		13.090	261302	2	
7	2.380	16.660	15969	1.190		15.470	247035	5	
8	2.385	19.045	16002	1.193		17.853	285679)	
9	1.985	21.030	13318	0.993		20.038	266867	7	
10	1.985	23.015	13318	0.993		22.023	293304	1	
11	1.985	25.000	13318	0.993		24.008	31974.	1	
Total		$\Sigma A =$	249616		Σ	(A*B) =	2526840)	
Altura o virolas	desde el final	de virola hasta el centro de	gravedad	de las $= \Sigma (A^*B) / \Sigma A$		Xs	10.123	m	
Altura o techo y	desde el final sus aparejos	de virola hasta el centro de	gravedad	del = $H1 + H2 * 2/3$		Xr	26.898	m	Considerando 2/3 de la altura del cono
Momen	to de vuelco	(Tanque lleno)							
Momen	ito sísmico en	el anillo				Mrw	6995793	kg * m	API 650, Anx. E, E.6.1.5
$M_{rw} =$	$[A_i(W_iX_i+$	$W_{s}X_{s} + W_{r}X_{r})]^{2} + \left[A_{c}(W_{c}X_{c})\right]^{2}$)] ²				68654	kN * m	
Compro	obación de vu	elco debido al momento sís	mico						
Materia	l de la placa a	anular del fondo					A 573		
Límite Tensión Espeson	elástico espec 1 de diseño de 1 corroído de	rificado del material de la pl el producto para el material la placa de fondo bajo las vi	aca anular de la placa irolas	de fondo a anular de fondo		Fy Sd ta	290 193 6	MPa MPa mm	
Materia	ıl de la virola					Virola (niveles 1:7) A 573 Gr. 70	Virola s (niveles 8:11) A 36		
Límite Tensiór	elástico espec 1 de diseño de	ificado del material de la vi el producto para el material	rola de la virol	a	Ft St	y 290 d 193	0 250 3 160	MPa MPa	
Espeso	r corroído de	la virola más baja				ts	17.40	mm	
<i>Auto ar</i> Fuerza usada p	<i>nclado</i> resistente del para resistir el	contenido del tanque (por u vuelco de la virola	inidad de l	ongitud circunferencial) que pue	de ser	wa	4349.59	Kg/ m	

usada para resistir el vuelco de la virola		wa	4349.59	m	
			42.7	kN /	
			12.7	m	
			42685	N / m	
	wa <= 201,1 * H*D*Ge	Cumple	121818	N / m	
si no se cumple, wa =201,1*HDGe		wa	42685	N / m	
		L (actual)	0.600	m	= la1 (hoja de Fondo/Anular)
si no se cumple $L = 0,035D$		L	0.600	m	-
si L < Lcal, usar un valor reducido de wa	wa(red)=5742*H*Ge*Ls	wa (red)	42685	N / m	
Ratio de Anclaje (Tanque lleno)					
Carga del techo actuando en la virola	$=$ Wr / (π *D)	wrs	1085	kg/m	
			10.6	kN / m	
Carga del tanque y el techo actuando en la base de la virola	$= [W_S / (\pi^*D)] + wrs$	wt	3476	kg / m	

			34.1	kN / m	
Levantamiento - Presión de diseño			2271186	Ν	Ver anclajes!
Levantamiento de diseño calculado debido a la presión del product	o por unidad circunferencial	wint	2165	kg / m	
			21 251	kN /	
			21.201	m	
	Si es negativo, no se tiene en	wint	21.251	kN /	
	cuenta para calcular J	(para J)		m	
Ratio de Anclaje	= Mrw / [D^2*(wt*(1- 0.4*Av)+wa-0.4*wint]	J	0.8831	-	

Criterio: (tabla E.6):

El tanque se levanta, pero es estable para la carga de diseño siempre que se cumplan los requisitos de esfuerzos longitunidales de compresión. El tanque está auto-anclado.

Evaluación de "ta" según los requerimientos de Anillo Anular	= wa / (99 *(Fy*H*Ge)^0,5)	ta	6.00	API 65 mm	0, Anx. E, E.6.2.1.1.2 Lo cálculo, con la formula inversa de wa.
1. "ta" usada para "wa" debe ser menor que el espesor de la virola final (corroída)	Cumple	ts	17.40	mm	
2. "ta" usada para "wa" no debe exceder el espesor de la placa bajo la virola (corroída)	Cumple	tb	6.00	mm	
3. La mínima proyección de la placa anular interior debe ser mayor que 0,45 m o la fórmula indicada, pero nunca mayor que 0,035 D	Cumple	L (actual)	0.600	m	
		L min	0.450	m	Cumple
Fórmula (API 650, Anx. E, E.6.2.1.1.2)	= 0.01723*ta*[Fy/(H*Ge)]^0,5	L cal min.	0.417	m	Cumple
Límite superior de la longitud interior de placa anular	= 0,035 * D	L max	1.191	m	Cumple
A) Comprobación para la Compresión de Virola en Tanques mecánicamente anclados		¿ σc < Fc ?	Cumple		
Máxima tensión de compresión longitudinal en el final de las virolas para tanques mecánicamente anclados	= [wt*(1+0.4*Av)+1.273*Mrw/D^ 2] /(1000*ts)	σc	6.365	Mpa	API 650, Anx. E, E.6.2.2.2
Criterio	$= G^*H^*D^2 / ts^2$		70.380	m3 / mm2	API 650, Anx. E, E.6.2.2.3
si criterio >= 44	Fc = 83 * ts / D		42.453	Mpa	API 650, Anx. E, E.6.2.2.3
si criterio < 44	Fc= 83 * ts / (2,5*D) + 7,5 * $\sqrt{G^{2}}$ Fty	*H) < 0,5	49.163	Mpa	API 650, Anx. E, E.6.2.2.3
Tensión sísmica de compresión longitudinal admisible en el final de	e las virolas	Fc	42.453	Mpa	API 650, Anx. E, E.6.2.2.3

En caso de no cumplir, si el espesor de la última virola calculado para resistir el momento de vuelvo sísmico es mayor que el requerido por presión hidrostática, el espesor calculado para cada virola superior debe ser aumentado proporcionalmente.

B) Fuerzas circunferenciales debidas a la dinámica del líquido		¿σΤ< σa?	Cumple		API 650, Anx.E, E.6.1.4
Ratio D/H		D/H	1.448	-	
Distancia desde la superficie del líquido hasta el punto de análisis (positiva hacia abajo)	Y	23500	mm	(lo igualo al DDL)
		0,75 * D	25514.2 5	mm	
Ratio Y/H		Y / H	1	-	
Esfuerzos circunferenciales dinámicos, Ni					API 650, Anx.E, E.6.1.4
1) si D/H>=1,33	=8.48*Ai*G*D*H*[Y/H- 0.5*(Y/H)^2]*tanh(0.866*D/H)		148.02	N/mm (= kN/m)
2) si D/H < 1,33 (+) Y < 0,75D	= 5.22*Ai*G*D^2*[Y/(0.75*D)- 0.5*(Y/(0.75*D))^2]		154.34	N/mm (= kN/m)
3) si D/H < 1,33 (+) Y >= 0,75D	= 2.6*Ai*G*D^2		154.71	N/mm (= kN/m)
Esfuerzo circunferencial de membrana en la pared del tanque	[caso 1]	Ni	148.02	N/mm (k = kN/m

Tensi	ón circunfere	encial com	ıbinada (má	ixima)						σT (max)	188.38	Mpa A	API 650, Anx	.E, E.6.1.4
Tensi	ón circunfere	inferencial combinada (mínima)							σT (min)	167.72	Mpa A	API 650, Anx	.E, E.6.1.4	
			$N_h \pm \sqrt{N_i^2 + N_i^2}$	$N_c^2 + (A_v N_h)$	$(2.5)^2$					σh	178.05	Mpa		
	σ_{I}	$\sigma = \sigma_h \pm \sigma_s$	=	t						σs	10.33	Mpa		
VirolaVirolaMáxima tensión circunferencial permitida para la combinación hidrostática + sismo(niveles1:7)1:7)								Virola (niveles 1:7) A 573 Gr	Virola (niveles 8:11)					
						N	laterial			70	A 36		DI (50 A	
					el me	σa enor de: σa	a = 1.33 * S	Std		257.13	212.80	Mpa A Mpa	API 650, Anx	.E, E.6.2.4
					er me	σa	a = 0.9 * Fy	/t * E		261.00	212.00	Mpa		
				E	ficiencia d	de junta E	•			1	1	-		
Comp circui	probación nferenciales e	de en las viro	los e las	esfuerzos										
	Material	Ancho de virola	Altura a estudiar	DLL hasta Z	Espesor corroído	Presión hidrostática	Parte impulsiva	Parte convectiva	Tensión hidrostática	Tensión por sismo	Tensión circunferencial		Comprobación	
Nivel	-	H [mm]	Z[mm]	Y[mm]	t[mm]	Nh [N/mm]	Ni [N/mm]	Nc [N/mm]	σh [MPa]	σs [MPa]	σT(max)	σT (min)	σT(max)/σa	σT (min)/σa
1	A 573 Gr. 70	2.38	0	23.5	17.40	3098.03	148.02	2.77	178.05	10.33	188.38	167.72	0.7326	0.6523
2	A 573 Gr. 70	2.38	2.38	21.12	16.40	2787.19	146.50	2.86	169.95	10.54	180.49	159.41	0.7019	0.6200
3	A 573 Gr. 70	2.38	4.76	18.74	14.40	2476.35	141.95	3.15	171.97	11.37	183.34	160.60	0.7130	0.6246
4	A 573 Gr. 70	2.38	7.14	16.36	12.40	2165.51	134.36	3.64	174.64	12.27	186.91	162.37	0.7269	0.6315
5	A 573 Gr. 70	2.38	9.52	13.98	10.40	1854.67	123.73	4.38	178.33	13.27	191.61	165.06	0.7452	0.6419
6	A 573 Gr. 70	2.38	11.9	11.6	8.40	1543.84	110.07	5.40	183.79	14.45	198.24	169.34	0.7709	0.6586
7	A 573 Gr. 70	2.38	14.28	9.22	6.40	1233.00	93.36	6.79	192.66	15.94	208.60	176.72	0.8112	0.6873
8	A 36	2.385	16.665	6.835	6.40	922.16	73.58	8.63	144.09	12.51	156.60	131.58	0.7359	0.6183
9	A 36	1.985	18.65	4.85	6.40	610.67	54.79	10.60	95.42	9.27	104.69	86.15	0.4919	0.4048
10	A 36	1.985	20.635	2.865	6.40	351.42	33.89	13.06	54.91	5.96	60.87	48.95	0.2860	0.2300
11	A 36	1.985	22.62	0.88	6.40	92.17	10.88	16.13	14.40	3.08	17.48	11.33	0.0821	0.0532

Cálculo de altura libre					
Grupo de uso sísmico, SUG			III	-	
Factor de importancia, establecido por el SUG		Ι	1.5	-	
Periodo del primer modo de chapoteo		Tc	6.106	s	
Periodo de transición para largos periodos de movimientos de terre	eno	TL	4.000	s	
Coeficiente para ajustar la aceleración espectral de 5% a 0,5% amo	ortiguado	K	1.5	-	
Espectro de respuesta de sismo de diseño para periodo corto	= Q*Fa*Ss	SDS	0.175	%g	
Espectro de respuesta de sismo de diseño para periodo de 1-seg	= Q*Fv*S1	SD1	0.088	%g	
Coeficiente de aceleración para el cálculo de la altura de la ola de chapoteo	[caso 4]	Af	0.0141	%g	API 650, Anx. E, E.7.2
Para SUG I y II	1) si Tc <= 4	Af = K*SD1*I*(1/Tc)	0.0322	%g	
	2) si Tc > 4	$Af = K*SD1*I*(4/Tc^2)$	0.0211	%g	
Para SUG III	3) si Tc <= TL	Af = K*SD1*(1/Tc)	0.0215	%g	
	4) si Tc > TL	$Af = K*SD1*(TL/Tc^2)$	0.0141	%g	
Altura de la ola de chapoteo sobre el nivel de diseño de producto	= 0,42 * D * Af	δs	0.201	m	API 650, Anx. E, E.7.2
(estimada)			201	mm	
Altura libre mínima requerida según la Tabla E.7	(c)	hfree (req)	201	mm	API 650, Anx. E, E.7.2, Tabla E.7
Espacio libre para techo flotante		Hf_TFI	1500	mm	

Comprobación de altura libre: requerido VS disponible	ز hfree (re Hf_I	eq) < FR ?	Cumple			
Diseño del anclaje y asentamiento						
Diámetro nominal		D	34019	mm		
Presión de diseño (interna)		Pi	0.029	barg		
			2.9	kPa		
Presión de prueba hidrostática (1.0 x Pd)		Pt	0.029	barg		
			2.9	kPa		
Mínima presión de fallo calculada		Pf	3.903	kPa	API 650. Appendix-F, Sec F.6	
Espesor de la placa del techo (corroída)		thc	5	mm	Usar para WI	
Espesor de la placa del techo (sin corroer)		th	6.6	mm	Usar para W3	
Factor de combinación de presión		Fp	0.4	-	API 650, sec 5.2.2	
Se define como el ratio entre presión normal de operación y presión barg). 0,4 es un valor de minoración de las fuerzas estabilizadoras.	n de diseño, con un mínimo de 0,4.	. En otro c	aso, resultaría	ATM / Pc	liseño (=0barg/0,029	
Presión de viento para levantamiento del techo	= FV / Aroof	PWR	0.613	kPa		
Momento de vuelco (@ virola - fondo) debido a la presión de viento Horizontal	= FH * Hm	MWH	2568	kN * m		
			2568096	N*m		
Momento sísmico en el anillo		Mrw	6995793	kg * m		
			68654	kN * m		
			68653517	N*m		
Parámetro vertical de aceleración sísmica	= 0,47*SDS = 0,47*Q*Fa*Ss	Av	0.08225	%g		
Peso muerto de las virolas (corroídas) y cualquier carga muerta, ex (corroída)	ceptuando la placa del techo	W1	0	kg	API 650, Tabla 5.21a	
			0	Ν	1	0
Peso muerto de las virolas (corroídas) y cualquier carga muerta, in	cluyendo la placa del techo	W2	45054	kg	=W1 + [4]	
(corroida)			442135	N		
Peso muerto de las virolas (sin corroer) y cualquier carga muerta, e	exceptuando la placa del techo (sin	W3	121 <i>35</i> ۱	ko		
corroer)			U	~ 5		
			0	Ν	(0

¿hfree (req) <

Tabla 5.21a - Cargas de levantamiento

Caso de carga de levantamiento	Formula neta de levantamiento, U [N]	U [N]	Tensión admisible en los pernos de anclaje, Fba [Mpa]		Tensión admisible en los aparejos de anclaje, Fba [Mpa]
Presión de diseño	[(Pi - 0,08*thc) * D ² * 785] - W1	2271186	5/12 * Fy	104.2	2/3 * Fty
Presión de prueba	[(Pt - 0,08*thc) * D^2 * 785] - W1	2271186	5/9 * Fy	138.9	5/6 * Fty
Presión de fallo	[(1,5*Pf - 0,08*th) * D ² * 785] - W3	4839659	Fy	250.0	Fty
Carga de viento	PWR * D ² * 785 + (4 *MWH/D) - W2	417004	0,8 * Fy	200.0	5/6 * Fty
Carga sísmica	(4*Mrw/D) - W2*(1-0,4*Av)	7644785	0,8 * Fy	200.0	5/6 * Fty
Presión de diseño + Viento	[(Fp*Pi + PWR - 0,08*thc) * D ² * 785] + (4*MWH/D) - W1	1549579	5/9 * Fy	138.9	5/6 * Fty
Presión de diseño + Sismo	[(Fp*Pi - 0,08*thc) * D ² * 785] + (4*Mrw/D) - W1*(1-0,4*Av)	8762814	0,8 * Fy	200.0	5/6 * Fty
Presión de fragilidad	[(3*Pf - 0,08*th) * D ² * 785] - W3	N/A	Fy	250.0	Fty
Carga en pernos de anclaje					API 650, Sec 5.11.3 / Sec 5.12
---	---	---------------	-------------	--------	-----------------------------------
	El espacio máximo entre pernos	no debe ser i	mayor a 3 m	etros.	
Mínimo número de pernos de anclaje requeridos	= (pi * D) / 3		35.625	uds	API 650, Sec 5.12.3
Nº de pernos de anclajes previstos	Según Sec 5.12.2, un mínimo de 4 unidades. Según anexo E7.1.2, un mínimo de 6 unidades	Na	36	uds	
Diámetro exterior del depósito		Do	34038	mm	
Distancia entre la pared exterior de virola el eje del perno de anclaje		e	80	mm	e: Definido abajo
Diámetro de circulo de pernos de anclaje (BCD)	= Do + 2*e	BCD	34198	mm	
Levantamiento neto caso:	(Máximo de la tabla 5.21a) Presión de diseño + Sismo	U	8762814	Ν	API 650, Sec. 5.12.2
Tensión de diseño en cada perno de anclaje	= U / Na	Tb	243411.5	Ν	API 650, Sec. 5.12.2
			243.4	kN	
Material de los pernos de anclaje			A 36		
Límite elástico del material de los pernos de anclaje		Fy	250	Mpa	
Tensión admisible en los pernos de anclaje		Fba	200	Mpa	API 650, Tabla 5.21a
Diámetro mínimo de perno de anclaje		øb min.	1	inch	API 650, Sec. 5.12.2
			25.4	mm	
Corrosión general (asumida)	= CA_virola	CA_b	1.6	mm	

El mínimo diámetro de pernos no debe ser menor de 25 mm más al menos 6 mm de corrosión, dando un diámetro mínimo de 31 mm (LONG, pg93)

Diámetro de perno de anclaje seleccionado	M42 X 4,:	5	db	42	mm
Área bruta del perno	$= pi * db^2 / 4$		Ab	1385	mm2
Área estresada del perno			As	1120	mm2
Diámetro del área estresada	= (4*As/ pi)^0,5		ds	37.8	mm
Diámetro del área estresada (corroída)	= ds - 2*CA		ds_CA	34.6	mm
Área estresada del perno (corroída)	$=$ pi * (ds_CA) ² / 4		As_CA	938	mm2
Tensión real en el perno de anclaje	$=$ Tb / As_CA		σb	259.44	N/mm2 = Mpa
Comprobación:		No cumple	σb	< =	Fba
La tensión real en cada perno debe ser igual o menor que la tensión	admisible		259.44	< =	200

La tensión real en cada perno debe ser igual o menor que la tensión admisible

Detalles de la silleta de anclaje	Se necesitan para minimizat	AISI T192, Volume II, Part VII		
Carga de diseño del perno de anclaje		PL	224.00 kN	
			50.36 klbf	
mínimo entre:	Fba * As (máxima carga ada perno de anclaje)	misible en el	224.00 kN	
	1.5 * Tb		365.12 kN	
Tolerancia para la ubicación del perno	=1/4"	ξb	6 mm	
Diámetro de perno de anclaje seleccionado		db	42 mm	
Diámetro del agujero del perno de anclaje	$= db + \xi b$	dh	48 mm	
Ancho de la placa superior de la silleta (sobre la virola)		a	250 mm	
Longitud radial de la placa superior de la silleta	=e+d	b	150 mm	
Mínima distancia entre el contorno de la placa y el centro del perno	o de anclaje (db+6)	d	70 mm	Se aumenta d hasta que f cumple.
Excentricidad del perno de anclaje	$=$ ap+(db/2+ ξ b)	e	<mark>80</mark> mm	Cumple
	= 0,886*db + 0,572"	emin	51.74 mm	AISI E1 Part VII
Distancia radial desde el exterior de la placa al contorno del agujero	= b-e-db	f	28 mm	Cumple
	= db/2 + 1/8''	fmin	24.18 mm	AISI E1 Part VII
Distancia entre las chapas verticales		g	130 mm	Cumple
	= db + 1"	gmin	67.4 mm	AISI E1 Part VII
Espesor de la placa anular / de fondo	(bajo la silleta)	m	7.6 mm	
Proyección de la placa anular / de fondo más allá de la virola		ap	50 mm	Este valor debo introducirlo en la2, para el cálculo de la placa anular.
Radio nominal del tanque	= D/2	R	17009.5 mm	
Espesor de la virola final (corroído)		t	17.40 mm	

110

<u>Altura de la silleta</u> Mínima altura recomendada de la silleta	6	inch	152.4	mm	
Para espesores de placa anular /de fondo menores de 9,5 mm la alt	ura mínima recomendada es 305 i	nm (12"), y	donde debe d	considerar	se efecto sísmico y
vientos mayores a 161 km/h. La máxima altura recomendada es h=3a	= 3*a	hmax	750	mm	
Altura adoptada para la silleta de anclaje	- 5 a	h	300	mm	
Cálculo del espesor de la parte superior de la silleta					
		R * t	295965.3	mm2	
Factor de reducción	=1 / $[0,177*a*m/(R*t)^0,5*(m/t)^2+1]$	Z	0.8945	-	
Tensión crítica en la parte superior de la silleta	$= PL*e/t^{2} *[1,32*Z]/(1,43*a*h^{2}/(R+t)) +(4*a*h^{2})^{1/3}) + 0,031/(R*t)^{0},5]$	S	129.49	N/mm2	¿ S < Smax ?
	Smax recomendada es 172 N/mm2	Smax	172	N/mm2	Cumple
Espesor requerido de la parte superior de la silleta	$= [PL / (S*f) * (0,375*g - 0,22*d)]^{0.5}$	с	49.41	mm	AISI E1 Part VII
	· • • · ·	c	50.00	mm	(redondeando al mm)
<u>Detalles de la placa vertical</u> Espesor de la placa vertical el máximo entre:	1/2" (es el mínimo permitido) 0 04 * (b-c)	j min	12.7 12.7 10	mm mm	AISI E1 Part VII
Espesor de la placa vertical escogida	0,04 (11-0)	i	13	mm	(redondeando al mm)
Ancho medio (si la placa vertical es triangular)	= (b + ap)/2	k	100	mm	
Comprobación:	Cumple	j*k [in²]	>=	P/25 [kpsi]	En caso de no cumplir, aumentar por igual ap y d.
Estos límites aseguran un L/r máximo de 86,6 y una máxima tensión laterales de 125 psi (0,86 MPa), incluso asumiendo que ninguna ca través de las soldaduras	1 promedio en las placas rga se transmite a la virola a	j*k/25 [mm ²]	>=	P/4,4882	[kN]
		52.00	>=	49.909	
Soldadura de la silleta de anclaie					AISI E1 Part VII
Carga vertical por unidad de longitud de soldadura	= PL / (a + 2*h)	Wv	263.53	N / mm	ABILITAT
Carga horizontal por unidad de longitud de soldadura	$= (PL *e) / (a*h + 0.667*h^2)$	WH	132.71	N/mm	
Carga total	$=\sqrt{(Wv^2+WH^2)}$	W	295.06	N/mm	
Material de soldadura		C	E70xx	-	
Limite de resistencia a la tracción del material de soldadura		İ Exx	482.63	ksi N/mm2	
Tamaño de soldadura	= 1/4"	WS	1/4	inch	
		WS	6	mm	
.	P / 0	TT 7 4		N T /	
Resistencia admisible de la soldadura por unidad de longitud	$= Kn / \Omega$	Wadm EnDM	614.29 280.59	N / mm	AISC Tabla J2.5
Área de la sección transversal de la base de metal	= 0.0 + 1Exx = 0.707 * we		209.38 1 212	mm^2 / m	m
Resistencia nominal de la soldadura	= 0, 107 ws = $F_{nBM} * \Delta_{BM}$	Rn	1245	N/mm	111
Factor de seguridad		Ω	2	-	
			2		
Comprobación:	Cumple	Wadm	>=	W	AISI E1 Part VII

La capacidad de la soldadura debe ser igual o mayor que la carga que soporta la soldadura 614.29 >=

295.06

12 ESTRUCTURA DEL TECHO FIJO

a estructura que soporta la placa del techo estará compuesta de vigas radiales que convergerán en un anillo de compresión central. Estos perfiles estarán sometidos esfuerzos de flexo-compresión impuestos por una presión uniforme resultante de las combinaciones de carga impuestas por API 650. Se considera que estas vigas radiales no recibirán carga lateral por la placa del techo, disponiendo rigidizadores.

