Proyecto Fin de Carrera Ingeniería Aeronáutica

Análisis del efecto de la tensión fuera del plano en la conformabilidad de chapa metálica

Autor: José Antonio Alfonso Moreno Tutor: Domingo Morales Palma

Departamento de Ingeniería Mecánica y Fabricación Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2014

Proyecto Final de Carrera

Análisis del efecto de la tensión fuera del plano en la conformabilidad de chapa metálica

Autor:

José Antonio Alfonso Moreno

Tutor:

Domingo Morales Palma

Departamento de Ingeniería Mecánica y Fabricación

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2014

Agradecimientos

Deseo expresar mi mayor gratitud a Andrés, por la gran ayuda y dedicación que me ha brindado durante este tiempo. Así como a los integrantes del área de fabricación que han aportado a la realización del presente trabajo

De igual manera, a Diana, porque su compañía, su comprensión y su apoyo ha sido fundamental para la realización de este proyecto.

Finalmente, quisiera agradecer a mi familia su apoyo durante los duros años de estudio en la Universidad, en especial a mi padre.

A todos, gracias.

Índice general

Agradecimientos		
Nomenclatura		
Índice de figuras	9	
Índice de tablas1	3	
Motivación, objetivo y alcance1	4	
Capítulo 1. Introducción	5	
1. Conformabilidad de chapas metálicas1	5	
2. El Diagrama Límite de Conformado (FLD) 1	8	
3. Ensayo de estirado tipo Nakazima	4	
4. Curva Límite de Conformado en Tensiones (FLSC) 2	5	
Capítulo 2. El método de los elementos finitos3	1	
1. Introducción	1	
2. Definición del método3	1	
3. Funcionamiento de un programa de elementos finitos3	2	
Capítulo 3. Construcción del modelo numérico 3	4	
1. Discusión sobre el problema	4	
2. Descripción del software Abaqus/Standard3	5	
3. Elementos del modelo	6	
3.1. Punzones	7	
3.2. Matriz	9	
3.3. Probetas	0	
4. Material: comportamiento y criterio de plastificación	2	
5. Mallado	7	
6. Análisis de convergencia	0	
7. Contactos y rozamiento	2	
8. Condiciones de contorno	3	
9. Cargas	4	
Capítulo 4. Análisis	6	
1. Diagrama FLD	6	
2. Diagrama FLSC	7	
3. Descripción de los ensayos	0	
4. Resultados de los ensayos	1	

Capí	ulo 5. Discusión de los resultados	78
1.	Comprobación de la existencia de indentación7	78
2.	Desplazamiento del punzón en el momento de la estricción	30
3.	Evolución de la deformación principal máxima	30
4.	Gradiente de tensiones en el espesor	31
5.	Efecto de la distancia crítica	35
6.	Efecto de la fricción	35
7.	Efecto del estado de deformación de la chapa	38
Capí	ulo 6. Conclusiones y trabajo futuro 8	39
1.	Conclusiones	39
2.	Trabajo futuro9) 1
Bibli	ografía) 2
Ane	o I: Evolución de las tensiones $\sigma 1, \sigma 2$ y $\sigma 3$ 9) 3
Ane	ο II: Evolución de las deformaciones ε1, ε2 y ε3) 6

Nomenclatura

Caracteres latinos

- *d*_{crit} Distancia crítica medida desde el interior de la chapa indeformada
- *p* Presión aplicada sobre la chapa en su cara exterior
- $r_{ heta}$ Coeficiente de Lankford en la dirección que forma un ángulo heta con la de laminación
- R Radio del punzón
- t₀ Espesor de la chapa indeformada

Caracteres griegos

β	Relación entre los incrementos de deformaciones en el plano de la chapa
	$(\beta = d\varepsilon_2 / d\varepsilon_1)$
ε_i	Deformación en la dirección principal i ($i = \{1, 2, 3\}$).
E _{eq}	Deformación equivalente
σ_Y	Límite elástico

