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Introduction

Motivation, aims and applications

The interest for unsteady aerodynamic flows has increased in the recent years due to
its many applications. For example, in aeronautics it is of primordial importance to know
the extra loads over an aeroplane that suddenly changes its angle of attack, enters in a gust
or goes into a turbulence zone. In addition, many aeroelastic problems can appear such
as the divergence and the flutter of wings or other aerodynamic surfaces. In biomedicine,
snoring problems are studied by analysing the unsteady oscillations of the vocal chords
produced by the air that passes through the throat. Aeroelastic problems are also of
interest in civil engineering, where wind can cause flutter in tall bridges and buildings as
happened, for example, in the famous case of the failure of the Tacoma Bridge (figure 1).

Figure 1: Flutter problem at the Tacoma Bridge, that caused its destruction later.
Photography obtained from

https://en.wikipedia.org/wiki/Tacoma Narrows Bridge (1940).

Usually, many of those phenomena (such as snoring and wing flutter) are not modelled
directly as three-dimensional problems. Instead, according to the strip theory [9], the
corresponding entity (the vocal cords or the wing) is divided into cross sections that are
studied as if they were subject to a two-dimensional flow. Using this approximation, the
linearized potential theory for flows past airfoils was developed around 1940. This theory
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4 Introduction

yields simple equations whose physical meaning is very clear. However, this transparency
was soon lost since, due to the absence of efficient computers in those times, the equations
had to be solved analytically —usually in the frequency domain—, leading to tedious
mathematical developments whose physical meaning is difficult to grasp and disorientate
the interested students, especially when air compressibility is taken into account. Further-
more, many of those developments —which are still used as a reference in the specialized
literature— are only valid for particular cases such as harmonic motion, sudden changes
in the angle of attack, sharp edge gusts, etc.

Since computers have experienced a great development in the last years, some efforts
have been made to solve numerically the linearized, unsteady potential equations in an
easier and more direct way, which is valid for any motion of the airfoil and uses the more
physically intuitive time domain approach. For example, Katz and Plotkin [15] developed
a marching-time vortex-lattice method for incompressible flow that was able to calculate
the forces over an airfoil when its motion was known, and Hernandes and Soviero [12][13]
presented a similar method suitable for compressible flow. Both methods were studied
and improved by Colera and Pérez-Saborid [6], who proposed two truncation algorithms
in order to reduce their computational cost. These authors also coupled the equations of
the vortex-lattice methods with those of the airfoil dynamics for studying problems were
the airfoil motion is the unknown as happens, for example, in the problem of flutter.

Although the Hernandes-Soviero method is precise and valid for general two-dimensional
problems, it presents some drawbacks:

A good comprehension of not well-known aspects such as the induced velocity field
of unsteady compressible vortexes, the piston theory and the auto-induced velocities
of an unsteady vortex in supersonic flow is required.

The method is constructed by means of the unsteady compressible vortex, a funda-
mental solution that presents a lack of physical meaning, as pointed in [6].

It is a marching-time method which has to keep track of the solutions corresponding
to many previous times in order to compute the solution at some given instant.
Thus, it can run very slowly even with the truncation method developed in [6].

Its extension to the three-dimensional regime is not clear, despite some works have
been done on the matter [19].

The disadvantages that vortex-lattice methods pose in the case of compressible un-
steady flows past airfoils have motivated the consideration in this work of an alternative
marching-time method that is not based on the use of unsteady compressible vortexes
or any other fundamental solutions, but on discretizing the differential equations of the
linearized potential flow theory directly by finite differences. Originally, this method was
proposed by Hariharan, Ping and Scott [11], who used an uniform grid to mesh the fluid
domain and an explicit time integration scheme. Despite providing good accuracy and be-
ing easy to understand and implement, this method, as presented by these authors, makes
necessary to use a very thin mesh to get good results, as well as a very small time step
in order to avoid instabilities. Also, the method was implemented for the case when the
motion of the airfoil is given, but not when it is just the unknown as in flutter problems.

All of this has motivated the present work, whose main objectives are:
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To propose a modification for the Hariharan-Ping-Scott method that uses a non-
uniform mesh and an implicit time integration scheme, leading to better accuracy
and stability. This modification will be just named as modified Hariharan-Ping-Scott
method in this work, and its efficiency will be compared with the Hernandes-Soviero
vortex-lattice modified with the truncation algorithm proposed by Colera and Pérez-
Saborid [6]. Similarly, the latter method will be named as modified Hernandes-
Soviero method in this work.

To couple the modified Hariharan-Ping-Scott method with the airfoil dynamics in
order to compute its motion when it is unknown. This coupling algorithm will be
named coupled Hariharan-Ping-Scott method along this work.

As applications of the above mentioned methods, some results of interest that are very
difficult to obtain analytically have been computed like, for example, the extra lift that
appears after a sudden change of the angle of attack or after a sharp-edge gust, which
could be of interest for structural calculations. Also, the wake evolution, that can seri-
ously affect the behaviour of aeroplanes or turbomachine blades, has been computed for
the two-dimensional case. The flutter point of rigid and flexible airfoils has also been con-
sidered and, apparently, this is first self-consistent numerical analysis of the compressible,
linearized coupled dynamics of the fluid-airfoil system carried out in the literature. Fur-
thermore, for the flutter of a flexible airfoil in compressible flow, no references have been
found in the available literature to make comparisons with, thus, the results presented
here for that case are original or not well-known.

(a) (b)

Figure 2: Asymmetric flutter mode in a glider (a) and wake after an aeroplane that can
seriously affect the control of incoming ones (b).

The methods analysed in this work can be easily and efficiently implemented with
programs like Matlab, which has simple syntax rules, is well-known by students and has
many mathematical libraries that allow a friendlier implementation. Also, they make
use of the physics beyond the basic equations of the unsteady linearized potential theory,
never leaving the time domain. Thus, they are very intuitive (unlike the classical frequency
domain approach) and can be very useful for teaching applications. Also, since they are
efficient, precise and permit the calculation of many variables of interest, they can be used
for the preliminary design of wings and helicopter blades or for any other situation where



6 Introduction

the computation based on CFD commercial programs is too expensive for the required
precision.

Finally, this work is a way to put into practice some concepts learned in the Master
Degree in Advanced Design in Mechanical Engineering, such as linear waves in gas dy-
namics, classic mechanics and computational methods (sparse matrixes, LU factorization
and BDF for ordinary differential equations).