El diseño de esta estructura no será alcance de este proyecto, si bien se dimensionará el tamaño del perfil para la viga radial mediante un modelo simple de elementos finitos, analizado su comportamiento a pandeo.

12.1 Carga sobre el techo

Para diseñar la cubierta del techo fijo lo primero establecer la carga de diseño sobre el mismo, la cual resultará de entre el mayor valor de las siguientes combinaciones recogidas en API 650, sección 5.2.2:

Ítem	Caso	Combinación
a	Fluido y presión interna	$D_L + F + P_i$
b	Prueba hidrostática	$D_L + H_t + P_t$
c	Viento y presión interna	$D_L + W + F_p * P_i$
d	Viento y presión externa	$D_L + W + 0.4 * P_e$
e.1		$D_L + (L_r \circ S_u \circ S_b) + 0.4 * P_e$
e.2	Cargas gravitatorias	$D_L + P_e + 0.4 * (L_r \circ S_u \circ S_b)$
f	Sismo	$D_L + F \pm E + 0.1 * S_b + F_p * P_i$
g.1	Cargas gravitatorias para techos fijos con	$D_L + D_f + (L_r \circ S) + P_e + 0.4*(P_{fe} \circ L_{f1} \circ L_{f2})$
g.2	techos flotantes suspendidos	$D_L + D_f + (P_{fe} \circ L_{f1} \circ L_{f2}) + 0.4*[(L_r \circ S) + P_e]$

donde:

 D_L : carga muerta del techo que incluye el peso propio de la placa del techo, el de la estructura interna del techo y el de sus misceláneos.

 P_i : presión interna de diseño.

F : carga debida al llenado del tanque con el producto de diseño hasta el nivel de líquido de diseño.

 P_t : presión interna durante la prueba hidrostática.

 H_t : carga debida al llenado del tanque con agua hasta el nivel de líquido de diseño.

 P_e : presión externa de diseño.

 D_{f} : carga muerta del techo flotante., incluyendo el peso propio de todos sus elementos.

 L_{f1} : carga viva uniforme del techo flotante.

 L_{f2} : carga puntual sobre el techo flotante debido a dos hombres caminando.

 P_{fe} : presión externa de diseño del techo flotante.

 L_r : carga viva del techo fijo.

E: carga sísmica, determinada según los factores del apartado 11.5.1 Efectos sísmicos verticales. Cabe recordar que la evaluación de esta carga debe realizarse en ambas direcciones.

S: carga de nieve.

 S_b : carga de nieve equilibrada = 0.84*S.

 S_u : carga de nieve desequilibrada. Se aplica sobre un sector circular de 135° del techo, permaneciendo la cuña restante de 225° sin cargar. En función de la pendiente del techo, su valor resulta:

$$\theta \le 10^{\circ}; \quad S_u = S_b$$

$$\theta > 10^{\circ}; \quad S_u = 1.5 * S_b$$

$$(1.149)$$

W: presión del levantamiento debida al viento, determinado según los parámetros del apartado 10.1.3 Fuerzas de diseño del viento.

Para este diseño, las combinaciones g.1 y g.2 no se realizarán, ya que el techo flotante nunca estará soportado por el techo, sino que, en el caso de no estar flotando en el producto, descansará sobre el fondo del tanque.

12.2 Espaciamiento entre vigas radiales

Con la máxima presión uniforme sobre el techo, p, y límite elástico del material de la placa del techo se obtiene el máximo espaciamiento entre las vigas radiales, b:

$$b = t^* \sqrt{1.5^* F_y / p} < 2100 \,\mathrm{mm}$$
 (1.150)

Este espaciamiento garantiza que la deflexión en la placa del techo entre las vigas radiales queda limitada sin necesidad de tener que comprobarla.

El número de vigas radiales (o de paneles) que lindan con el borde del tanque resultará de dividir el perímetro del tanque entre el máximo espaciamiento, tomando el número entero inmediatamente superior.

$$n_{p_{ext}} \ge \frac{\pi * D}{b} \tag{1.151}$$

12.3 Modelo de la viga radial

La geometría del modelo simplificado de la viga radial del techo fijo se compondrá de dos keypoints situados en el contorno de la virola y en el anillo central de compresión de radio R_{ac} , teniendo en cuenta la pendiente del techo, $tg\theta$. Un tercer keypoints es defino para orientar la sección de la viga:

- Keypoints:

K1: [0,0,0] K2: [R-Rac, 0, (R-Rac)*tgΘ]

K3: [-sen Θ , 0, cos Θ]

Para modelar las condiciones de contorno, en K1 se impiden los desplazamientos, y en K2 se permite el desplazamiento vertical, restringiendo el resto de grado de libertad.

Las cargas impuestas sobre la viga serán los efectos gravitatorios y la presión resultante del caso más desfavorable del apartado 12.1. En el caso concreto de este diseño, la combinación de estudio resulta las cargas gravitatorias e.1.1.

Para introducir la presión sobre la cubierta, no se tendrá en cuenta el peso propio de la estructura del techo, P_o . La fuerza distribuida sobre la cubierta tendrá un valor variable dependiente del área del techo efectivo, teniendo un valor nulo en el centro, y alcanzando su máximo en su perímetro. La ecuación lineal que representa esta carga distribuida lineal en función de la distancia mediada desde la pared de la virola, x;

$$p_o(x) = P_o * \frac{2 * \pi * R}{n_{p_ext}} * \left(1 - \frac{x}{R}\right) = -P_o * \frac{2 * \pi}{n_{p_ext}} * \left(x - R\right)$$
(1.152)

Para el modelado en ANSYS, la carga se descompone en una carga lineal uniforme normal a la viga y otra distribuida actuando tangencialmente, cuyos valores se definen como:

$$q_N(x) = P_o(x) * \cos\theta$$

$$q_T(x) = P_o(x) * sen\theta$$
(1.153)

Figura 12-1. Modelo ANSYS de viga radial del techo fijo.

Por la naturaleza de los esfuerzos de flexo-compresión a los que la viga será sometida, se elige la tipología de perfil IPE. Corriendo el modelo para varios IPE se obtienen los esfuerzos axiles, N_x , y momentos flectores, M_y, M_z , en los elementos del problema, así como las tensiones de compresión y flexión. Los diagramas de esfuerzos se resultan como:

Figura 12-2. Diagrames de esfuerzos axiles Nx.

Figura 12-3. Diagrama de momentos Mz.

12.4 Dimensionamiento del perfil

12.4.1 Resistencia de la sección

Para comprobar que las acciones a las que se somete la viga radial son resistidas adecuadamente por el perfil metálico se realiza primero una comprobación conservadora basada en la suma lineal de los efectos de las resultantes de cada tensión. Al tratarse de sección IPE, el tipo de perfil es Clase 1, debiendo cumplirse el siguiente criterio:

$$\frac{N_{ed}}{A_{eff} * F_{v} / \gamma_{M0}} + \frac{M_{z,Ed}}{W_{v} * F_{v} / \gamma_{M0}} \le 1$$
(1.154)

donde no se ha tenido en cuenta el efecto de la flexión en el eje y-y por ser despreciable. Los valores son:

 N_{ed} : esfuerzo máximo de compresión obtenido de ANSYS.

 A_{eff} : área de la sección transversal de la viga.

 $M_{\it z, \it Ed}$: momento máximo al rededor del eje z-z obtenido de ANSYS.

 W_{y} : módulo resistente del perfil en el eje y-y.

 F_v : límite elástico del material de la viga.

 γ_{M0} : resistencia de la sección transversal = 1.00.

12.4.2 Resistencia al pandeo

La combinación del esfuerzo de compresión y flexión puede acentuar las imperfecciones de la viga, provocando el pandeo. El pandeo lateral no se tendrá en cuenta al considerar que la placa del techo no transmite cargas laterales la estructura con la colocación de rigidizadores radiales: un total de 5 unidades para el diámetro del tanque de estudio, np=5.

El criterio de pandeo a cumplir para la flexocompresión de la viga en los dos ejes es:

$$\frac{N_{ed}}{\chi_{y} * A_{eff}} * \frac{F_{y}}{\gamma_{M1}} + k_{yz} * \frac{M_{z,Ed}}{W_{y} * \frac{F_{y}}{\gamma_{M1}}} \le 1.0$$
(1.155)

$$\frac{N_{ed}}{\chi_{z} * A_{eff}} * \frac{F_{y}}{\gamma_{M1}} + k_{zz} * \frac{M_{z,Ed}}{W_{y} * \frac{F_{y}}{\gamma_{M1}}} \le 1.0$$
(1.156)

donde:

 γ_{M1} : coeficiente parcial para la resistencia de elementos estructurales a inestabilidad. Para edificios, es igual a 1.

 χ_y, χ_z : coeficientes de reducción para el modo de pandeo considerado en los ejes y-y, z-z.

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \le 1.0$$

$$\phi = \frac{1}{2} * \left[1 + \alpha * (\overline{\lambda} - 0, 2) + \overline{\lambda}^2 \right]$$
(1.157)

 $\overline{\lambda}_{y}, \overline{\lambda}_{z}$: esbeltez adimensional = λ / λ_{ref} .

 λ_{v}, λ_{z} : esbeltez de la viga radial en el eje de estudio = $\beta^{*}L/i$.

 β_y, β_z : coeficiente de pandeo dependiente de las condiciones de contorno de la viga. Se toma un valor igual a 2 para el eje fuerte y-y considerando un caso de columna empotrada-libre; y 0,7 para el eje débil z-z, simulando un caso de columna empotrada-articulada.

 L_v, L_z : longitud de pandeo, donde $L_v = [R - R_{ac}]^* \cos \theta$, y $L_v = L_x / np$.

 i_{v} , i_{z} : radio de giro de la viga en los ejes y-y, z-z, respectivamente.

 λ_{ref} : esbeltez referencia del material de la viga = $\pi * \sqrt{E/F_y}$

 α : coeficiente de imperfección de perfil. Dependerá de la curva de pandeo del material.

EN 1993 1-1. Tabla 6.1					
Curva de pandeo	a0	а	b	с	d
Coeficiente de imperfección (α)	0.13	0.21	0.34	0.49	0.76

Tabla 12-A. Coeficientes de imperfección para las curvas de pandeo.

					Curva de	e pandeo
	Sección transversal		Límites	Pandeo alrededor del eje	S 235 S 275 S 355 S 420	S 460
nados		× 1,2	$t_f \le 40 \text{ mm}$	y - y z - z	a b	a _o a _o
files lami	h v v	< q/4	$40 \text{ mm} < t_f \le 100$	y - y z - z	b c	a a
ss de per		1,2	$t_{\rm f} \le 100 \ mm$	y - y z - z	b c	a a
Seccione	ż ż	h/b ≤	$t_{\rm f} > 100 \ {\rm mm}$	y - y z - z	d d	c c
3S	Î Î				-	

Tabla 6.2 – Elección de la curva de pandeo para cada sección transversal

Figura 12-4. Elección de la curva de pandeo para secciones de perfiles laminados, k_{yz} : coeficiente de interacción YZ para secciones en I Clase $1 = 0.6 * k_{zz}$. k_{zv} : coeficiente de interacción ZZ para secciones en I Clase 1.

$$k_{zy} = C_{mz} * \left[1 + (2 * \overline{\lambda}_z - 0, 6) * \frac{N_{ed}}{\chi_z * A_{eff} * \frac{F_y}{\gamma_{M1}}} \right] \le C_{mz} * \left[1 + 1.4 * \frac{N_{ed}}{\chi_z * A_{eff} * \frac{F_y}{\gamma_{M1}}} \right]$$
(1.158)

 C_{nz} : factor de momento uniforme equivalente para carga uniforme. Depende de la ley de momentos flectores. Para una carga uniforme, con $[-1 \le \alpha_s < 0]$ y $[-1 \le \psi < 0]$:

 ψ^*M_h : momento alrededor del eje z-z en el keypoint K1 extraído de ANSYS.

 M_s : momento alrededor del eje z-z mínimo extraído de ANSYS.

 M_h : momento alrededor del eje z-z en el keypoint K2 extraído de ANSYS.

Con el perfil IPE cumpliendo ambos criterios, se calcula el peso total de los rafters o vigas radiales, W_{raft} a partir de su peso propio, G_{IPE} . El peso de los rigidizadores y anillo central de compresión, W_{rig} se estimará como una octava parte del peso de las vigas radiales. Con estos dos factores se realiza la estimación del peso estructural del techo fijo, R_{sw} :

$$W_{raft} = n_{p ext} * G_{IPE} * L_y \tag{1.160}$$

$$W_{rig} = 0.125 * W_{rafi}$$
(1.161)

$$R_{sw} = W_{raft} + W_{rig} \tag{1.162}$$

12.5 Cálculos - Estructura del techo fijo

Cálculo de la estructura del techo

La placa del techo está soportada por vigas internas y soldada a la estructura del techo.

<u>Tamaño del tanque</u> Diámetro interno del depósito		Di x Ht Di	34000 mr 34000	n Ø x 2: mm	5000 mm altura
Altura del depósito hasta el bordillo del techo		Ht	25000	mm	
Área seccional del tanque		At	908	m2	
Peso del techo estructural		Rsw	46444	kg	Estimación
Peso de tubuladuras y misceláneos del techo		Rnw	3000	kg	Suposición
Peso de plataformas y railes		Prw	10000	kg	Suposición
Parámetro de diseño - Viento		• •	02.6	1 / 1	
Velocidad basica del viento		V	93.6	km / h	
Factor de Importancia (cargas de viento)		Iw	1.15		
Parámetro de diseño - Sismo					
Parámetro de respuesta con un 5% de amortiguamiento par	ra periodo corto (0.2 seg)	Ss	0.175	%g	
Parámetro de respuesta con un 5% de amortiguamiento par	ra 1 seg	S1	0.0875	%g	
			D	Clasifi	cación definida en
Clase de terreno del sitio			В	API 65	50, App E. E.4.4
Grupo de uso sísmico, SUG			III	-	
Factor de importancia, establecido por el SUG		Ι	1.5	-	
Parámetro vertical de aceleración sísmica	= 0,47*SDS = 0,47*Q*Fa*Ss	Av	0.08225	%g	
Especificación de materiales		T 1		90	
Temperatura de diseño		1 d	55	Ĵ	AISC 360 tabla
Factor reductor del límite elástico		ky	1	-	A-4.2.1
1. Placa del techo					
Material			A 36	-	
Límite elástico mínimo	= Fy * ky	Fy	250000	kPa	
Tensión admisible en placa a flexión	= 0,6 * Fy	fb	150000	kPa	AISC 360, F1
2. Estructura del techo			A 26		
Material Límite elástico mínimo	= Fy * ky	Fy	A 36 250000	- kPa	
Sahusanagan da gannagián					
<u>Sobrespesor de corrosion</u>		C^{2}	1.6	mm	
CA - Estructura del techo (total)		C2 C4	1.0	mm	
CA - Estructura del techo (total)			1.0	IIIII	
Cargas				1.5	Hacia abaio (-
Carga muerta (DL)		DL	1.258	kPa	Ve)
Peso propio de la placa del techo + placa de compresión	=Wp*g / At		0.616	kPa	
Peso propio de la estructura interna del techo	= Rsw *g / At		0.502	kPa	
Misceláneos	= (Rnw+Prw) *g / At		0.141	kPa	
Carga de presión					Hacia abaio (-
Presión de vacío (Pe)		Pe	0.5	kPa	Ve)
Presión interna (Pi)		Pi	2.9	kPa	Hacia arriba (+Ve)
Presión de prueba (Pt)		Pt	2.9	kPa	Hacia arriba (+Ve)
Prueba hidrostática (Ht)		Ht	0	kPa	Hacia abajo (- Ve)
Carga viva del techo (Lr)		Lr	1.000	kPa	Hacia abajo (- Ve)
Carga da nieva (S)		S	0.20	kPa	Hacia abajo (-
	0.04*0	GI	0.168	kPa	Hacia abajo (-
Carga de nieve balanceada (Sb)	$= 0.84 \text{ s}$ $\Theta \le 10^{\circ} : = \text{Sb}$	Sb	0.100		∨e) Hacia abaio (-
Liquido almacenado (E)	$\Theta > 10^{\circ} := 1,5 * Sb$	Su	0.168	кРа	Ve)
		F	0	kPa	Hacia abajo (-
Liquido almacenador en el techo		Г	Ť		ve)

Carga de viento (WL)					
Presión de viento de levantamiento del techo (WL) Carga sísmica (E)	= Fv / At	WL	0.614	kPa	Hacia arriba (+Ve)
Hacia arriba	= Av *DL	E+	0.104	kPa	Hacia arriba (+Ve)
Hacia abajo		E-	0.104	kPa	Hacia abajo (- Ve)
Cargas del techo flotante interno (TFI)					
Peso muerto del techo flotante interno	= Wf / At	Df	1.078	kPa	Hacia abajo (- Ve)
Carga viva uniforme del techo		Lfl	0.6	kPa	Hacia abajo (- Ve)
Carga máxima concentrada en una pierna de apoyo		Lf2	2.2	kN / 0,1 m2	Hacia abajo (- Ve)
Presión externa de diseño del techo flotante interno		Dfe	0.24	kPa	Hacia abajo (-
resion exerna de diseño del techo notante interno		110			• • • •
Factor de combinación de presión		Fp	0.4	-	

Se define como el ratio entre presión normal de operación y presión de diseño, con un mínimo de 0,4. En otro caso, resultaría ATM / Pdiseño (=0barg/0,029 barg). 0,4 es un valor de minoración de las fuerzas estabilizadoras.

Combinación de cargas - Cálculo de la estructura del techo					API 650 Sec. 5.2.2
a) Fluido y presión interna	DL + F + Pi		1.642	kPa]
b) Prueba hidrostática	DL + Ht + Pt		1.642	kPa	1
c) Viento y presión interna	DL + W + Fp*(Pi)		0.516	kPa	1
d) Viento y presión externa	DL + W + 0,4*(Pe)		-0.844	kPa	
e.1.1) Cargas gravitatorias	DL + Lr + 0,4*(Pe)		-2.458	kPa	
e.1.2) Cargas gravitatorias	DL + Su + 0,4*(Pe)		-1.626	kPa	
e.1.3) Cargas gravitatorias	DL + Sb+ 0,4*(Pe)		-1.626	kPa	
e.2.1) Cargas gravitatorias	DL + Pe + 0,4*(Lr)		-2.158	kPa	
e.2.2) Cargas gravitatorias	DL + Pe + 0.4*(Su)		-1.826	kPa]
e.2.3) Cargas gravitatorias	DL + Pe + 0,4*(Sb)		-1.826	kPa	1
f.1) Carga sísmica	DL + F + E(+) + 0,1*(Sb) + Fp*(Pi)		-0.012	kPa	Hacia arriba (+Ve)
f.2) Carga sísmica	DL + F + E(-) + 0,1*(Sb) + Fp*(Pi)		-0.219	kPa	Hacia abajo (- Ve)
g.1) Cargas gravitatorias para techos fijos con techos flotantes suspendidos	$DL + Df + Lr + Pe + 0,4*(Pfe \circ Lf1 \circ Lf2)$			kPa	
g.2) Cargas gravitatorias para techos fijos con techos flotantes suspendidos	$DL + Df + (Pfe \circ Lf1 \circ Lf2) + 0.4*(Lr + Pe)$			kPa	
La combinación de cargas que gobierna es: cuya presión máxima presión uniforme (p) es:		р	e.1.1) Car gravitator -2.458	rgas ias kPa	-
Cálculo de vigas radiales (rafters)					
Espacio máximo entre vigas admisible, medido circunferencialmente de centro a centro de viga	$= t^{*}(1,5^{*}Fy/p)^{0},5 \le 2100$ mm	b	1953	mm	API 650, Sec. 5.10.4.4
Espesor de la placa de techo (corroído)		t	5	mm	
Radio horizontal interno		Ro	17000	mm	
Perímetro exterior	= 2*Pi*Ro	Pext	106814	mm	
			54.6982		
Nº de paneles en el perímetro exterior	= b / Pext		6		
		np_ext	55	paneles	Redondeo superiormente

=Pex / np_ext

Radio del anillo de compresión central Ángulo entre techo y la horizontal

Espacio entre vigas en el radio exterior

Numero rigidizadores radiales / paneles

Perfil IPE de las vigas radiales Peso total de las vigas radiales Peso de los rigidizadores + anillo central Peso del techo estructural

	θ
	np
330	G
$= np_ext^*G^*(R-Rac)^*\cos\Theta$	Wraft
= 12,5% Wraft	Wrig
= Wraft + Wrig	Rsw

w1 ext

Ri

w1_ext tiene que ser menor que b. 1500 mm 9.5 ° 0.1658 rad 5 uds Resultados 49.1 kg/m ANSYS 41284 kg 5160 kg 46444 kg Estimación

1942 mm

OK

12.6 Cálculos - Dimensionamiento de la viga radial

Efecto de las acciones en la sección transversal										
Material viga			A 36	A 36	A 36	A 36	A 36	A 36	A 36	A 36
	Fy	Pa	2.50E+08	2.50E+08	2.50E+08	2.50E+08	2.50E+08	2.50E+08	2.50E+08	2.50E+08
Perfil viga radial	IPE	-	200	220	240	270	300	330	360	400
	А	cm2	28.50	33.40	39.10	45.90	53.80	62.60	72.70	84.50
	G	kg/m	22.40	26.20	30.70	36.10	42.20	49.10	57.10	66.30
	Iy	cm4	1940.00	2770.00	3890.00	5790.00	8360.00	11770.00	16270.00	23130.00
	Wy	cm3	194.00	252.00	324.00	429.00	557.00	713.00	904.00	1160.00
	iy	cm	8.26	9.11	9.97	11.20	12.50	13.70	15.00	16.50
	Iz	cm4	142.00	205.00	284.00	420.00	604.00	788.00	1040.00	1320.00
	Wz	cm3	28.50	37.30	47.30	62.20	80.50	98.50	123.00	146.00
	iz	cm	2.24	2.48	2.69	3.02	3.35	3.55	3.79	3.95
		,								
Coeficiente de resistencia de la sección transversal	YM0	-	1	1	1	1	1	1	1	1
	·	,	r							,
Esfuerzo axil máximo	Ned	N	-111070	-113270	-115530	-118560	-122050	-125560	-130030	-134700
Momento máximo alrededor del eje y-y	My,ed	N*m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Momento máximo alrededor del eje z-z	Mz,ed	N*m	64675	65583	66502	67673	69017	70312	72001	73585
										1
$= \text{Ned}/(\text{Aef} * \text{Fy}/\Upsilon M0)*(-1)$	COMP	-	0.16	0.14	0.12	0.10	0.09	0.08	0.07	0.06
= Mz,ed/(Welast,y*Fy/YM0)	FLEX	-	1.33	1.04	0.82	0.63	0.50	0.39	0.32	0.25
		-								
Tensión máxima por flexocompresion = COMP + FLEX	σmax / fy,d	-	1.49	1.18	0.94	0.73	0.59	0.47	0.39	0.32
Esfuerzo de ANSYS	$\vdots \sigma \max / fy, d \le 1$?	-	No cumple	No cumple	Cumple	Cumple	Cumple	Cumple	Cumple	Cumple

