Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE

Agradecimientos1
ÍNDICE 2
ÍNDICE DE FIGURAS4
ÍNDICE DE TABLAS
CAPÍTULO 1: INTRODUCCIÓN9
1.1 Antecedentes 10
1.2 Motivación 11
1.3 Objetivos del Proyecto 14
1.4 Publicaciones estudiadas 15
1.5 Plan de trabajo
1.6 Organización del Proyecto 20
CAPÍTULO 2: DISEÑO Y OPTIMIZACIÓN DEL PROCESO DE FABRICACIÓN DE LAS PROBETAS
2.1 Introducción
2.2 Proceso de fabricación de las probetas
2.2.1Elección del tipo de unión entre la piel y el rigidizador
2.2.2Fabricación de la piel
2.2.3Fabricación de los rigidizadores 32
2.3 Análisis de las posibles configuraciones de unión y curado
2.3.1Configuración A 37
2.3.2Configuración B 40
2.4 Probetas obtenidas 45
2.5 Resumen del proceso de fabricación 47
CAPÍTULO 3: DESCRIPCIÓN DEL ENSAYO DE ARRANCAMIENTO 48
3.1 Introducción
3.2 Proceso de preparación de las probetas para el ensayo
3.2.1 Elección del lugar de colocación de las bandas extensométricas 51

3 2 2 - Procedimiento de colocación de las bandas extensométricas
3 3 - Configuración del encavo
4.1 Introducción
4.1 Introduccion
4.2 Ensayos de probetas tipo ALCAS 61
4.2.1Ensayo de probeta ALCAS A1-A (Ensayo 3)61
4.2.2Ensayo de probeta ALCAS A1-B (Ensayo 4)68
4.2.3 Ensayo de probeta ALCAS A1-C (Ensayo 2)75
4.2.4Ensayo de probeta ALCAS A2-A (Ensayo 5)
4.2.5Ensayo de probeta ALCAS A2-B (Ensayo 6)
4.2.6Ensayo de probeta ALCAS A2-C (Ensayo 1)92
4.3 Ensayos de probetas tipo GERM 99
4.3.1Ensayo de probeta GERM G1-A (Ensayo 9)99
4.3.2Ensayo de probeta GERM G1-B (Ensayo 7)106
4.3.3Ensayo de probeta GERM G2-A (Ensayo 10)113
4.3.4Ensayo de probeta GERM G2-B (Ensayo 8)
4.4 Análisis comparativo de resultados126
4.4.1 Comparación de resultados en probetas ALCAS
4.4.2 Comparación de resultados en probetas GERM 128
4.4.2 Comparación de resultados entre probetas ALCAS y GERM 129
CAPÍTULO 5: CONCLUSIONES Y DESARROLLOS FUTUROS
5.1 Resumen y conclusiones
5.2 Desarrollos futuros 134
CAPÍTULO 6: PRESUPUESTO 135
6.1 Presupuesto estimado del proyecto y aclaraciones
ANEXO 1: HOJA DE ESPECIFICACIONES DEL ADHESIVO 137
ANEXO 2: PLANOS
BIBLIOGRAFÍA