Structure and main contributions

This work is mainly structured in three chapters. In the first one, some general concepts
are to be introduced such as the principal equations of the linearized potential theory of
flows past airfoils, some finite differences formulas for non-uniform meshes and a non-
reflecting boundary condition for the convected wave equation.

In the second chapter, those general concepts are to be used in order to explain the
modified Hariharan-Ping-Scott method. As commented before, this method differs from
the original one in that it uses a non-uniform grid and an implicit time integration scheme,
being then more accurate and stable. These improvements are original and therefore they
constitute one of the main contributions of this work. Some problems of interest will
be solved with the method and its efficiency and convergence will be compared with the
Hernandes-Soviero method’s.

In the third chapter, the modified method is to be coupled with the airfoil dynamics
in order to compute its motion in the case in which it is the unknown. Again, this
coupling method is original and therefore it is another contribution of this work. With
the coupled method, some problems related to the flutter of rigid and flexible airfoils and
to the response to a gust are to be solved. As pointed before, no results have been found
in the available literature to compare with the obtained ones in the case of the flutter of
a flexible airfoil. Hence, those results are original or not well-known and are one of the
main contributions of this work as well.

Finally, the bibliography consulted for this work is included.



Chapter 1

General equations and
considerations

1.1. Introduction

In this chapter some general ideas are to be introduced briefly before approaching the
explanation of the numerical methods in the following chapters. First, some simplifications
involving the fluid and the airfoil and also the equations that govern the flow are shown in
section 1.2. Second, the calculation of the lift, the pitching moment and other generalized
forces over the airfoil by means of the fluid variables is explained in section 1.3. Later,
some finite differences formulas for non-uniform meshes that will be implemented in the
numerical methods are derived in section 1.4. Finally, an additional boundary condition
for finite domains is obtained in section 1.5 following the same reasoning that Hariharan,
Ping and Scott [11].

1.2. Linearized potential flow equations

Consider an airfoil —which is two-dimensional by definition— in the sine of an hor-
izontal, constant and uniform flow of speed U∞ that presents vertical motion and/or is
submitted to a gust whose vertical speed is wg (as shown in figure 1.1), and assume the
following hypothesises, valid for the most part of practical cases:

The Reynolds number based on the chord lenght c of the airfoil and the properties
of the fluid upstream is very high, so viscous effects can be neglected except in the
boundary layer of the airfoil and in the wake.

Gravity forces and heat transfer are neglected as well.

The amplitude of the airfoil motion and the gust intensity are small, i.e., their speeds
are much lower than U∞ and the displacements of the airfoil are much lower than c.

The airfoil’s thickness is much lower than its chord c.

The boundary layer of the airfoil remains adhered to it.

7



8 Chapter 1. General equations and considerations

Airfoil at time t1

Airfoil at time t2 6= t1

Gust wg

Incident flow

U∞

Wake

Wake

Figure 1.1: Scheme of an airfoil in the sine of an uniform incident flow U∞ that presents
vertical motion and/or is submitted to a gust whose vertical speed is wg.

With these assumptions, the linearized potential theory can be used to describe the
flow around the airfoil. This theory, that is explained in references [3],[6],[10], can be
summarized in a few concepts. First of all, the airfoil and the wake are placed in the x
axis (which is parallel to the incident flow), the first between the coordinates x = 0 and
x = c and the latter between x = c and x → ∞ (see figure 1.2). The y axis is defined
perpendicular to the x axis, and the thicknesses of the airfoil and the wake are ignored.
The remaining space is occupied by a non-viscous and irrotational fluid.

y

Airfoil Wake

c0
x−

Non-viscous and irrotational flow

Non-viscous and irrotational flow

Figure 1.2: Diagram of the flow field simplification made by the linearized potential
theory.

Second, all the properties of the fluid like the velocity v, pressure p, density ρ, etc. are
written as their values upstream (U∞ux, p∞, ρ∞) plus a small perturbation, i.e.:

v = U∞ex + v′; p = p∞ + p′; ρ = ρ∞ + ρ′

where:
|v|′ � U∞; p′ � p∞; ρ′ � ρ∞

Third, considering that the flow is irrotational (∇ × v = 0), it is shown that all the
perturbation variables can be extracted from just one variable, that is the fluid perturba-
tion potential1 φ. In particular, the perturbation speed and the perturbation pressure are
related to that potential by the following relationships:

v′ = ∇φ (1.1)

p′ = −ρ∞
(
∂φ

∂t
+ U∞

∂φ

∂x

)
(1.2)

1Usually, it will be just called potential and not perturbation potential.



1.2. Linearized potential flow equations 9

In unsteady problems, the potential is antisymmetric respect to the x axis (inducing
an antisymmetric perturbation velocity v′ as well), being continuous at x < 0, y = 0 and
presenting a jump across the line occupied by the airfoil and the wake (x > 0, y = 0).
Thus, it is only necessary to calculate the potential in the upper half plane (y > 0).

It has to be noticed that, due to that antisymmetry, φ(x, 0+) = φ(x, 0−) = 0 at least
when x < 0. However, it is important to remark that the latter relation can be extended
to the point x = 0, because φ is continuous in that point. Indeed, there is a well-known
leading edge suction, that takes place at x = y = 0, and is characterized by a vortex density
γ that behaves as 1/

√
x. It can be shown [6] that this vortex density is proportional to the

horizontal perturbation velocity u = ∂φ/∂x so, in the vecinities of the point x = y = 0,
φ has to behave as

√
x, as shown in figure 1.3. Therefore, φ is continuous at x = y = 0

(although it presents an infinite slope there) and it is possible to say that:

φ(x, 0+) = φ(x, 0−) = 0; x ≤ 0 (1.3)

ε� c
x

∂φ
∂x (t, x, 0+)

0

∼ 1√
x

ε� c
x

φ(t, x, 0+)

0

∼
√
x

Figure 1.3: Illustration of the asymptotic behaviour of ∂φ/∂x and φ nearby x = y = 0
due to the presence of the well-known leading edge suction. As can be seen, the

mentioned suction does not imply any discontinuity for φ in that point.