120

Resistencia al pandeo											
Módulo de elasticidad del acero		E	Pa	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11
		IPE	-	200	220	240	270	300	330	360	400
Longitud de pandeo - y	$= [R - Rac] * \cos \Theta$	Ly	m	15.287	15.287	15.287	15.287	15.287	15.287	15.287	15.287
Longitud de pandeo - z	= Ly / np	Lz	m	3.057	3.057	3.057	3.057	3.057	3.057	3.057	3.057
Coeficiente de pandeo	Columna articulada-deslizante	βγ		2	2	2	2	2	2	2	2
	Columna empotrada-articulada	βz		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Esbeltez - y	$= \beta y^* Ly / iy$	λγ	-	370.16	335.62	306.67	272.99	244.60	223.17	203.83	185.30
Esbeltez - z	$=\beta z^{*} Lz / iz$	λz	-	95.55	86.30	79.56	70.87	63.89	60.29	56.47	54.18
Esbeltez referencia	$=\pi *(E/Fy)^0,5$	λref	-	88.64	88.64	88.64	88.64	88.64	88.64	88.64	88.64
Esbeltez adimensional - y	$= \lambda y / \lambda ref$	λmed,y	-	4.1762	3.7865	3.4599	3.0799	2.7596	2.5179	2.2997	2.0906
Esbeltez adimensional - z	$= \lambda z / \lambda ref$	λmed,z	-	1.0780	0.9737	0.8976	0.7996	0.7208	0.6802	0.6371	0.6113
	Curva de pandeo del perfil	L	1	1	1	1	8	1	1	1	I
Coeficiente de imperfección - y	a	αγ	-	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Coeficiente de imperfección - z	b	αz	-	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
	$= 0.5*[1+\alpha y^*(\lambda med, y-0, 2)+(\lambda med, y)^2]$	фу	-	9.638	8.045	6.828	5.545	4.576	3.913	3.365	2.884
	$= 0.5*[1+\alpha z^{*}(\lambda med,z-0,2)+(\lambda med,z)^{2}]$	φz	-	1.230	1.106	1.021	0.922	0.848	0.813	0.777	0.757
Coeficiente de reducción - y	= $1 / [\phi y + (\phi y^2 - \lambda med, y^2)^0, 5]$	ХУ	-	0.0546	0.0660	0.0787	0.0985	0.1215	0.1447	0.1718	0.2053
Coeficiente de reducción - z	= $1 / [\phi z + (\phi z^2 - \lambda med, z^2)^0, 5]$	χz	-	0.5485	0.6138	0.6627	0.7247	0.7718	0.7948	0.8180	0.8313
Coeficiente parcial para la resistencia de el	lementos estructurales a inestabilidad	ΥM1	-	1	1	1	1	1	1	1	1
	= Mz.Ed	Mh		64675	65583	66502	67673	69017	70312	72001	73585
	= Mz más negativo	Ms (Z)		-45956	-46664	-47407	-48438	-49627	-50850	-52394	-54102
	= Mz en elemento 1	ψ*Mh		-1413.2	-1431.2	-1449.9	-1475.6	-1505.2	-1535.4	-1573.7	-1615.3
		ψ		-0.0219	-0.0218	-0.0218	-0.0218	-0.0218	-0.0218	-0.0219	-0.0220
	=Mh /Ms	αs		-1.407	-1.405	-1.403	-1.397	-1.391	-1.383	-1.374	-1.360
carga uniforme $(-1 \le \alpha s < 0)$; $(-1 \le \psi < 0)$	$=0.1*(1-\psi)-0.8*\alpha s > 0.4$	Cmz	-	1.228	1.227	1.224	1.220	1.215	1.208	1.202	1.190
	=min[1+(2*λmed,y-0.6)*COMPy; 1+1.4*COMPy]	Azz	-	1.324	1.252	1.203	1.163	1.134	1.115	1.100	1.087
	= 0.6 * kzz	kyz	-	0.976	0.921	0.884	0.851	0.827	0.808	0.793	0.777
	= Cmz * Azz	kzz	-	1.626	1.536	1.473	1.418	1.378	1.347	1.321	1.294
Comprobación pandeo a compresión + flex	xión			·		•	•	•	•	•	•
Esfuerzo de ANSYS	= [Ned / $(\chi y^* Aeff^* F y / \Upsilon M1)$]*(-1)	COMPy	-	2.8564	2.0543	1.5026	1.0494	0.7466	0.5543	0.4164	0.3105
	= kyz*[Mz,Ed / (Wy,elas*Fy/YM1)	FLEX	-	1.3009	0.9591	0.7258	0.5369	0.4097	0.3189	0.2526	0.1971
		COMPy+FL	EX	4.16	3.01	2.23	1.59	1.16	0.87	0.67	0.51
				No cumple	Cumple	Cumple	Cumple				
	= [Ned / $(\chi z^*Aeff^*Fy/\Upsilon M1)$]*(-1)	COMPz	-	0.2842	0.2210	0.1783	0.1426	0.1176	0.1009	0.0875	0.0767
	= $kzz*[Mz,Ed / (Wy,elas*Fy/\Upsilon M1)$	FLEX	-	2.1682	1.5985	1.2096	0.8948	0.6828	0.5315	0.4210	0.3284
		COMPz+FL	EX	2.45	1.82	1.39	1.04	0.80	0.63	0.51	0.41
				No cumple	No cumple	No cumple	No cumple	Cumple	Cumple	Cumple	Cumple
				No cumple	Cumple	Cumple	Cumple				

			,			,	
1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11	1.99E+11
200	220	240	270	300	330	360	400
15.287	15.287	15.287	15.287	15.287	15.287	15.287	15.287
3.057	3.057	3.057	3.057	3.057	3.057	3.057	3.057
2	2	2	2	2	2	2	2
0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
370.16	335.62	306.67	272.99	244.60	223.17	203.83	185.30
95.55	86.30	79.56	70.87	63.89	60.29	56.47	54.18
88.64	88.64	88.64	88.64	88.64	88.64	88.64	88.64
4.1762	3.7865	3.4599	3.0799	2.7596	2.5179	2.2997	2.0906
1.0780	0.9737	0.8976	0.7996	0.7208	0.6802	0.6371	0.6113
0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
9.638	8.045	6.828	5.545	4.576	3.913	3.365	2.884
1.230	1.106	1.021	0.922	0.848	0.813	0.777	0.757
0.0546	0.0660	0.0787	0.0985	0.1215	0.1447	0.1718	0.2053
0.5485	0.6138	0.6627	0.7247	0.7718	0.7948	0.8180	0.8313
							·
1	1	1	1	1	1	1	1
			,		1	,	
64675	65583	66502	67673	69017	70312	72001	73585
-45956	-46664	-47407	-48438	-49627	-50850	-52394	-54102
-1413.2	-1431.2	-1449.9	-1475.6	-1505.2	-1535.4	-1573.7	-1615.3
-0.0219	-0.0218	-0.0218	-0.0218	-0.0218	-0.0218	-0.0219	-0.0220
-1.407	-1.405	-1.403	-1.397	-1.391	-1.383	-1.374	-1.360
1.228	1.227	1.224	1.220	1.215	1.208	1.202	1.190
1.324	1.252	1.203	1.163	1.134	1.115	1.100	1.087
0.976	0.921	0.884	0.851	0.827	0.808	0.793	0.777
1.626	1.536	1.473	1.418	1.378	1.347	1.321	1.294
2.8564	2.0543	1.5026	1.0494	0.7466	0.5543	0.4164	0.3105
1.3009	0.9591	0.7258	0.5369	0.4097	0.3189	0.2526	0.1971
4.16	3.01	2.23	1.59	1.16	0.87	0.67	0.51
No cumple	No cumple	No cumple	No cumple	No cumple	Cumple	Cumple	Cumple
0.2842	0.2210	0.1783	0.1426	0.1176	0.1009	0.0875	0.0767
2.1682	1.5985	1.2096	0.8948	0.6828	0.5315	0.4210	0.3284
2.45	1.82	1.39	1.04	0.80	0.63	0.51	0.41
No cumple	No cumple	No cumple	No cumple	Cumple	Cumple	Cumple	Cumple
No cumple	No cumple	No cumple	No cumple	No cumple	Cumple	Cumple	Cumple

Estructura del techo fijo

13 DETALLES DEL TECHO FLOTANTE INTERNO

El uso de techo flotante reduce eficazmente las pérdidas de vapor debidas a cambios en las condiciones climáticas y durante las operaciones de llenado y descarga del tanque. Estas pérdidas son particularmente relevantes cuando se almacenan productos con compuestos orgánicos volátiles en tanques con alto número de ciclos de llenado y descargan.

13.1 Principios del techo flotante

El techo flotante es una estructura metálica circular construido con una flotabilidad tal que es capaz de mantenerse sin hundirse en la parte superior de producto almacenado, tanto en un tanque con techo fijo cerrado como en uno abierto. Debido a los límites de precisión en la construcción de grandes estructuras circulares, el diámetro general de los techos flotantes es generalmente unos 400 mm más pequeño que el diámetro interno del tanque, permitiendo así que se eleve y caiga sobre el producto sin necesidad de atar el techo flotante al techo fijo, como ocurre con los pistones en los cilindros. El hueco entre el borde exterior del techo flotante y la parte interna de la virola es estanco por medio de un sistema flexible de sellado. Este sellado puede servir también para centrar la posición del techo flotante en el tanque.

Hay dos tipos de techos flotantes:

- a) Techo flotante externo: el techo descansa sobre el producto en un tanque abierto por arriba y el techo está expuesto a los elementos meteorológicos.
- b) Techo flotante interno: el techo flota sobre el producto dentro de un tanque con un techo fijo. El techo y el producto en estos arreglos están protegidos de la caída de lluvia y nieve, y también del efecto del viento. El hecho de tener esta protección hace que este tipo de techos flotantes suelan ser de construcción mucho más liviana, usando incluso materiales como aluminio o plástico. Además, en el sello en los bordes no tiene que ser tan robusto y están frecuentemente hechos de espuma de poliuretano de célula cerrada flexible, formando un sello tipo limpiaparabrisas donde la punta del sello está por encima del borde cuando el techo desciende y se desplaza por debajo del borde a medida que el techo asciende.

La selección de materiales de construcción para servicios concretos tiene que ser considerada cuidadosamente, sobre todo usando aluminio, donde la aparición inesperada de trazas de corrosión en el producto puede causar daños serios en los componentes del techo.

Los techos internos flotan directamente sobre el producto y, por lo tanto, no hay espacio para vapor, o bien, la membrana de sellado se lleva por encima del producto con pontonas, resultando un espacio de vapor confinado. Una gran ventaja del uso de techo flotante es que la probabilidad de una explosión o fuego en este espacio es improbable, ya que el vapor saturado será demasiado rico para soportar la combustión.

Asegurar la continuidad eléctrica entre la cubierta y el tanque es muy importante para permitir que las cargas de electricidad estática que se transmiten a la cubierta del producto sean liberadas de forma segura. Todas las superficies conductoras o mediante cables flexibles de hilos múltiples unidos a la parte superior de la superficie de la cubierta y al techo fijo o a la virola.

Una cuestión relevante en el uso de techo flotantes interno es que el espacio libre sobre el techo debe ser adecuadamente ventilado para prevenir una acumulación de vapor débil potencialmente explosivo mezclado con aire. Esto se consigue disponiendo de estaciones de venteo alrededor de la periferia del techo junto con un venteo en la corona del techo. Estos venteos favorecen la regeneración de este espacio mediante la acción del viento.

El uso de la capacidad del tanque se rige por el límite de recorrido del techo dentro del tanque:

- El nivel más bajo está pensado para que el techo no llegue a alcanzar ninguna tubería en el fondo ni cualquier accesorio de las virolas que sobresalga interiormente en el tanque. Esto se conoce como

posición baja del techo.

- Asociado a fines de mantenimiento, se define el nivel alto libre. El personal requerirá acceso a la parte inferior del techo a través de la boca de hombre de la virola, porque debe mantenerse una altura mínima de 2 metros para registro.
- El límite superior se rige por el tipo de estructura de techo y/o la profundidad de los soportes o escuadras en las virolas superiores que soportan la estructura del techo fijo. Los tanques de gran diámetro que tengan una estructura del techo fijo en celosía que se extienda por debajo del nivel de la parte superior de la virola pueden reducir significativamente el volumen utilizable.

Estas cubiertas internas son generalmente diseños patentados y así que todo el trabajo del diseño lo realiza el fabricante específico. Por lo general, se diseñan de manera que todos los componentes se pueden pasar a través de una boca de hombre de 24 "(610 mm) de diámetro, lo que les permite adaptarse a los tanques existentes.

13.2 Tipos de techos internos flotante

Para el almacenamiento de un producto volátil como la gasolina se opta por un diseño de techo interno flotante. A continuación, se explican brevemente algunas tipologías concretas de techo flotante, pudiendo ser mezcladas las filosofías de diseño de cada punto.

13.2.1 Techo panorámico

El techo panorámico consiste en una membrana circular, que flota sobre el producto, con una placa vertical en el borde exterior sobre la que el sello se monta. Este tipo de techos tiende a hundirse durante el chapoteo (sloshing) o en la aplicación de del sistema contraincendios de agua o espuma, ya que no dispone de ningún compartimento estanco para la flotabilidad. Las fugas en el techo pueden originar el vuelco y el hundimiento del mismo. Por ello, a pesar de tener una construcción muy económica, las desventajas de su operación hacen que se raramente empleado.

13.2.2 Techo compartimentado abierto por arriba

Disponen de compartimentos sin tapa superior distribuidos perimetrales en el techo para mejorar la flotabilidad. Estos techos están en contacto permanente con el producto y se construyen típicamente en acero.

13.2.3 Techo con pontona metálica

Estos techos están compuestos de pontonas, o compartimentos huecos independientes, dispuestos perimetralmente, que sectorizan el producto en caso de fuga. Junto a la matriz circular que forman estas pontonas hay una chapa delgada de metal que forma la barrera para el vapor. El contacto con el producto es pleno.

Un diseño alternativo a este se obtiene de colocar la chapa metálica tanto arriba como abajo, evitando el drenaje de fugas sobre la cubierta más baja.

13.2.4 Techos sobre flotadores

Estos techos consisten en un número de tramos rectos de flotadores tubulares de aluminio o inoxidable dispuestos en un anillo barriendo área del techo con filas paralelas de pontonas que se conectan desde un lado del anillo al otro. Las filas de pontonas se conectan entre si mediante secciones extruidas de aluminio.

La chapa central se dispone unos 150/200 mm sobre el nivel del producto y el hueco es sellado en el perímetro del techo con una placa vertical en el borde cuyo punto más bajo se encuentra inmerso en el producto. El hueco entre el borde del techo y la virola se sella con una pieza flexible tipo limpiaparabrisas.

13.2.5 Techo de panel de abejas

Este tipo de tanque se construye a base de paneles de aluminio o plástico consistentes en una chapa superior y otra inferior separadas por una matriz de células internas o panel de abeja. Los paneles suelen tener un espesor

de entre 25 y 80 milímetros y están conectados entre sí mediante secciones extruidas. Esta modalidad de techo flotante es propensa a que los paneles superior o inferior se separen de la matriz de células internas o panel de abejas, pero tienen la gran ventaja de poseer una flotabilidad inherente natural, por ello la flotabilidad de diseño se basa en la perdida de dos módulos completos cualesquiera, y no en la matriz de células.

Puede sufrir pinchazos sin pérdida de flotabilidad, pero su ligero diseño constructivo puede ser dañado por turbulencias debidas a corrientes parásitas de aire que provengan de la tubería de llenado.

Un inconveniente en este formato de techo es que los paneles perforados que son contaminados con producto, pueden retener líquido, haciendo que el tanque drene cuando está fuera de servicio. Esto dificulta la operación de liberación del gas para las tareas de mantenimiento hasta que los paneles dañados son identificados y quitados del tanque.

Figura 13-1. Diferentes tipos de techos flotantes internos.

13.3 Espesores mínimos de material

Dependiendo del material de uso en el techo flotante, los espesores mínimos sin tener en cuenta el efecto de la corrosión serán:

- Acero: 4,8 mm cuando hay contacto con el vapor o líquido. En cualquier otro caso, adoptar al menos 2.5 mm.
- Aluminio: en cubiertas y recubrimiento usar 0.5 mm. Para flotadores, 1.2 mm. En los módulos de paneles sándwich, en el material del núcleo debe ser al menos 25mm y en el cerramiento, 0.41 mm.
- Inoxidable: para recubrimiento, 0.46 mm como mínimo. En flotadores, 1.2 mm.

13.4 Sello periférico

El sello periférico cubre el espacio anular existente entre la cubierta del techo flotante y la virola. Estos sellos deben ser capaz de ajustar +/- 100 mm de desviación local entre techo flotante y la virola. Para evitar posibles choques del techo con la virola cuando el sello vence y permite ajustes de mayores a lo establecido, en la parte baja del borde externo del techo flotante se coloca una barra parachoques con el borde redondeado.

Cuando el techo dispone de dos dispositivos de sellado, uno encima del otro, se considera como sello primario el que se instale en la posición más baja. Los tipos de sellos primarios pueden clasificarse como sigue:

 Sello de llanta dispuesto en el líquido: es un sello primario colocado en una posición tal que el fondo de la junta esta normalmente en contacto con la superficie de líquido almacenada. Este sello puede ser una espuma flexible o líquido contenido en una envoltura de tela. Las juntas circunferenciales en los sellos periféricos dispuestos en líquido deben ser impermeables a los líquidos.

Figura 13-2. Junta de llanta dispuesta en líquido.

 Sello de llanta dispuesta sobre vapor: es un sello periférico colocado en una posición tal que normalmente no entra en contacto con la superficie del líquido almacenado. Los sellos periféricos dispuestos en vapor pueden incluir juntas de relleno elástico y cierres de cepillo flexibles (tipo limpiaparabrisas). Este último elemento es un sello de llanta que utiliza una cuchilla o punta de un material flexible (tal como caucho extruido o caucho sintético) con o sin un paño o malla de refuerzo.

Figura 13-3. Junta de llanta dispuesta sobre vapor.

Figura 13-4. Junta tipo limpiaparabrisas.

Zapato mecánico (zapato metálico): se trata de un sello periférico que utiliza una banda metálica de calibre ligero como el contacto deslizante con la virola y un cierre de tela para cerrar el espacio anular entre la banda metálica y el borde de la cubierta de tejado flotante. La banda se forma típicamente como una serie de hojas (zapatas) que se solapan o se unen entre sí para formar un anillo y se sostienen contra la virola mediante una serie de dispositivos mecánicos.

Figura 13-5. Zapato mecánico.

Los materiales y el espesor a usar dependen del fluido a almacenar y el tipo de servicio del tanque. La siguiente tabla recoge algunos materiales típicamente usados en función del producto almacenado:

Fluido almacenado	Material de sellado
Crudo	Fluoropolímeros, uretano, nitrilo
Productos refinados	Fluoropolímeros, uretano, uretano laminado, fluoroelastómetos, Buna-N- vinilo
Mezclas de gasolina / Metil-butil-eter	Fluoropolimeros o nitrilo

Tabla 13-A. Materiales de sellado.

13.5 Geometría del diseño

La tipología que se desarrolla para el diseño del techo flotante interno será del tipo pontona con cubierta única. La geometría del perfil de la pontona será un trapecio formado por los bordes internos y externos paralelos a la pared de la virola, unidos por la placa superior e inferior:

- La placa superior tiene una pendiente dispuesta de tal que manera que cualquier condensado que se deposite sobre ella tiende a ser drenado hacia la cubierta central.
- En la placa inferior, la pendiente dada orienta las gotas de producto en un vaciado del tanque hacia la esquina inferior del borde exterior de la pontona, siendo la primera parte en contacto con el producto en un llenado.
- El borde exterior se prolonga sobre la placa superior para montar el ensamblado del sello del tanque. Para rigidizar este elemento, se coloca un perfil angular en la coronación del mismo.
- El borde interior es la pieza más gruesa del conjunto de la pontona, ya que será la encargada de absorber los esfuerzos de flexión y de diafragma trasmitidos por la cubierta central. El acople entre ambos

elementos se produce mediante una placa soporte soldada perpendicularmente al borde interno.

Para evitar posibles choques del techo flotante con la virola cuando el sello vence y permite ajustes mayores a los +/- 100 mm establecidos, en la parte baja del borde externo del techo flotante se coloca una barra parachoques con el borde redondeado.

Figura 13-6. Ubicación de la barra parachoques en el borde exterior del techo flotante.

La barrera para la espuma es una pequeña placa de acero de espesor soldadas en la placa superior de la pontona a poca distancia del ensamblado del sello. Para dar una protección contra el fuego efectiva, la altura de la barrera debe quedar situada por encima del punto más alto del sello para que la espuma inyectada cubra completamente el espacio del sello. Para darle rigidez al conjunto, se coloca un perfil angular a lo largo del borde superior de la barrera, y un perfil de compresión que soporte la barrera colocado a 30º respecto a la vertical.

13.6 Cálculos - Techo flotante (Detalles)

Datos del tanque y del techo flotante - Detalles					
Tipo de techo	Techo flotante interno - tipo ponto	na de cul	bierta única		
Producto almacenado			Fuel Oil		
Diámetro interno del depósito		Di	34000	mm	
Altura del depósito hasta el bordillo del techo		Ht	25000	mm	
Espacio entre virola y borde del pontón		Rim	200	mm	
Grado del material			A 36		
Límite elástico mínimo		Fy	250	Mpa	
			2547.5	kg/cm2	
Esfuerzo admisible de flexión para la placa	= 2/3 * Fy	Fb	1698.3	kg/cm2	
Módulo de elasticidad del acero		Е	199000	Mpa	
			2027810	kg/cm2	
Coeficiente de Poisson		ν	0.3	-	
Densidad Acero		ρStee l	7850	kg/m3	
Número de compartimentos (bulkheads)		nc	24	ud.	
Ancho de la pontona		Pw	2870	mm	
Ancho del compartimento (bulkhead)	= Pw - (Ti+To)	BHw	2850	mm	
Altura del borde interior		Hri	600	mm	
Altura del borde exterior		Hro	1000	mm	
Altura del borde exterior más allá del pontón		hpr	100	mm	
Diferencia de altura entre los puntos bajos del borde interno y externo de la pon	itona	hpi	180	mm	
Altura desde la cubierta central hasta el contorno interno inferior		hci	145	mm	Flotabilidad
Altura desde la cubierta central hasta el contorno interno superior	= Hri-hci	hco	455	mm	
Diferencia de altura entre los puntos altos del borde interno y externo de la pontona	= Hro-hpi-Hri-hpr	hpo	120	mm	
Longitud de la placa inferior del pontona	= (Pw^2+hpi^2)^0,5	Lpi	2876	mm	
Longitud de la placa superior del pontona	= (Pw^2+hpo^2)^0,5	Lpo	2873	mm	
Ángulo de la placa inferior de la pontona	= arctg (hpi/Pw)	βpb	0.06264	rad	
Ángulo de la placa superior de la pontona	= arctg (hpo/Pw)	βpt	0.04179	rad	
Altura de la barrera para espuma		Fd	700	mm	
Distancia entre el borde exterior y la barrera para la espuma		Ld	400	mm	
Espesor de la placa de soportado de la cubierta		Swt	12	mm	
Espesor del borde interior		Ti	12	mm	
Espesor del borde exterior		То	8	mm	

Espesor de la placa de la cubierta Espesor de la placa de fondo del pontona Espesor de la placa superior de la pontona Espesor de los compartimentos (bulkhead)		t tb tp tc	6.6 6.6 6	mm mm mm mm	
Espesor de la barrera para espuma Ancho de la placa de sonortado de la cubierta		Fdt Sw	6 150	mm mm	
		5	150		
Diámetro externo de la pontona	= Di - 2*Rim	А	33600	mm	
Diámetro interno de la pontona	= A - 2*Pw	В	27860	mm	
Radio externo de la pontona	= A/2	Ro	16800	mm	
Radio interno de la pontona	= B/2	Ri	13930	mm	
Radio medio de la pontona	= (Ro+Ri) / 2	Rm	15365	mm	
Radio de la barrera para espuma	= Ro - Ld	Rd	16400	mm	
Nº perfiles de compresión en la barrera para espuma	$=2\pi * \text{Rd} / \text{l_min}$	ncd	72	uds	Nº entero superior
Separación máxima Longitud real del perfil	$= (3/4*Fd) / \cos 30^{\circ}$	l_min lcd	1450 606	mm mm	*

Peso del pontona y accesorios

Rigidizador de la barrera para espuma	L 50x5*	Wfds	3.77	kg/m	
Rigidizador radial del pontón	L 60x6*	Wprs	5.42	kg/m	
Nº parejas por compartimento	= nrdb	nprs	2	pareja/s	
Rigidizador circunferencial del pontón	L 60x6*	Wpcs	5.42	kg/m	
Nº parejas por compartimento	= nerd	npcs	1	pareja/s	
Angular para la coronación del borde exterior	L 50x5*	Wra	3.77	kg/m	
Peso unitario del sello, incluyendo la fricción que genera		Wfr	50	kg/m	
Peso de la barra parachoques (150 x 50 x 15mm)	$=$ (h*b*t) * ρ Steel	Wbb	0.88	kg	
Borde interior	$=\pi * B * Hri * Ti * \rho$ Steel		4947	kg	
Borde exterior	$= \pi * A * Hro * To * \rho$ Steel		6629	kg	
Angular de coronación del borde exterior	$=\pi * A * Wra$		398	kg	
Placa superior de la pontona	$= 2\pi^* Rm^* Lpo^* tp^* \rho Steel$		13062	kg	
Placa inferior de la pontona	$= 2\pi Rm^*Lpi^*tb^*\rho$ Steel		14383	kg	
Placa de soportado de la cubierta	$= \pi^* B^* Sw^* Swt^* \rho Steel$		1237	kg	
Compartimentos (bulkheads)	= nc*BHw*(Hro-hpr+Hri)/2	2*tc*pSteel	2416	kg	
Barrera para espuma	$= 2\pi * \text{Rd} * \text{Fd} * \text{Fdt} * \rho \text{Ste}$	el	3397	kg	
Angular perimetral en la barrera y perfiles de compresión	$= [(2\pi * Rd) + (ncd*lcd)]*W$	/fds	553	kg	
Barras parachoques	= nc * Wbb		21	kg	
Rigidizadores radiales del pontón	= (Lpi+Lpo)*Wprs*nprs*no	2	1495	kg	
Rigidizadores circunferenciales del pontón	$= 2\pi * (Ri + CDG_p) * 2*Wpc$	s	1047	kg	
Soportes de apoyo			2285	kg	Soportes FR
Aparejos del techo			1800	kg (supuestos
Sellos y carga friccional	$=\pi * A * W fr$		5278	kg	- , ,
Angular para la coronación del borde exterior	$=\pi * A * Wra$		398	kg	
Misceláneos			1200	kg (supuestos
Peso total del pontón y accesorios		Wp	60546	kg	

Placa central de la cubierta	$=\pi * \text{Ri}^2 * \text{t} * \rho \text{Steel}$		31584	kg	
Soportes de apoyo			2616	kg	Soportes IFR
Escalera de rodadura			0	kg	
Bocas de hombre			1000	kg	(supuestos)
Sistema de drenaje del techo			2000	kg	(supuestos)
Válvulas de alivio de presión			500	kg	(supuestos)
Misceláneos			1500	kg	(supuestos)
Peso total de la cubierta y accesorios		Wd	39200	kg	
Peso total bruto del techo flotante	= Wp + Wd	Wf	99747	kg	

14.1 Flotabilidad

El cálculo del diseño de los techos flotantes internos se basará en el valor mínimo entre la gravedad específica del producto y 0,7. La flotabilidad necesaria debe soportar al menos dos veces su peso propio, incluyendo el peso de los compartimientos de flotación, sellos y otros componentes, añadiendo flotabilidad adicional para vencer la fricción en el llenado entre el sello periférico y el sello de los elementos que atraviesen el techo, tales como cables centradores, medidores de fondo u otros.