- σ_i Tensión en la dirección principal i ($i = \{1, 2, 3\}$).
- σ_{eq} Tensión equivalente
- Ø Diámetro del punzón

Abreviaturas

- FLD Diagrama Límite de Conformado (Forming Limit Diagram)
- FLC Curva Límite de Conformado (Forming Limit Curve)
- FLSC Curva Límte de Conformado en Tensiones (Formig Limit Stress Curve)

Índice de figuras

Fig. 1.	Conformado de chapa por estirado (<i>Marciniak, 2002</i>)	16
Fig. 2.	Conformado de chapa por estampación (Marciniak, 2002)	16
Fig. 3.	Conformado de chapa por embutición (Marciniak, 2002)	16
Fig. 4.	Diferentes procesos de plegado: a) directriz recta, b) matriz en V, c) en voladizo y	/ d)
con rodil	los. (Marciniak, 2002)	17
Fig. 5.	Proceso de rebordeado (Apuntes Tecnología de Fabricación. Univ. de Sevilla)	17
Fig. 6.	Diagrama FLD genérico	18
Fig. 7.	Diferentes estados de las deformaciones principales	19
Fig. 8.	Esquema del ensayo y probetas usadas en la determinación de los FLD	20
Fig. 9.	Curva representativa de los diferentes mecanismos de fallo	20
Fig. 10.	Método de la rejilla de círculos para medir deformaciones	21
Fig. 11.	Efecto del endurecimiento (n)	21
Fig. 12.	Efecto de la velocidad de deformación (m)	22
Fig. 13.	Efecto de la fractura dúctil	22
Fig. 14.	Efecto de las imperfecciones	23
Fig. 15.	DLC completo, incluyendo todos los posibles tipos de fallo	23
Fig. 16.	Esquema de un ensayo tipo Nakazima	24
Fig. 17.	Probetas entalladas para ensayos tipo Nakazima	25
Fig. 18.	Curvas límite de conformado en chapas de aluminio 2008-T4 sujetas a	
deforma	ciones bajo tracción uniaxial (Graf y Hosford)	26
Fig. 19.	Curvas límite de conformado en deformaciones (izquierda) y en tensiones (derec	:ha)
en chapa	s de aluminio 2008-T4 sin predeformar y predeformadas (Stoughton y Yoon, 2011	.) 27
Fig. 20.	Influencia de la tensión normal en acero de bajo contenido en carbono ST12	
(Hashem	i, 2013)	28
Fig. 21.	Influencia de presión hidrostática por ambas caras en tubos de Aluminio AA6111	-T4
(Liu, 201	1)	29
Fig. 22.	Efecto de la tensión en el espesor en el diagrama FLD según el parámetro $q=$	
$-\sigma 3\sigma 1$ (Emmens, 2011)	30
Fig. 23.	Discretización física de un sólido: avión de transporte	32
Fig. 24.	Logotipos de Simulia y Abaqus respectivamente	35
Fig. 25.	Ventana de inicio de Abaqus/Standard (versión 6.5)	36
Fig. 26.	Ejemplo de montaje: Punzón hemisférico de 100mm, probeta de tracción pura y	
matriz	37	
Fig. 27.	Punzón hemisférico	37
Fig. 28.	Dimensiones en metros del punzón hemisférico	38
Fig. 29.	Punzón cilíndrico de 10mm de diámetro	38
Fig. 30.	Puede apreciarse como con 50mm de longitud es suficiente para abarcar la prob	eta
de defori	nación plana	39
Fig. 31.	Dimensiones en metros de la matriz	39
Fig. 32.	Diseño de la matriz sin cordones del prensachapa	40
Fig. 33.	Dimensiones acotadas de la probeta de deformación plana, cotas en mm.	40
Fig. 34.	Dimensiones acotadas de la probeta de tracción pura, cotas en mm.	41

