Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE

Agradecimientos	1
ÍNDICE	2
ÍNDICE DE FIGURAS	4
ÍNDICE DE TABLAS	8
CAPÍTULO 1: INTRODUCCIÓN	9
1.1 Antecedentes	10
1.2 Motivación	11
1.3 Objetivos del Proyecto	14
1.4 Publicaciones estudiadas	15
1.5 Plan de trabajo	17
1.6 Organización del Proyecto	20
CAPÍTULO 2: DISEÑO Y OPTIMIZACIÓN DEL PROCESO DE FABRICACIÓN DE LAS PROBETAS	21
2.1 Introducción	
2.2 Proceso de fabricación de las probetas	
2.2.1Elección del tipo de unión entre la piel y el rigidizador	
2.2.2Fabricación de la piel	
2.2.3Fabricación de los rigidizadores	
2.3 Análisis de las posibles configuraciones de unión y curado	
2.3.1Configuración A	
2.3.2Configuración B	
2.4 Probetas obtenidas	
2.5 Resumen del proceso de fabricación	
3.1 Introducción	
3.2 Proceso de preparación de las probetas para el ensayo	
3.2.1 Elección del lugar de colocación de las bandas extensométricas	51

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

3.2.2 Procedimiento de colocación de las bandas extensométricas	55
3.3 Configuración del ensayo	57
CAPÍTULO 4: RESULTADOS Y ANÁLISIS DE LOS ENSAYOS DE ARRANCAMIENTO	59
4.1 Introducción	60
4.2 Ensayos de probetas tipo ALCAS	61
4.2.1Ensayo de probeta ALCAS A1-A (Ensayo 3)	61
4.2.2Ensayo de probeta ALCAS A1-B (Ensayo 4)	68
4.2.3 Ensayo de probeta ALCAS A1-C (Ensayo 2)	75
4.2.4Ensayo de probeta ALCAS A2-A (Ensayo 5)	79
4.2.5Ensayo de probeta ALCAS A2-B (Ensayo 6)	86
4.2.6Ensayo de probeta ALCAS A2-C (Ensayo 1)	92
4.3 Ensayos de probetas tipo GERM	99
4.3.1Ensayo de probeta GERM G1-A (Ensayo 9)	99
4.3.2Ensayo de probeta GERM G1-B (Ensayo 7)	106
4.3.3Ensayo de probeta GERM G2-A (Ensayo 10)	113
4.3.4Ensayo de probeta GERM G2-B (Ensayo 8)	120
4.4 Análisis comparativo de resultados	126
4.4.1 Comparación de resultados en probetas ALCAS	126
4.4.2 Comparación de resultados en probetas GERM	128
4.4.2 Comparación de resultados entre probetas ALCAS y GERM	129
CAPÍTULO 5: CONCLUSIONES Y DESARROLLOS FUTUROS	130
5.1 Resumen y conclusiones	131
5.2 Desarrollos futuros	134
CAPÍTULO 6: PRESUPUESTO	135
6.1 Presupuesto estimado del proyecto y aclaraciones	136
ANEXO 1: HOJA DE ESPECIFICACIONES DEL ADHESIVO	137
ANEXO 2: PLANOS	144
BIBLIOGRAFÍA	153

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE DE FIGURAS

Fig.1.1. Componentes de los paneles rigidizados (tomado de [8])	11
Fig.1.2. Deformada del panel tras la 1º carga de pandeo (tomado de [8])	12
Fig.1.3. Dimensiones de las probetas tipo ALCAS.	17
Fig.1.4. Dimensiones de las probetas tipo GERM.	17
Fig.1.5. Condiciones de contorno de las probetas tipo ALCAS	18
Fig.1.6. Condiciones de contorno de las probetas tipo GERM	19
Fig.2.1. Dimensiones de las probetas tipo ALCAS. [Cotas en mm]	22
Fig.2.2. Dimensiones de las probetas tipo GERM. [Cotas en mm]	23
Fig.2.3. Vista de las probetas ALCAS Y GERM.	24
Fig.2.4. Dimensiones de los paneles tipo ALCAS a fabricar. [Cotas en mm]	27
Fig.2.5. Dimensiones de los paneles tipo GERM a fabricar. [Cotas en mm]	27
Fig.2.6. y 2.7. Láminas de Prepreg cortadas	28
Fig.2.8. Paneles ap. antes de ser curados acompañados del útil de nailon utilizado	28
Fig.2.9. y 2.10. Paneles apilados con la capa de peel-ply en su cara superior	29
Fig.2.11. Pre-compactación de paneles en bolsa de vacío	29
Fig.2.12. Paneles rodeados de corcho en la plancha de curado	30
Fig.2.13. Plancha de curado preparada para el autoclave	30
Fig.2.14. Evolución de los parámetros del ciclo de curado	
Fig.2.15. Autoclave utilizado para el proceso de curado	32
Fig.2.16. Dimensiones de los moldes de acero utilizados. [Cotas en mm]	32
Fig.2.17. Esquema del tipo de molde utilizado.	33
Fig.2.18. Dimensiones de los rigidizadores tipo ALCAS a fabricar	33
Fig.2.19. Dimensiones de los rigidizadores tipo GERM a fabricar	34
Fig.2.20. Esquema de los rigidizadores tipo ALCAS y GERM respectivamente	34
Fig.2.21. Rigidizador apilado sobre el molde de acero antes de ser compactado	35
Fig.2.22. Esquema y foto de los bordes del rigidizador que necesitaron corcho	35
Fig.2.23. Unión de los rigidizadores con el panel antes de aplicar la bolsa de vacío	36
Fig.2.24. Zonas del panel en las que fue necesario pegar el adhesivo	37
Fig.2.25. Perfil de la configuración de curado A	38
Fig.2.26. Vista general de la conf. de curado antes de aplicar la bolsa de vacío	38
Fig.2.27. Probeta obtenida mediante la configuración de curado A	39
Fig.2.28. Perfil de la probeta obtenida con configuración de curado A	39
Fig.2.29. Comparación entre efecto deseado (izquierda) y el obtenido (derecha)	40
Fig.2.30. Perfil de la configuración de curado B	41