Cualquier tipología con compartimento de flotabilidad independientes debe ser capaz de flotar sin daños con dos cualesquiera de sus de compartimentos perforados e inundados. Cuando el diseño incluye una cubierta central abierta (tipo 13.2.3), la flotabilidad debe garantizarse con dicho elemento perforado. En tanques cuyo diámetro en inferior a 6 metros, la comprobación puede reducirse al fallo de un solo compartimento.

El criterio para determinar la altura de la cubierta central respecto a la pontona será que, en condiciones normales de flotabilidad, la cara baja de la cubierta central siempre esté en contacto con el producto. Un metro cuadrado del espesor de la cubierta central desplazará un volumen de un metro cuadrado de fluido con una altura, d_{dp} , igual a:

$$d_{dp} = \frac{t^* \rho_s^* 1m^2}{\rho_p^* 1m^2}$$
(1.163)

El volumen de líquido desplazado por la pontona, Vol_p , resulta de dividir su peso de la pontona, W_p , entre la densidad del producto. Para calcular el nivel de flotación de este elemento sobre la esquina inferior del borde interno de la pontona, d_{pp} , se le resta a dicho volumen la parte que ocupa la cuña inferior de la pontona, Vol_3 , y se divide entre el área efectiva de empuje que forma la corona circular definida por los bordes externos e internos de la pontona.

$$Vol_{p} = W_{p} / \rho_{p}$$
(1.164)
$$d_{pp} = \frac{Vol_{p} - Vol_{3}}{\pi^{*}(A^{2} - B^{2})/4}$$
(1.165)

El nivel de equilibrio del fluido en el caso de la placa de la cubierta y en el caso de la pontona en el mismo, por lo que la diferencia de altura entre ambas proporciona la distancia entre la esquina inferior del borde inferior interno y ubicación de la cubierta central:

$$h_{ci} = d_{pp} - d_{dp} \tag{1.166}$$

Con la ubicación de la cubierta central, el estudio de la flotabilidad se dividirá en cuatros casos:

14.1.1 Techo flotando bajo condiciones normales

Según el principio de Arquímedes, el volumen de líquido desplazado por un sólido sumergido en un fluido es igual a la masa del sólido entre la densidad del fluido, o lo que es lo mismo, todo cuerpo sumergido total o parcialmente en un fluido en reposo experimenta una fuerza de empuje hacia arriba que es igual al peso del volumen del fluido de desaloja.

En este caso, el volumen de fluido desplazado, V_{d1} , es igual la masa de techo flotante en este primer caso, W_{r1} , dividido entre la densidad de diseño del producto, ρ_p :

$$V_{d1} = \frac{W_{r1}}{\rho_p}$$
(1.167)

Estableciendo como línea de referencia la posición horizontal de la cubierta central, parte del fluido quedará bajo la línea de referencia, y el volumen restante quedará sobre ella. El volumen de fluido bajo la referencia, V_{br} , es igual al volumen de pontona sumergida, compuesto de la cuña inferior y la parte rectangular correspondiente.

$$V_{br} = (A_p * h_{ci}) + Vol_3$$
(1.168)

donde:

$$A_p = \frac{\pi^*(A^2 - B^2)}{4}$$
, es el área proyectada de la corona circular que forma la pontona

Este valor, V_{br} , debe descontarse del volumen de fluido desplazado para obtener la altura que el fluido alcanza por encima de la línea de referencia, h_1 :

$$h_1 = \frac{V_{d1} - V_{br}}{A_{fr}} \tag{1.169}$$

donde:

$$A_{fr} = \frac{\pi^* A^2}{4}$$
, es el área proyectada del techo flotante

La comprobación de flotabilidad se hace comparando el nivel que el líquido alcanzado, medido desde la esquina inferior del borde exterior, h_2 , contra la altura física de este borde, H_{ro} .

$$h_2 = h_{pi} + h_{ci} + h_1 < H_{ro} \tag{1.170}$$

14.1.2 Techo flotando bajo condiciones normales duplicando el peso muerto del techo

Esta segunda comprobación es idéntica al caso anterior, multiplicando el valor de la masa del techo por partida doble:

$$W_{r2} = W_{r1} * 2 \tag{1.171}$$

14.1.3 Techo flotando con dos compartimentos perforados

Para esta comprobación, el volumen de fluido desplazado es el mismo del caso 1, ya que la masa del techo flotante es la misma:

$$V_{d3} = V_{d1} \tag{1.172}$$

Suponiendo que dos compartimentos están perforados y han perdido su capacidad de flotabilidad, el volumen efectivo de pontona sumergida bajo la línea de referencia será proporcional al del caso 1:

$$V_{pe} = V_{br} * \frac{n_c - 2}{n_c}$$
(1.173)

En este caso, para el cálculo de la altura que el fluido alcanza por encima de la línea de referencia, h_1 , el área proyectada sobre la que el fluido ejerce el empuje no tendrá en cuenta los dos compartimentos perforados:

$$h_{1} = \frac{V_{d3} - V_{pe}}{A_{pe} + A_{d}}$$
(1.174)

donde:

 $A_{pe} = A_p * \frac{n_c - 2}{n_c}$, es el área proyectada de la corona circular parcial que forma la pontona con 2

compartimentos fuera de servicio.

$$A_d = \frac{\pi^* B^2}{4}$$
, es el área proyectada de la cubierta central.

14.1.4 Techo flotando con la cubierta central y dos compartimentos perforados

Para esta comprobación se toman los mismos parámetros del caso 3, con $V_{d4} = V_{d1}$, descontado del área de empuje la cubierta central. El nivel calculado se considera un valor medio. El peor caso de estudio se detalla en el siguiente apartado, donde los dos compartimentos con falla están contiguos y la sumersión en esa zona es máxima:

$$h_{1} = \frac{V_{d4} - V_{pe}}{A_{pe}}$$
(1.175)

14.2 Estabilidad

Adicionalmente a lo establecido en el apartado anterior, tanto cuando flota como cuando está soportado sobre sus patas de apoyo, el diseño del techo debe ser capaz de soportar con seguridad, y sin permitir que el producto rebose por la cubierta, una carga equivalente a la de al menos dos hombres caminando por cualquier sitio del techo (2200 N sobre un área de 0,1m²), garantizando con seguridad las labores de mantenimiento.

El escenario más desfavorable para comprobar la estabilidad al vuelco del techo flotante se produce cuando los dos compartimentos de la pontona son contiguos. Las propiedades geométricas de la pontona efectiva se obtienen de la superposición de dos sectores circulares, donde:

Figura 14-1. Sector circular.

Estableciendo equivalencias, $\beta = 360 / nc$, sería el ángulo barrido por un compartimento, y $\phi = 2^*\beta$ el ángulo de pontona fuera de servicio. Sus propiedades geométricas resultan como:

$$z = \frac{[2*sen(\pi - \phi/2)]}{3*A_{pe}} * (Ro^3 - Ri^3):$$
 posición del centro de gravedad respecto al eje y (perpendicular

a los compartimentos pinchados).

 $Iyy = \frac{[2\pi - \phi + sen(2\pi - \phi)]}{8} * (Ro^4 - Ri^4):$ momento de inercia respecto al eje y-y en el centro geométrico del techo.

 $I_{xx} = I_{yy} + (A_{pe} * z^2)$: momento de inercia desplazado al eje paralelo a y-y que pasa por el centro de gravedad del conjunto.

La comprobación de vuelco ante las cargas excéntricas se evalúa en el centro geométrico del techo. El momento estabilizador estará originado por el peso propio del techo, causando un momento de alineación, $M_L = W_f * z$

, que debe ser mayor que los momentos de vuelco originados por las cargas excéntricas, $M_{_T}$. Este momento de

vuelco está compuesto por la suma de los siguientes factores:

- Momento provocado por la porción de cubierta central que barre el ángulo de los dos compartimentos actuando sobre el perímetro de la cubierta.

$$M_{d} = \frac{W_{d}}{(n_{c}/2)} * R_{i}$$
(1.176)

 Momento provocado por la pérdida de dos compartimentos de la pontona, actuando en el radio medio del techo flotante.

$$M_{p} = \frac{W_{p}}{(n_{c}/2)} * R_{m}$$
(1.177)

- Momento provocado por dos hombres andando sobre los compartimentos con falla. Se estima una carga puntual de 2,2 kN sobre 0,1 m2.

Figura 14-2. Área pinchada de la pontona.

Cumpliendo la siguiente ecuación se garantiza la estabilidad del techo flotante considerando el efecto de dos compartimentos y la cubierta central pinchados:

$$M_{T} = M_{d} + M_{p} + M_{m} < M_{L} \tag{1.179}$$

En este escenario de fallo en dos compartimentos contiguos, el nivel adicional sumergido de techo flotante por el lado pinchado, d_1 , y la profundidad reducida por el lado opuesto, d_2 , se calcula como sigue para comprobar que el producto no se desborda por el borde exterior.

$$d_{1} = \frac{M_{L}^{*}(R_{o} + z)}{I_{xx}^{*}\rho_{p}}$$
(1.180)
$$M_{L}^{*}(R - z)$$

$$d_{2} = \frac{I_{xx} \circ \rho_{p}}{I_{xx} \circ \rho_{p}}$$
(1.181)
$$h_{pi} + h_{ci} + h_{1} + d_{1} = h_{2}' < H_{ro}$$
(1.182)

Por otro lado, para comprobar si la altura libre, $H_{f_{-}TFI}$, entre el máximo nivel de líquido y la junta virola-techo fijo es suficiente para alojar el techo flotante sin interferencia, puede compararse con la geometría de la pontona por encima de la cubierta central, añadiéndole el valor d_2 de cuando el techo gira por tener inefectivos dos compartimentos y la cubierta central. Esta comprobación es conservadora ya que no tiene en cuenta el asentamiento del techo flotante sobre el fluido:

$$H_TFI = h_{co} + h_{po} + (F_d - L_d * tg(\beta_{pt})) + d_2 < H_{f_TFI}$$
(1.183)

14.3 Cálculos - Flotabilidad y estabilidad

Cálculos de flotabilidad					
Gravedad específica					API 650, App H, Sec H.4.2.1.1
Agua para prueba		ρw	1	-	
			1000	kg/m3	
Producto almacenado		ρ1	0.7835	-	
Valor según API650, app H		ρ2	0.7	-	
Densidad de diseño	=min (ρ1,ρ2) *1000	ρp	700	kg/m3	
Densidad del acero		ρs	7850	kg/m3	
Cargas de diseño					
Peso total del pontón y accesorios		Wp	60546	kg	
Peso total de la cubierta y accesorios		Wd	39200	kg	
Peso muerto del techo flotante	= Wp+Wf	Wf	99747	kg	
Volumen de la pontona	= Vol1+Vol2+Vol3	Vol_po	209.10	m3	
Cuña superior: 1	$=2\pi * \text{Redg1} * (\text{hpo}*\text{Pw})/2$	Nol1	17.14	m3	
Distancia desde el centro del tanque al CDG1	$= B/2 + Pw^{*}2/3$	Rcdg1	15843	mm	
Rectángulo central: 2	$= 2\pi * \text{Redg} 2 * (\text{Hri}*\text{Pw})$	Vol2	166.24	m3	
Distancia desde el centro del tanque al CDG2	$= B/2 + Pw^{*}2/3$	Redg2	15365	mm	
Cuña inferior: 3	$= 2\pi * \text{Rcdg} 3 * (\text{hni}*\text{Pw})/2$	Vol3	25 71	m3	
Distancia desde el centro del tanque al CDG3	$= B/2 + Pw^{*}2/3$	Rcdg3	15843	mm	
Profundidad de flotación del espesor de la cubierta central (1m2)	= (t * os *1) / op	ddp	74	mm	En producto
Volumen de producto desplazado por la pontona	= Wp / op	Voln	86.49	m3	En producto
Profundidad de flotación de la pontona (desde la esquina inferior interna)	= (Volp-Vol3) / $[\pi * (A^2 -$	dnn	219	mm	En producto
Diferencia entre los niveles en la pontona y en la cubierta	$\frac{B^2}{4}$	hci	145	mm	En producto
Diferencia entre los inveres en la pontona y en la cuolerta	upp - uup	ner	145	mm	Ln producio
Geometría del pontón					
Altura del borde exterior		Hro	1000	mm	
Altura desde la cubierta central hasta el contorno interno superior		hco	455	mm	
Altura desde la cubierta central hasta el contorno inferior interno		hci	145	mm	
Altura del pontón entre el contorno inferior interno y externo		hpi	180	mm	
Condición 1 - Techo flotando bajo condiciones normales					
Flotabilidad requerida	= Wf *1	Wr1	99747	kg	
Área del techo flotante	$=\pi * A^2/4$	Afr	887	m2	
Área de la pontona (corona circular)	$=\pi * (A^2 - B^2)/4$	Ap	277	m2	
Área de la cubierta	$=\pi * \mathbf{B}^2 / 4$	Ad	610	m2	
Volumen de producto desplazado por el peso del techo	= Wr1 / $ ho p$	Vd1	142	m3	
Volumen sumergido del pontón bajo la línea de referencia	= (Ap *hci) + Vol3	Vbr	66	m3	
Volumen para ser desplazado sobre la línea de referencia	= Vd1 - Vbr	Vdr1	77	m3	
Nivel de líquido en el contorno desde la parte superior de la cubierta	= Vdr1 / Afr	h1	86	mm	
Nivel de líquido en el contorno desde la parte inferior del pontón	= hpi + hci + h1	h2	412	mm	
Comprobación El techo flota baio la condición 1:	$h^2 < Hro^2$		Cumple	58.8%	
	6		Cumpie	20.070	
Condición 2 - Techo flotando bajo condiciones normales con dos veces el peso					

muerto del techo

- Wf *7

 W_{r}^{2} 100402 I_{r}^{2}

Flotabilidad requerida	= Wf *2	Wr2	199493	kg	
Volumen de producto desplazado por el peso del techo	= Wr2 / $ ho p$	Vd2	285	m3	
Volumen para ser desplazado sobre la línea de referencia	= Vd2 - Vbr	Vdr2	219	m3	
Nivel de líquido en el contorno desde la parte superior de la cubierta	= Vdr2 / Afr	h1	247	mm	
Nivel de líquido en el contorno desde la parte inferior del pontón	= hpi + hci + h1	h2	572	mm	
Comprobación					
El techo flota bajo la condición 2:	¿h2 < Hro?		Cumple	42.8%	
Condición 3 - Con dos compartimentos perforados					
Volumen de producto desplazado por el peso del techo	= Vd1 (condición 1)	Vd3	142	m3	
					Suponiendo 2
Volumen sumergido efectivo del pontón bajo la línea de referencia	= Vbr * (nc-2)/nc	Vpe	60	m3	compartimentos
,					inefectivos
Área efectiva de pontón	= Ap * (nc-2)/nc	Ape	254	m2	
Volumen para ser desplazado sobre la línea de referencia	= Vd3 - Vpe	Vdr3	82	m3	
Nivel de líquido en el contorno desde la parte superior de la cubierta	= (Vdr3) / (Ape + Ad)	h1	95	mm	

Nivel de líquido en el contorno desde la parte inferior del pontón	= hpi + hci + h1	h2	420	mm
Comprobación				
El techo flota bajo la condición 3:	¿h2 < Hro?		Cumple	58.0%
Condición 4 - Con cubierta central y dos compartimentos perforados				
Volumen de producto desplazado por el peso del techo	= Vd1 (condición 1)	Vd4	142	m3
Volumen para ser desplazado sobre la línea de referencia	= Vd4 - Vpe	Vdr4	82	m3
Nivel de líquido en el contorno desde la parte superior de la cubierta	= (Vdr4) / (Ape)	h1	323	mm
Nivel de líquido en el contorno desde la parte inferior del pontón	= hpi + hci + h1	h2	648	mm
Comprobación				
El techo flota bajo la condición 4:	¿h2 < Hro?		Cumple	35.2%

Ángulo barrido por cada compartimento	= 360 / nc	β	15	0	
		-	0.262	rad	
Angulo barrido por dos compartimentos contiguos	$=2*\beta$	Ø	30	0	
-			0.524	rad	
Área efectiva de pontona tras ser perforada en dos compartimentos		Ape	254	m2	Flotabilidad
Centro de gravedad del área efectiva de la pontona	= $(2*sen (\pi - \emptyset / 2) * (Ro^3 - Ri^3)) / (3*Ape)$	Ζ	1.385	m	
Momento de inercia del área efectiva de la pontona en el eje del centro de gravedad	$= (\text{Ro}^4 - \text{Ri}^4)/8 * (2\pi - \emptyset + \text{sen}(2\pi - \emptyset))$	Iyy	27617	m4	(sector circular -> Iy
Momento de inercia del área efectiva de la pontona en el centro geométrico del techo	= Iyy + (Ape*Z ²)	Ixx	28104	m4	
Momento en el centro del techo	= Wf * Z	ML	138142	kg*m	
Cargas excéntricas reales debidas a la cubierta	= Wd / (nc/2) * Ri	Md	45505	kg*m	Momento provocado por la cuña de la cubierta de 2 compartimentos
Cargas excéntricas reales debidas a la pontona	= Wp / (nc/2) * Rm	Mp	77525	kg*m	Momento provocado por el peso de 2 compartimentos Momento provocado
Cargas excéntricas reales en el contorno de la pontona debidas a tareas de mantenimiento	= qmain * Ro	Mm	3766	kg*m	por dos hombres andando sobre el techo (contorno del
Cargas de dos hombres andando por la cubierta (mantenimiento)	= 2,2 kN sobre 0,1m2	qmain	224.18	kg	API 650, App H, H.4.2.1.4
Momento excéntrico total	= Md + Mp + Mm	MT	126796	kg*m	
El techo no vuelca ante las cargas excéntricas	s: $\partial MT < ML$?		Cumple	8.2%	
Comprobación por la inclinación del techo flotante					
Sumersión adicional en el lado perforado	$= ML * (Ro + Z) / (Ixx * \rho p)$	d 1	127.69	mm	hacia abajo
Profundidad reducida en el lado contrario	= ML * (Ro - Z) / (Ixx * ρp)	d2	108.24	mm	hacia arriba
Nivel de líquido en el contorno desde la parte superior de la cubierta	= (Vdr4) / (Ape)	h1	323	mm	(de la condición 4: cubierta + dos pontones perforados
Nivel de líquido en el contorno desde la parte inferior de la pontona	= hpi + hci + h1 + d1 (= h2 + d1)	h2'	776	mm	

Comprobación				
El techo flota en la posición inclinada:	¿h2' < Hro?		Cumple	22.4 %
Ángulo del techo inclinado	=arctg (d1 / (Ro+Z))	θ	0.00702 0.402	rad °
Comprobación de la altura libre para el techo flotante				
Espacio libre para techo flotante		Hf_TFI	1500	mm
Altura ganada en el borde del techo flotante	$= hco + hpo + (Fd-Ld*tg(\beta pt)) + d2$	H_TFI	1366	mm
Comprobación				
El techo flotante no interfiere con el techo fijo:	¿H_TFI < Hf_TFI?		Cumple	
	Holgura	1	134	mm

15.1 Deflexión de la cubierta central

El peso propio de la cubierta central provocará la deflexión de la misma. La carga neta de empuje, q, es reducida por la fuerza que el fluido ejerce sobre el techo:

$$q = t^* (\rho_{steel} - \rho_s)^* g \tag{1.184}$$

En este tipo de geometría de placas donde la deflexión se hace más grande que aproximadamente la mitad del grosor la superficie media se somete a una deformación apreciable y la tensión adquiere un valor considerable. Esta tensión, llamada tensión de diafragma, o tensión directa, permite a la placa transportar parte de la carga como un diafragma tensionado. Esta tensión puede ser compensada por la tensión radial en los bordes si los bordes están sujetos o por compresión circunferencial si los bordes no están sujetos horizontalmente. En placas finas esta compresión circunferencial puede causar pandeo.

Para evaluar este efecto, se emplean las fórmulas para tensión y deformación de libro de Roark, en su capítulo 11.11:

- La deflexión máxima, y, se calcula en el centro de la placa con la ecuación (1.185).

$$\frac{q * R_i^4}{E * t^4} = K_1 * \frac{y}{t} + K_2 * \left(\frac{y}{t}\right)^3$$
(1.185)

- La tensión máxima debida a la combinación de la flexión y la tensión de diafragma se evalúa tanto en el centro como en el borde de la cubierta, a través de la ecuación (1.186)

$$\frac{\sigma^* R_i^2}{E^* t^2} = K_3 * \frac{y}{t} + K_4 * \left(\frac{y}{t}\right)^2$$
(1.186)

Las constantes de las formulas anteriores dependen de las condiciones de contorno de la cubierta. Particularizando para un caso con el borde fijo y sostenido, con la carga uniforme sobre toda la placa, se tiene:

$$K_{1} = \frac{5.33}{1 - \nu^{2}} ; \quad K_{2} = \frac{2.6}{1 - \nu^{2}}$$

(en el centro) $K_{3} = \frac{2}{1 - \nu} ; \quad K_{4} = 0.976;$ (1.187)
(en el borde) $K_{3} = \frac{4}{1 - \nu^{2}} ; \quad K_{4} = 1.73;$

La tensión en el borde, σ_e , y en el centro, σ_c , debe estar por debajo de la tensión admisible a flexión del material de la placa de la cubierta cuyo valor será el 2/3 del límite elástico:

$$\left[\sigma_{e};\sigma_{d}\right] \leq F_{b} = 2/3*F_{v} \tag{1.188}$$

La tensión en el borde de la cubierta central, donde la tensión de diafragma predomina, se trasmite al borde interno de la pontona, como una carga puntual sobre una viga simple apoyada:

- Fuerza radial en el borde interno de la pontona: $F_r = \sigma_e * t$
- Reacción en la parte superior del borde interno de la pontona: $F_{rt} = F_r * h_{ci} / H_{ri}$
- Reacción en la parte inferior del borde interno de la pontona: $F_{rb} = F_r F_{rt}$

Figura 15-1. Distribución de la carga de cubierta central en la pontona.