Fig. 35.	Dimensiones acotadas de la probeta de zona biaxial, cotas en mm.	_41
Fig. 36.	Ajuste de la ley de Voce a los datos experimentales (Martínez Donaire, 2012)	_43
Fig. 37.	Representación de los puntos introducidos siguiendo la ley de Voce	_44
Fig. 38.	Ventana de datos de Abaqus para introducir los valores de los ratios de tensión de	2
plastifica	ción anisótropos	_47
Fig. 39.	Representación de un elemento tipo <i>wedge</i> de 6 nodos	_48
Fig. 40.	Representación de un elemento tipo hexaédrico de 8 nodos	_48
Fig. 41.	Detalle de la distribución de elementos en los ensayos con la probeta de tracción	
pura.	49	
Fig. 42.	Detalle de la distribución de capas de elementos (5) en el espesor	_49
Fig. 43.	Análisis de convergencia con elementos hexaédricos: deformación-desplazamiente	0
	50	
Fig. 44.	Análisis de convergencia con elementos hexaédricos: fuerza-desplazamiento	_51
A continu	uación se muestra una tabla con los valores antes comentados	_51
Fig. 45.	Análisis de convergencia con elementos hexaédricos y wedge: deformación-	
desplaza	miento	_52
Fig. 46.	Aplicación de contacto entre la superficie del punzón (en rojo) y la probeta (en	
morado)	53	
Fig. 47.	Zona empotrada en el caso de la probeta de deformación plana (destacada en rojo	ว)
	54	
Fig. 48.	Zona de aplicación de la presión en la probeta de deformación plana	_54
Fig. 49.	Zona de aplicación de la presión en el montaje (área destacada en naranja)	_55
Fig. 50.	Curva FLD extraída de la referencia Martínez Donaire (2012)	_56
Fig. 51.	Curva FLD usada en el presente proyecto	_57
Fig. 52.	Curvas de deformaciones para la probeta de deformación plana (en rojo el exterio	or y
en verde	el interior)	_58
Fig. 53.	Curvas de deformaciones para la probeta biaxial (en rojo el exterior y en verde el	
interior,	aunque sólo se aprecia la segunda al es estar superpuestas)	_58
Fig. 54.	Curvas de deformaciones para la probeta de tracción pura (en rojo el exterior y en	1
verde el i	interior)	_ 59
Fig. 55.	Estados tensionales de los diferentes puntos calculados	_ 59
Fig. 56.	FLSC y ecuación de la curva de ajuste	_60
Fig. 57.	Montaje para los ensayos: probeta de deformación plana y punzón cilíndrico de	
10mm	61	
Fig. 58.	Representación de las zonas de mayor reducción de espesor (LE min), coloreadas o	en
gris/negr	0	_62
Fig. 59.	Zonas de mayor reducción de espesor (LE min) al 20% de deformación principal	
máxima	62	
Fig. 60.	Zonas de mayor reducción de espesor (LE min) al 30% de deformación principal	
máxima	63	
Fig. 61.	Zonas de mayor reducción de espesor (LE min) al 40% de deformación principal	
máxima	63	
Fig. 62.	Zonas de mayor reducción de espesor (LE min) al 50% de deformación principal	
máxima	64	

