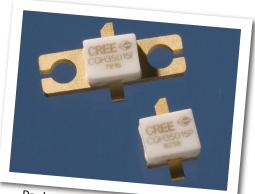
# Anexo 1: Data Sheet CGH35015F


# PRELIMINARY



## CGH35015

### 15 W, 3300-3900 MHz, 28V, GaN HEMT for WiMAX

Cree's CGH35015 is a gallium nitride (GaN) high electron mobility transistor designed specifically for 802.16-2004 WiMAX Fixed Access applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities, which makes the CGH35015 ideal for 3.3-3.9GHz WiMAX and BWA amplifier applications. The transistor is available in both screw-down, flange and solder-down, pill packages.



Package Type: 440166 and 440196 PN: CGH35015F and CGH35015P

### Typical Performance 3.4-3.9GHz ( $T_c = 25$ °C)

| Parameter                     | 3.4 GHz | 3.5 GHz | 3.6 GHz | 3.8 GHz | 3.9 GHz | Units |
|-------------------------------|---------|---------|---------|---------|---------|-------|
| Gain @ P <sub>out</sub> = 2 W | 11.6    | 11.8    | 12.0    | 11.8    | 11.2    | dB    |
| Р <sub>оит</sub> @ 2.0 % EVM  | 33.0    | 33.0    | 33.0    | 33.5    | 33.5    | dBm   |
| Drain Efficiency @ 2.0 % EVM  | 23.0    | 23.0    | 24.0    | 18.0    | 17.0    | %     |
| Input Return Loss             | 4.0     | 4.5     | 6.0     | 13.0    | 9.0     | dB    |

### Note:

Measured in the CGH35015F-TB amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5 ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

### **Features**

- 3.3 3.9 GHz Operation
- >11 dB Small Signal Gain
- >2.0 W P<sub>OUT</sub> at 2.0 % EVM
- 24 % Efficiency at 2.0 W P<sub>OUT</sub>
- 15 W Typical P<sub>3dB</sub>
- WiMAX Fixed Access 802.16-2004 OFDM





### Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

| Parameter                                         | Symbol                                            | Rating    | Units |
|---------------------------------------------------|---------------------------------------------------|-----------|-------|
| Drain-Source Voltage                              | $V_{\scriptscriptstyleDSS}$                       | 84        | Volts |
| Gate-to-Source Voltage                            | $V_{GS}$                                          | -10, +2   | Volts |
| Storage Temperature                               | T <sub>stg</sub>                                  | -55, +150 | °C    |
| Operating Junction Temperature                    | Т,                                                | 175       | °C    |
| Soldering Temperature                             | $T_s$                                             | 225       | °C    |
| Thermal Resistance, Junction to Case <sup>1</sup> | $R_{\scriptscriptstyle{\scriptscriptstyle{0JC}}}$ | 5.0       | °C/W  |
| Screw Torque                                      | T                                                 | 60        | in-oz |

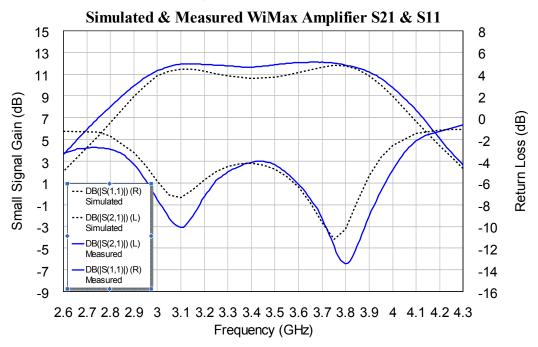
### Note:

### Electrical Characteristics ( $T_c = 25$ °C)

| Characteristics                                                           | Symbol                                                                                            | Min. | Тур.   | Max. | Units | Conditions                                                                          |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|--------|------|-------|-------------------------------------------------------------------------------------|--|
| DC Characteristics                                                        |                                                                                                   |      |        |      |       |                                                                                     |  |
| Gate Threshold Voltage                                                    | $V_{\rm GS(th)}$                                                                                  | -3.0 | -2.5   | -1.8 | VDC   | $V_{DS} = 10 \text{ V, } I_{D} = 3.6 \text{ mA}$                                    |  |
| Gate Quiescent Voltage                                                    | $V_{\rm GS(Q)}$                                                                                   | -    | -2.4   | -    | VDC   | $V_{DS} = 28 \text{ V, } I_{D} = 60 \text{ mA}$                                     |  |
| Saturated Drain Current                                                   | $I_{\scriptscriptstyle DS}$                                                                       | 2.4  | 2.7    | -    | А     | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                    |  |
| Drain-Source Breakdown Voltage                                            | $V_{(BR)DSS}$                                                                                     | 84   | 100    | -    | VDC   | $V_{GS} = -8 \text{ V, } I_D = 3.6 \text{ mA}$                                      |  |
| Case Operating Temperature                                                | T <sub>c</sub>                                                                                    | -10  | -      | +105 | °C    |                                                                                     |  |
| RF Characteristics <sup>2,3</sup> (T <sub>c</sub> = 25 °C, F <sub>c</sub> | RF Characteristics <sup>2,3</sup> ( $T_c = 25^{\circ}$ C, $F_0 = 3.5$ GHz unless otherwise noted) |      |        |      |       |                                                                                     |  |
| Small Signal Gain                                                         | $G_{ss}$                                                                                          | 11   | 12     | -    | dB    | $V_{DD} = 28 \text{ V, } I_{DQ} = 60 \text{ mA}$                                    |  |
| Drain Efficiency <sup>1</sup>                                             | η                                                                                                 | 22   | 24     | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 60 \text{ mA}, P_{AVE} = 2.0 \text{ W}$            |  |
| Back-Off Error Vector Magnitude                                           | EVM <sub>1</sub>                                                                                  | -    | 2.5    | -    | %     | $V_{DD} = 28 \text{ V}, I_{DQ} = 60 \text{ mA}, P_{AVE} = 18 \text{ dBm}$           |  |
| Error Vector Magnitude                                                    | EVM <sub>2</sub>                                                                                  | -    | 2.0    | -    | %     | $V_{DD}$ = 28 V, $I_{DQ}$ = 60 mA, $P_{AVE}$ = 2.0 W                                |  |
| Output Mismatch Stress                                                    | VSWR                                                                                              | -    | 10 : 1 | -    | Ψ     | No damage at all phase angles, $V_{DD} = 28$ V, $I_{DQ} = 60$ mA, $P_{AVE} = 2.0$ W |  |
| Dynamic Characteristics                                                   |                                                                                                   |      |        |      |       |                                                                                     |  |
| Input Capacitance                                                         | $C_{GS}$                                                                                          | -    | 5.00   | -    | pF    | $V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$                   |  |
| Output Capacitance                                                        | C <sub>DS</sub>                                                                                   | -    | 1.32   | -    | pF    | $V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$                 |  |
| Feedback Capacitance                                                      | $C_{GD}$                                                                                          | -    | 0.43   | -    | pF    | $V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$                 |  |

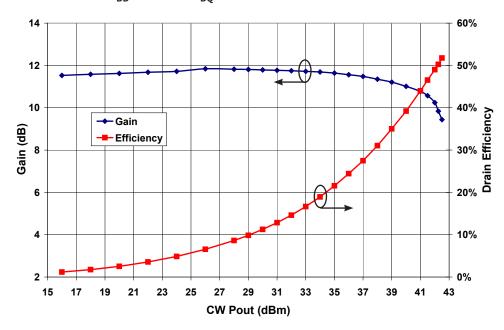
### Notes:

 $<sup>^{\</sup>scriptscriptstyle 1}$  Measured for the CGH35015F at  $\mathrm{P}_{\scriptscriptstyle DISS}\!=\,14W.$ 


 $<sup>^1</sup>$  Drain Efficiency =  $P_{\text{out}}$  /  $P_{\text{DC}}$   $^2$  Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5 ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

<sup>&</sup>lt;sup>3</sup> Measured in the CGH35015F-TB test fixture.