Para evaluar la compresión en el borde interior de la pontona se consideran cargas puntuales a cada milímetro del perímetro de la circunferencia obteniendo un ángulo muy pequeño entre cargas, aproximándose a la carga uniformemente distribuida. Estas cargas puntuales tendrán un valor $F_H = F_r$.

Figura 15-2. Cargas puntuales sobre el borde interior de la pontona.

El número de puntos de carga, N_L , y el ángulo entre puntos, 2α , se obtiene como:

$$N_{L} = \frac{2\pi * R_{i}}{\Delta r(=1mm)}$$
(1.189)
$$2\alpha = 360^{\circ}/N_{L}$$
(1.190)

El momento producido entre dos cargas puntuales F_H y el esfuerzo de compresión resulta:

$$M_m = \frac{F_H * R_i}{2} * \left(\frac{1}{sen\alpha} - \frac{1}{\alpha}\right)$$
(1.191)

$$T_m = \frac{F_H}{2} * \left(\frac{1}{sen\alpha}\right) \tag{1.192}$$

El momento producido en la carga puntual F_H y el esfuerzo de tracción resulta:

$$M_r = -\frac{F_H * R_i}{2} * \left(\frac{1}{\alpha} - \frac{1}{tg\alpha}\right)$$
(1.193)

$$T_r = \frac{F_H}{2} * \left(\frac{1}{tg\alpha}\right) \tag{1.194}$$

Estos esfuerzos deben evaluarse en la sección transversal de la pontona, usando el área efectiva de la pontona y el módulo resistente. El cumplimiento de las siguientes expresiones asegura que la tensión de compresión en el borde interior de la pontona es aceptable.

- Compresión entre las cargas puntuales:

$$\frac{M_m}{Z_a} + \frac{T_m}{A_a} \le F_b \tag{1.195}$$

- Tracción en las cargas puntuales:

$$\frac{M_r}{Z_a} + \frac{T_r}{A_a} \le F_b \tag{1.196}$$

15.2 Cálculos - Deflexión y tensión

Comprobación de tensión y deflexión en la cubierta central	-t*(astaol ar)*-	0	162 10	N/m2	(Hacia shais)				
ruerza neta debida al peso propio de la cubierta rener en cuenta el empuje del producto para calcular el poso	= t $($ (psteel - ρ p) $*$ g	q	463.10	N/m2	(Hacia abajo)				
6 rener en cuema el empuje del producio para calcular el peso	, highig:		51						
La deflexión máxima en el centro de la cubierta se calcula con	n la ecuación (11.11-1). Desp	ués se obtiene la tensión de	la ecuación (11.11-2)					
$a * Ri^4$ v w^3									
$\frac{\mathbf{q} - \mathbf{q}}{\mathbf{E} + \mathbf{t}^4} = \mathbf{K}_1 + \frac{\mathbf{y}}{\mathbf{t}} + \mathbf{K}_2 + \left(\frac{\mathbf{y}}{\mathbf{t}}\right)$	Fc (11 11-1)	$A 1 = K1 * X + K2 * Y^2$							
$\sigma * Ri^2 - V = y + V = (y)^2$	Lo. (11.11 ⁻¹)	$\mathbf{M} = \mathbf{M} + \mathbf{M} + \mathbf{M} \mathbf{Z} + \mathbf{M} \mathbf{J}$							
$\frac{1}{E * t^2} - \kappa_3 * \frac{1}{t} + \kappa_4 * \left(\frac{1}{t}\right)$	Ec. (11.11-2)	$\sigma * B1 = K3*X + K4*X^3$							
	2	.	<u> </u>						
Caso para tomar los factores K1, K2, K3 y K4:	caso 3 - 5 33 / (1 x^2)	La placa de la cubierta está fijada por el perímetro y sostenida.							
	$= 3.53 / (1 - v^2)$ = 2.6 / (1 - v ²)	K1 K2	5.857 2.857	-					
	= 2 / (1 - v)	K3c	2.857	-	(en el centro)				
	= 0,976	K4c	0.976	-	(en el centro)				
	$= 4 / (1 - v^2)$	K3e	4.396	-	(en el borde)				
	= 1,73	K4e	1.730	-	(en el borde)				
	$= (\mathbf{q} + \mathbf{K}\mathbf{r}' + \mathbf{t}')/(\mathbf{E} + \mathbf{t}' + \mathbf{t}')$ = (\mathbf{R} + \mathbf{r} + \mathbf{r})/(\mathbf{F} + \mathbf{r} + \mathbf{r}))	AI Bl	401/9.74	- cm2 / kg					
		<i>2</i> 1	2.20	-1112 / Kg					
		$f(\mathbf{V}) = V 1 * \mathbf{V} + V 0 * \mathbf{V} \wedge 0$			Fuerzo que esta				
		$\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}} - \mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}}$	0	-	celda sea 0,				
				1	variando X.				
	= y / t	Х	25.26	-	Ejecutar SOLVER.				
Deflexión máxima en el centro de la cubierta: Ec. (11.11-1)	= X * t	У	167	mm					
Comprobación: grandes desplazamientos	OK. Es un caso	de grandes desplazamientos.							
	$- [V_2 \times V + V_4 \times V^{2}]/$								
Máxima esfuerzo en el <u>centro</u> de la cubierta	- [κου*λ + κ4υ*λ'2] / B1	σc	316.26	kg / cm2					
	-		31.04	N / mm2					
		Flexión	3.224	N / mm2					
		Diafragma	27.812	N / mm2					
	= $[K3e^{X} + K4e^{X^{2}}]/$								
Máximo esfuerzo en el <u>borde</u> de la cubierta	B1	σe	552.89	kg / cm2					
			54.26	N / mm2					
		Flexión	4.959	N / mm2					
		Diafragma	49.299	N / mm2					
Comprobación:	Cumple	σe, σc	< =	Fb					
La tensión en el <u>centro</u> de la cubierta debe ser igual o menor o	que la tensión admisible	316.26	< =	1698.33	kg/cm2				
La tensión en el <u>borde</u> de la cubierta debe ser igual o menor q	ue la tensión admisible	552.89	< =	1698.33	kg/cm2				
Comprobación de tensión en la placa del borde interno									
Euerza radial en el horde interno de la pontona	$= \sigma e^* t$	Fr	358 10	N / mm					
rueiza radiar en el borde interno de la pontona		1.1	558.10	circ.					
Reaccion en la parte superior del borde interno de la pontona debido a Fr	= Fr * hci / Hri	Frt	86.75	N / mm circ					
Reacción en la parte inferior del borde interno de la pontona	– Fr. F.++	Frb	271 25	N / mm					
debido a Fr		11U ~	271.33	circ.					
Considerando puntos de carga a cada mm de circunferencia	se obtiene un ángulo muy peq	ueno entre carga y carga	1	mm					
Perímetro de la cubierta central	$=2*\pi$ *Ri	Pcd	87525	mm					
Número de puntos de carga en la circunferencia	$=$ Pcd / Δr	NL	87525	unidades					
Ángulo entre puntos de carga	$= \Delta r / Pcd * 360^{\circ}$	2α	0.0041131	0					
			0.0000718	rad					
Media ángulo entre puntos de carga		α	0.0020566	rad					
		1/α	0.0000339	rau 1/rad					
		$1 / sen \alpha$	27860	-					
		1 / tg α	27860	-					
				1.5.7./					
Carga horizontal en el borde interno	= Fr	FH	0.36	kN /mm					
				0110.					
Momento entre las cargas FH	= FH * Ri / 2 * [(1/sen α) -	Mm	14.9210	N * mm					
Estuarzo oirounforonaiol entre les corress EU	$(1/\alpha)$] - FH / 2 * (1/2000)	Tm	4000	LN					
Estucizo circumerenciar entre las cargas FH	$= 11172 \cdot (1/\text{sena})$	1 111	4988	NTN					

Momento en las cargas FH	= - FH * Ri / 2 * $[(1/\alpha) - (1/\sin\alpha)]$	Mr	-29.8420 N * mm	(signo negativo indica fuerza hacia dentro de la pontona)
Esfuerzo circunferencial en las cargas FH	$= FH / 2 * (1/tg\alpha)$	Tr	4988 kN	

Propiedades de la pontona (transversales)			= b*d		distancia de cada CDG al borde interno	momento estático respecto a x	CDG en Y	distancia en CDG general y particular		$=(bd^{3})/12$	$= I(cdg) + A*h^2$
Área	b	d	Área (A)		У	A*y	$Y = \Sigma(A^*y) / \Sigma A$	h = Y - y	A*h²	I (cdg)	Ixx
(mm2)	[mm]	[mm]	[mm2]		[mm]	[mm3]	[mm]	[mm]	[mm4]	[mm4]	[mm4]
1 - Placa interna	600	12	7200	= Ti / 2	6	43200		1437.87	14885794249	86400	14885880649
2 - Placa superior	6	2873	17235	$=$ Lpo/2 * cos β pb + Ti	1447	24939111	1442.07	-3.13	168801.7522	11850961043	11851129845
3 - Placa inferior	6.6	2876	18979	$=$ Lpi/2 * cos β pt + Ti	1447	27462928	1443.87	-3.13	185884.3473	13078737141	13078923025
4 - Placa externa	900	8	7200	= Pw - To/2	2866	20635200		-1422.13	14561657744	38400	14561696144
		$\Sigma A =$	50614		Σ(A*y) =	73080439				$\Sigma I x x =$	54377629663

Área de la sección efectiva de la pontona Modulo resistente de la sección de la pontona	= IXX / Y		Aa Za		50614 37661017	mm2 mm3		
Límite elástico de material de las placas de las pontonas	A 36		Fy		250	Mpa = N/mm2		
Tensión admisible	= 0,66 * Fy		Fb		165	N/mm2		
Tensión entre los puntos de carga								
Cargas a flexión	= Mm / Za		fbm		3.96E-07	N/mm2		
Cargas circunferenciales a compresión	= Tm / A		fam		98.557	N/mm2		
Comprobación:		Cumple	fbm/fpb + fam/fpt		< =	Fb		
La combinación de tensiones debe ser menor que la tensión admisible			ç	98.56	< =		165	MPa
Tensión entre los puntos de carga								
Cargas a flexión	= Mr / Za		fbr		7.92E-07	N/mm2		
Cargas circunferenciales a tensión	= Tr / A		far		98.557	N/mm2		
Comprobación:		Cumple	fbr/fpb + far/fpt		< =	Fb		
La combinación de tensiones debe ser menor que la tensión admisible			ç	98.56	< =		165	MPa

16 PANDEO LOCAL EN LA PONTONA DEL TFI

16.1 Pandeo local en la pontona

Los esfuerzos de compresión que sufren las placas superior e inferior de la pontona pueden provocar pandeo local, y serán evaluados tanto en el centro de cada placa como en el centro del borde lago mediante la fórmula del libro de Roark para tensiones y deformaciones de placas planas con bordes rectos y empotrados, y espesor constante donde actúa una carga uniforme, q, sobre toda la placa (tabla 11.4, caso 8a).

Figura 16-1. Geometría de las placas superior e inferior de la pontona.

- Tensión máxima en el centro del borde mayor (a):

$$\sigma_{\max} = \frac{-\beta_1 * q * b^2}{t^2}$$
(1.197)

- Tensión en el centro de la placa:

$$\sigma = \frac{\beta_2 * q * b^2}{t^2}$$
(1.198)

- Deflexión en el borde de la placa:

$$y_{\max} = \frac{\alpha * q * b^4}{E * t^3}$$
(1.199)

Los factores α , β_1 , β_2 dependen de la relación de aspecto a / b de la placa:

a/b	1	1.2	1.4	1.6	1.8	2	2.01
β1	0.3078	0.3834	0.4356	0.468	0.4872	0.4974	0.5
β2	0.1386	0.1794	0.2094	0.2286	0.2406	0.2472	0.25
α	0.0138	0.0188	0.0226	0.0251	0.0267	0.0277	0.0284

Tabla 16-A. Constantes en función de la relación de aspecto a/b.

La tensión producida debe ser menor que la tensión admisible para la flexión de la placa. Por otro lado, de acuerdo a ASCE 7.05, la deflexión en elementos horizontales se limitará a 1/600 del espacio entre apoyos. Esta última condición será la que decante el número de rigidizadores radiales y circunferenciales necesarios para cumplir con el criterio de servicio, acotando los recintos con contorno empotrado:

$$[\sigma_{\max};\sigma] \le \sigma_{adm} = 2/3 * F_{v} \tag{1.200}$$

$$y_{\max} \le \delta_{adm} = a/360 \tag{1.201}$$

La carga uniforme en la placa superior de la pontona, q_t , es producida por el peso propio de la placa y por la carga viva considerada sobre el techo flotante, D_L , cuyo valor se fija en 1,22 kPa:

$$q_t = t_p * \rho_{steel} + D_L \tag{1.202}$$

La carga uniforme en la placa inferior de la pontona, q_b , es producida por el peso propio de la pontona menos

el empuje del producto, tomando como altura sumergida la máxima del caso 4 cuando el techo tiende a volcar por el efecto de la cubierta y dos compartimentos fuera de servicio, ecuación (1.182) :

$$q_{b} = abs \left[\frac{W_{p}}{A_{pe}} - h_{2}^{'} * \rho_{p} \right]$$
(1.203)

16.1.1 Rigidizadores radiales en la pontona

Para rigidizar las placas superior e inferior de la pontona se emplean perfiles que se opongan a la flexión de las mismas. Para calcular las propiedades del área efectiva, se toma como ancho efectivo resistente de la placa una distancia de 16*t a ambos lados del perfil.

Figura 16-2. Sección efectiva resistente a la flexión de la placa superior/inferior de la pontona.

Para el dimensionamiento del perfil, se simplificará al estudio de una viga simple biempotrada de longitud el ancho de la pontona P_w con las propiedades de la sección efectiva de Figura 16-2, sobre la que actúa una carga uniforme, calculada en las ecuaciones (1.202) y (1.203), actuando en un ancho medio:

Placa superior:
$$w_t = q_t * \frac{a+c}{2}$$

Placa inferior: $w_b = q_b * \frac{a+c}{2}$
(1.204)

donde:

a: arco mayor de la porción sectorizada de la placa.

c: arco menor de la porción sectorizada de la placa.

Figura 16-3. Porción sectorizada de la placa.

Según la resistencia de materiales, en una viga simple empotrada bajo una carga uniforme el momento máximo y la flecha máxima se dan en el punto medio de la viga, alcanzando los siguientes valores:

$$M = \frac{q^* L^2}{24}$$
(1.205)
$$w_{\text{max}} = \frac{q^* L^4}{384^* E^* I}$$
(1.206)

Las comprobaciones de flexión son las mismas que para las placas, donde debe cumplirse que:

$$\frac{M}{Z} < f_{adm} = 2/3 * F_y \tag{1.207}$$

$$y_{\rm max} < L/360$$
 (1.208)

donde:

Z: es el módulo resistente de la sección efectiva resistente.

Para el dimensionamiento de los rigidizadores radiales se tomará el perfil angular del caso más desfavorable entre la placa superior y la inferior. Los perfiles rigidizadores circunferencial serán instalados en la misma serie angular que los radiales. Cuando las diferencias entre las cargas en la parte superior e inferior de pontona no son muy grandes, escoger un mismo tipo de perfilería optimiza el aprovisionamiento y la construcción del refuerzo.

16.2 Cálculos - Pandeo local en la pontona

Comprobación para pandeo local de la placa superior de la pontona		_	_	_	_
Cargas					
Espesor de la placa superior de la pontona		tp	6	mm	
Peso propio de la placa superior de la pontona	$= \rho$ steel * tp	DL	47.1	kg/m2	
Carga viva		LL	1.22	kPa	Suposición
			124.3	kg/m2	
Carga total	= DL + LL	qt	171.4	kg/m2	
			0.01714	kg/cm2	
		11	2	1	
N° rigidizadores radiales por compartimento		nrdb	2	uds	
N° rigidizadores circunferenciales por compartimento		ncdb	1	uds	
Lada automa	$-\pi * \Lambda / (n_0 * (n_1 dh))$	0	2100	122.122	
Lado externo	$= \pi + A / (\text{inc} + (\text{int} db))$ = $\text{Dw} / (\text{nod}b+1)$	a b	1/25	mm	
Lado conto - radial	= rw/(ncu0+1) = $\pi * P/(nc * nrdb)$	0	1455	mm	
Patie o/b	$= \pi + \mathbf{B} / (\mathbf{nc} + \mathbf{ntub})$	c a/b	1 5 2 2	111111	
Ratio a/o Roark's Formulas for Stress and Strain - 7th Edition (Table 11 A Cas	(0,8a)	a/u (nosición)	1.552	-	
Rourk's Pormulus for Siress and Sirain - 7in Eauton, (1able11.4, Cas	Coeficientes	(posicion) B1	0 45706	_	
	Coencientes	рт 62	0.7010	-	
		p∠ α	0.22212	-	
		u.	0.02420		
Tensión máxima en el centro del borde largo	$= (\beta_1 * \alpha_1 * b^2) / (tn^2)$	σc1	448.16	kg/cm2	
Tensión máxima en el centro	$(\beta^{1} + q^{2} + b^{2})/(tp^{2})$ = $(\beta^{2} + q^{2} + b^{2})/(tp^{2})$	σο	217.792	kg/cm^2	
	$(p_2 q_1 v), (p_j)$	00	217.772	Kg/ CIII2	
Comprobación:	Cumple	σε1.σε	<=	Fb	
La tensión en el centro del borde largo debe ser igual o menor que la	tensión admisible	448.16	<=	1698.33	kg/cm2
La tensión en el centro de la placa debe ser igual o menor que la tensi	ón admisible	217.79	<=	1698.33	kg/cm2
Deflexión máxima	= ($\alpha * qt * b^4$) / (E*tp ³)	δa	4.0253	mm	
Deflexión admisible	= max [a;b] / 360	δadm	6.1087	mm	
Comprobación:	Cumple	ба	<=	δadm	
La deflexión en el centro de la placa debe ser menor que L/360		4.0253		6.1087	mm
Communicación nom nondes local de la place de fonde de la nontene.					
Cargas					
		-	_	_	_
Espesor de la placa de fondo del pontona		- th	- 66	- mm	_
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona	= Wn / Ane	tb DL	- 6.6 238	_ mm kg/m2	_
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona	= Wp / Ape	tb DL	- 6.6 238	- mm kg/m2	- h1 es la de la
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido	= Wp / Ape = (h1 + hpi + hci+d1) *	tb DL Uw	- 6.6 238 543	- mm kg/m2 kg/m2	- h1 es la de la condición 4 de
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido	= Wp / Ape = (h1 + hpi + hci+d1) * ρs	tb DL Uw	- 6.6 238 543	- mm kg/m2 kg/m2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL	tb DL Uw ab	- 6.6 238 543 304.8	- mm kg/m2 kg/m2 kg/m2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL	tb DL Uw qb	- 6.6 238 543 304.8 0.03048	- mm kg/m2 kg/m2 kg/m2 kg/cm2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL	tb DL Uw qb	- 6.6 238 543 304.8 0.03048	- mm kg/m2 kg/m2 kg/m2 kg/cm2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL = ($\beta 1 * qb * b^2$) / (tb ²)	tb DL Uw qb σc1	- 6.6 238 543 304.8 0.03048 658.50	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL = ($\beta 1$ * qb * b ²) / (tb ²) = ($\beta 2$ * qb * b ²) / (tb ²)	tb DL Uw qb σc1 σc	- 6.6 238 543 304.8 0.03048 658.50 320.01	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL = ($\beta 1 * qb * b^2$) / (tb ²) = ($\beta 2 * qb * b^2$) / (tb ²)	tb DL Uw qb σc1 σc	- 6.6 238 543 304.8 0.03048 658.50 320.01	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación:	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL = ($\beta 1 * qb * b^2$) / (tb ²) = ($\beta 2 * qb * b^2$) / (tb ²) Cumple	tb DL Uw qb σc1 σc σc1, σc	- 6.6 238 543 304.8 0.03048 658.50 320.01 < =	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2 Fb	- h1 es la de la condición 4 de estabilidad
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación: La tensión en el centro del borde largo debe ser igual o menor que la	= Wp / Ape = (h1 + hpi + hci+d1) * ρs = Uw - DL = ($\beta 1$ * qb * b ²) / (tb ²) = ($\beta 2$ * qb * b ²) / (tb ²) Cumple tensión admisible	tb DL Uw qb σc1 σc σc1, σc 658.50	- 6.6 238 543 304.8 0.03048 658.50 320.01 <= <=	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2 Fb 1698.33	- h1 es la de la condición 4 de estabilidad kg/cm2
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación: La tensión en el centro del borde largo debe ser igual o menor que la La tensión en el centro de la placa debe ser igual o menor que la tensi	$= Wp / Ape$ $= (h1 + hpi + hci+d1) *$ ps $= Uw - DL$ $= (\beta1 * qb * b^{2}) / (tb^{2})$ $= (\beta2 * qb * b^{2}) / (tb^{2})$ Cumple tensión admisible ón admisible	tb DL Uw qb σc1 σc σc1, σc 658.50 320.01	- 6.6 238 543 304.8 0.03048 658.50 320.01 <= <= <=	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 Fb 1698.33 1698.33	- h1 es la de la condición 4 de estabilidad kg/cm2 kg/cm2
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación: La tensión en el centro del borde largo debe ser igual o menor que la La tensión en el centro de la placa debe ser igual o menor que la tensi	$= Wp / Ape$ $= (h1 + hpi + hci+d1) *$ ps $= Uw - DL$ $= (\beta 1 * qb * b^{2}) / (tb^{2})$ $= (\beta 2 * qb * b^{2}) / (tb^{2})$ Cumple tension admisible for admisible	tb DL Uw qb σc1 σc σc1, σc 658.50 320.01	- 6.6 238 543 304.8 0.03048 658.50 320.01 <= <= <= <=	- mm kg/m2 kg/m2 kg/m2 kg/cm2 kg/cm2 Fb 1698.33 1698.33	- h1 es la de la condición 4 de estabilidad kg/cm2 kg/cm2
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación: La tensión en el centro del borde largo debe ser igual o menor que la La tensión en el centro de la placa debe ser igual o menor que la tensi	$= Wp / Ape$ $= (h1 + hpi + hci+d1) *$ ps $= Uw - DL$ $= (\beta1 * qb * b^{2}) / (tb^{2})$ $= (\beta2 * qb * b^{2}) / (tb^{2})$ $Cumple$ tensión admisible $= (\alpha * qb * b^{4}) /$	- tb DL Uw qb σc1 σc σc1, σc 658.50 320.01	- 6.6 238 543 304.8 0.03048 658.50 320.01 <= <= <= <= < =	- mm kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2 Fb 1698.33 1698.33	- h1 es la de la condición 4 de estabilidad kg/cm2 kg/cm2
Espesor de la placa de fondo del pontona Peso propio de la placa de fondo de la pontona Empuje hacia arriba debida a la presión del liquido Empuje total hacia arriba en la placa de fondo de la pontona Tensión máxima en el centro del borde largo Tensión máxima en el centro Comprobación: La tensión en el centro del borde largo debe ser igual o menor que la La tensión en el centro de la placa debe ser igual o menor que la tensi Deflexión máxima	$= Wp / Ape$ $= (h1 + hpi + hci+d1) *$ ps $= Uw - DL$ $= (\beta1 * qb * b^{2}) / (tb^{2})$ $= (\beta2 * qb * b^{2}) / (tb^{2})$ $Cumple$ tensión admisible $= (\alpha * qb * b^{4}) / (E*tp^{3})$	tb DL Uw qb σc1 σc σc1, σc 658.50 320.01	- 6.6 238 543 304.8 0.03048 658.50 320.01 <= <= <= <= 5.3769	- mm kg/m2 kg/m2 kg/cm2 kg/cm2 kg/cm2 Fb 1698.33 1698.33 mm	- h1 es la de la condición 4 de estabilidad kg/cm2 kg/cm2

Cumple da Comprobación: < =δadm La deflexión en el centro de la placa debe ser menor que L/360 5.3769 6.1087 mm

Diseño del rigidizador superior de la pontona

Perfil angular seleccionado	L 60x6*			
Altura del perfil rigidizador		bperf	60	mm
Espesor del perfil rigidizador		tperf	6	mm
Espesor de la placa superior de la pontona		tp	6	mm
Ancho de la sección combinada	= tp + bperf	ds	66	mm
Contribución efectiva de la placa de la pontona a la sección compuesta	= 2* 16*tp+ tperf	be	198	mm