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

Fig.2.31. Vista gen.de la configuración de curado B antes de aplicar la bolsa de vacío	41
Fig.2.32. Dim del mat. de sacrificio para probetas ALCAS (arriba) y GERM (abajo)	42
Fig.2.33. Disp. de todos los elementos de la conf. B antes de aplicar la bolsa de vacío.	42
Fig.2.34. Esquema de la zona con roving.	43
Fig.2.35. Vista de las tiras del roving antes de pegar la piel.	43
Fig.2.36. Bolsa de vacio antes de entrar en autoclave	44
Fig.2.37. Vista de la probeta tipo ALCAS obtenida	44
Fig.2.38. Probetas tipo GERM antes del ensayo.	45
Fig.2.39. Probetas tipo ALCAS antes del ensayo.	45
Fig.2.40. Comparación de tamaño entre probetas tipo.	46
Fig.2.41. Esquema general del proceso de fabricación seguido	47
Fig.3.1. Probetas tipo GERM para el ensayo.	49
Fig.3.2. Probetas tipo ALCAS para el ensayo	49
Fig.3.3. Máquina utilizada para el ensayo	50
Fig.3.4. Distribución de las bandas extensométricas en las probetas ALCAS	.52
Fig.3.5. Distribución de las bandas extensométricas en las probetas GERM	53
Fig.3.6. Designación de las bandas en las probetas tipo ALCAS	54
Fig.3.7. Designación de las bandas en las probetas tipo GERM	54
Fig.3.8. Esquema del tipo de banda utilizado	. 55
Fig.3.9. Gramil utilizado para marcar la posición de las bandas	
Fig.3.10. Dimensiones del útil usado en los ensayos.	. 57
Fig.3.11. Vista de la cogida del útil a la mordaza de la máquina	. 58
Fig.4.1. Evolución de la carga durante el Ensayo 3	61
Fig.4.2. Esquema del avance de la grieta en la probeta A1-A	62
Fig.4.3. Vista de la zona de unión de la piel tras la rotura	63
Fig.4.4. Vista general de la probeta tras el Ensayo	63
Fig.4.5. Vista de la piel y el rigidizador tras la rotura.	64
Fig.4.6. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 3	65
Fig.4.7. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 3	65
Fig.4.8. Medidas de las B. Extensométricas 2, 3, 4, 5, 8, 9,10 y 11 EN el Ensayo 3	66
Fig.4.9. Def. de flexión de los pares de B. Ext. 2-9, 4-10 y 5-11 en el Ensayo 3	67
Fig.4.10. Evolución de la carga durante el Ensayo 4	68
Fig.4.11. Esquema del avance de la grieta	69
Fig.4.12. Vista general de la piel tras la rotura	70
Fig.4.13. Vista de la zona de unión de la piel tras la rotura	70
Fig.4.14. Vista de la piel y el rigidizador tras la rotura	. 71
Fig.4.15. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 4	. 72
Fig.4.16. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 4	. 72
Fig.4.17. Medidas de las Bandas Extensométricas 1, 4, 8, v 10 durante el Ensavo 4	73