The equation that governs the potential φ in the fluid domain is the convected wave
equation: (

∂

∂t
+ U∞

∂

∂x

)2

φ = a2
∞∇2φ (1.4)

where a∞ is the upstream sound speed. In order to develop the numerical code presented
in this work, it is convenient to rewrite the latter equation in the following way:

∂2φ

∂t2
= −2U∞

∂2φ

∂t ∂x
+
(
a2
∞ − U2

∞
) ∂2φ

∂x2
+ a2
∞
∂2φ

∂z2
(1.5)

The boundary conditions for the potential are:

Non-penetration of the fluid in the airfoil’s surface:

∂φ

∂z
=
∂zp
∂t

+ U∞
∂zp
∂x
− wg(t, x); 0 ≤ x ≤ c; y = 0+ (1.6)

where zp = zp(t, x) is the displacement of the mean geometrical line of the airfoil
respect from its steady position.
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Non-perturbed conditions at infinity:

∇φ = 0; x, y →∞; (1.7)

Kutta’s condition (applies to the wake):

∂φ

∂t
+ U∞

∂φ

∂x
= 0; x > c; y = 0+ (1.8)

The equations (1.5)-(1.8) are to be solved by the modified Hariharan-Ping-Scott method
presented here to get the fluid field around the airfoil.

1.3. Lift, pitching moment and other generalized forces

Once the perturbation potential φ is found, it is of great interest to calculate the
actuating lift and pitching moment2 over the airfoil.

If the upper surface of the airfoil (0 ≤ x ≤ c, y = 0+) is denoted by up, and the lower
one (0 ≤ x ≤ c, y = 0−) by down, the lift l can be expressed as:

l =

ˆ x=c

x=0

(
pdown − pup

)
dx

Using now the relations (1.2)-(1.3) and the fact that φ is antisymmetric, the latter equation
reads as follows:

l = 2ρ∞

ˆ c

0

∂φup

∂t
dx+ 2ρ∞U∞φ

up(t, x = c) (1.9)

which is the generalized Kutta-Joukowski formula.

On the other hand, the pitching moment mle over the leading edge (defined as positive
if it makes the airfoil move its leading edge down) can be obtained performing the following
integral:

mle =

ˆ x=c

x=0

(
pdown − pup

)
x dx

Using again the equation (1.2) and the antisymmetry of φ, it is obtained that:

mle = 2ρ∞

ˆ c

0

∂φup

∂t
x dx+ 2ρ∞U∞

ˆ c

0

∂φup

∂x
x dx

For numerical reasons, it is convenient to integrate by parts the second term in the right
side of the last equation. Regarding equation (1.3), it follows that:

mle = 2ρ∞

ˆ c

0

∂φup

∂t
x dx+ 2ρ∞U∞c φ

up(t, c)− 2ρ∞U∞

ˆ c

0
φupdx (1.10)

Notice that using (1.10) instead of the equation before it is not necessary to derive the
potential respect to x and therefore the obtained result is more accurate.

2Actually, it is not the lift and the pitching moment, but the lift and pitching moment per unit length.
However, the term per unit length will be omitted in this work.
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In some complex cases like, for example, flexible airfoils, their motion will be described
in terms of some generalized coordinates qi(t) and their corresponding shape functions
ψi(x), i.e.:

zp(t, x) =
∑
i

ψi(x)qi(t)

In those cases, it will be of interest to calculate the generalized aerodynamic forces Qi
associated with the different coordinates. The expression of the above mentioned Qi can
be obtained giving the airfoil a virtual displacement and calculating the virtual work of
the aerodynamic pressure. In other words:

δW =
∑
i

Qiδqi =

ˆ x=c

x=0

(
pdown − pup

)
δzpdx =

∑
i

ˆ x=c

x=0

(
pdown − pup

)
ψiδqidx

Using the latter equation and the same procedure than the one used for calculating mle,
it follows that:

Qi = 2ρ∞

ˆ c

0

∂φup

∂t
ψi dx+ 2ρ∞U∞ψi(c)φ

up(t, c)− 2ρ∞U∞

ˆ c

0
φup

dψi
dx

dx (1.11)

The equations (1.9)-(1.11) will be used in the modified Hariharan-Ping-Scott method
explained in the present work.

1.4. Finite differences for non-uniform meshes

In the method presented in this work, finite differences are to be used in a non-uniform
mesh. Due to the fact that some of their expressions are not as intuitive and well-known as
when the mesh is uniform, they are to be derived here first. In particular, the expressions
of greatest interest for the present text and that are to be shown now are the backward,
forward and central approximations to the first derivative, and the central approximation
to the second derivative.

Backward approximation to the first derivative

Suppose a function f(x) evaluated at three points named xi−2, xi−1 and xi (with
xi−2 < xi−1 < xi), and denote f(xj), f

′(xj), f
′′(xj) and so on by fj , f

′
j , f

′′
j , etc.

According to the Taylor expansion, if f is smooth enough it can be said that:

fi−1 = fi − f ′i∆x1 +
1

2
f ′′i ∆x2

1 −
1

6
f ′′′i ∆x3

1 +O(∆x4
1) (1.12)

fi−2 = fi − f ′i∆x2 +
1

2
f ′′i ∆x2

2 −
1

6
f ′′′i ∆x3

2 +O(∆x4
2) (1.13)

where ∆x1 = xi− xi−1 and ∆x2 = xi− xi−2. Eliminating f ′′i from the above equations, it
is obtained that:

f ′i = fi
∆x1 + ∆x2

∆x1∆x2
− fi−1

∆x2

∆x1 (∆x2 −∆x1)
+ fi−2

∆x1

∆x2 (∆x2 −∆x1)
+O(∆x2

2) (1.14)

It can be checked that the error term in the latter equation involves the third derivative
f ′′′i and the error terms in equations (1.12)-(1.13); thus, it disappears if f(x) is a second
degree polynomial. In other words, the degree of precision of the formula (1.14) is 2.
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Forward approximation to the first derivative

The forward approximation gives the value of f ′i by means of the value of f in three
points called xi, xi+1 and xi+2 (with xi < xi+1 < xi+2). It can be calculated from equation
(1.14) replacing xi−1 by xi+1 and xi−2 by xi+2, following that:

f ′i = −fi
∆x1 + ∆x2

∆x1∆x2
+ fi+1

∆x2

∆x1 (∆x2 −∆x1)
− fi+2

∆x1

∆x2 (∆x2 −∆x1)
+O(∆x2

2) (1.15)

where, now, ∆x1 and ∆x2 represent xi+1 − xi and xi+2 − xi, respectively. Again, this
formula has an accuracy degree equal to 2.