Fig. 63.	Disposición en el espesor de los diferentes nodos de los que se han extraído datos (5
capas)	64
Fig. 64.	Disposición en el espesor de los diferentes nodos de los que se han extraído datos (7
capas)	65
Fig. 65.	Definición del criterio de fallo basado en distancias críticas ($dcrit$), ($\sigma 1$ –
σ 3)neck	ing es el valor límite de fallo para situaciones sin flexión66
Fig. 66.	Evolución de las tensiones en los nodos exterior e interior en el ensayo sin presión
con punz	ón de 10mm67
Fig. 67.	Evolución de las tensiones en los nodos exterior e interior en el ensayo con 40MPa
de presió	n y punzón de 10mm67
Fig. 68.	Evolución de las tensiones en los nodos exterior e interior en el ensayo con 80MPa
de presió	n y punzón de 10mm68
Fig. 69.	Evolución de las tensiones en los nodos exterior e interior en el ensayo sin presión
con punz	ón de 3mm68
Fig. 70.	Evolución de las tensiones en los nodos exterior e interior en el ensayo con 40MPa
de presió	n y punzón de 3mm69
Fig. 71.	Evolución de las tensiones en los nodos exterior e interior en el ensayo con 80MPa
de presió	n y punzón de 3mm69
Fig. 72.	Representación en el diagrama FLD de los puntos de inicio de la estricción para los
diferente	s ensayos (<i>dcrit</i> = 0)71
Fig. 73.	Detalle del diagrama FLD con los puntos de inicio de la estricción para los diferentes
ensayos (<i>dcrit</i> = 0)72
Fig. 74.	Comparativa de la conformabilidad según el tamaño del punzón (parámetro $t0R$) 72
Fig. 75.	Evolución de σ 1 en el tiempo para los ensayos con punzón de 10mm73
Fig. 76.	Evolución de σ 3 en el tiempo para los ensayos con punzón de 10mm74
Fig. 77.	Evolución de σ 1 en el tiempo para los ensayos con punzón de 3mm75
Fig. 78.	Evolución de σ 3 en el tiempo para los ensayos con punzón de 3mm75
Fig. 79.	Gradiente de tensión en el instante del inicio de la estricción para los ensayos con
punzón d	e 10mm76
Fig. 80.	Gradiente de tensión en el instante del inicio de la estricción para los ensayos con
punzón d	e 3mm 77
Fig. 81.	Punzón cilíndrico de 10mm sin presión en el inicio de la estricción78
Fig. 82.	Punzón cilíndrico de 10mm con 80 MPa de presión en el inicio de la estricción 79
Fig. 83.	Punzón cilíndrico de 3mm sin presión en el inicio de la estricción79
Fig. 84.	Punzón cilíndrico de 3mm con 80 MPa de presión en el inicio de la estricción79
Fig. 85.	Desplazamiento del punzón en el momento de la estricción para diferentes ensayos
con el pu	nzón de 10mm80
Fig. 86.	Evolución de la deformación principal máxima en función del desplazamiento del
punzón p	ara diferentes ensayos con el punzón de 10mm81
Fig. 87.	Gradiente de tensión $\sigma 1$ en el espesor en ensayo sin presión con el punzón de 10mm
	82
Fig. 88.	Gradiente de tensión $\sigma 3$ en el espesor en ensayo sin presión con el punzón de 10mm
	82
Fig. 89.	Gradiente de tensión $\sigma 1$ en el espesor en ensayo con 40 MPa de presión con el
punzón d	e 10mm 83

