ÍNDICE DE CONTENIDO

1	IN	ITRODUCCIÓN Y OBJETIVOS	1
2	02	XIDACIÓN EN AGUA SUPERCRÍTICA (OASC)	4
	2.1	PROPIEDADES DEL AGUA EN CONDICIONES SUPERCRÍTICAS	5
	2.2	PROCESO OASC ESTÁNDAR	
	2.2.1	FUNDAMENTOS Y CARACTERÍSTICAS	
	2.2.2	DIAGRAMA DE FLUJO GENERAL	13
	2.2.3	ASPECTOS ENERGÉTICOS Y ECONÓMICOS	15
	2.3	VENTAJAS E INCONVENIENTES DEL PROCESO OASC.	
	2.3.1	. VALORACIÓN DE LA OASC COMO ALTERNATIVA DE TRATAMIENTO	
	2.3.2	LIMITACIONES TÉCNICAS DEL PROCESO OASC.	
	2.4	APLICACIONES	22
	2.4.1	APLICACIONES A GRAN ESCALA.	22
	2.4.2	APLICACIONES DE MENOR ESCALA	29
	2.5	CONFIGURACIONES DE REACTORES OASC.	
	2.6	EVOLUCIÓN Y ESTADO ACTUAL DE LA TECNOLOGÍA	
3	М	ODELO DE SIMULACIÓN	60
	3.1	NECESIDAD DE UN SIMULADOR DINÁMICO	61
	3.2	MEZCLAS DE FLUIDOS EN CONDICIONES SUPERCRÍTICAS	63
	3.3	ECUACIONES DEL GOBIERNO	66
4	R	ESOLUCIÓN DEL MODELO	76
	4.1	MODELO DE DIFERENCIAS FINITAS	77
	4.1.1	DIFERENCIAS FINITIAS	77
	4.2	SEPARACIÓN DEL DOMINIO ESPACIAL Y TEMPORAL	82
	4.2.1	DISCRETIZACIÓN ESPACIAL	82
	4.2.2	RESOLUCIÓN TEMPORAL	83
	4.3	ESTRUCTURA ITERATIVA DEL MODELO	87
	4.3.1	MODELO DE DINÁMICA DE FLUIDOS	87
	4.3.2	MODELO DE TRANSFERENCIA DE CALOR	

	4.3.3	SOLUCIÓN INTEGRAL	93
5	APLI	CACIONES	95
	5.1 AI	PLICACIONES DEL MODELO	
	5.1.1	VARIACIONES TEMPORALES DE VARIABLES DE OPERACIÓN	98
	5.1.2	PROCESO DE ARRANQUE DE UNA PLANTA OASC	
	5.1.3	INYECCIONES EN EL REACTOR	
6	CON	CLUSIONES	
	CONCLUSI	DNES	
7	REFE	RENCIAS	
	REFERENC	AS	

ÍNDICE DE FIGURAS

Fig.	. 1. Sistema de producción y consumo de los desechos y contaminación	2
Fig.	. 2. Diagrama de fases del agua	5
Fig.	. 3. Diagrama temperatura-presión-densidad para el agua pura [1]	6
Fig.	. 4. Variación de la constante dieléctrica del agua con la temperatura y la densidad [1]	7
Fig.	5. Variación de la constante dieléctrica (ε) y el producto iónico del agua (K _w) con la temperatura a 250 bar [2]	8
Fig.	. 6. Variación de la viscosidad (μ) con la temperatura a 250 bar	8
Fig.	. 7. Variación de la capacidad calorífica (Cp) con la temperatura a 250 bar	9
Fig.	. 8. Variación de la conductividad térmica (k) con la temperatura a 250 bar	10
Fig.	. 9. Esquema general de flujo del proceso OASC	14
Fig.	. 10. Esquema simplificado proceso OASC y principales problemas por línea	20
Fig.	. 11. Esquema de la planta de tratamiento, FW	23
Fig.	. 12. Sistema compacto de OASC para residuos navales de un portaviones. GA	24
Fig.	. 13. Vista general de la planta de OASC en Newport - Indiana. GA	25
Fig.	14. Esquema del proceso Aqua Citrox. Co. Chematur y especificaciones de diseño de la planta. Se dan también los valores de materia orgánica que permiten un proceso autotérmico. Por encima de estos valores sería necesario un consumo extra de calor y oxígeno en exceso	26
Fig.	. 15. Esquema del reactor SUWOX 5ª	27
Fig.	. 16. Esquema y ubicación de la planta de OASC en el esquema de una EDAR	29
Fig.	. 17. Esquema del reactor tubular tipo "Modell" y perfil de temperatura	31
Fig.	. 18. Esquema del reactor tubular tipo "Chematur" y del perfil de temperatura	32
Fig.	. 19. Perfil de temperatura teórico para el reactor multi-inyección HOO	33
Fig.	. 20. Esquema del reactor tubular vertical coaxial	34
Fig.	. 21. Esquema del reactor tubular de pared porosa	35
Fig.	. 22. Esquema del reactor de tanque tipo Modar	38
Fig.	. 23. Esquema del reactor de doble carcasa	39
Fig.	. 24. Esquema del reactor de tanque híbrido "Modar - Doble carcasa"	40
Fig.	25. Detalle de la cámara de ignición utilizada en el equipo denominado "quemador hidrotérmico de carcasa refrigerada", desarrollado en el instituto tecnológico suizo en Zurich (ETH) [68]	41