Centered approximation to the first derivative

In this case, f is evaluated at xi−1, xi and xi+1 (with xi−1 < xi < xi+1), and the aim
is to compute f ′i . Proceeding again with the Taylor series, it can be written that:

fi−1 = fi − f ′i∆x− +
1

2
f ′′i ∆x2

− −
1

6
f ′′′i ∆x3

− +O(∆x4
−) (1.16)

fi+1 = fi + f ′i∆x+ +
1

2
f ′′i ∆x2

+ +
1

6
f ′′′i ∆x3

+ +O(∆x4
+) (1.17)

where ∆x+ = xi+1 − xi and ∆x− = xi − xi−1. Eliminating f ′′i , it follows:

f ′i ' fi+1
∆x−

∆x+ (∆x+ + ∆x−)
+ fi

∆x+ −∆x−
∆x+∆x−

− fi−1
∆x+

∆x− (∆x+ + ∆x−)
+

O(∆x2
+,∆x

2
−) (1.18)

which is, as well, an approximation whose precision degree is 2.

Centered approximation to the second derivative

This approximation can be obtained if f ′i is eliminated from the system (1.16)-(1.17),
leading to:

f ′′i = fi+1
2

∆x+(∆x+ + ∆x−)
− fi

2

∆x+∆x−
+ fi−1

2

∆x−(∆x+ + ∆x−)
+

O(∆x+,∆x−) (1.19)

which is, in the general case of non-uniform mesh (∆x− 6= ∆x+), an approximation with
precision degree equal to 2. It can be checked that, in the especial case of uniform mesh
(∆x− = ∆x+), the terms involving f ′′′i in equations (1.16)-(1.17) cancel themselves when
operating in order to obtain equation (1.19), and the error term in the latter becomes
O(∆x2

+,∆x
2
−), as expected.

1.5. Non-reflecting boundary conditions

According to equation (1.4), the airfoil can be seen as a source of waves whose focus
convects downstream with velocity U∞ and whose front propagates with velocity a∞ re-
spect to that focus [6], as seen in figure 1.4. Since the real domain is infinite, these waves



1.5. Non-reflecting boundary conditions 13

go away from the airfoil and never come back. However, it is imposible to simulate an
infinite domain numerically, and, in practice, a big enough (but finite) domain has to be
used instead. In that kind of domains, boundary condition (1.7) is not useful and has
to be substituted by another one that makes waves not to reflect when arriving at the
borders.

U∞

U∞∆t

a∞
∆
tṘ∆t

x

y

θ

Figure 1.4: Wave propagation in subsonic flow. ∆t is the lapse of time between the
actual time t and the instant of birth of the wave.

Looking at the variables defined in figure 1.4, it follows that:

a2
∞ = Ṙ2 + U2

∞ − 2ṘU∞ cos θ

From this, and taking into account that Ṙ has to be positive when θ = 0, π, it is obtained
that:

Ṙ(θ) = U∞ cos θ +

√
a2
∞ − U2

∞ sin2 θ (1.20)

The wavefront, given in polar coordinates (x = r cos θ, y = r sin θ) by r(θ) = Ṙ(θ)∆t,
can be transformed into a cylindrical one by performing the following change of variables:

r̂ =
a∞

Ṙ(θ)
r; θ̂ = θ

In the new system, the cylindrical wavefront propagates with velocity a∞, and the far flow
field can be approximated by the Friedlander asymptotic form [18]:

φ ∼ f(t− r̂/a∞)√
r

which verifies:
∂φ

∂t
+ a∞

[
∂φ

∂r̂
+
φ

2r̂

]
= 0

or, in terms of the original variables:

∂φ

∂t
+ Ṙ(θ)

[
∂φ

∂x
cos θ +

∂φ

∂y
sin θ +

φ

2r

]
= 0 (1.21)

That is the differential form of the non-reflecting boundary condition that will be used in
the finite domain considered in next chapters.





Chapter 2

Modified Hariharan-Ping-Scott
method

2.1. Introduction

It was seen in the previous chapter that, under the assumptions of the linearized
potential theory, the airfoil and the wake could be placed in the x+ semiaxis and that all
the fluid variables could be computed from another one called the potential (denoted by
φ).

Now consider a rectangle in the upper half plane that surrounds the airfoil and part
of the wake, and whose vertices are far enough from the airfoil (i.e., at a distance ∼ 10 c
from it). The main idea of the Hariharan-Ping-Scott method [11] is to mesh this rectangle
into a grid of points and to discretize there the potential flow equations. If the potential is
known at a certain instant tn in the whole mesh, all the space derivatives can be computed
by finite differences and therefore the time derivates can be calculated as well through the
potential theory equations. Knowing the time derivatives, it is possible to obtain the
potential in the mesh points at the following instant tn+1, and so on until a final time tf .

That Hariharan-Ping-Scott method uses an uniform mesh and an explicit time inte-
gration scheme. Although this formulation is easier to implement, it has as drawbacks
that a very thin mesh is needed in order for the results to converge (sometimes leading to
computer memory problems), and that a very small time step size has to be taken in order
to avoid instabilities. Thus, two modifications are proposed here in order to improve those
characteristics. They consist, respectively, in using a non-uniform mesh that concentrates
more points where the potential presents a higher gradient —so such a thin mesh is no
longer necessary— and in employing an implicit time integration scheme —that makes
the method more stable and permits to take a much longer time step.

These modifications are to be explained first in section 2.2, where the main ideas are
shown, the corresponding equations and matrixes are derived and some commentaries
for its efficient implementation are made. Second, some results for typical problems in
unsteady aerodynamics are computed and compared in section 2.3 with others obtained
both theoretically and with the Hernandes-Soviero method [12][13] modified with the
truncation algorithms proposed by Colera and Pérez-Saborid [6] (that were commented

15



16 Chapter 2. Modified Hariharan-Ping-Scott method

in the introductory chapter of this text). For simplicity reasons, the latter method will
be named as modified Hernandes-Soviero method. After, a comparison of the convergence
and the stability of the original and the modified Hariharan-Ping-Scott methods is done in
section 2.4. Later, a brief study of the influence of the time step size in the convergence and
the efficiency of both methods (modified Hariharan-Ping-Scott and modified Hernandes-
Soviero) is done in section 2.5. Finally, some wake patterns for an harmonic movement of
the airfoil have been computed in section 2.6.

To avoid possible confusions, it has to be pointed that, sometimes, the modified
Hariharan-Ping-Scott and the modified Hernandes-Soviero methods will be called as finite
differences method and vortex-lattice method, respectively, because that names emphasize
the main ideas beyond them.