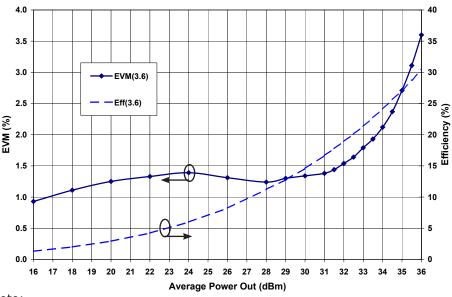



### **Typical WiMAX Performance**

# Modeled vs Measured Performance of CGH35015 in Broadband Amplifier Circuit $V_{DD}$ = 28 V, $I_{DQ}$ = 60 mA, OFDM BW = 3.5 MHz



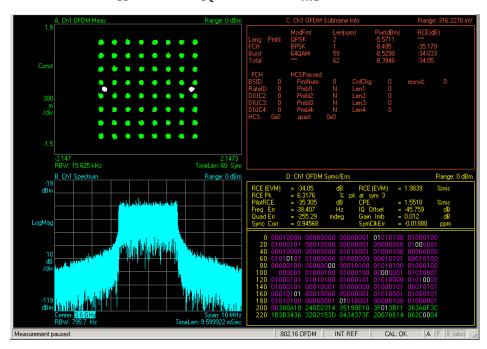
# Single Tone CW Gain and Efficiency of CGH35015 vs. Output Power in Broadband Amplifier Circuit


$$V_{DD}$$
 = 28 V,  $I_{DO}$  = 60 mA, Freq = 3.6 GHz





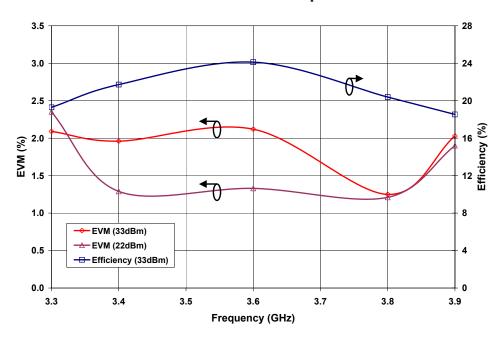
### **Typical WiMAX Performance**


# Typical EVM and Efficiency of CGH35015 in Broadband Amplifier Circuit at 3.6 GHz F=3.6 GHz, 802.16-2004 OFDM, P/A=9.8 dB



Note:

Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.


# Typical Constellation Chart, Spectral Mask, and EVM of CGH35015 in Broadband Amplifier Circuit at 3.6 GHz $V_{DD} = 28 \text{ V}, I_{DO} = 60 \text{ mA}, P_{AVE} = 2.0 \text{ W}$



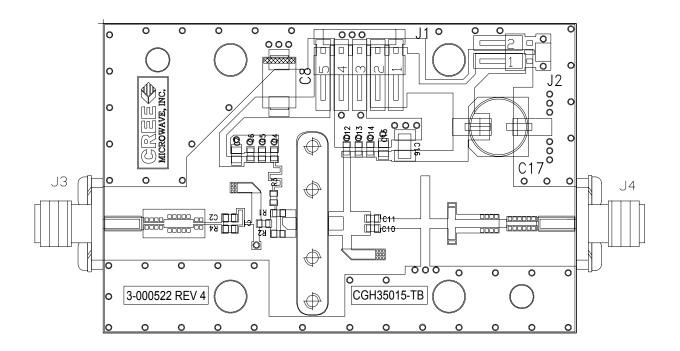


### **Typical WiMAX Performance**

# Typical EVM and Efficiency at 22dBm and 33 dBm vs Frequency of CGH35015 in Broadband Amplifier Circuit

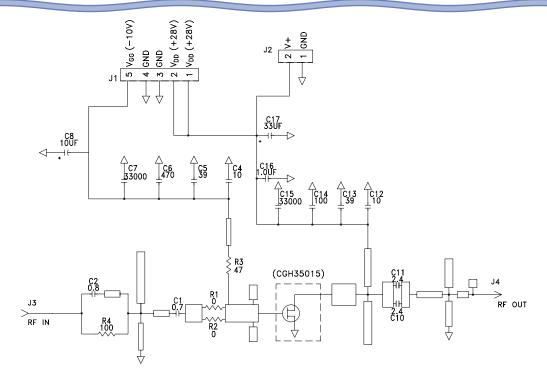


### Note:


Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.