Fig. 3	26.	Curva de polarización C-270.	. 48
Fig. 3	27.	Potencial electroquímico vs pH para óxidos de Cr, Ni, Mo constituyentes de los aceros	.48
Fig. 2	28.	Vista interior de la planta Hydrosolids [®]	. 54
Fig. 3	29.	Vista parcial de la planta de Karlskoga	. 55
Fig.	30.	Vista de la planta de Shinko Pantec	. 56
Fig.	31.	Vista parcial de la instalación del proceso AquaCat.	. 56
Fig.	32.	Fotografía de la planta OSTAU	. 58
Fig.	33.	Fotografía de la planta PIOS	. 58
Fig.	34.	Variación de la entalpía de mezcla según la fracción de agua	. 64
Fig.	35.	. Comparación entalpía obtenida mediante media de masas y reglas de mezclado para una mezcla H20-N2.	. 65
Fig.	36.	Corte transversal y longitudinal de la tubería	. 70
Fig.	37.	Plano de corte longitudinal del reactor.	.71
Fig.	38.	Campo de temperaturas del reactor en 3D y de un plano de corte longitudinal	. 72
Fig.	39.	Comparación de los coeficientes de película obtenidos mediante varias correlaciones	. 75
Fig.	40.	Malla de resolución	. 77
Fig.	41.	Método explícito	. 78
Fig.	42.	Variación temporal de la temperatura obtenida con el método explícito	. 79
Fig.	43.	Variación temporal de la temperatura obtenida con el método implícito	. 80
Fig.	44.	Diferentes frecuencias de paso	.81
Fig.	1 E		
	45.	Discretización espacial del reactor.	. 82
Fig.	45. 46.	Discretización espacial del reactor Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s	. 82 . 84
Fig. /	45. 46. 47.	Discretización espacial del reactor Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s Densidad respecto a la temperatura y la energía interna	.82 .84 .85
Fig. 4 Fig. 4 Fig. 4	45. 46. 47. 48.	Discretización espacial del reactor. Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s. Densidad respecto a la temperatura y la energía interna. Evolución de la $\partial u/\partial T$ en torno a la región supercrítica.	.82 .84 .85 .86
Fig. 4 Fig. 4 Fig. 4	43. 46. 47. 48. 49.	Discretización espacial del reactor. Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s. Densidad respecto a la temperatura y la energía interna. Evolución de la $\partial u/\partial T$ en torno a la región supercrítica. Diagrama de flujo del modelo de dinámica de fluidos.	.82 .84 .85 .86 .88
Fig. 4 Fig. 4 Fig. 4 Fig. 1	46. 47. 48. 49. 50.	Discretización espacial del reactor. Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s. Densidad respecto a la temperatura y la energía interna. Evolución de la $\partial u/\partial T$ en torno a la región supercrítica. Diagrama de flujo del modelo de dinámica de fluidos. Malla de resolución modelo de transferencia de calor.	.82 .84 .85 .86 .88
Fig. 4 Fig. 4 Fig. 4 Fig. 1 Fig. 1	43. 46. 47. 48. 49. 50. 51.	 Discretización espacial del reactor. Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s. Densidad respecto a la temperatura y la energía interna. Evolución de la ∂u/∂T en torno a la región supercrítica. Diagrama de flujo del modelo de dinámica de fluidos. Malla de resolución modelo de transferencia de calor. Variación radial de la temperatura en la tubería y en el aislante en un elemento diferencial y para un instante de tiempo dado. 	.82 .84 .85 .86 .88 .89
Fig. 4 Fig. 4 Fig. 4 Fig. 1 Fig. 1 Fig. 1	43. 46. 47. 48. 49. 50. 51. 52.	 Discretización espacial del reactor. Aplicación de los diferentes solver de Matlab para un rango de tiempo de 0 a 1s. Densidad respecto a la temperatura y la energía interna. Evolución de la ∂u/∂T en torno a la región supercrítica. Diagrama de flujo del modelo de dinámica de fluidos. Malla de resolución modelo de transferencia de calor. Variación radial de la temperatura en la tubería y en el aislante en un elemento diferencial y para un instante de tiempo dado. Variación de la temperatura en la tubería y en el aislante para un instante de tiempo dado. 	.82 .84 .85 .86 .88 .89 .90