2.2. Description of the method

2.2.1. Main concepts

Consider a rectangular (but non-uniform) mesh like the one shown in the figure 2.1.
Every point of the grid can be described by two indexes i, j, with i = 1, . . . , Nx and
j = 1, . . . , Ny, and also by a single index I that moves through the grid by rows, starting
from the bottom one, and moving to the right inside each row. The relation between I
and i, j is:

I = Nx(j − 1) + i

There are two especial values of i: one for which the corresponding value of x is equal to
0 (say ile) and another one for which the corresponding value of x is equal to c (say ite).
These two values represent the limits between which the airfoil is placed.

Airfoil Wakei = 1 i = ile i = ite i = Nx

j = 1

j = Ny

x ∼ −10c x = 0 x = c x ∼ 10c

y = 0

y ∼ 10c

I = 1 I = 2 I = . . .

I = Nx + 1, I = . . .

I

(i, j)
U∞

Figure 2.1: Scheme of the grid employed for the method.
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The time is divided in uniform steps ∆t, and every simulated instant is denoted by tn.
The potential evaluated at an instant tn and at the point given by i, j is denoted by φnij .
As every point can also be given by I, sometimes an abuse of notation will be done and
the potential will be denoted by φnI as well. The different values of φnI can be grouped
into a column vector φn defined as:

φn =
[
φn1 , . . . , φ

n
Nφ

]T
where Nφ = NxNy is the total number of points in the grid.

Knowing φn and φn−1, it is possible to define a value fnI (or fnij) to every grid point
that is:

The second time derivative of φ at tn (φ̈nI ) for the inner points (i = 2, . . . , Nx − 1,
j = 2, . . . , Ny − 1). It can be calculated using the convected wave equation (1.5).

The first time derivative of φ at tn (φ̇nI ) for the points in the left boundary (i =
1, j = 2, . . . , Ny − 1), upper boundary (i = 2, . . . , Nx − 1, j = Ny) and right
boundary (i = Nx, j = 2, . . . , Ny − 1). It can be computed imposing the non-
reflecting boundary condition (1.21).

The value of φ̇nI for the points in the wake (i = ite + 1, . . . , Nx, j = 1), that can be
obtained from the Kutta condition (1.8).

For the corner points, the mean value of fnI in the boundary points next to them,
i.e.:

fn1,Ny =
1

2

(
fn1,Ny−1 + fn2,Ny

)
(2.1)

fnNx,Ny =
1

2

(
fnNx−1,Ny + fnNx,Ny−1

)
(2.2)

Zero for the rest of the points (i = 1, . . . , ite, j = 1). It is important to remark that
this is just the value of φ̇nI for the bottom points ahead the airfoil (i = 1, . . . , ile− 1,
j = 1), because there the potential is always null, but not the value of any time
derivative of φ in the airfoil (i = ile, . . . , ite, j = 1).

All the values of fnI can be grouped into a column vector as well:

fn =
[
fn1 , . . . , f

n
Nφ

]T
and it can be shown that fn depends linearly on φn and φn−1:

fn = A0φ
n + A1φ

n−1 (2.3)

where A0 and A1 are two constant sparse matrixes that are derived in subsection 2.2.2
by applying finite differences in the equations commented before.

Now suppose that φn−2 and φn−1 are known and φn is unknown. At the inner points,
where fnI = φ̈nI , the following backward differentiation formula can be applied:

fnI =
φnI − 2φn−1

I + φn−2
I

∆t2
; I ∈ Iinner (2.4)
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whilst in the rest of points except the airfoil, where fnI = φ̇nI , it can be said that:

fnI =
3φnI − 4φn−1

I + φn−2
I

2∆t
; I ∈ Ibound (2.5)

At the points belonging to the airfoil, where fnI is not related to any of the derivatives of
φ, the impenetrability boundary condition (1.6) is imposed. According to finite difference
(1.15), the mentioned boundary condition can be written as:

wp(t
n, xi) = c1φ

n
i,1 + c2φ

n
i,2 + c3φ

n
i,3; i = ile, . . . , ite

with:

c1 = − y2 + y3 − 2y1

(y2 − y1) (y3 − y1)

c2 =
y3 − y1

(y2 − y1) (y3 − y2)

c3 = − y2 − y1

(y3 − y1) (y3 − y2)

wp(t
n, xi) =

[
∂zp(t, x)

∂t
+ U∞

∂zp(t, x)

∂x
− wg(t, x)

]t=tn
x=xi

(2.6)

If the I index is used instead of the (i, j) pair, the latter equation becomes:

wp(t
n, xI) = c1φ

n
I + c2φ

n
I+Nx + c3φ

n
I+2Nx ; I ∈ Iairfoil (2.7)

In the equations before, Iinner, Ibound and Iairfoil are the sets of the I values at the inner
points, the boundary points but the airfoil ones and the airfoil points, respectively.

For simplicity reasons, Einstein’s summation criteria1 is to be used from now. If
relation (2.3) is substituted into (2.4)-(2.5) it follows:

[
(A0)IJ −

1

∆t2
δIJ

]
φnJ =

[
− (A1)IJ −

2

∆t2
δIJ

]
φn−1
J +

1

∆t2
δIJφ

n−2
J ; I ∈ Iinner (2.8)[

(A0)IJ −
3

2∆t
δIJ

]
φnJ =

[
− (A1)IJ −

2

∆t
δIJ

]
φn−1
J +

1

2∆t
δIJφ

n−2
J ; I ∈ Ibound (2.9)

where δIJ is the Kronecker tensor. Now, relations (2.7)-(2.9) provide a set of Nφ equations
for Nφ unknowns, that are the components of φn. That set of equations can be written
in the following matricial form:

B0φ
n = B1φ

n−1 + B2φ
n−2 + Bpwn

p (2.10)

where wn
p = [wp(t

n, xile), . . . , wp(t
n, xite)]

T and where B0, B1, B2 and Bp are sparse

1Repeated index means summation along it.
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matrixes that can be easily derived from equations (2.7)-(2.9):

(B0)IJ =



(A0)IJ −
1

∆t2
δIJ ; I ∈ Iinner

(A0)IJ −
3

2∆tδIJ ; I ∈ Ibound
c1 ; I ∈ Iairfoil; J = I
c2 ; I ∈ Iairfoil; J = I +Nx

c3 ; I ∈ Iairfoil; J = I + 2Nx

0 ; otherwise

(B1)IJ =


− (A1)IJ −

2
∆t2

δIJ ; I ∈ Iinner
− (A1)IJ −

2
∆tδIJ ; I ∈ Ibound

0 ; otherwise

(B2)IJ =


1

∆t2
δIJ ; I ∈ Iinner

1
2∆tδIJ ; I ∈ Ibound
0 ; otherwise

(Bp)IJ =

{
δIJ ; I ∈ Iairfoil
0 ; otherwise

Thus, the equation (2.10) is the one that allows calculating the values of the unknowns
φnI from the known values of φn−1

I and φn−2
I . It is important to point out that those

unknowns, that are computed for the instant tn, are obtained from their first and second
time derivatives evaluated at tn as well (see equations (2.4)-(2.5)), and not in tn−1. There-
fore, the explained scheme is implicit, which brings more numerical stability and permits
bigger time step sizes.