			= b*d		Distancia de cada CDG al borde interno	Momento estático respecto a x	CDG en Y Y2	Distanci CDG get y particu	a en neral Ilar		=	(bd ³)/12	$= In(cdg) + A^*h^2$
Área	b	d	Área (A)		У	A*y	$= \Sigma(A^*y) / \Sigma A$	h = Y2	-y /	A*h²	Iı	n (cdg)	Ixx
(mm2)	[cm]	[cm]	[cm2]		[cm]	[cm3]	[cm]] [[cm]	[cr	m4]	[cm4]	[cm4]
1 - Perfil	L 60x6*	-	6.91	= cdg perfil + tp	4.9	33.93	3 2.00	-	2.91	58	3.70	22.8000	81.5029
2 - Placa superior	19.8	0.6	11.88	= tp /2	0.3	3.56	5 2.00		1.70	34	.14	0.3564	34.5009
		$\Sigma A =$	18.79		$\Sigma(A^*y) =$	37.49)					$\Sigma I x x =$	116.00
Inercia en el eje xx de la	sección con	npuesta	la sección				ΣIxx	116.00	cm4				
compuesta	exterior y e			= d	s - Y2		Ymax	4.60	cm				
Modulo resistente de la s	sección efect	tiva		$=\Sigma$	Ixx / Ymax		Ζ	25.19	cm3				
Carga de empuje hacia a	rriba total er	n el rigidi	zador				qt	171 0.0171	kg/m/ kg/cn	2 n2			
Carga máxima en el rigio	dizador			= q	t * (a+c) / 2		wt	3.44769	kg/cn	n			
Longitud del rigidizador				= P	W		Ls	285	cm				
Máximo momento por fl	exión en el 1	rigidizado	or	= w	$t * Ls^2 / 12$		Μ	23336.5	kg*cı	m			
Tensión por flexión en e	l rigidizador			$= \mathbf{N}$	4 / Z		fb	926.325	kg/cn	n2			
Tensión admisible a flex	ión			= 0	,66 * Fy	~ 1	fadm	1681.35	kg/cn	n2			
Comprobación:	1	1		1.11.1.		Cumple	tb	<=	fadm	01.25	1 /	2	
La tension por flexion de	ebe ser mend	or que la l	tension adm	iisible		45%	926.32	< =	10	81.35	кg/ст	2	
Deflexión en el rigidizad	lor			= w	vt * Ls4 / (384	* E * I)	δs	0.25181	cm				
C					× ×	,		2.51812	mm				
Deflexión admisible (=S	pan/360)			$= \Gamma$.s / 360		δsadm	0.79167	cm				
								7.91667	mm				
Comprobación:						Cumple	δs	<=	δsadn	n			
La deflexión en el rigidiz	zador debe s	er menor	que la adm	isible		68%	2.52	< =		7.92	mm		

Diseño del rigidizador del fondo de la pontona

Perfil angular seleccionado Altura del perfil rigidizador Espesor del perfil rigidizador	L 60x6*	bperf tperf	60 6	mm mm
Espesor de la placa de fondo del pontona Ancho de la sección combinada Contribución de la placa de la pontona a la sección compuesta	= tb + bperf = 2* 16*tb+ tperf	tb ds be	6.6 66.6 217.2	mm mm mm

			= b*d		Distancia de cada CDG al borde interno	Momento estático respecto a x	CDG en Y	Distancia en CDG general y particular		$= (bd^3)/12$	$= In(cdg) + A^*h^2$
Área	b	d	Área (A)		У	A*y	$\begin{array}{l} Y2 \\ = \Sigma(A^*y) / \\ \Sigma A \end{array}$	h = Y2 -y	A*h ²	In (cdg)	Ixx
(mm2)	[cm]	[cm]	[cm2]		[cm]	[cm3]	[cm]	[cm]	[cm4]	[cm4]	[cm4]
1 - Perfil	L 60x6*	-	6.91	= cdg perfil + tb	4.97	34.34	1.94	-2.97	61.14	22.8000	83.9446
2 - Placa superior	21.72	0.66	14.34	= tb /2	0.33	4.73	1.84	1.67	39.76	0.5204	40.2761

$$\Sigma A = 21.25$$
 $\Sigma (A^*y) = 39.07$ $\Sigma Ixx = 124.22$

Inercia en el eje xx de la sección compuesta		ΣIxx	124.22	cm4
Distancia desde el borde exterior y el CDG de la sección compuesta	= ds - Y2	Ymax	4.82	cm
Modulo resistente de la sección efectiva	$= \Sigma Ixx / Ymax$	Ζ	25.77	cm3
Carga de empuje hacia arriba total en el rigidizador		qb	305	kg/m2
			0.0305	kg/cm2
Carga máxima en el rigidizador	= qb * (a+c) / 2	wb	6.1297	kg/cm
Longitud del rigidizador	= Pw	Ls	285	cm
Máximo momento por flexión en el rigidizador	= wb * Ls ² / 12	Μ	41490	kg*cm
Tensión por flexión en el rigidizador	= M / Z	fb	1610	kg/cm2
Tensión admisible a flexión	= 0,66 * Fy	fadm	1681.35	kg/cm2
Comprobación:	Cump	le fb	< =	fadm
La tensión por flexión debe ser menor que la tensión admisible	4	% 1610.18	< =	1681.35 kg/cm2
Deflexión en el rigidizador	= wb * Ls ⁴ / (384 * E * I) δs	0.42	cm
			4.181	mm
Deflexión admisible (=Span/360)	= Ls / 360	δsadm	0.79	cm
			7.917	mm
Comprobación:	Cump	le δs	<=	δsadm
La deflexión en el rigidizador debe ser menor que la admisible	47	% 4.18	<=	7.92 mm

17.1 Soporte para el techo flotante

Cuando el tanque se encuentra vacío, el techo flotante necesita ser soportado en el fondo respetando una cierta distancia al mismo para no interferir con elementos ubicados en las cotas bajas del tanque tales como líneas de drenajes, mezcladores, calentadores, así como para permitir labores de mantenimiento.

Estas piernas de apoyo consisten en dos tubos concéntricos:

- El exterior es el tubo más corto, habitualmente de DN 4" Schedule 80, y se suelda al techo flotante. Su función es proporcionar alojamiento al tubo interior.
- El interior conforma la parte resistente de la pierna, y se une al exterior mediante un pasador de acero alojado entre los dos tubos. El tamaño típico de estos tubos es DN 3" Schedule 80.

La selección de los tubos presenta un ajuste radial de 4 mm, el cual es suficiente para absorber los cambios de tamaño del ensamblado debido a la corrosión o el ingreso de suciedad. Para evitar el vapor del producto escape por el juego entre tubos y por los agujeros de los pasadores, cada pata es cubierta con un tubo o bolsa de tela no permeable, cerrado en la parte superior y sujeto firmemente alrededor de tubo exterior de la pata en la parte inferior. Son conocidos en la industria de tanques como "calcetines de pierna".

Figura 17-2. Calcetines de las piernas de apoyo.

Las piernas tienen dos posiciones para los pasadores que posibilitan diferentes alturas del techo respecto al suelo.

Una altura se usa para las condiciones normales de operación, y la otra proporciona una altura mayor de pierna que se emplea cuando el tanque está fuera de servicio, facilitando el registro de personal de mantenimiento. El ajuste de los pasadores se realiza manualmente mientras el techo se encuentra flotando, y es la razón por la que el tubo interior se instala en 3", ya que un diámetro mayor resulta más difícil de manejar.

La zona del fondo en la que las piernas de apoyo asientan se refuerzan con una placa que distribuye la carga en la placa de fondo.

Para una estimación inicial del número de piernas de apoyo, se diferenciará entre las piernas ubicadas en la pontona y las colocadas en la cubierta central. Independientemente de las indicaciones abajo expuestas, se comprobará la resistencia por pandeo de estos elementos según las indicaciones del apartado 17.2:

- En la pontona, la distancia circunferencial entre piernas debe ser menor que 6 metros.
- En la cubierta central se dispondrá una pierna cada 34m² en tanques con diámetros menor a 60 metros, y casa 26m² cuando el diámetro supere los 60 metros.

En la pontona, las piernas se colocarán una distancia igual a la tercera parte del ancho de la pontona, P_w , respecto al borde exterior. Para la cubierta central, estos elementos de soportado se instalarán radialmente equiespaciados entre el centro del tanque y el borde interior de la pontona.

El área proporcional de techo flotante que cada anillo de piernas de apoyo soporta se distribuye según la Figura 17-3. En ella, el peso de la pontona es íntegramente asumido por las piernas colocadas en los compartimentos, mientras que el peso de la cubierta central se reparte equitativamente entre los diferentes círculos de piernas.

Figura 17-3. Reparto de cargas en las piernas de soportado.

17.2 Carga de diseño para los soportes

La combinación de cargas que deben resistir los soportes del techo flotante es:

$$D_f + \max[P_{fe}; L_{f1}; L_{f2}]$$
(1.209)

siendo:

 D_f : peso muerto del techo flotante interno. Dependiendo de la pierna de apoyo en estudio, puede tomar el valor de la carga muerta debida a la pontona, D_{fo} , o la carga muerta debida a la cubierta central, D_{fd} .

 P_{ie} : presión externa de diseño del techo flotante interno (al menos 0.24 kPa).

 L_{f1} : carga viva uniforme del techo (0,6 kPa si no hay drenajes automáticos, y 0,24 kPa en caso de haberlos).

 L_{f^2} : carga máxima concentrada en una pierna de apoyo por el paso de 2 hombres sobre el techo (2.2 kN sobre $0.1m^2$).

Tanto los soportes del techo como los aparejos estructurales de la cubierta se diseñarán para resistir dicha combinación de cargas. La carga axial en las piernas de apoyo será diferente dependiendo del área que cada

circulo de piernas soporta. El valor máximo de diseño, N_{ed} , no deberá ser mayor que la resistencia de cálculo a pandeo para elementos sometidos a compresión, $N_{b,Rd}$, según EN 1993 1-1.

$$\frac{N_{ed}}{N_{b,Rd}} = \frac{N_{ed}}{\chi^* A^* \frac{F_y}{\gamma_{M1}}} \le 1.0$$
(1.210)

donde:

 γ_{M1} : coeficiente parcial para la resistencia de elementos estructurales a inestabilidad. Para edificios, es igual a 1.

 F_v : límite elástico del material de la pierna de apoyo.

A : área seccional del tubo interior de la pierna de apoyo.

 χ : coeficiente de reducción para el modo de pandeo considerado.

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \le 1.0$$

$$\phi = \frac{1}{2} * \left[1 + \alpha * (\overline{\lambda} - 0, 2) + \overline{\lambda}^2 \right]$$
(1.211)

 $\bar{\lambda}$: esbeltez adimensional = λ / λ_{ref} .

 λ : esbeltez de la pierna de apoyo = $\beta * L/i$.

 β : Coeficiente de pandeo dependiente de las condiciones de contorno de la pierna de apoyo. Se toma un valor igual a 2 al considerarse una columna empotrada-libre.

L: longitud de pandeo. Se tomará el valor de la pierna de apoyo más larga, mayorada por 1.33 para estudiar un caso más conservativo.

i : Radio de giro del tubo interior de la pierna de apoyo.

 λ_{ref} : esbeltez referencia del material de la pierna de apoyo = $\pi^* \sqrt{E/F_y}$

 α : coeficiente de imperfección del tubo interior. Dependerá de la curva de pandeo del material.

EN 1993 1-1. Tabla 6.1					
Curva de pandeo	a0	а	b	с	d
Coeficiente de imperfección (α)	0.13	0.21	0.34	0.49	0.76

Tabla 17-A. Coeficientes de imperfección para las curvas de pandeo.

Sección transversal Límites Pandeo alrededor del eje S 235 S 275 S 355 S 420 - - - - - Sección transversal - - - - Acabados en caliente - - - -					Curva de	pandeo
Second Acabados en caliente cualquiera a	Sección transversal		Límites	Pandeo alrededor del eje	S 235 S 275 S 355 S 420	S 460
Se	I.	۷ ۷				
	iones cas		Acabados en caliente	cualquiera	a	a _o
			Conformados en frío	cualquiera	с	c

Figura 17-4. Elección de la curva de pandeo para secciones huecas.

17.3 Cálculos - Soportes TFI

Cálculo de los soportes del techo interno flotante				
Peso total del pontón y accesorios		Wp	60546 kg	
Área de la pontona (corona circular)	$=\pi * (A^2 - B^2)/4$	Ap	277 m2	
	= Wp / Ap	wp	219 kg/m2	
Peso total de la cubierta y accesorios		Wd	39200 kg	
Área de la cubierta	$=\pi * \mathrm{B}^2 / 4$	Ad	610 m2	
	= Wd / Ad	wd	<mark>64</mark> kg/m2	

Existen dos tipos de alturas libres desde el techo flotante hasta el fondo:

- Posición baja: para operación. Está condicionada por los componentes internos del tanque incluyendo las tubuladuras de las virolas con sus proyecciones internas.

- Posición alta: para mantenimiento. Debe haber 2m libres entre la parte mas baja de techo flotante y el fondo.

Radio externo de la pontona	= A/2	Ro	16800	mm	
Radio interno de la pontona	= B/2	Ri	13930	mm	
Altura ganada debida a la pdte del fondo en A	=(D/2 -Ro) *tg φ	hA	3	mm	
Altura ganada debida a la pdte del fondo en B	=(D/2 -Ri) *tg \$	hB	51	mm	
Distancia desde la cubierta central hasta el punto bajo de la pontona	= hci + hpi	hpon	325	mm	
Altura de las tubuladuras		hnooz	1500	mm	
Altura libre para actividades de mantenimiento		ho&m	2000	mm	
Altura libre máxima	= max (hnooz;ho&m)	Hlibre	2000	mm	
Posición de cubierta central si la esquina inferior exterior de la pontona es el punto más bajo (sin pendiente) Posición de la cubierte contral si el centro es el punto más bajo (sin	= hA + Hlibre + hpon	H1	2329	mm	
pendiente)	= hcone+Hlibre	H2	2283	mm	
Posición de la cubierta central sobre el suelo cuando descansa sobre él (sin pendiente)	= max (H1;H2)	Hd	2329	mm	
Ancho de la pontona		Pw	2870	mm	
Posición en la pontona desde borde exterior	= Pw / 3	rle	957	mm	
Número de radios para piernas de apoyo		n	4	ud	
Radio de la primera pierna de apoyo	= Ro - r1e	r1	15843	mm	
Espacio entre los niveles de niernas de anovo	$= (\mathbf{R}_{0} - \mathbf{P}_{W}) / [(n_{-}1)/2]$	gap_exac	2321.67	mm	
Redondear al múltiplo inferior de:	10	gap	2320.00	mm	
	1				
Numero de piernas de apoyo en el anillo exterior #1		nl	24	uds	
Radio del anillo exterior #1		r1	15843	mm	
Distancia perimetral entre piernas de apoyo #1	= perímetro / ni	p1	4148	mm	Distancia menor a 6 m
Área soportada por cada pierna de apovo del anillo #1	= Area[Ro-Ri] / n1	al	11.54	m2	Area soportada por cada pierna $< 34 \text{ m2}$
Altura ganada debida a la pdte del fondo #1	= $(D/2 - ri) * tg \phi$	h1	19	mm	1
Longitud de la pierna de apoyo #1	= Hd-hi+1000	11	3309	mm	
	2				
Numero de piernas de apoyo en el anillo exterior #2		n2	16	uds	
Radio del anillo exterior #2	= Ri - gap	r2	11610	mm	
Distancia perimetral entre piernas de apoyo #2	= perímetro / ni	p2	4559	mm	Distancia menor a 6 m
Área soportada por cada pierna de apoyo del anillo #2	$=\pi^{*}[Ri^{2}-((ri+ri+1)/2)^{2}]/ni$	a2	21.15	m2	Area soportada por cada pierna < 34 m2
Altura ganada debida a la pdte del fondo #2	=(D/2 -ri) *tg φ	h2	90	mm	
Longitud de la pierna de apoyo #2	= Hd-hi+1000	12	3239	mm	
Numero de niemas de anovo en el anillo exterior #2	3	m2	8	ude	
Rumero de piernas de apoyo en el aniño exterior #5	- r: 1 2*cor	115 112	6070	uus	
Distancia parimetral antra nierros de anova #2	$-n-1 - 2 \cdot gap$	15 m ²	5474		Distancia manana 6 m
Distancia perimetral entre piernas de apoyo #5		p5	3474	111111	
Área soportada por cada pierna de apoyo del anillo #3	$= \pi^{-1} \left[((r_{i-1}+r_{i})/2)^{2} - ((r_{i}+r_{i+1})/2)^{2} \right] / n_{i}$	a3	25.40	m2	Area soportada por cada pierna $< 34 \text{ m2}$
Altura ganada debida a la pdte del fondo #3	=(D/2 -ri) *tg ϕ	h3	167	mm	
Longitud de la pierna de apoyo #3	= Hd-hi+1000	13	3162	mm	
	4	Ļ			
Numero de piernas de apoyo en el anillo exterior #4		n4	4	uds	
Radio del anillo exterior #4	=ri-1 - 2*gap	r4	2330	mm	

API 650, Арр.Н, Н.4.6.3

Distancia perimetral entre piernas de apoyo #4	= perímetro / ni	p4	3660 mm	Distancia menor a 6 m
Área soportada por cada pierna de apoyo del anillo #4	$=\pi^{*}[((r_{i-1}+r_{i})/2)^{2}]/n_{i}$	a4	16.98 m2	Area soportada por cada pierna < 34 m2
Altura ganada debida a la pdte del fondo #4	=(D/2 -ri) *tg φ	h4	245 mm	
Longitud de la pierna de apoyo #4	= Hd-hi+1000	14	3084 mm	

Según API 650 App.H, H.4.2.2.2 las piernas de apoyo del techo flotante se diseñan con la siguiente combinación de cargas: = Df + max (Lf1, Lf2, Pfe)

Carga viva uniforme del techo	Sin drenajes automáticos	Lf1	0.6	kPa	API 650 App.H, H.4.2.2.2
Carga máxima concentrada en una pierna de apoyo	peso de 2 hombres caminando por el techo = 2,2 kN	Lf2	2.2	kg/m2 kN	API 650 App.H, H.4.2.2.2
	-	D .2	224.18 0.24	kg kPa	API 650 App.H,
Presion externa de diseño del techo flotante interno		Pfe	24.46	kg/m2	H.4.2.2.2
Carga muerta total de las pontona del TFI Carga axial máxima en la pierna de apoyo de la pontona	= wp $= a1 * (Dfp+Lf1)$	Dfp Lp1	218.52 3229	kg/m2 kg	
	= a1 * (Dfp) + Lf2 $= a1 * (Dfp+Pfe)$	Lp2 Lpe	2747 2805	kg kg	
Carga muerta total de la cubierta central del TFI	$= \max (Lp1, Lp2, Lpe)$ $= wd$	Lp Dfd	64.30	кg kg/m2	
Carga axial máxima en la pierna de apoyo de la cubierta central	$= \max (a2, a3, a4) *$ (Dfd+Lf1)	Ld1	3186	kg	
	$= \max (a2,a3,a4) * (Dfd) +$ Lf2 $= \max (a2,a3,a4) *$	Ld2	1858	kg	
	(Dfd+Pfe) = max (Ld1, Ld2, Lde)	Lde Ld	2255 3186	kg kg	
Área limitante: reducir en caso de no cumplir criterio de compresión ¿Cumple el criterio de compresión?	¿Ned < Nb,Rd?	al Cumple	11.54	m2	
Máxima altura de la pierna de apoyo	=max (Li) = LL * 1.33 (lado conservativo)	LL	3309 4402	mm	
Selección del tamaño de la pierna de apovo - Tubo interno		Le	4102	mm	
Material Tamaño nominal de la tubería (NPS)	A 53 Gr. B	Fy "	240 88.9	Mpa mm	ASME B31.1 (diámetro externo)
Espesor Diámetro interno	SCH 80	tw Di	7.62 73.66	mm mm	ASME B36.10M
Área transversal de acero Peso unitario del tubo interior	$= \pi/4 (Do^2-Di^2)$ = As*pSteel	As Wil	1946 15.27	mm2 kg/m	ASME B36.10M
Inercia del tubo Radio de giro del tubo	= $\pi/64$ (Do ⁴ -Di ⁴) = (I / As) ^0,5	I i	162093 8 28.86	mm4 mm	
Selección del tamaño de la pierna de apoyo - Tubo externo Material	A 53 Gr. B	Fy	240	Mpa	ASME B31.1
Tamaño nominal de la tubería (NPS) - pulgadas Espesor	4 SCH 80	Do tw	114.3 8.56	mm mm	(diámetro externo) ASME B36.10M
Diámetro interno Área transversal de acero Paso unitario del tubo interior	$= \pi/4 (\text{Do}^2-\text{Di}^2)$	Di As Wal	97.18 2844 22.32	mm mm2 kg/m	ASME D 26 10M
Longitud del tubo de alojamiento	= As*psieer	Lol	2000	mm	ASME B30.10M
Pandeo de la pierna de apoyo					EN 1993-1-1:2005
Longitud de pandeo - y	= Le	L	4402	mm	
Esbeltez - y	$= \beta * L / i$	β λ	305.00	-	
Esbeltez adimensional - y	$-\pi \pi (E/Fy)^{(0,3)}$		90.46	-	
	$=\lambda/\lambda ref$	٨med	5.57	-	
	= λ / λref Curva de pandeo del perfil	Amed	5.57	-	EN 1002 1 1

	= $0.5*[1+\alpha*(\lambda med-0,2)+(\lambda med)^2]$	φ	6.5165 -
Coeficiente de reducción - y	= 1 / $[\phi + (\phi^2 - \lambda med^2)^0, 5] \le 1$	χ	0.0827 -
Clase de sección hueca	= (235 / fy)^0.5 = Do / tw	3	0.990 - 11.7 -
	Tipo de clase	$Do/tw \le 50\epsilon^2$	Clase 1 -
Resistencia de cálculo a pandeo de un elemento som compresión	etido a $= \chi * As *Fy / \Upsilon_{M1}$	Nb,Rd	38.62 kN
Coeficiente parcial para la resistencia de elementos e	estructurales a inestabilidad	YM1	1 -
Máxima esfuerzo de compresión en la pierna de apor	yo = max (Lp,Ld) $*g$	Ned	31.68 kN
Comprobación El esfuerzo de compresión en las piernas de apoyo menor que la resistencia de ca	debe ser igual o ¿Ned < Nb,Rd? álculo a pandeo:		Cumple 18.0%
Cálculo de pesos			
Nº piernas de apoyo en la pontona	nl	17	24 uds

Peso del tubo exterior	= n1 * Lol * Wol	Wol1	1071	kg		
Longitud tubo interior		11	3309	mm		
Peso del tubo interior	= n1 * 11 * Wil	Wil1	1213	kg		
Peso total de piernas de apoyo en la pontona	= Wol1 + Wil1	W11	2285	kg		
Nº piernas de apoyo en el radio i de la cubierta central		ni	16	8	4	uds
Peso del tubo exterior	= ni * Lol * Wol	Woli	714	357	179	kg
Longitud tubo interior		li	3239	3162	3084	mm
Peso del tubo interior	= ni * li * Wil	Wili	792	386	188	kg
Peso total de piernas en el radio i de la cubierta central	= Woli + Wili	Wli	1506	743	367	kg
Peso total de piernas de apoyo en la cubierta central	$=\sum$ Wli	Wld	2616	kg		

18.1 Pérdida de vapor del producto

Los siguientes casos obligan a disponer de ventilación en los techos fijos:

- Los llenados y vaciados de producto provocan en el tanque exhalaciones e inhalaciones de aire, vapor del producto o una mezcla de ambos.
- Los cambios térmicos provocan variaciones del volumen de producto, originando exhalaciones e inhalaciones.
- Malfuncionamiento en resistencias de calefacción interna.
- La exposición de las superficies exteriores al fuego crea exhalación.
- Importación de productos calientes o no especificados dentro del tanque.

La siguiente figura muestra esquemáticamente los mecanismos de pérdida en tanques con techo fijo:

Figura 18-1. Mecanismos de perdida de vapor en un tanque.

La capacidad de venteo del tanque será calculada siguiendo las indicaciones expuestas en la normativa API 2000. Aunque el tipo de ventilación de un tanque puede depender de múltiples factores, para el caso del tanque con techo flotante se calcularán los caudales necesarios de los siguientes venteos:

- Venteos atmosféricos.
- Venteo de emergencia.

- Venteo auto purgante para techo flotante.

18.2 Venteos atmosféricos

El caudal volumétrico de exhalación de aire debido al llenado del tanque, V_{op} [m3/h], es función del caudal máximo de llenado de producto, V_{pf} [m3/h], y depende el tipo de líquido almacenado:

$$V_{op} = K_1 * V_{pf}$$
(1.212)

- Para productos no volátiles con una presión de vapor igual o menor a 5 kPa: $K_1 = 1$.
- Para productos volátiles con una presión de vapor mayor a 5 kPa, debido a los cambios en el equilibrio líquido-vapor, el caudal de entrada al tanque causará un mayor caudal de exhalación: $K_1 = 2$.
- Para productos que flashean, el caudal de exhalación resulta varias veces mayor que caudal de llenado del producto. El flasheo ocurre cuando la presión de vapor de la corriente de entrada es mayor a la presión de operación del tanque. API 2000 indica realizar un balance de equilibrio y aumentar el caudal requerido consecuentemente.

El caudal volumétrico de inhalación de aire debido al vaciado del tanque, V_{ip} [m3/h], es función del caudal máximo de descarga de producto, V_{pe} [m3/h]:

$$V_{ip} = V_{pe} \tag{1.213}$$

El cálculo de exhalación e inhalación de aire asociada a los cambios térmicos en tanques verticales es función del volumen del tanque, V_{ik} . Este efecto se reduce con la instalación de aislamiento térmico, y depende de las propiedades del aislante y el espesor dispuesto.

- El factor de reducción para un tanque sin aislamiento es $R_i = 1$.
- El factor de reducción para un tanque completamente aislado, R_{in} , se calcula como:

$$R_{in} = \frac{1}{1 + \frac{h^* l_{in}}{\lambda_{in}}}$$
(1.214)

donde:

- *h*: coeficiente térmico interior de transferencia $[W/(m^{2}*K)]$.
- l_{in} : espesor de aislamiento [m].

 λ_n : conductividad térmica del aislante [W/(m*K)].

- El factor de reducción para un tanque aislado parcialmente, R_{inp} , se calcula como:

$$R_{inp} = \frac{A_{inp}}{A_{TTS}} * R_{in} + \left(1 - \frac{A_{inp}}{A_{TTS}}\right)$$
(1.215)

donde:

 A_{TTS} : superficie total del tanque (virolas y techo) [m²].

 A_{inn} : superficie aislada del tanque [m²].

El caudal volumétrico de exhalación de aire debido al calentamiento del producto por un aumento de las

condiciones ambientales, V_{OT} [m³/h], tiene la siguiente expresión:

$$V_{OT} = Y * V_{tk}^{0.9} * R_i \tag{1.216}$$

donde Y es un factor dependiente de la latitud de la ubicación del tanque:

Latitud	Factor (Y)
Bajo 42°	0.32
Entre 42° y 58°	0.25
Sobre 48°	0.2

Tabla 18-A. Factor Y para el cálculo de VOT.

El caudal volumétrico de inhalación de aire debido al enfriamiento del producto por un descenso de las condiciones ambientales, V_{IT} [m³/h], tiene la siguiente expresión:

$$V_{IT} = C * V_{ik}^{0.7} * R_i \tag{1.217}$$

donde C es un factor dependiente de la presión de vapor, de la temperatura media de almacenamiento y de la latitud:

Presión de vapor		Similar a	l Hexano	Más alta que el hexano, o desconocida				
Temperatura med [°C]	lia de almacenaje	< 25°C	>=25°C	< 25°C	>=25°C			
	Bajo 42º	4	6.5	6.5	6.5			
Latitud	Entre 42° y 58°	3	5	5	5			
	Sobre 48°	2.5	4	4	4			

Tabla 18-B. Factor C para el cálculo de VIT.

El caudal volumétrico máximo posible para la exhalación e inhalación, V_o, V_i respectivamente, es la suma de la capacidad de bombeo y de la capacidad por efecto térmico debido a las influencias meteorológicas:

$$V_o = V_{op} + V_{ot}$$

$$V_i = V_{ip} + V_{it}$$
(1.218)

Por otro lado, la capacidad de descarga del venteo atmosférico para un determinado tamaño de tubería de paso para el caso de sobrepresión interna, Q_d , y para el caso de vacío dentro del tanque, Q_e , tendrá la siguiente expresión:

$$[Q_d, Q_e] = K * A_t * \sqrt{2 * \Delta P / \rho_{aire}}$$
(1.219)

donde:

 A_t : área efectiva de paso [m²].

 ρ_{aire} : densidad del aire [kg/m³].

 ΔP : diferencia de presiones entre el interior de tanque y el exterior [Pa].

- Para el caso de sobrepresión, se empleará la presión interna de diseño P_d .
- Para el caso de vacío, se usa la presión de diseño externa (vacío) P_e .

K: coeficiente de descarga. Su valor puede obtenerse de la (), en función de la razón entre la presión absoluta de salida y de entrada al dispositivo.

3 4 valve coefficient of discharge for published capacity

Figura 18-2. Coeficientes de descarga K para dispositivos de venteos probados (Figura 2 de API 2000).

El número de venteos atmosféricos será el mayor de entre la división de la capacidad de descarga y el caudal volumétrico en los casos de exhalación e inhalación:

$$n = \max\left[\frac{Q_d}{V_o}; \frac{Q_e}{V_i}\right]$$
(1.220)

18.3 Venteo de emergencia

Y

1

2

Cuando la superficie externa del tanque esté sometido a la exposición de fuego, el caudal volumétrico a desalojar puede superar el valor normal de descarga calculado en el apartado anterior. Esta contingencia requerirá de la instalación de una válvula de descarga de emergencia, especialmente en tanque que no tiene una unión techovirola frágil diseñada para fallar en caso de sobrepresión.

El caudal volumétrico de emergencia requerido para tanques sujetos a la exposición de fuego, q, tiene la siguiente expresión:

$$q = 906.6 * \frac{Q * F}{L} * \sqrt{\frac{T}{M}}$$
(1.221)

donde:

 A_{TWS} : área de virola húmeda, considerando al menos una altura de 9,14 metros sobre el suelo [m²].

Área de virola húmeda,	Presión de diseño,	Calor de entrada,
A _{TWS} [m2]	P _d [kPa]	Q [W]
$\mathbf{A}_{\mathrm{TWS}} < 18.6$	$P_d \leq 103.4$	63150*A _{TWS}
$18.6 \leq A_{\rm TWS} < 93$	$P_d \leq 103.4$	224200*(A _{TWS} ^{0.566})
$93 \le A_{\rm TWS} \le 260$	$P_d \le 103.4$	360400*(A _{TWS} ^{0.338})
260 - 1	$7 < P_d \leq 103.4$	43200*(A _{TWS} ^{0.82})
$200 \ge A_{\rm TWS}$	$P_d \leq 7$	4129700

Q: calor de entrada por la exposición al fuego, obtenido de la Tabla 18-C [W].

Tabla 18-C. Calor de entrada.

F: factor medioambiental. Para tanques de metal desnudo y sin aislamiento este valor es 1.

L: calor latente de vaporización del líquido almacenado a la presión y temperatura de alivio [J/kg]. Para productos similares al hexano se puede emplear un valor de 334900 J/kg.

T: temperatura absoluta del vapor aliviado [K]. Para productos similares al hexano se puede emplear un valor de 288.75 K.

M: masa molecular relativa del vapor [kg/mol]. Para productos similares al hexano se puede emplear un valor de 86.17.

Para calcular tamaño de la tubululadura del venteo de emergencia, la división entre el caudal volumétrico requerido de emergencia y la capacidad de descarga debe ser menor que 1:

$$\frac{q}{Q_d} < 1 \tag{1.222}$$

18.4 Venteos auto purgantes

Para la cubierta del techo flotante se instalan unos venteos auto purgantes en la cubierta central que evitan una concentración de tensiones en el elemento flotante o en el sello periférico, ya sea evitando un vacío en el espacio bajo la cubierta en el vaciado, o evitando una presión bajo este espacio originado por el aire confinado en el proceso del llenado.

El dispositivo consiste en un conducto vertical corto que forma un asiento en su parte superior, soldado a la cubierta central del techo flotante. A través del centro del conducto pasa un tubo de guía vertical que aloja un vástago de empuje al que se une, por la parte superior, un disco que forma la tapa de la dispositivo. La longitud de la varilla de empuje está diseñada de tal manera que, al vaciar el tanque, la varilla toca el fondo del tanque antes de que las piernas de apoyo del techo aterricen, abriéndose y permitiendo el ingreso de aire que ayude al vaciado de producto remanente bajo de la cubierta. De forma similar, cuando el tanque se está llenando, el dispositivo se cierra una vez que todo el aire bajo de la cubierta haya sido expulsado y el techo flote.

Figura 18-3. Posiciones del venteo auto purgante.

El inconveniente que presenta este dispositivo es, que cuando queda abierta, permite que los vapores del producto se escapen durante el tiempo que el techo está apoyado en el fondo en la etapa final de vaciado o comienzo del llenado.

El número y el tamaño de la ventilación de purga deberán dimensionarse de acuerdo con las velocidades máximas de llenado y vaciado, considerando las ecuaciones del apartado 18.2, tomando como valor de volumen del tanque, V_{tk2} , la capacidad bajo el techo flotante la posición de la cubierta central sobre el suelo cuando descansa sobre él:

$$V_{tk2} = \frac{\pi * D^2}{4} * h \tag{1.223}$$

En el cálculo de la capacidad de descarga de dispositivo auto purgante, el área total de paso será el área efectiva del conducto vertical restándole el área de la guía y de las cartelas que la unen al conducto. La diferencia de presiones, ΔP , debe tener un valor muy pequeño ya que lo deseable es que no se originen esos gradientes de presión. Como valor de diseño, se establecerá una ΔP igual a la centésima parte de la presión de diseño interna, P_d .

18.5 Cálculos - Venteos

Cálculo del venteo					API 2000 7º edición
Diámetro interno del tanque		D	34000	mm	
Altura del tanque		Н	25000	mm	
Área transversal del tanque	$= \pi * D^{2} / 4$	Ar	907.9	m2	
Temperatura de diseño	(max)	Td	55	°C	
-	(min)		0	°C	
Presión de diseño (interna)		Pd	0.029	barg	
Presión de diseño (Externa)		Pe	0.005	barg	
Temperatura de almacenaje del producto		Т	55	°C	
Latitud geográfica	Sevilla: 37°		Bajo 42°		
Densidad del aire		paire	1.204	kg/m3	
Liquido almacenado			Fuel Oil		
Tipo de líquido			Líquido no vo	látil (Pvapor	<= 5kPa)
Tipo de presión de vapor			Similar al Hex	ano	
Gravedad específica del producto		G	0.7835	-	
Máximo caudal de llenado		Vpf	420.4	m3/h	
Máximo caudal de vaciado		Vpe	213.0	m3/h	
Aislamiento			Tanque sin ais	slamiento	
Coeficiente interno de transferencia de calor		h coef	4	W /	4 W/(m2/K) es un valor típico para
Espaçor de cislomiente		_ 1 in	0.1	(m2*K)	tanques
Conductivided térmice del aislamiento		1_111) in	0.1	W / (m * K)	
Superficie total del teneno (vinales vitasho)		Λ_111 Δ ## α	0.03	w / (III · K)	
Altere la sidaria del tanque (virolas y techo)	$=\pi^{*}D^{*}H + Ar$	Atts	33/8 N/A	m2	
Altura de alsiamiento		n_in A ing	N/A	m m2	
Superficie alsiada	$=\pi + D + n_{in}$	Ains	\mathbf{N}/\mathbf{A}	m2	
Factor de líquido volótil		K 1	1		
Caudal volumétrico de exhalación de aire	= K1 * Vnf	Von	420.4	- m3/h	API 2000 Sec 3 3 2 2 1
Caudal volumétrico de inhalación de aire	$=$ K1 \vee p1 = Vne	Vin	213.0	m3/h	API 2000, Sec 3.3.2.2.1
Caudal volumenteo de initialación de ane	- vpc	۷ıp	215.0	1113/11	AI I 2000, See 5.5.2.2.2
Techo fijo - Venteos atmosféricos					
Volumen del tanque	$= \pi^* D^2 / 4 * H$	Vtk	22698	m3	
Área de virola húmeda	$=\pi^* D * \min(H; 9.14)$	ATWS	976	m2	
			210		
Exhalación térmica por calentamiento	= Y * Vtk^0.9 * Ri	Vot	2664	m3/h	API 2000, Sec 3.3.2.3.2
Factor Y (latitud)		Y	0.32	-	API 2000 - Tabla 1
Para tangues sin aislamiento		Ri	1	-	
1					
Inhalación térmica por enfriamiento	= C * Vtk^0,7 * Ri	Vit	7280	m3/h	API 2000, Sec 3.3.2.3.3
Factor C (presión de vapor, T ^a y latitud)		С	6.5	-	API 2000 - Tabla 2
Para tanques sin aislamiento		Ri	1	-	
Requerimientos totales de venteo					
Exhalación total requerida	= Vop + Vot	Vo	3084	m3/h	
Inhalación total requerida	= Vip + Vit	Vi	7493	m3/h	

Tamaño de venteo		NPS	12	"
Schedule del tubo		sch	STD	-
Espesor del tubo		t	9.53	mm
Diámetro externo del tubo		do	323.85	mm
Diámetro interno del tubo	= do - 2*t	d1	304.80	mm
Área total de paso	$=\pi * (d1)^{2} / 4$	At	72966	mm2
Coeficiente de descarga		Κ	0.65	-
Capacidad de descarga:	= K * At * (2*ΔP/paire)^0.5	Q		
En sobrepresión: con $\Delta P = Pd$		Qd	11850	m3/h
En vacío: con $\Delta P = Pe$		Qe	4921	m3/h
Nº de venteos necesarios	=max[(Vo/Qd) ; (Vi/Qe)]	n n_entero	1.5227 2	uds uds

-

Techo fijo - Venteo de emergencia					
Caudal requerido para tanques sujetos a exposición del fuego	= 906.6 *Q*F / L (T/M)^0.5	q	20465	Nm3/h	API 2000, Sec 3.3.3.3.2
Heat input de la exposición al fuego		Q	4129700	W	API 2000 - Tabla 3
Factor medioambiental	Tanque de metal desnudo	F	1	-	API 2000 - Tabla 9
Calor latente de vaporización del producto		L	334900	J/kg	
Temperatura absoluta del vapor aliviado		Т	288.75	Κ	
Masa molecular relativa del vapor		М	86.17	kg/mol	
Tamaño de venteo		NPS	18	"	
Schedule del tubo		sch	STD	-	
Espesor del tubo		t	9.53	mm	
Diámetro externo del tubo		do	457.20	mm	
Diámetro interno del tubo	= do - 2*t	di	438.15	mm	
Área total de paso	$=\pi * (di)^2 / 4$	At	150777	mm2	
Coeficiente de descarga		Κ	0.65	-	
Capacidad de descarga:	= K * At *	Q			
En sobrepresión: con $\Delta P = Pd$	(2·Δ F /pane) 0.5	Qd	24488	m3/h	
			0.9257	1	
N° de venteos necesarios	= q / Qa	n	0.8357	uas	
		n_entero	1	uds	
Techo fijo - Venteos auto purgantes				T 7	
Tipo de venteo			Auto Bleeder	Vent	а — — — — — — — — — — — — — — — — — — —
Posición más baja del techo flotante		h	2329	mm	Soportes TFT
Volumen del tanque	$=\pi^*D^2/4 * h$	Vtk2	2114	m3	
Exhalación térmica por calentamiento	= Y * Vtk2^0,9 * Ri	Vot	315	m3/h	API 2000, Sec 3.3.2.3.2
Factor Y (latitud)		Y	0.32	-	API 2000 - Tabla 1
Para tanques sin aislamiento		Ri	1	-	
Inhalación térmica por enfriamiento	= C * Vtk2^0,7 * Ri	Vit	1382	m3/h	API 2000, Sec 3.3.2.3.3
Factor C (presión de vapor, T ^a y latitud)		С	6.5	-	API 2000 - Tabla 2
Para tanques sin aislamiento		Ri	1	-	
Requerimientos totales de venteo					
Exhalación total requerida	= Vop + Vot	Vo	735	m3/h	
Inhalación total requerida	= Vip + Vit	Vi	1595	m3/h	
Máxima capacidad de diseño para ventear	= max (Vi,Vo)	Q	1595	m3/h	
Tamaño de venteo (tubo exterior)		NPS	10	"	
Schedule del tubo		sch	STD	-	
Espesor del tubo		t	9.27	mm	
Diámetro externo del tubo		do	273.05	mm	
Diámetro interno del tubo	= do - 2*t	d1	254.51	mm	
Área total de paso (tubo exterior)	$=\pi * (d1)^2 / 4$	At	50874	mm2	
Tamaño de venteo (tubo guía)	. /	NPS	2	"	
Schedule del tubo		sch	STD	-	
Espesor del tubo		t	3.91	mm	
Diámetro externo del tubo		d2	60.33	mm	
Diámetro de guía del tubo interior		ds	90	mm	

Ancho de la cartela para sujetar la guía	= (d1 - ds)/2	W	82.25	mm
Espesor de la cartela para sujetar la guía		tg	6	mm
Número de cartelas		np	4	ud
Área bloqueda debido a las cartelas	= np * w * tg	Ab2	1974	mm2
Área neta de paso por el venteo auto purgante	= (At - Ab1 - Ab2)	An	42538	mm2
Coeficiente de descarga		Κ	0.65	-
Diferencia de presiones	= Pd / 100	ΔP	0.00029	barg
Capacidad de descarga:	= K * At * (2*ΔP/paire)^0.5	Q		
En sobrepresión: con $\Delta P = Pd$		Qd	691	m3/h
Nº de venteos necesarios	= Q / Qd	n n entero	2.3088	uds
		n entero	5	uus

 $=\pi * (ds)^2 / 4$

Ab1

6362 mm2

Área bloqueada debido a la guía

19 APÉNDICES

E ste anexo muestra las tablas de propiedades geométricas y características mecánicas de los elementos estructurales empleados para diseñar el tanque, tales como perfiles metálicos, tuberías para venteos y soportes del techo flotante, y pernos de anclaje.

19.1 Tabla de perfiles metálicos

19.1.1 Serie UPN

Figura 19-1. Perfil UPN

UPN	Dimensiones							Sección	Peso		Propiedades de la Sección					
										Refer	ido al ej	e y-y	Refe	rido al e	je z-z	
	h	b	t _w	t _f =r₁	r ₂	d	1	Α	G	Iy	Wy	iy	Iz	Wz	iz	
	mm	mm	mm	mm	mm	mm	mm	cm ²	Kg/m ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ³	cm ¹	
UPN 80	80	45	6	8	4	46	1.45	11	8.64	106	26.5	3.1	19.4	6.36	1.33	
UPN 100	100	50	6	8.5	4.5	64	1.55	13.5	10.6	206	41.2	3.91	29.3	8.49	1.47	
UPN 120	120	55	7	9	4.5	82	1.6	17	13.4	364	60.7	4.62	43.2	11.1	1.59	
UPN 140	140	60	7	10	5	98	1.75	20.4	16	605	86.4	5.45	62.7	14.8	1.75	
UPN 160	160	65	7.5	10.5	5.5	115	1.84	24	18.8	925	116	6.21	85.3	18.3	1.89	
UPN 180	180	70	8	11	5.5	133	1.92	27	22	1,350	150	6.95	114	22.4	2.02	
UPN 200	200	75	8.5	11.5	6	151	2.01	32.2	25.3	1,910	191	7.7	148	27	2.14	
UPN 220	220	80	9	12.5	6.5	167	2.14	37.4	29.4	2,690	245	8.48	197	33.6	2.3	
UPN 240	240	85	9.5	13	6.5	184	2.23	42.3	33.2	3,600	300	9.22	248	39.6	2.42	
UPN 260	260	90	10	14	7	200	2.36	48.3	37.9	4,820	371	9.99	317	47.7	2.56	
UPN 280	280	95	10	15	7.5	216	2.53	53.3	41.8	6,280	448	10.9	399	57.2	2.74	
UPN 300	300	100	10	16	8	232	2.7	58.8	46.2	8,030	535	11.7	495	67.8	2.9	

Tabla 19-A. Características dimensionales y mecánicas de la serie UPN.

19.1.2 Serie angular de lados iguales

Figura 19-2. Perfil L.