### **CGH35015F-TB Demonstration Amplifier Circuit**

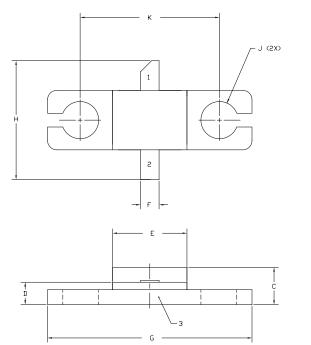



### **CGH35015-TB Demonstration Amplifier Circuit Outline**





### **CGH35015-TB Demonstration Amplifier Circuit Schematic**




### **CGH35015-TB Demonstration Amplifier Circuit Bill of Materials**

| Designator | Description                            | Qty |
|------------|----------------------------------------|-----|
| C1         | CAP, 0.7pF, +/-0.1 pF, 0603, ATC 600S  | 1   |
| C2         | CAP, 0.8pF, +/-0.1 pF, 0603, ATC 600S  | 1   |
| C10,C11    | CAP, 2.4pF,+/-0.1pF, 0603, ATC 600S    | 2   |
| C4         | CAP, 10.0pF, +/-5%, 0603, ATC 600S     | 1   |
| C5,C13     | CAP, 39 PF±5%, 0603, ATC 600S          | 2   |
| C14        | CAP, 100 PF±5%, 0603, ATC 600S         | 1   |
| C6         | CAP, 470 PF ±10%,100 V, 0603           | 1   |
| C7,C15     | CAP, 33000PF, 100V, 0805, X7R          | 2   |
| C8         | CAP, 10UF, 16V, SMT, TANTALUM (240096) | 1   |
| C16        | CAP, 1.0UF ±10%, 100V, 1210, X7R       | 1   |
| C17        | CAP, 33UF, 100V, ELECT, FK, SMD        | 1   |
| R1,R2      | RES, 1/16W, 0603, 0 Ohms, 1%           | 2   |
| R3         | RES, 1/16W, 0603, 47 Ohms ≤5%          | 1   |
| R4         | RES, 1/16W, 0603, 100 Ohms ≤5%         | 1   |
| J1         | 5-PIN, MOLEX, MALE, CONNECTOR          | 1   |
| J2         | 2-PIN, MOLEX, MALE, CONNECTOR          | 1   |
| J3,J4      | SMA, FEMALE, CONNECTOR                 | 2   |
| Q1         | CGH35015                               | 1   |

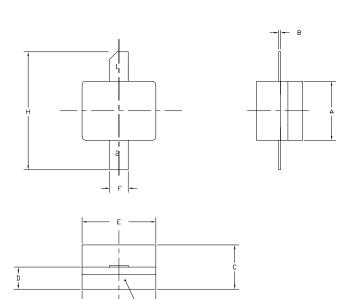


### **Product Dimensions CGH35015F (Package Type — 440166)**





### MULES!


1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

|     | INC         | HES   | MILLIMETERS |       |
|-----|-------------|-------|-------------|-------|
| DIM | MIN         | MAX   | MIN         | MAX   |
| Α   | 0.155       | 0.165 | 3.94        | 4.19  |
| В   | 0.004       | 0.006 | 0.10        | 0.15  |
| С   | 0.115       | 0.135 | 2.92        | 3.43  |
| D   | 0.057       | 0.067 | 1.45        | 1.70  |
| E   | 0.195       | 0.205 | 4.95        | 5.21  |
| F   | 0.045 0.055 |       | 1.14        | 1.40  |
| G   | 0.545 0.555 |       | 13.84       | 14.09 |
| Н   | 0.280       | 0.360 | 7.87        | 8.38  |
| J   | ø.          | 100   | 2.54        |       |
| К   | 0.3         | 75    | 9.53        |       |

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

### **Product Dimensions CGH35015P (Package Type — 440196)**



| N | ۵. | TE | S |
|---|----|----|---|

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

|     | INC   | HES   | MILLIM | ETERS |
|-----|-------|-------|--------|-------|
| DIM | MIN   | MAX   | MIN    | MAX   |
| Α   | 0.155 | 0.165 | 3.94   | 4.19  |
| В   | 0.003 | 0.006 | 0.10   | 0.15  |
| С   | 0.115 | 0.135 | 2.92   | 3.17  |
| D   | 0.057 | 0.067 | 1.45   | 1.70  |
| E   | 0.195 | 0.205 | 4.95   | 5.21  |
| F   | 0.045 | 0.055 | 1.14   | 1.40  |
| G   | 0.195 | 0.205 | 4.95   | 5.21  |
| Н   | 0.280 | 0.360 | 7.112  | 9.114 |

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE