Índice general

1.	INTRODUCCIÓN Y OBJETIVOS		1		
	1.1.	Motivación	1		
	1.2.	El reemplazo total de cadera	į		
	1.3.	El problema micromecánico de la interfaz cemento-hueso	6		
2.	МО	DELO DE COMPORTAMIENTO MECÁNICO			
	DEI	L HUESO BAJO CARGAS CÍCLICAS	ę		
	2.1.	Introducción	ć		
	2.2.	Estructura del hueso	(
	2.3.	Propiedades mecánicas del hueso	12		
		2.3.1. Propiedades elásticas	12		
		2.3.2. Propiedades viscoelásticas	14		
	2.4.	Modelo de daño acumulativo del hueso	15		
		2.4.1. Fallo por creep	16		
		2.4.2. Fallo por fatiga debido a cargas cíclicas	17		
		2.4.3. Daño total acumulativo en el hueso	17		
3.	MODELO DE COMPORTAMIENTO MECÁNICO DEL CEMENTO BAJO				
	CA	RGAS CÍCLICAS	21		
	3.1.	Introducción	21		
	3.2.	Características y propiedades del cemento óseo	21		
	3.3.	Modelo de daño por fatiga bajo cargas cíclicas del cemento	22		

	3.4.	Model	o de creep del cemento	24
	3.5.	Model	o de daño global del cemento	26
4.	МО	DELO	MICROMECÁNICO DE INTERFACES HUESO-CEMENTO	29
	4.1.	Introd	ucción	29
	4.2.	Model	o de elementos finitos de la interfaz cemento-hueso	29
	4.3.	Homog	geneización	32
5.	IMI	PLEMI	ENTACIÓN NUMÉRICA	35
	5.1.	Introd	ucción	35
	5.2.	El Mét	todo de los Elementos Finitos en Problemas de	
		Elastic	idad Bidimensional	35
		5.2.1.	Teoría de la elasticidad bidimensional	36
		5.2.2.	Principio de los Trabajos Virtuales	39
		5.2.3.	Formulación de elementos finitos. Elemento rectangular de cuatro nodos	40
6.	RES	SULTA	DOS	45
	6.1.	Introd	ucción	45
	6.2.	Daño micromecánico de la interfaz hueso-cemento para un nivel de deformación		
		consta	nte	45
		6.2.1.	Daño micromecánico en el modelo de interfaz tipo 1 para una carga apli-	
			cada en dirección normal	46
		6.2.2.	Daño micromecánico en el modelo de interfaz tipo 1 para una carga apli-	
			cada en dirección tangencial	47
		6.2.3.	Daño micromecánico en el modelo de interfaz tipo 2 para una carga apli-	
			cada en dirección normal	48
		6.2.4.	Daño micromecánico en el modelo de interfaz tipo 2 para una carga apli-	
			cada en dirección tangencial	49
	6.3.	Daño l	nomogeneizado de la interfaz hueso-cemento	51
		6.3.1.	Daño homogeneizado en el modelo de interfaz tipo 1 para una carga apli-	
			cada en dirección normal	51
		6.3.2.	Daño homogeneizado en el modelo de interfaz tipo1 para una carga apli-	
			cada en dirección tangencial	52

		6.3.3.	Daño homogeneizado en el modelo de interfaz tipo 2 para una carga apli-	
			cada en dirección normal	57
		6.3.4.	Daño homogeneizado en el modelo de interfaz tipo 2 para una carga apli-	
			cada en dirección tangencial	60
	6.4.	Curva	s S-N de la interfaz hueso-cemento	63
7. CONCLUSIONES		67		
	7.1.	Conclu	asiones	67
	7 2	Desari	rollo futuro	70

Lista de Figuras

1.1.	Representación de una cadera dañada y una artroplastia de cadera con sus corres-	
	pondientes partes [1]	4
2.1.	Niveles jerárquicos de estructura en un fémur humano [3]	10
2.2.	Anatomía del fémur [9]	11
4.1.	Imagen microscópica de una interfaz hueso-cemento (100x) [26]	30
4.2.	Geometría del modelo de elementos finitos de la interfaz Tipo 1	31
4.3.	Geometría del modelo de elementos finitos de la interfaz Tipo 2	31
5.1.	Elemento rectangular de cuatro nodos [6]	40
6.1.	Evolución del daño en los elementos 2178, 4843 y 4881 para una deformación	
	normal de 0.0005 (a), 0.00075 (b) y 0.001 (c)	46
6.2.	Representación de los elementos 2178, 4843 y 4881 en el modelo de interfaz tipo 1.	47
6.3.	Evolución del daño en los elementos 2178, 4843 y 4881 para una deformación	
	tangencial impuesta de 0.0005 (a), 0.00075 (b) y 0.001 (c)	48
6.4.	Evolución del daño en los elementos 1474, 1482 y 4260 para una deformación	
	normal de 0.0005 (a), 0.00075 (b) y 0.001 (c)	49
6.5.	Representación de los elementos 1474, 1482 y 4260 en el modelo de interfaz tipo 2.	50
6.6.	Evolución del daño en los elementos 1474, 1482 y 4260 para una deformación	
	tangencial impuesta de 0.0005 (a), 0.00075 (b) y 0.001 (c)	50

6.7	. Representación de la función daño homogeneizada para una deformación normal	
	de 0.00075, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000 (B) y 1.500.000 (C)	53
6.8	de 0.001, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000	
	(B) y 1.500.000 (C)	54
6.9	. Representación de la función daño homogeneizada para una deformación tangen-	
	cial de 0.00075, mapa de tensiones y mapas de daño para 500.000 ciclos (A),	
	1.000.000 (B) y 1.500.000 (C)	55
6.1	0. Representación de la función daño homogeneizada para una deformación tangen-	
	cial de 0.001, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000 $$	
	(B) y 1.500.000 (C)	56
6.1	1. Representación de la función daño homogeneizada para una deformación normal	
	de 0.00075, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000	
	(B) y 1.500.000 (C)	58
6.1	2. Representación de la función daño homogeneizada para una deformación normal	
	de 0.001, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000	
	(B) y 1.500.000 (C)	59
6.1	3. Representación de la función daño homogeneizada para una deformación tangen-	
	cial de 0.00075, mapa de tensiones y mapas de daño para 500.000 ciclos (A),	
	1.000.000 (B) y 1.500.000 (C)	61
6.1	4. Representación de la función daño homogeneizada para una deformación tangen-	
	cial de 0.001, mapa de tensiones y mapas de daño para 500.000 ciclos (A), 1.000.000	
	(B) y 1.500.000 (C)	62
6.1	5. Curvas S-N de la interfaz tipo 1	64
6.1	6. Curvas S-N de la interfaz tipo 2	65
7.1	. Comparación del daño en los dos tipo de interfaces para una deformación normal	
	de 0.00075 (a) y para una deformación tangencial de 0.00075 (b)	68
7.2	. Comparación de las curvas S-N para los dos tipo de interfaces para una tensión	
	normal(a) y para una tensión tangencial (b)	69

7.3.	Modelo de elementos finitos obtenido mediante microtomos de una interfaz cemento-	
	hueso [12]	71