Once the value of φn is computed, it is possible to obtain the lift and the pitching
moment over the airfoil using equations (1.9)-(1.10). For achieving this, the integrals that
appear there can be computed by the trapezoid rule, and the time derivatives of φ in the
airfoil can be approximated by (φnI − φ

n−1
I )/∆t; I ∈ Iairfoil or by a higher order formula.

It has to be remarked that the matrixes B0,. . .,Bp can also be obtained in a more
direct way —without the definition of fn— if the potential flow equations are discretized
directly both in time and in space. However, they have been obtained here through the
definition of fn because the latter would make easier to use some other multistep methods
in future developments instead of the BDF formulas used here.

2.2.2. Derivation of A0 and A1

As seen in the previous subsection, it is necessary to obtain the expressions of the
matrixes A0 and A1 in order to implement the described marching time method. These
matrixes can be obtained discretizing the potential theory equations with finite differences.
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Inner points

Indeed, for the inner points, the discretized convected wave equation (1.5) reads as:

fnij = φ̈nij = −2U∞
φnij − φni−1,j − φ

n−1
i,j + φn−1

i−1,j

∆t (xi − xi−1)
+(

a2
∞ − U2

∞
) (
α1
iφ

n
i+1,j + α0

iφ
n
i,j + α−1

i φni−1,j

)
+ a2
∞

(
β1
jφ

n
i,j+1 + β0

jφ
n
i,j + β−1

j φni,j−1

)
;

i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1

where α−1
i , α0

i , α
1
i and β−1

j , β0
j , β

1
j are coefficients given by (1.18):

α1
i =

2

(xi+1 − xi)(xi+1 − xi−1)
, β1

j =
2

(yj+1 − yj)(yj+1 − yj−1)

α0
i = − 2

(xi+1 − xi)(xi − xi−1)
, β0

j = − 2

(yj+1 − yj)(yj − yj−1)

α−1
i =

2

(xi − xi−1)(xi+1 − xi−1)
, β−1

j =
2

(yj − yj−1)(yj+1 − yj−1)

It is convenient to observe that an upwind finite difference has been used for the mixed
second derivative (∂2φ/∂t∂x), since the central formula would have resulted in an unstable
scheme [11]. It also has to be pointed that a two-node formula has been employed for that
upwind finite difference instead of a three-node one as proposed by the authors because,
despite being less accurate, it results in a more stable scheme and the lack of accuracy is
sufficiently compensated by the use of a non-uniform mesh.

Taking into account that, if I is the index corresponding to to the point denoted by
(i, j), the indexes that correspond to the points just at the right (i + 1, j), left (i − 1, j),
up (i, j+ 1) and down (i, j−1) are I+ 1, I−1, I+Nx and I−Nx, respectively, the latter
equation can be rewritten as:

fnI = (A0)IJ φ
n
J + (A1)IJ φ

n−1
J

with:

(A0)I,I =
−2U∞

∆t(xI − xI−1)
+
(
a2
∞ − U2

∞
)
α0
I + a2

∞β
0
I

(A0)I,I−1 =
2U∞

∆t(xI − xI−1)
+
(
a2
∞ − U2

∞
)
α−1
I

(A0)I,I+1 =
(
a2
∞ − U2

∞
)
α1
I

(A0)I,I−Nx = a2
∞β
−1
I

(A0)I,I+Nx = a2
∞β

1
I

(A1)I,I =
2U∞

∆t(xI − xI−1)

(A1)I,I−1 =
−2U∞

∆t(xI − xI−1)

for I ∈ Iinner.

It has to be remarked that, in the expressions above and in the incoming ones, only
the non-zero terms corresponding to the I-th row (for a given I) of the matrixes A0 and
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A1 are shown. Thus, if the expression of a certain term (A0)I∗,J∗ (or (A1)I∗,J∗) is not
found, that term will be null. On the other hand, an abuse of notation has been done
(and will be done later again) and the different values of α1

i , β
1
j , etc. have been denoted

using the corresponding index I as α1
I , β

1
I and so on.

Left boundary

For the left boundary points, the discretized non-reflecting boundary condition 1.21 is:

fnij = φ̇nij = −Ṙij
[(
α0
iφ

n
i,j + α1

iφ
n
i+1,j + α2

iφ
n
i+2,j

)
cos θij+(

β1
jφ

n
i,j+1 + β0

jφ
n
i,j + β−1

j φni,j−1

)
sin θij +

φnij
2rij

]
; i = 1, j = 2, . . . , Ny − 1

where Ṙij = U∞ cos θij +
√
a2
∞ − U2

∞ sin2 θij , rij and θij are the polar coordinates of the

(i, j) point as defined in section 1.5, and α0
i , α

1
i , α

2
i , β
−1
i , β0

i , β
1
i are coefficients given by

(1.15) and (1.18):

α0
i = − xi+1 + xi+2 − 2xi

(xi+1 − xi) (xi+2 − xi)
, β1

j =
yj − yj−1

(yj+1 − yj)(yj+1 − yj−1)

α1
i =

xi+2 − xi
(xi+1 − xi) (xi+2 − xi+1)

, β0
j =

yj+1 − yj−1

(yj+1 − yj)(yj − yj−1)

α2
i = − xi+1 − xi

(xi+2 − xi) (xi+2 − xi+1)
, β−1

j = − yj+1 − yj
(yj − yj−1)(yj+1 − yj−1)

This gives more terms of the matrix A0:

(A0)I,I = −ṘI
(
α0
I cos θI + β0

I sin θI +
1

2rI

)
(A0)I,I+1 = −ṘIα1

I cos θI

(A0)I,I+2 = −ṘIα2
I cos θI

(A0)I,I−Nx = −ṘIβ−1
I sin θI

(A0)I,I+Nx = −ṘIβ1
I sin θI

for I ∈ Ileft, where Ileft represents the set of I values at the points in the left boundary
(excluding the corners).