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE DE FIGURAS

Fig.1.1. Componentes de los paneles rigidizados (tomado de [8])	. 11
Fig.1.2. Deformada del panel tras la 1º carga de pandeo (tomado de [8])	12
Fig.1.3. Dimensiones de las probetas tipo ALCAS.	. 17
Fig.1.4. Dimensiones de las probetas tipo GERM.	. 17
Fig.1.5. Condiciones de contorno de las probetas tipo ALCAS	. 18
Fig.1.6. Condiciones de contorno de las probetas tipo GERM	. 19
Fig.2.1. Dimensiones de las probetas tipo ALCAS. [Cotas en mm]	22
Fig.2.2. Dimensiones de las probetas tipo GERM. [Cotas en mm]	23
Fig.2.3. Vista de las probetas ALCAS Y GERM	24
Fig.2.4. Dimensiones de los paneles tipo ALCAS a fabricar. [Cotas en mm]	27
Fig.2.5. Dimensiones de los paneles tipo GERM a fabricar. [Cotas en mm]	27
Fig.2.6. y 2.7. Láminas de Prepreg cortadas	28
Fig.2.8. Paneles ap. antes de ser curados acompañados del útil de nailon utilizado	28
Fig.2.9. y 2.10. Paneles apilados con la capa de peel-ply en su cara superior	29
Fig.2.11. Pre-compactación de paneles en bolsa de vacío	29
Fig.2.12. Paneles rodeados de corcho en la plancha de curado	30
Fig.2.13. Plancha de curado preparada para el autoclave	30
Fig.2.14. Evolución de los parámetros del ciclo de curado	31
Fig.2.15. Autoclave utilizado para el proceso de curado	32
Fig.2.16. Dimensiones de los moldes de acero utilizados. [Cotas en mm]	32
Fig.2.17. Esquema del tipo de molde utilizado.	33
Fig.2.18. Dimensiones de los rigidizadores tipo ALCAS a fabricar.	33
Fig.2.19. Dimensiones de los rigidizadores tipo GERM a fabricar.	34
Fig.2.20. Esquema de los rigidizadores tipo ALCAS y GERM respectivamente	34
Fig.2.21. Rigidizador apilado sobre el molde de acero antes de ser compactado	35
Fig.2.22. Esquema y foto de los bordes del rigidizador que necesitaron corcho	35
Fig.2.23. Unión de los rigidizadores con el panel antes de aplicar la bolsa de vacío	36
Fig.2.24. Zonas del panel en las que fue necesario pegar el adhesivo.	37
Fig.2.25. Perfil de la configuración de curado A	38
Fig.2.26. Vista general de la conf. de curado antes de aplicar la bolsa de vacío	38
Fig.2.27. Probeta obtenida mediante la configuración de curado A	39
Fig.2.28. Perfil de la probeta obtenida con configuración de curado A	39
Fig.2.29. Comparación entre efecto deseado (izquierda) y el obtenido (derecha)	40
Fig.2.30. Perfil de la configuración de curado B	41

Fig.2.31. Vista gen.de la configuración de curado B antes de aplicar la bolsa de vacío	41
Fig.2.32. Dim del mat. de sacrificio para probetas ALCAS (arriba) y GERM (abajo)	42
Fig.2.33. Disp. de todos los elementos de la conf. B antes de aplicar la bolsa de vacío.	42
Fig.2.34. Esquema de la zona con roving	43
Fig.2.35. Vista de las tiras del roving antes de pegar la piel	43
Fig.2.36. Bolsa de vacio antes de entrar en autoclave	44
Fig.2.37. Vista de la probeta tipo ALCAS obtenida	44
Fig.2.38. Probetas tipo GERM antes del ensayo	45
Fig.2.39. Probetas tipo ALCAS antes del ensayo	45
Fig.2.40. Comparación de tamaño entre probetas tipo	46
Fig.2.41. Esquema general del proceso de fabricación seguido	47
Fig.3.1. Probetas tipo GERM para el ensayo	49
Fig.3.2. Probetas tipo ALCAS para el ensayo	49
Fig.3.3. Máquina utilizada para el ensayo	50
Fig.3.4. Distribución de las bandas extensométricas en las probetas ALCAS	52
Fig.3.5. Distribución de las bandas extensométricas en las probetas GERM	53
Fig.3.6. Designación de las bandas en las probetas tipo ALCAS	54
Fig.3.7. Designación de las bandas en las probetas tipo GERM	54
Fig.3.8. Esquema del tipo de banda utilizado	55
Fig.3.9. Gramil utilizado para marcar la posición de las bandas	55
Fig.3.10. Dimensiones del útil usado en los ensayos	57
Fig.3.11. Vista de la cogida del útil a la mordaza de la máquina	58
Fig.4.1. Evolución de la carga durante el Ensayo 3	61
Fig.4.2. Esquema del avance de la grieta en la probeta A1-A	62
Fig.4.3. Vista de la zona de unión de la piel tras la rotura	63
Fig.4.4. Vista general de la probeta tras el Ensayo	63
Fig.4.5. Vista de la piel y el rigidizador tras la rotura	64
Fig.4.6. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 3	65
Fig.4.7. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 3	65
Fig.4.8. Medidas de las B. Extensométricas 2, 3, 4, 5, 8, 9,10 y 11 EN el Ensayo 3	66
Fig.4.9. Def. de flexión de los pares de B. Ext. 2-9, 4-10 y 5-11 en el Ensayo 3	67
Fig.4.10. Evolución de la carga durante el Ensayo 4	68
Fig.4.11. Esquema del avance de la grieta	69
ig.4.12. Vista general de la piel tras la rotura.	70
ig.4.13. Vista de la zona de unión de la piel tras la rotura	70
ig.4.14. Vista de la piel y el rigidizador tras la rotura	71
ig.4.15. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 4	72
ig.4.16. Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 4	72
ig.4.17. Medidas de las Bandas Extensométricas 1, 4, 8, y 10 durante el Ensayo 4	73

Fig.4.18.	Def. de flexión de los pares de B. Ext. 1-8 y 4-10 durante el Ensayo 4	74
Fig.4.19.	Evolución de la carga durante el Ensayo 2	75
Fig.4.20.	Esquema del avance de la grieta	76
Fig.4.21.	Vista general de la piel tras la rotura	77
Fig.4.22.	Vista de la zona de unión de la piel tras la rotura	77
Fig.4.23.	Vista de la piel y el rigidizador tras la rotura	78
Fig.4.24.	Evolución de la carga durante el Ensayo 5	79
Fig.4.25.	Esquema del avance de la grieta	80
Fig.4.26.	Vista general de la piel tras la rotura	81
Fig.4.27.	Vista de la zona de unión de la piel tras la rotura	81
Fig.4.28.	Vista general de la probeta tras la rotura	82
Fig.4.29.	Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 5	83
Fig.4.30.	Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 5	83
Fig.4.31.	Medidas de las Bandas Extensométricas 2, 5, 9y 11 durante el Ensayo 5	84
Fig.4.32.	Def.de flexión de los pares de B.Ext. 2-9 y 5-11 durante el Ensayo 5	85
Fig.4.33.	Evolución de la carga durante el Ensayo 6	86
Fig.4.34.	Esquema del avance de la grieta	87
Fig.4.35.	Vista general de la piel tras la rotura	88
Fig.4.36.	Vista de la zona de unión de la piel tras la rotura	88
Fig.4.37.	Vista general de la piel y el rigidizador tras la rotura	89
Fig.4.38.	Medidas de las Bandas Extensométricas 1, 4, 8 y 10 durante el Ensayo 6	90
Fig.4.39.	Def. de flexión de los pares de B. Ext.1-8 y 4-10 en el Ensayo 6	90
Fig.4.40.	Evolución de la carga durante el Ensayo 1	92
Fig.4.41.	Esquema del avance de la grieta	93
Fig.4.42.	Vista general de la piel tras la rotura	94
Fig.4.43.	Vista de la zona de unión de la piel tras la rotura	94
Fig.4.44.	Vista general de la probeta tras la rotura	95
Fig.4.45.	Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 1	96
Fig.4.46.	Def. de flexión de las B. Extensométricas 6 y 7 durante el Ensayo 1	96
Fig.4.47.	Medidas de las B. Ext. 1, 2, 3,4, 5,6, 7, 8, 9, 10 y 11 durante el Ensayo 1	97
Fig.4.48.	Def. de flexión de los pares de B. Ext. 1-8, 2-9, 4-10 y 5-11 en el Ens. 1	98
Fig.4.49.	Evolución de la carga durante el Ensayo 9	99
Fig.4.50.	Esquema del avance de la grieta1	00
Fig.4.51.	Vista de la piel tras la rotura1	01
Fig.4.52.	Vista de la zona de unión de la probeta tras la rotura1	01
Fig.4.53.	Vista de la piel y el rigidizador tras la rotura1	02
Fig.4.54.	Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 9 1	03
Fig.4.55.	Def. de flexión de las B. Extensométricas 6 y 7 durante el Ensayo 9 1	03
Fig.4.56.	Medidas de las Bandas Extensométricas1, 4 y 8 durante el Ensayo 9 1	04

Fig.4.57.	Def. de flexión de los pares de B. Extensométricas 1-8 en el Ensayo 9 10)5
Fig.4.58.	Evolución de la carga durante el Ensayo 7 10	16
Fig.4.59.	Esquema del avance de la grieta10	17
Fig.4.60.	Vista general de la piel tras la rotura 10	18
Fig.4.61.	. Vista de la zona de unión de la piel tras la rotura	18
Fig.4.62.	Vista de la piel y el rigidizador tras la rotura10	19
Fig.4.63.	. Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 7 11	.0
Fig.4.64.	Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 7 11	.0
Fig.4.65.	Medidas de las Bandas Extensométricas 2, 5, 9 y 11 durante el Ensayo 7 11	.1
Fig.4.66.	Def. de flexión de los pares de B. Ext. 2-9 y 5-11 durante el Ensayo 7 11	.2
Fig.4.67.	Evolución de la carga durante el Ensayo 1011	.3
Fig.4.68.	Esquema del avance de la grieta11	.4
Fig.4.69.	. Vista general de la piel tras la rotura11	.5
Fig.4.70.	. Vista de la zona de unión de la piel tras la rotura11	.5
Fig.4.71.	Vista de la piel y el rigidizador tras la rotura11	.6
Fig.4.72.	Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 10 11	.7
Fig.4.73.	Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 10 11	.7
Fig.4.74.	Medidas de las Bandas Extensométricas 1, 4, 8 y 10 durante el Ensayo 10 11	.8
Fig.4.75.	Def. de flexión de los pares de B. Ext. 1-8 y 4-10 durante el Ensayo 10 11	.9
Fig.4.76.	Evolución de la carga durante el Ensayo 8 12	0
Fig.4.77.	Esquema del avance de la grieta 12	21
Fig.4.78.	. Vista general de la piel tras la rotura12	1
Fig.4.79.	. Vista de la zona de unión de la piel tras la rotura	2
Fig.4.80.	Vista de la piel y el rigidizador tras la rotura12	2
Fig.4.81.	Medidas de las Bandas Extensométricas 6 y 7 durante el Ensayo 8 12	3
Fig.4.82.	Def. de flexión de las Bandas Extensométricas 6 y 7 durante el Ensayo 8 12	.3
Fig.4.83.	Medidas de las Bandas Extensométricas 2, 5, 9 y 11 durante el Ensayo 8 12	4
Fig.4.84.	Def. de flexión de los pares de B. Ext. 2-9 y 5-11 en el Ensayo 8 12	.5

Proyecto Fin de Carrera – Blanca Gómez García Laboratorio de Elasticidad y Resistencia de Materiales. E.T.S. Ingeniería Universidad de Sevilla

ÍNDICE DE TABLAS

Tabla 1.1. Configuraciones de los laminados [s=simétrico]	. 18
Tabla 1.2. Resumen de probetas fabricadas	. 18
Tabla 2.1. Configuraciones de los laminados [s=simétrico]	. 24
Tabla 2.2. Número de probetas de cada tipo a fabricar	. 25
Tabla 2.3. Parámetros característicos del ciclo de curado	. 31
Tabla 4.1. Fecha de realización de cada Ensayo	. 60
Tabla 4.2. Evolución de la grieta durante el Ensayo 4	. 69
Tabla 4.3. Evolución de la grieta durante el Ensayo 5	. 80
Tabla 4.4. Evolución de la grieta durante el Ensayo 6	. 87
Tabla 4.5. Resumen de los datos recogidos en el Ensayo	126
Tabla 6.1. Presupuesto estimado del proyecto	136