Índice

1	IIN	TRODUCCION	5
2	DE	SCRIPCIÓN DE LA PLANTA SOLAR	6
3	MC	DELOS MATEMÁTICOS DE LA PLANTA SOLAR	9
	3.1	MODELO DE PARÁMETROS CONCENTRADOS	9
	3.2	MODELO DE PARÁMETROS DISTRIBUIDOS	10
	3.3	SIMULACIÓN Y COMPARATIVA DE LOS MODELOS	11
4	IDI	ENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR	16
	4.1	MÉTODO DE MÍNIMOS CUADRADOS RECURSIVO	17
	4.2	IDENTIFICACIÓN	19
5	СО	NTROL DEL LAZO DE COLECTORES	23
	5.1	CONTROL PREDICTIVO BASADO EN MODELO (MPC) $\ \ldots \ \ldots \ \ldots$	23
	5.2	CONTROL PREDICTIVO GENERALIZADO (GPC)	24
	5.3	CONTROL GPC CON GAIN-SCHEDULING (GPC-GS)	31
	5.4	CONTROL GPC CON GAIN-SCHEDULING Y RESPUESTA LIBRE NO LINEAL (GPC-GS NLFR)	37
	5.5	CONTROL PREDICTIVO NO LINEAL (NMPC)	41
	5.6	COMPARATIVA CONTROLADORES	47
6	EST	ΓΙΜΑDOR DE RADIACIÓN	48
7	СО	NCLUSIONES	57
8	BIE	BLIOGRAFIA	58

Lista de Figuras

2.1	Imagen de la planta solar de torre PS20 de Abengoa	6
2.2	Imagen del campo solar Acurex (PSA, Almería)	6
2.3	Vista aerea de Solacor I y II en El Carpio, Córdoba	7
2.4	Concentración de los rayos solares en el tubo receptor del colector cilindro-parabólico.	8
2.5	Esquemático del campo solar Acurex de PSA (Almería)	8
3.1	Simulación día baja radiación con modelo parámetros concentrados	11
3.2	Simulación día baja radiación con modelo parámetros distribuidos	12
3.3	Simulación día alta radiación con modelo parámetros concentrados	12
3.4	Simulación día alta radiación con modelo parámetros distribuidos	13
3.5	Zoom día alta radiación con modelo parámetros concentrados	14
3.6	Zoom día alta radiación con modelo parámetros distribuidos	14
4.1	Esquema para la identificación del modelo lineal	16
4.2	Simulación de la planta a caudal medio bajo	19
4.3	Simulación de la planta a caudal medio-alto	20
4.4	Equivalencia del modelo lineal con FeedForward+Planta	21
4.5	Respuesta ante escalón de los modelos lineales identificados	22
5.1	Esquema de control GPC	27
5.2	Simulación GPC de un día claro con transitorio temporal	28
5.3	Zoom GPC zona de transitorio	28
5.4	Zoom GPC zona de radiación constante	29
5.5	Simulación GPC de un día claro con baja radiación	30
5.6	Comportamiento GPC ante perturbaciones en la temperatura de entrada del fluido.	30
5.7	Zoom GPC ante perturbaciones en la temperatura de entrada del fluido	31
5.8	Simulación GPC-GS de un día claro con transitorio temporal	32
5.9	Zoom GPC-GS zona de transitorio	33
5.10	Zoom GPC-GS zona de radiación constante	33
5.11	Simulación GPC-GS de un día claro con baja radiación	34
5.12	Comparativa GPC\GPC-GS de un día claro con baja radiación	35
5.13	Comparativa GPC\GPC-GS de un día claro con baja radiación	35
5.14	Comportamiento GPC-GS ante perturbaciones en la temperatura de entrada del fluido	36
5.15	Zoom GPC-GS ante perturbaciones en la temperatura de entrada del fluido	36
5.16	Simulación GPC-GS NLFR de un día claro con transitorio temporal	38
5.17	Zoom GPC-GS NLFR zona de transitorio	38
5 10	Zoom CDC CS NI FR zone de radiación constante	30

5.19	Simulación GPC-GS NLFR de un día claro con baja radiación	39
5.20	Comparativa GPC-GS\GPC-GS NLFR de un día claro con baja radiación	40
5.21	Comparativa GPC-GS\GPC-GS NLFR de un día claro con baja radiación	40
5.22	Comportamiento GPC-GS NLFR ante perturbaciones en la temperatura de entrada del fluido	41
5.23	Simulación NMPC de un día claro con transitorio temporal	44
5.24	Zoom NMPC zona de transitorio	44
5.25	Zoom NMPC zona de radiación constante	45
5.26	Simulación NMPC de un día claro con baja radiación	45
5.27	Comparativa GPC-GS\NMPC de un día claro con baja radiación	46
5.28	Comparativa GPC-GS\NMPC de un día claro con baja radiación	46
5.29	$\label{eq:comportante} \mbox{Comportamiento NMPC ante perturbaciones en la temperatura de entrada del fluido.}$	47
6.1	Simulación con GPC-GS sin errores en la lectura del pirheliómetro	48
6.2	Simulación con GPC-GS con errores en la lectura del pirheliómetro	49
6.3	Zoom zona del error en la lectura del pirheliómetro	49
6.4	Estimación de la radiación a partir del modelo de parámetros concentrados	50
6.5	Estimación de la radiación en un día de alta radiación	51
6.6	Estimación de la radiación en un día de baja radiación	52
6.7	Estimación de la radiación en un día claro con un transitorio temporal	52
6.8	Comportamiento del GPC-GS con y sin estimador de radiación y error de medida.	53
6.9	Comportamiento del GPC-GS durante transitorio con y sin estimador de radiación.	54
6.10	GPC-GS con y sin estimador con medidas bruscas correctas del pirheliómetro.	55
6.11	GPC-GS con y sin estimador con medidas bruscas erróneas del pirheliómetro	56

Lista de Tablas

1	Tabla de valores de los parámetros de los modelos en los puntos de operación	2
2	Tabla de modelos discretos de la planta	22
3	Tabla de modelos lineales para el Gain-Scheduling	3
4	Tabla de índice ITAE de los controladores	4'
5	Tabla de tiempos obtenidos con los controladores.	4'