Fig. 54	. Evolución del valor de pérdidas de calor obtenido en cada iteración	94
Fig. 55	 Incremento temporal de la temperatura del efluente de entrada y perfiles de temperaturas del fluido en el reactor al alcanzar el régimen estacionario. 	99
Fig. 56	 Variación temporal y perfiles longitudinales de la temperatura del fluido al incrementar la temperatura del efluente a la entrada al reactor. 	. 100
Fig. 57	Descenso temporal de la temperatura del efluente de entrada y perfiles de temperaturas del fluido en el reactor al alcanzar el régimen estacionario.	. 101
Fig. 58	• Variación temporal y perfiles longitudinales de la temperatura del fluido al descender la temperatura del efluente a la entrada al reactor.	. 102
Fig. 59	 Incremento temporal del porcentaje de residuo alimentado y perfiles de temperaturas del fluido en el reactor al alcanzar el régimen estacionario. 	. 103
Fig. 60	D. Comparativa de la evolución longitudinal de la fracción másica de residuo y del rendimiento de eliminación, ambos en régimen estacionario	. 104
Fig. 61	 Variación temporal y perfiles longitudinales de la temperatura del fluido al incrementarse el porcentaje de residuo alimentado al reactor. 	. 105
Fig. 62	 Descenso temporal del porcentaje de residuo alimentado y perfiles de temperaturas del fluido en el reactor al alcanzar el régimen estacionario. 	. 106
Fig. 63	 Variación temporal y perfiles longitudinales de la temperatura del fluido al descender el porcentaje de residuo alimentado al reactor 	. 106
Fig. 64	Diagrama de flujo general de una planta piloto de oxidación hidrotérmica convencional	. 109
Fig. 65	. Diagrama de flujo general de la planta piloto de oxidación hidrotérmica propuesta	. 110
Fig. 66	. Perfil de temperaturas en el fluido en régimen estacionario para diferentes porcentajes de residuo alimentado.	. 112
Fig. 67	Máximas tensiones generadas en el reactor para diferentes porcentajes de residuo a la entrada, partiendo de una temperatura de calentamiento de 200ºC	. 113
Fig. 68	B. Máximas tensiones generadas en el reactor para diferentes porcentajes de residuo a la entrada, partiendo de una temperatura de calentamiento de 250ºC	. 114
Fig. 69	Máximas tensiones generadas en el reactor para diferentes porcentajes de residuo a la entrada, partiendo de una temperatura de calentamiento de 300ºC	. 115
Fig. 70	. Perfil de temperaturas en cada instante de tiempo	. 117
Fig. 71	. Temperaturas y tensiones en la tubería generadas durante el proceso de arranque de la planta partiendo de una temperatura de calentamiento inicial de 300ºC y un porcentaje de residuo del 2%.	. 120
Fig. 72	Comparación en términos de masa de los métodos de arranque	. 121

Fig.	73.	. Tensiones máximas admisibles por el material y tensiones generadas en el proceso de	
		arranque, calentando previamente la planta hasta una temperatura de 300ºC e	
		introduciendo un porcentaje de residuo del 2%	122
Fig.	74.	Perfil de temperaturas estacionario para un porcentaje de residuo del 3%	123
Fig.	75.	Comparación entre una y dos Inyecciones de agua de atemperación	124
Fig.	76.	Perfil de temperaturas estacionario para diferentes caudales de inyección	125
Fig.	77.	Evolución temporal hasta extinción de la reacción.	126
Fig.	78.	Perfil de temperaturas estacionario para diferentes temperaturas de inyección	126
Fig.	79.	Variación temporal de la temperatura en algunos puntos del reactor.	127
Fig.	80.	Perfiles de temperaturas en el reactor para diferentes instantes de tiempo hasta antes de	
		la inyección de agua de atemperación	128
Fig.	81.	Perfiles de temperaturas en el reactor para diferentes instantes de tiempo tras la inyección	
		de agua de atemperación	128
Fig.	82.	Perfiles de temperaturas en el reactor para diferentes instantes de tiempo 20s después de	
		la inyección de agua de atemperación	129

ÍNDICE DE TABLAS

Tabla 1. Resumen de algunos residuos industriales eliminados mediante el proceso OASC. Enninguno de los casos presentados se utilizaron catalizadores.12
Tabla 2. Costes de operación en unidad de tratamiento Aquacritox para 7 m³/h de lodos dedepuración (15% lodo seco/h y 1 ton seca lodo/h)17
Tabla 3. Comparación de algunas técnicas de tratamiento de los fangos de depuradora. 28
Tabla 4. Composición/propiedades más relevantes de los aceros inoxidables empleados en las plantas OASC. 43
Tabla 5. Composición y propiedades más relevantes de aleaciones de Inconel
Tabla 6. Composición y propiedades del Ti ₃ Al _{2,5} V 46
Tabla 7. Comparación de propiedades entre los principales materiales en servicio de la planta. 47
Tabla 8. Instalaciones industriales de oxidación supercrítica. 52
Tabla 9. Plantas piloto de oxidación supercrítica. (P~25 MPa et T~550°C)53
Tabla 10. Métodos numéricos de Matlab
Tabla 11. Comparación de propiedades entre los principales materiales en servicio de la planta 107
Tabla 12. Presiones y tensiones máxima de trabajo en función de la temperatura (HOKE)
Tabla 13. Tensiones máximas alcanzadas en el reactor en MPa