Upper boundary

Similarly, the discretized non-reflecting boundary condition for the upper boundary
reads as:

fnij = φ̇nij = −Ṙij
[(
α−1
i φni−1,j + α0

iφ
n
i,j + α1

iφ
n
i+1,j

)
cos θij+(

β0
jφ

n
i,j + β−1

j φni,j−1 + β−2
j φni,j−2

)
sin θij +

φnij
2rij

]
; i = 2, . . . , Nx − 1, j = Ny
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Now, α−1
i , α0

i , α
1
i , β

0
i , β
−1
i , β−2

i are:

α1
i =

xi − xi−1

(xi+1 − xi)(xi+1 − xi−1)
, β0

j =
2yj − yj−1 − yj−2

(yj − yj−1)(yj − yj−2)

α0
i =

xi+1 − xi−1

(xi+1 − xi)(xi − xi−1)
, β−1

j = − yj − yj−2

(yj − yj−1)(yj−1 − yj−2)

α−1
i = − xi+1 − xi

(xi − xi−1)(xi+1 − xi−1)
, β−2

j =
yj − yj−1

(yj − yj−2)(yj−1 − yj−2)

The corresponding terms of A0 are then:

(A0)I,I = −ṘI
(
α0
I cos θI + β0

I sin θI +
1

2rI

)
(A0)I,I−1 = −ṘIα−1

I cos θI

(A0)I,I+1 = −ṘIα1
I cos θI

(A0)I,I−Nx = −ṘIβ−1
I sin θI

(A0)I,I−2Nx
= −ṘIβ−2

I sin θI

for I ∈ Iupper, being Iupper the set of values that I takes at the points in the upper boundary
(excluding the corners as well).

Right boundary

The same procedure can be applied for the right boundary. Now, the corresponding
discretized equation is:

fnij = φ̇nij = −Ṙij
[(
α−2
i φni−2,j + α−1

i φni−1,j + α0
iφ

n
i,j

)
cos θij+(

β1
jφ

n
i,j+1 + β0

jφ
n
i,j + β−1

j φni,j−1

)
sin θij +

φnij
2rij

]
; i = Nx, j = 2, . . . , Ny − 1

with:

α0
i =

2xi − xi−1 − xi−2

(xi − xi−1) (xi − xi−2)
, β1

j =
yj − yj−1

(yj+1 − yj)(yj+1 − yj−1)

α−1
i = − xi − xi−2

(xi − xi−1) (xi−1 − xi−2)
, β0

j =
yj+1 − yj−1

(yj+1 − yj)(yj − yj−1)

α−2
i =

xi − xi−1

(xi − xi−2) (xi−1 − xi−2)
, β−1

j = − yj+1 − yj
(yj − yj−1)(yj+1 − yj−1)

that leads to:

(A0)I,I = −ṘI
(
α0
I cos θI + β0

I sin θI +
1

2rI

)
(A0)I,I−1 = −ṘIα−1

I cos θI

(A0)I,I−2 = −ṘIα−2
I cos θI

(A0)I,I−Nx = −ṘIβ−1
I sin θI

(A0)I,I+Nx = −ṘIβ1
I sin θI

for I ∈ Iright, where Iright is the set of I values at the points in the right boundary
(excluding the corners).
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Corners

For the upper-left and upper-right corner points, fnI is equal to its mean value in the
two adjacent points, as indicated by equations (2.1)-(2.2). Those two relations can be
rewritten as:

fnI =
1

2
(fI−Nx + fI+1) , I = (Ny − 1)Nx + 1

fnI =
1

2
(fI−1 + fI−Nx) , I = NxNy = Nφ

Using now equation (2.3) and taking into account that (A1)IJ = 0 when I does not belong
to an inner point, it follows that:

(A0)IJ =
1

2

[
(A0)I−Nx,J + (A0)I+1,J

]
, I = (Ny − 1)Nx + 1, J = 1, . . . , Nφ

(A0)IJ =
1

2

[
(A0)I−1,J + (A0)I−Nx,J

]
, I = Nφ, J = 1, . . . , Nφ

Wake

Finally, the discretized Kutta condition (1.8), that applies to the wake, reads as:

fnij = φ̇nij = −U∞
φnij − φni−1,j

xi − xi−1

Here, upwinding is used again in order to make the scheme stable. Naming Iwake to the
set of values that I takes at the wake points, the latter equation leads to:

(A0)I,I =
−U∞

xI − xI−1

(A0)I,I−1 =
U∞

xI − xI−1

for I ∈ Iwake.

2.2.3. Efficient scheme implementation. Summary of all the steps

Once A0 and A1 have been derived, it is possible to compute the matrixes that ap-
pear in equation (2.10) and implement then the modified Hariharan-Ping-Scott method.
However, since the system given by the mentioned equation has to be solved for every
simulated instant tn, some ideas are to be commented first in order to achieve a more
efficient resolution.

For simplicity reasons, let the equation (2.10) be written as:

B0φ
n = bn (2.11)

where bn = B1φ
n−1 + B2φ

n−2 + Bpwn
p. Although bn is different at every simulated

instant, the matrix B0 of the system is always the same. Therefore, the computational
cost can be greatly reduced if a LU decomposition is done at the beginning and then,
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for every tn, the solution of the system is found by solving the two associated triangular
systems instead of using a direct resolution method.

As B0 is a sparse matrix, the LU factorization is performed much faster and the
resultant matrixes are much sparser if rows and column permutations are permitted [17],
i.e.:

PB0Q = LU

where P, Q are permutation matrixes, and L, U are the usual lower and upper triangular
matrixes.

In order to solve the system given by B0φ
n = bn with the latter factorization, let

φ̂
n

be a vector (say permuted vector of potentials) that verifies φn = Qφ̂
n
. In that case,

premultiplying equation (2.11) by P it follows that:

PB0Q︸ ︷︷ ︸
=LU

φ̂
n

= Pbn

Hence, φ̂
n

can be computed by solving two triangular systems:

φ̂
n

= U\ (L\ (Pbn)) (2.12)

and then:
φn = Q (U\ (L\ (Pbn))) (2.13)

In the equations before, the notation x = A\b indicates that x has to be obtained by
solving the system Ax = b with an appropiate method, and not by inverting the matrix
of the system (which would be denoted by x = A−1b)2. In the present case, since the
matrixes of the systems are L and U, forward and backward substitution techniques can
be used, as well as any iterative method suitable for lower and upper sparse matrixes.

A possible approach for the method would be to calculate the potential φn for every
instant using equation (2.13). However, comparing that equation with (2.12), it can be
seen that computing φ̂

n
instead is slightly more efficient because a permutation is saved

at every tn. For that reason, the scheme presented here relies in calculating the permuted
vector of potentials instead of the original one.