L		Dime	nsiones		Área	Peso	Propiedades de la Sección						Posición del centro de gravedad						
							Ref	ferido al eje	у-у	Refei	rido al ej	e v-v	Referido a	l eje w-w					
	b	t	r ₁	r ₂	A	G	Iy=Iz	Wy=Wz	iy=iz	Iv	Wv	iv	Iw	iw	d	b-d	w	v1	v2
	mm	mm	mm	mm	cm ²	Kg/m ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ¹	cm ¹	cm	cm ¹	cm ¹	cm ¹
L 20x3*	20	3	4	2	1.13	0.88	0.39	0.28	0.59	0.16	0.19	0.38	0.61	0.74	0.6	1.4	1.41	0.84	0.7
L 20x4	20	4	4	2	1.46	1.14	0.49	0.36	0.58	0.21	0.23	0.38	0.77	0.72	0.63	1.37	1.41	0.9	0.71
L 25x3*	25	3	4	2	1.43	1.12	0.8	0.45	0.75	0.33	0.33	0.48	1.26	0.94	0.72	1.78	1.77	1.02	0.87
L 25x4	25	4	4	2	1.86	1.46	1.01	0.58	0.74	0.43	0.4	0.48	1.6	0.93	0.76	1.74	1.77	1.07	0.89
L 25x5	25	5	4	2	2.27	1.78	1.2	0.71	0.75	0.52	0.46	0.48	1.89	0.91	0.8	1.7	1.77	1.13	0.91
L 30x3*	30	3	5	2.5	1.74	1.36	1.4	0.65	0.9	0.58	0.49	0.58	2.23	1.13	0.84	2.16	2.12	1.18	1.04
L 30x4*	30	4	5	2.5	2.27	1.73	1.8	0.85	0.89	0.75	0.61	0.58	2.85	1.12	0.88	2.12	2.12	1.24	1.05
L 30x5	30	5	5	2.5	2.78	2.18	2.16	1.04	0.88	0.92	0.71	0.57	3.41	1.11	0.92	2.08	2.12	1.3	1.07
L 35x3*	35	3	5	2.5	2.04	1.6	2.29	0.9	1.06	0.95	0.7	0.68	3.63	1.34	0.96	2.54	2.47	1.36	1.23
L 35x4*	35	4	5	2.5	2.67	2.09	2.95	1.18	1.05	1.23	0.86	0.68	4.68	1.33	1	2.5	2.47	1.42	1.24
L 35x5	35	5	5	2.5	3.28	2.57	4	1.45	1.04	1.49	1.01	0.67	5.64	1	1.04	2.46	2.47	1.48	1.25
L 40x4*	40	4	6	3	3.08	2.42	4	1.55	1.21	1.86	1.17	0.78	7.09	2	1.12	2.88	2.83	1.58	1.4
L 40x5*	40	5	6	3	3.79	2.97	5	1.91	1.2	2.26	1.37	0.77	8.6	2	1.16	2.84	2.83	1.64	1.42
L 40x6	40	6	6	3	4.48	3.52	6	2.26	1.19	2.65	1.56	0.77	9.98	1	1.2	2.8	2.83	1.7	1.43
L 45x4*	45	4	7	3.5	3.49	2.74	6	1.97	1.36	2.67	1.55	0.88	10.2	2	1.23	3.27	3.18	1.75	1.57
L 45x5*	45	5	7	3.5	4.3	3.38	8	2.43	1.35	3.26	1.8	0.87	12.4	2	1.28	3.22	3.18	1.81	1.58
L 45x6*	45	6	7	3.5	5.09	4	9	2.88	1.34	3.82	2.05	0.87	14.5	2	1.32	3.18	3.18	1.87	1.59
L 50x4*	50	4	7	3.5	3.89	3.06	9	2.46	1.52	3.72	1.94	0.98	14.2	2	1.36	3.64	3.54	1.92	1.75
L 50x5*	50	5	7	3.5	4.8	3.77	11	3	1.52	4.54	2.29	0.97	17.4	2	1.4	3.6	3.54	1.99	1.76
L 50x6*	50	6	7	3.5	5.69	4.47	12.8	3.61	1.5	5.33	2.61	0.97	20.3	1.89	1.45	3.55	3.54	2.04	1.77
L 50x7	50	7	7	3.5	6.56	5.15	14.6	4.16	1.49	6.11	2.91	0.96	23.1	1.88	1.49	3.51	3.54	2.1	1.78
L 50x8	50	8	7	3.5	7.41	5.82	16.3	4.68	1.48	6.87	3.19	0.96	25.7	1.86	1.52	3.48	3.54	2.16	1.8
L 60x5*	60	5	8	4	5.82	4.57	19.4	4.45	1.82	8.02	3.45	1, 17	30.7	2.3	1.64	4.36	4.24	2.32	2.11
L 60x6*	60	6	8	4	6.91	5.42	22.8	5.29	1.82	9.43	3.95	1.17	36.2	2.29	1.69	4.31	4.24	2.39	2.11
L 60x8*	60	8	8	4	9.03	7.09	29.2	6.89	1.8	12.2	4.86	1.16	46.2	2.26	1.77	4.23	4.24	2.5	2.14
L 60x10	60	10	8	4	11.1	8.69	34.9	8.41	1.78	14.8	5.67	1.16	55.1	2.23	1.85	4.15	4.24	2.61	2.17
L 70x6*	70	6	9	4.5	8.13	6.38	36.9	7.27	2.13	15.3	5.59	1, 37	58.5	2.68	1.93	5.07	4.95	2.73	2.46
L 70x7*	70	7	9	4.5	9.4	7.38	42.3	8.41	2.12	17.5	6.27	1.36	67, 1	2.67	1.97	5.03	4.95	2.79	2.47
L 70x8*	70	8	9	4.5	10.6	8.36	47.5	9.52	2.11	19.7	6.91	1.36	75.3	2.66	2.01	4.99	4.95	2.85	2.47
L 70x10	70	10	9	4.5	13.1	10.3	57	11.7	2.09	23.9	8.1	1.35	90.5	3	2.09	4.91	4.95	2.96	2.5
L 80x8*	80	8	10	5	12.3	9.63	72	12.6	2.43	29.9	9.36	1.56	115	3	2.26	5.74	5.66	3.19	2.82

L		Dimer	isiones		Área	Peso	Propiedades de la Sección							Posición del centro de gravedad					
							Ref	ferido al eje	у-у	Refer	ido al ej	je v-v	Referido a	l eje w-w					
	b	t	r ₁	r ₂	A	G	Iy=Iz	Wy=Wz	iy=iz	Iv	Wv	iv	Iw	iw	d	b-d	w	v1	v2
	mm	mm	mm	mm	cm ²	Kg/m ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ¹	cm ¹	cm	cm ¹	cm ¹	cm1
L 80x10*	80	10	10	5	15.1	11.9	88	13.4	2.41	36.3	11	1.55	139	3	2.34	5.66	5.66	3.3	2.85
L 80x12	80	12	10	5	17.9	14	102	18.2	2.39	42.7	12.5	1.55	161	3	2.41	5.59	5.66	3.41	2.89
L 90x8*	90	8	11	5.5	13.9	10.9	104	16.1	2.74	43.1	12.2	1.76	166	3	2.5	6.5	6.36	3.53	3.17
L 90x10*	90	10	11	5.5	17.1	13.4	127	19.8	2.72	52.5	14.4	1.75	201	3	2.58	6.42	6.36	3.65	3.19
L 90x12	90	12	11	5.5	20.3	15.9	148	23.3	2.7	61.7	16.4	1.74	234	3	2.66	6.34	6.36	3.76	3.22
L 100x8*	100	8	12	6	15.5	12.2	145	19.9	3.06	59.8	15.5	1.96	230	4	2.74	7.26	7.07	3.87	3.52
L 100x10*	100	10	12	6	19.2	15	177	25	3.04	72.9	18.3	1.95	280	4	2.82	7.18	7.07	3.99	3.54
L 100x12	100	12	12	6	22.7	17.8	207	29.1	3.02	85.7	20.9	1.94	323	3.88	2.9	7.1	7.07	4.11	3.57
L 100x15	100	15	12	6	27.9	21.9	249	25.6	2.89	104	24.4	1.93	393	3.75	3.02	6.98	7.07	4.27	3.61
L 120x10*	120	10	13	6.5	23.2	18.2	313	36	3.67	129	27.5	2.36	497	4.63	3.31	8.69	8.49	4.69	4.23
L 120x12*	120	12	13	6.5	27.5	21.6	368	42.7	3.65	152	31.5	2.35	584	4.6	3.4	8.6	8.49	4.8	4.28
L 120x12	120	15	13	6.5	33.9	26.6	445	52.4	3.62	185	37.1	2.33	705	4.56	3.51	8.49	8.49	4.97	4.31
L 150x12*	150	12	16	8	34.8	27.3	737	67.7	4.6	303	52	2.95	1,170	5.8	4.12	10.88	10.6	5.83	5.29
L 150×15*	150	15	16	8	43	33.8	898	83.5	4.57	370	61.6	2.93	1,430	5.76	4.25	10.75	10.6	6.01	5.33
L 150x18	150	18	16	8	51	40.1	1,050	98.7	4.54	435	70.4	2.92	1,670	5.71	4.37	10.63	10.6	6.17	5.38
L 190–15*	180	15	18	9	52.1	40.9	1,590	122	5.52	653	92.6	3.54	2,520	6.96	4.98	13.02	12.7	7.05	6.36
L 180x18	180	18	18	9	61.9	48.6	1,870	145	5.49	768	106	3.52	2,960	6.92	5.1	12.9	12.7	7.22	6.41
L 180x20	180	20	18	9	68.3	53.7	2,040	159	5.47	843	115	3.51	3,240	6.89	5.18	12.82	12.7	7.33	6.44
L 200±16*	200	16	18	9	61.8	48.5	2,540	162	6.16	960	123	3.94	3,720	7.76	5.52	14.48	14.1	7.81	7.09
200x10*	200	18	18	9	69.1	54.2	2,600	181	6.13	1,070	135	3.93	4,130	7.73	5.6	14.4	14.1	7.93	7.12
200x18* L 200x20	200	20	18	9	76.3	59.9	2,850	199	6.11	1,170	146	3.92	4,530	7.7	5.68	14.32	14.1	8.04	7.15
L 200x24	200	24	18	9	90.6	71.1	3,330	235	6.06	1,380	167	3.9	5,280	7.64	5.84	14.16	14.1	8.26	7.21

Tabla 19-B. Características dimensionales y mecánicas de la serie angular de lados iguales.

19.1.3 Serie IPE

Figura 19-3. Perfil IPE.

IPE			Dime	nsiones			Sección	Peso		Propie	dades d	e la Secc	ión	
									Refer	ido al eje	у-у	Refer	ido al ej	e z-z
	h	b	tw	tr	r	d	А	G	Iy	Wy	iy	Iz	Wz	iz
	mm	mm	mm	mm	mm	mm	cm ²	Kg/m ¹	cm ⁴	cm ³	cm ¹	cm ⁴	cm ³	cm ¹
IPE 80	80	46	3.8	5.2	5	59.6	7.64	6	80.14	20.03	3.24	8.49	3.69	1.05
IPE 100	100	55	4.1	5.7	7	74.6	10.32	8.1	171	34.2	4.07	15.9	5.79	1.24
IPE 120	120	64	4.4	6.3	7	93.4	13.2	10.4	318	53	4.9	27.7	8.65	1.45
IPE 140	140	73	4.7	6.9	7	112.2	16.4	12.9	541	77.3	5.74	44.9	12.3	1.65
IPE 160	160	82	5	7.4	9	127.2	20.1	15.8	869	109	6.58	68.3	16.7	1.84
IPE 180	180	91	5.3	8	9	146	23.9	18.8	1,320	146	7.42	101	22.2	2.05
IPE 200	200	3	5.6	8.5	12	159	28.5	22.4	1,940	194	8.26	142	28.5	2.24
IPE 220	220	110	5.9	9.2	12	177.6	33.4	26.2	2,770	252	9.11	205	37.3	2.48
IPE 240	240	120	6.2	9.8	15	190.4	39.1	30.7	3,890	324	9.97	284	47.3	2.69
IPE 270	270	135	6.6	10.2	15	219.6	45.9	36.1	5,790	429	11.2	420	62.2	3.02
IPE 300	300	150	7.1	10.7	15	248.6	53.8	42.2	8,360	557	12.5	604	80.5	3.35
IPE 330	330	160	7.5	11.5	18	271	62.6	49.1	11,770	713	13.7	788	98.5	3.55
IPE 360	360	170	8	12.7	18	298.6	72.7	57.1	16,270	904	15	1,040	123	3.79
IPE 400	400	180	8.6	13.5	21	331	84.5	66.3	23,130	1,160	16.5	1,320	146	3.95
IPE 450	450	190	9.4	14.6	21	378.8	98.8	77.6	33,740	1,500	18.5	1,680	176	4.12
IPE 500	500	200	10.2	16	21	426	116	90.7	48,200	1,930	20.4	2,140	214	4.31
IPE 550	550	210	11.1	17.2	24	467.6	134	106	67,120	2,440	22.3	2,670	254	4.45
IPE 600	600	220	12	19	24	514	156	122	92,080	3,070	24.3	3,390	308	4.66

Tabla 19-C. Características dimensionales y mecánicas de la serie IPE.

19.2 Tabla de área de tensión de pernos de anclajes

La siguiente tabla es un extracto de la norma ASTM A36 para pernos de anclaje. Se indica la denominación comercial y el área tensionada, útiles para el dimensionamiento de los pernos de anclajes del apartado 11.7.1.

Diámetro nominal (do) x Paso de rosca	Diámetro exterior [mm]	Pitch [mm]	Área tensionada [mm²]
M12 X 1,75	12	1,75	84,3
M16 X 2	16	2	157
M20 X 2,5	20	2,5	245
M24 X 3	24	3	353
M27 X 3	27	3	459
M30 X 3,5	30	3,5	561
M36 X 4	36	4	817
M42 X 4,5	42	4,5	1120
M48 X 5	48	5	1470
M56 X 5,5	56	5,5	2030
M64 X 6	64	6	2680
M72 X 6	72	6	3460

Tabla 19-D. Pernos de anclaje ASTM A36.

Clase	Tensión	de rotura	Límite elástico			
-	[ksi]	[MPa]	[ksi]	[MPa]		
E60xx	62	427,47	50	344,74		
E70xx	70	482,63	57	393,00		
E80xx	80	551,58	67	461,95		
E90xx	90	620,53	77	530,90		
E100xx	100	689,48	87	599,84		
E110xx	110	758,42	95	655,00		
E120xx	120	827,37	107	737,74		

19.3 Propiedades mecánicas de los electrodos de soldadura

19.4 Tabla de espesores de tubo

Nominal Pipe Size NPS ["]	Diámetro exterior ["]	Diámetro nominal (DN)	Diámetro exterior [mm]
1/8	0,405	6	10,29
1/4	0,54	8	13,72
3/8	0,675	10	17,15
1/2	0,84	15	21,34
3/4	1,05	20	26,67
1	1,315	25	33,40
1 1/4	1,66	32	42,16
1 1/2	1,9	40	48,26
2	2,375	50	60,33
2 1/2	2,875	65	73,03
3	3,5	80	88,90
3 1/2	4	90	101,60

Nominal Pipe Size NPS ["]	Diámetro exterior ["]	Diámetro nominal (DN)	Diámetro exterior [mm]
4	4,5	100	114,30
5	5,563	125	141,30
6	6,625	150	168,28
8	8,625	200	219,08
10	10,75	250	273,05
12	12,75	300	323,85
14	14	350	355,60
16	16	400	406,40
18	18	450	457,20
20	20	500	508,00
22	22	550	558,80
24	24	600	609,60

Tabla 19-F. Dimensiones exteriores de las tuberías según ASME B36-10M.

NPS	SCH 5	SCH 10	SCH 20	SCH 30	SCH 40	SCH 60	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	STD	XS	XXS
1/8	NA	1,24	NA	1,45	1,73	NA	2,41	NA	NA	NA	NA	1,73	2,41	NA
1/4	NA	1,65	NA	1,85	2,24	NA	3,02	NA	NA	NA	NA	2,24	3,02	NA
3/8	NA	1,65	NA	1,85	2,31	NA	3,20	NA	NA	NA	NA	2,31	3,20	NA
1/2	1,65	2,11	NA	2,41	2,77	NA	3,73	NA	NA	NA	4,78	2,77	3,73	7,47
3/4	1,65	2,11	NA	2,41	2,87	NA	3,91	NA	NA	NA	5,56	2,87	3,91	7,82
1	1,65	2,77	NA	2,90	3,38	NA	4,55	NA	NA	NA	6,35	3,38	4,55	9,09
1 1/4	1,65	2,77	NA	2,97	3,56	NA	4,85	NA	NA	NA	6,35	3,56	4,85	9,70
1 1/2	1,65	2,77	NA	3,18	3,68	NA	5,08	NA	NA	NA	7,14	3,68	5,08	10,16
2	1,65	2,77	NA	3,18	3,91	NA	5,54	NA	NA	NA	8,74	3,91	5,54	11,07
2 1/2	2,11	3,05	NA	4,78	5,16	NA	7,01	NA	NA	NA	9,53	5,16	7,01	14,02
3	2,11	3,05	NA	4,78	5,49	NA	7,62	NA	NA	NA	11,13	5,49	7,62	15,24
3 1/2	2,11	3,05	NA	4,78	5,74	NA	8,08	NA	NA	NA	NA	5,74	8,08	NA
4	2,11	3,05	NA	4,78	6,02	NA	8,56	NA	11,13	NA	13,49	6,02	8,56	17,12

NPS	SCH 5	SCH 10	SCH 20	SCH 30	SCH 40	SCH 60	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	STD	XS	XXS
5	2,77	3,40	NA	NA	6,55	NA	9,53	NA	12,70	NA	15,88	6,55	9,53	19,05
6	2,77	3,40	NA	NA	7,11	NA	10,97	NA	14,78	NA	18,26	7,11	10,97	21,95
8	2,77	3,76	6,35	7,04	8,18	10,31	12,70	15,09	18,26	20,62	23,01	8,43	12,70	22,23
10	3,40	4,19	6,35	7,80	9,27	12,70	15,09	18,26	21,44	25,40	28,58	9,27	12,70	25,40
12	3,96	4,57	6,35	8,38	10,31	14,27	17,48	21,44	25,40	28,58	33,32	9,53	12,70	25,40
14	3,96	6,35	7,92	9,53	11,13	15,09	19,05	23,83	27,79	31,75	35,71	9,53	12,70	NA
16	4,19	6,35	7,92	9,53	12,70	16,66	21,44	26,19	30,96	36,53	40,49	9,53	12,70	NA
18	4,19	6,35	7,92	11,13	14,27	19,05	23,83	29,36	34,93	39,67	45,24	9,53	12,70	NA
20	4,78	6,35	9,53	12,70	15,09	20,62	26,19	32,54	38,10	44,45	50,01	9,53	12,70	NA
22	4,78	6,35	9,53	12,70	NA	22,23	28,58	34,93	41,28	47,63	53,98	9,53	12,70	NA
24	5,54	6,35	9,53	14,27	17,48	24,61	30,96	38,89	46,02	52,37	59,54	9,53	12,70	NA

Tabla 19-G. Espesor de las tuberías [mm] según ASME B36.10M

19.5 Código ANSYS para modelo de la viga radial de la cubierta fija

Los parámetros de este código se extraen de la hoja de cálculo Excel, dónde el único elemento que se modifica en cada corrida del modelo ANSYS es el tipo de perfil a estudiar, cuyas propiedades geométricas están tabuladas según el apartado 19.1 de este apéndice.

```
/CLEAR,START
/PREP7
! Geometría
R=17!m
theta=0.165806278939461!rad
Rac=1.5!m
numelem=100!nº elementos
nrig=54!nº vigas radiales
!
! Cargas
dens A=7850!kg/m3
P0=1956.4395424994!Pa! Descuento el peso de la estructura del techo fijo
P0cos=1929.60815104525!Pa
P0sen=322.905662500686!Pa
!
! Se define elemento viga
ET,1,beam188
!
! Se definen las propiedades del acero
MP,EX,1,19900000000
MP,PRXY,1,0.3
MP, DENS, 1, dens A
١
! Parámetros de la sección IPE
                                                                  IPE
h=0.33!m
                                                     h=
b=0.16!m
                                                     b=
tw=0.0075!m
                                                     tw=
                                                     tf=
tf=0.0115!m
Lx=15.5!m
                                                     Lx=
Lz=2.593810440762!m
                                                     Lz=
١
! Propiedades de viga radial IPE 330
SECTYPE,1,BEAM,I,IPE330,0
SECOFFSET, CENT,,
SECDTA,b,b,h,tf,tf,tw
!
! Keypoints
K,1,0,0,0! 0,0
K,2,Lx,0,Lz! R-Rac, R-Rac*(tg\Theta)
K,3,-0.165047605860678,0,0.986285601537231! -senO, cosO (Orientación del perfil)
!
! Lineas
```

330

0.3300 !m

0.1600 !m

0.0075 !m

0.0115 !m

15.5000 !m

2.5938 !m

```
L,1,2
!
! Asignar propiedades y orientación
LSEL,,,,1
!
LATT,1,,1,,3,,1
!
allsel
!
! n° de divisiones
LESIZE,1,,,numelem,,,,,1
!
lmesh,all
!
!Condiciones de contorno
DK,1,,,,0,UX,UY,UZ,ROTX,ROTZ! Apoyo que impide desplazamiento
DK,2,,,,0,UX,UY,ROTX,ROTY,ROTZ! Empotramiento que permite desplazamiento vertical
!
/SOL
! Carga de peso propio
ACEL,0,0,9.8135426889107
!
! Carga sobre la viga radial
!
!bucle recorriendo elementos
*do,i,1,numelem
ni=nelem(i,1)
nj=nelem(i,2)
nxi=nx(ni)
nxj=nx(nj)
!Distribución normal
pmax=P0cos*2*3.141516*R/nrig
SFBEAM,i,1,PRES,-pmax/R*(nxi-R),-pmax/R*(nxj-R)
!Distribución tangencial
pmax=P0sen*2*3.141516*R/nrig
SFBEAM,i,3,PRES,pmax/R*(nxi-R),pmax/R*(nxj-R)
!
*enddo
!
SBCTRAN ! Visualizar la carga
!
/SOLU
!/STATUS,SOLU
SOLVE
FINISH
!
```

```
/SHRINK,0
/ESHAPE,1.0
/EFACET,1
/RATIO,1,1,1
/CFORMAT,32,0
/REPLOT
!
/VIEW,1,,-1 ! Vista en X-Z
/ANG,1
/REP,FAST
!
/POST1
!
PLDISP,1
!
! Desplazamientos nodales
ETABLE,UX,U,X
ETABLE,UY,U,Y
ETABLE,UZ,U,Z
!
! Esfuerzos / Tensiones
ETABLE, Fx I, SMISC, 1
ETABLE, Fx J, SMISC, 14
ETABLE,Mz_I,SMISC,2
ETABLE,Mz J,SMISC,15
ETABLE,My_I,SMISC,3
ETABLE, My_J, SMISC, 16
ETABLE, SDIR I, SMISC, 31
ETABLE, SDIR_J, SMISC, 36
ETABLE,SByT I,SMISC,32
ETABLE,SByT J,SMISC,37
ETABLE,SByB_I,SMISC,33
ETABLE,SByB J,SMISC,38
ETABLE,SBzT I,SMISC,34
ETABLE,SBzT_J,SMISC,39
ETABLE,SBzB I,SMISC,35
ETABLE,SBzB_J,SMISC,40
!
! Listado de desplazamientos y esfuerzos
PRETAB,UX,UY,UZ,FX I,MY I,MZ I! m; N; N*m
!PRETAB,UX,UY,UZ,FX_J,MY_J,MZ_J! Salen los mismos resultados en los Nodos I que en J
!
PRETAB,SDIR_I,SByT_I,SByB_I,SBzT_I,SBzB_I! Pa
!PRETAB,SDIR J,SByT J,SByB J,SBzT J,SBzB J! Salen los mismos resultados en los Nodos I
que en J
!
PLLS,MZ I,MZ J,1,0 ! Diagrama de momentos Mz
```

on la elaboración de este proyecto final de carrera se han conseguido superar los objetivos establecidos al principio del mismo. Como logro principal, se han desarrollado todos los pasos indicados en la normativa API 650 para el diseño de tanques soldados para el almacenamiento de aceites, comprendiendo y identificando la relación entre cada una de las partes.

Por otro lado, se ha presentado el cálculo de una tipología de techo flotante interno basado en las indicaciones y requisitos mínimos de la norma americana, con la característica de ser diseños no estándar donde cada fabricante tiene su propio know-how.

De manera paralela, se ha desarrollado una herramienta Excel que integra todos los elementos de diseño para tanques de geometría y función similares, proporcionando una detallada memoria de cálculo a través de la introducción de los parámetros de diseño especificados en cualquier hoja de datos para la requisición de este tipo de tanques siguiente el anexo L de la API 650. Esta herramienta también permite analizar como la variación de estos parámetros afecta en el diseño a los resultados obtenidos.

A raíz de este proyecto, queda abierta la vía de un desarrollo analítico de estructuras para la cubierta fija para esta tipología de tanques de almacenamiento, afinando la estimación aquí realizada mediante el análisis de un modelo de elementos finitos de la viga radial de la estructura soporte.

AISC 360. 2005. Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction, 2005.

AISI. 1992. Steel Plate Engineering Data, Volume 2 - Useful information on the design of plate structures. Washington, D.C. : American Iron and Steel Institute, 1992.

API Standard 2000. 2014. *Venting Atmospheric and Low-pressure Storage Tanks.* Washington, D.C.: American Petroleum Institute, 2014.

API Standard 650. 2013. *Welded steel tanks for oil storage.* Washington, D.C. : American Petroleum Institute, 2013.

ASCE 7-05. 2006. *Minimum design loads for buildings and other structures*. Reston, Virginia : American Society of CIvil Engineers, 2006.

ASME B36.10M. 2004. Welded and seamless wrought steel pipe. Washington, D.C.: American Society od Mechanical Engineers, 2004.

Eurocódigo 3 : proyecto de estructuras de acero. 2008. *Parte 1-1, Reglas generales y reglas para edificios.* Madrid : AENOR, 2008.

Long, Bob y Garner, Bob. 2004. *Guide to storage tanks & equipment.* Bury St. Edmunds, UK : Professional Engineering, 2004.

NCSE-02. 2009. Norma de construcción sismoresistenete: parte general y edificación. Madrid : Ministerio de Fomento, Centro de Publicaciones, 2009.

Rodruiguez Templeque, Luis. 2013. Análisis de Estructuras mediante el Método de los Elementos Finitos, Introduccion a ANSYS. *Análisis Avanzado de Estructuras*. Sevilla : Universidad de Sevilla, 2013.

Young, Warren C. y Budynas, Richard G. 2002. *Roark's Formulas for Stress and Strain*. New York, NY : McGraw-Hill, 2002.

Nombre de archivo:	PFC (II) - Sánchez-Laulhé Carrascosa, Ignacio.docx
Directorio:	C:\Users\Ignacio SLC\Desktop
Plantilla:	C:\Users\Ignacio
SLC\AppData\Roam	ning\Microsoft\Templates\Normal.dotm
Título:	Diseño según API 650 de un tanque con techo flotante interno
para almacenamiento	o de gasolina
Asunto:	
Autor:	Ignacio Sánchez-Laulhé Carrascosa
Palabras clave:	
Comentarios:	
Fecha de creación:	03/06/2017 12:55:00
Cambio número:	23
Guardado el:	13/07/2017 21:46:00
Guardado por:	Ignacio Sánchez-Laulhé
Tiempo de edición:	19.782 minutos
Impreso el:	13/07/2017 21:52:00
Última impresión comple	eta
Número de páginas:	173
Número de palabras:	: 59.284 (aprox.)
Número de caractere	es: 326.066 (aprox.)