Fig. 90.	Gradiente de tensión $\sigma 3$ en el espesor en ensayo con 40 MPa de presión con el	
punzón c	le 10mm	_83
Fig. 91.	Gradiente de tensión $\sigma 1$ en el espesor en ensayo con 80 MPa de presión con el	
punzón c	le 10mm	_84
Fig. 92.	Gradiente de tensión $\sigma 3$ en el espesor en ensayo con 80 MPa de presión con el	
punzón c	le 10mm	_84
Fig. 93.	Comparativa de deformación principal máxima alcanzada con $dcrit = 0$ para los	
ensayos	con y sin fricción con el punzón de 10mm	_87
Fig. 94.	Comparativa de deformación principal máxima alcanzada con $dcrit = 0$ para los	
ensayos	con y sin fricción con el punzón de 3mm	_87
Fig. 95.	Evoluciones de deformación para diferentes presiones para los ensayos con el	
punzón c	le 10mm	_88
Fig. 96.	Evoluciones de deformación para diferentes presiones para los ensayos con el	
punzón c	le 3mm	_88
Fig. 97.	Evolución de $\sigma 1$ en el tiempo para los ensayos con punzón de 10mm	_93
Fig. 98.	Evolución de $\sigma 2$ en el tiempo para los ensayos con punzón de 10mm	_93
Fig. 99.	Evolución de σ 3 en el tiempo para los ensayos con punzón de 10mm	_94
Fig. 100.	Evolución de $\sigma 1$ en el tiempo para los ensayos con punzón de 3mm	_94
Fig. 101.	Evolución de $\sigma2$ en el tiempo para los ensayos con punzón de 3mm	_95
Fig. 102.	Evolución de $\sigma 3$ en el tiempo para los ensayos con punzón de 3mm	_95
Fig. 103.	Evolución de las deformaciones para el ensayo con punzón de 10mm y sin presi	ón
	96	
Fig. 104.	Evolución de las deformaciones para el ensayo con punzón de 10mm y 40 MPa	97
Fig. 105.	Evolución de las deformaciones para el ensayo con punzón de 10mm y 80 MPa	97
Fig. 106.	Evolución de las deformaciones para el ensayo con punzón de 3mm y sin presió	n
	97	
Fig. 107.	Evolución de las deformaciones para el ensayo con punzón de 3mm y 40 MPa	_98
Fig. 108.	Evolución de las deformaciones para el ensayo con punzón de 3mm y 80 MPa _	_98

Índice de tablas

Tabla 1.	Composición química del aluminio 7075-O 42
Tabla 2.	Propiedades elásticas del aluminio 7075-O 42
Tabla 3.	Fuerza máxima y desplazamiento asociado51
Tabla 4.	Posición relativa en el espesor de los nodos en 5 y 7 capas65
Tabla 5.	Deformaciones límite en el nodo Exterior para los diferentes ensayos70
Tabla 6.	Resumen de los gradientes de $\sigma 3$ en el momento del inicio de la estricción76
Tabla 7.	Comparativa de las deformaciones límite en el nodo Exterior para los diferentes
ensayos cor	ı y sin fricción

Motivación, objetivo y alcance

El presente proyecto se ha llevado a cabo en el área de Ingeniería de los Procesos de Fabricación (IPF) perteneciente al Departamento de Ingeniería Mecánica y Fabricación de la Escuela de Ingenieros de la Universidad de Sevilla. El grupo de investigación TEP111: Ingeniería Mecánica tiene una amplia experiencia en el estudio de la conformabilidad de aleaciones de aluminio típicas de la industria aeronáutica, tal y como demuestra su participación en numerosos proyectos de I+D+i, las numerosas publicaciones y las diferentes tesis doctorales presentadas por sus miembros y alumnos de intercambio.

El interés científico y tecnológico que justifica esta línea de investigación responde a la creciente inquietud del sector metal-mecánico dedicado al procesado, conformado y mecanizado de chapas de aluminios y aceros de altas prestaciones mecánicas, que están siendo cada vez más intensamente aplicados en los sectores de la automoción y aeronáutica. Desde mediados del Siglo XX han sido numerosos los estudios que han propuesto modelos para la predicción de la estricción. Más recientemente se están empezando a considerar efectos de segundo orden, como el efecto de la temperatura de trabajo, la fricción, las condiciones del proceso de carga o la presencia de gradientes de tenso-deformación en el espesor de la chapa.

El objetivo del presente PFC es el análisis del efecto del gradiente de tensión normal en el espesor de la chapa, segregándolo de la flexión de la misma. Para ello se hará uso de un modelo de elementos finitos donde se generarán incrementos de dicha tensión normal mediante la aplicación de presiones en la superficie de la chapa.

Para finalizar, se expondrán una serie de conclusiones y se realizará una breve descripción del trabajo futuro a desarrollar en aspectos relacionados con el contenido de este proyecto.