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

Fig.4.18	. Def. de flexión de los pares de B. Ext. 1-8 y 4-10 durante el Ensayo 4	74
Fig.4.19	. Evolución de la carga durante el Ensayo 2	75
_	. Esquema del avance de la grieta	
Fig.4.21	. Vista general de la piel tras la rotura	77
Fig.4.22	. Vista de la zona de unión de la piel tras la rotura	77
Fig.4.23	. Vista de la piel y el rigidizador tras la rotura	78
Fig.4.24	. Evolución de la carga durante el Ensayo 5	79
Fig.4.25	. Esquema del avance de la grieta	80
Fig.4.26	. Vista general de la piel tras la rotura	81
Fig.4.27	. Vista de la zona de unión de la piel tras la rotura	81
Fig.4.28	. Vista general de la probeta tras la rotura	82
Fig.4.29	. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 5	83
Fig.4.30	. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 5	83
Fig.4.31	. Medidas de las Bandas Extensométricas 2, 5, 9y 11 durante el Ensayo 5	84
Fig.4.32	. Def.de flexión de los pares de B.Ext. 2-9 y 5-11 durante el Ensayo 5	85
Fig.4.33	. Evolución de la carga durante el Ensayo 6	86
Fig.4.34.	. Esquema del avance de la grieta	87
Fig.4.35	. Vista general de la piel tras la rotura	88
Fig.4.36	. Vista de la zona de unión de la piel tras la rotura	88
Fig.4.37	. Vista general de la piel y el rigidizador tras la rotura	89
Fig.4.38.	. Medidas de las Bandas Extensométricas 1, 4, 8 y 10 durante el Ensayo 6	90
Fig.4.39.	. Def. de flexión de los pares de B. Ext.1-8 y 4-10 en el Ensayo 6	90
Fig.4.40	. Evolución de la carga durante el Ensayo 1	92
Fig.4.41.	. Esquema del avance de la grieta	93
Fig.4.42.	Vista general de la piel tras la rotura	94
Fig.4.43.	Vista de la zona de unión de la piel tras la rotura	94
Fig.4.44	. Vista general de la probeta tras la rotura	95
Fig.4.45	. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 1	96
Fig.4.46	. Def. de flexión de las B. Extensométricas 6 y 7 durante el Ensayo 1	96
Fig.4.47	. Medidas de las B. Ext. 1, 2, 3,4, 5,6, 7, 8, 9, 10 y 11 durante el Ensayo 1	97
Fig.4.48	. Def. de flexión de los pares de B. Ext. 1-8, 2-9, 4-10 y 5-11 en el Ens. 1	98
Fig.4.49	. Evolución de la carga durante el Ensayo 9	99
Fig.4.50	. Esquema del avance de la grieta1	100
Fig.4.51	. Vista de la piel tras la rotura 1	101
Fig.4.52	. Vista de la zona de unión de la probeta tras la rotura	101
Fig.4.53	. Vista de la piel y el rigidizador tras la rotura1	102
	. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 9 1	
Fig.4.55	. Def. de flexión de las B. Extensométricas 6 y 7 durante el Ensayo 9 1	103
Fig.4.56.	. Medidas de las Bandas Extensométricas1, 4 y 8 durante el Ensayo 9 1	104

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

Fig.4.57. Def. de flexión de los pares de B. Extensométricas 1-8 en el Ensayo 9 105
Fig.4.58. Evolución de la carga durante el Ensayo 7 106
Fig.4.59. Esquema del avance de la grieta107
Fig.4.60. Vista general de la piel tras la rotura108
Fig.4.61. Vista de la zona de unión de la piel tras la rotura
Fig.4.62. Vista de la piel y el rigidizador tras la rotura
Fig.4.63. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 7 110
Fig.4.64. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 7 110
Fig.4.65. Medidas de las Bandas Extensométricas 2, 5, 9 y 11 durante el Ensayo 7 111
Fig.4.66. Def. de flexión de los pares de B. Ext. 2-9 y 5-11 durante el Ensayo 7 112
Fig.4.67. Evolución de la carga durante el Ensayo 10
Fig.4.68. Esquema del avance de la grieta
Fig.4.69. Vista general de la piel tras la rotura
Fig.4.70. Vista de la zona de unión de la piel tras la rotura
Fig.4.71. Vista de la piel y el rigidizador tras la rotura
Fig.4.72. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 10 117
Fig.4.73. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 10 117
Fig.4.74. Medidas de las Bandas Extensométricas 1, 4, 8 y 10 durante el Ensayo 10 118
Fig.4.75. Def. de flexión de los pares de B. Ext. 1-8 y 4-10 durante el Ensayo 10 119
Fig.4.76. Evolución de la carga durante el Ensayo 8
Fig.4.77. Esquema del avance de la grieta
Fig.4.78. Vista general de la piel tras la rotura
Fig.4.79. Vista de la zona de unión de la piel tras la rotura
Fig.4.80. Vista de la piel y el rigidizador tras la rotura
Fig.4.81. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 8 123
Fig.4.82. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 8 123
Fig.4.83. Medidas de las Bandas Extensométricas 2, 5, 9 y 11 durante el Ensayo 8 124
Fig.4.84. Def. de flexión de los pares de B. Ext. 2-9 y 5-11 en el Ensayo 8 125

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE DE TABLAS

Tabla 1.1. Configuraciones de los laminados [s=simétrico]	18
Tabla 1.2. Resumen de probetas fabricadas	18
Tabla 2.1. Configuraciones de los laminados [s=simétrico]	24
Tabla 2.2. Número de probetas de cada tipo a fabricar	25
Tabla 2.3. Parámetros característicos del ciclo de curado	31
Tabla 4.1. Fecha de realización de cada Ensayo	60
Tabla 4.2. Evolución de la grieta durante el Ensayo 4	69
Tabla 4.3. Evolución de la grieta durante el Ensayo 5	80
Tabla 4.4. Evolución de la grieta durante el Ensayo 6	87
Tabla 4.5. Resumen de los datos recogidos en el Ensayo	126
Tabla 6.1. Presupuesto estimado del provecto.	136