Considering that, if the relation φn = Qφ̂
n

and the expression of bn are substituted
in (2.12), the final equation for the marching time method reads as:

φ̂
n

= U\
(
L\
(
B̂1φ̂

n−1
+ B̂2φ̂

n−2
+ B̂pwn

p

))
(2.14)

where B̂1 = PB1Q, B̂2 = PB2Q and B̂p = PBp.

The whole scheme can be summarized in the following steps:

Input data: wp(t, x), xi, yj , ρ∞, U∞, a∞, c, ∆t and tf (final simulation time).

Compute matrixes A0 and A1 as shown in section 2.2.2. Then, calculate matrixes
B0, B1, B2 and Bp as pointed in section 2.2.

Perform the LU factorization of B0 with rows and columns permutations.

2This notation is clearly inspired in the corresponding Matlab command.
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Permute B1, B2 and Bp to obtain B̂1, B̂2 and B̂p as indicated just after equation
(2.14).

Assume tn = 0 and φ̂
n−2

= φ̂
n−1

= 0.

While tn ≤ tf :

� Compute φ̂
n

using equation (2.14).

� Extract the values of φn in the airfoil from φ̂
n

and apply the trapezoid rule
in equations (1.9)-(1.10) to obtain the lift ln and the pitching moment mn by
length unit at tn.

� Actualize variables:

φ̂
n−2 ← φ̂

n−1
, φ̂

n−1 ← φ̂
n
, tn = tn + ∆t

2.3. Results

In order to validate the method, the lift and the pitching moment coefficients, denoted
by cl and cm respectively, are to be calculated as a funtion of the adimensional time U∞t/c
for three typical problems in unsteady aerodynamics:

Wagner’s problem or response to a sudden change of the angle of attack.

Theodorsen’s problem or response to an harmonic motion of the airfoil.

Küssner’s problem or response to a step gust.

The pitching moment coefficient is measured over the leading edge and is positive nose
down. As usual, both coefficients can be obtained from the lift and the moment over the
leading edge through the following relations:

cl =
l

1
2ρ∞U

2
∞c

, cm =
mle

1
2ρ∞U

2
∞c

2

The obtained results have been compared with other ones calculated with the Hernandes-
Soviero method [6][12][13] (about which some commentaries were made in the introductory
chapter of this text) and, in some cases, with other theoretical ones as well provided by
Wagner [9], Theodorsen [21], Küssner [14] and Mateescu [16].

In the three cases, the domain was the rectangle inside the straight lines x = −10c,
x = 10c, y = 0 and y = 10c (with c = 2, although the dimensionless results do not depend
on c). The grid consisted in 151 × 151 points, with more points near the airfoil because
the latter is the source of all the waves and therefore the gradient of φ is higher there. In
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particular,

xi =



−10c+ 10c sin

(
i− 1

50

π

2

)
, i = 1, . . . , 50

c

50
(i− 51), i = 51, . . . , 101

10c− 9c cos

(
i− 101

50

π

2

)
, i = 102, . . . , 151

yj = 10c− 10c cos

(
j − 1

150

π

2

)
, j = 1, . . . , 151

which results in the mesh shown in figure 2.2.

Figure 2.2: Mesh used in this work. Observe that it has been refined near the airfoil,
which is the segment 0 ≤ x/c ≤ 1, y = 0. For a better visualization, only 2 every 15

lines have been represented.
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2.3.1. Wagner’s problem

Consider an airfoil whose angle of attack is 0 at t = 0− and ∆α at t ≥ 0+. There are
not any kind of gusts (wg = 0). For t > 0, it can be said that the induced velocities over
the airfoil are:

wp(t, x) =
∂zp
∂t

+ U∞
∂zp
∂x

= −U∞∆α, t > 0

In this case, ∆α has taken to be 1. The results for any other ∆α will be proportional, as
the problem is linear.

The results obtained for the lift and the pitching moment coefficients with the adapted
Hariharan-Ping-Scott method for different values of the upstream Mach number M∞ are
plotted in figure 2.3. The theoretical Wagner’s solution (valid for M∞ = 0) and the
results obtained with the Hernandes-Soviero method are represented as well. As seen in
that figure, both numerical methods give the same lift coefficient, even for t = 0, and show
similar values for cm, existing only a slight discrepancy in the cm at the first instants.
Both methods converge to the Wagner’s solution as M∞ = 0, as expected, although the
vortex-lattice does it with slightly better accuracy.

Figure 2.3: Lift and pitching moment coefficient obtained with the adapted Hariharan-
Ping-Scott’s finite difference method (FD) and with the Hernandes-Soviero’s vortex-
lattice method (VL) for the Wagner’s problem. The Wagner’s solution, valid for M∞ =

0, is also represented.

It is important to point out that there seems to be a discrepancy in t = 0 between the
numerical methods and the Wagner’s solution, because the firsts present a peak at that
instant and the latter tends to a finite number (see figure 2.4). However, it is shown in
reference [6] that, if incompressibility is assumed, there has to be a peak (from a theoretical
point of view) at t = 0, but that peak is not usually taken into account in the literature
when explaining the Wagner’s solution. Hence, the discrepancy at t = 0 is justified.
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Figure 2.4: Numerical and theoretical solutions for the lift coefficient near t = 0. For
the numerical solutions, the lower M∞ is, the greater the value of cl is. However, the

theoretical solution for M∞ = 0 does not tend to infinity at t = 0.

2.3.2. Theodorsen’s problem

Now consider a rigid flat airfoil defined by three parameters: the x-coordinate of a point
called elastic axis (say xe), the vertical displacement h of this point (positive downwards)
and the rotation α around it (positive nose up), as shown in figure 2.5.

xO

y
xe c

h

α

Figure 2.5: Degrees of freedom that describe the harmonic motion of a rigid airfoil.

In a harmonic motion, any variable ψ(t) can be written as ψ(t) = <
(
ψ̃ejωt

)
, where j

is the complex unit, ω is the angular frequency of the motion and ψ̃ is a complex number
called phasor. Using this notation and deducing the relation between zp(t, x), h(t), α(t)
and xe, it can be shown that the phasor w̃p of the induced velocities over the airfoil wp
reads as:

w̃p(x) = −jωh̃− ωα̃(x− xe)− U∞α̃

and therefore:

wp(t, x) = <
[(
−jωh̃− ωα̃(x− xe)− U∞α̃

)
ejωt

]
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For the present case, the following values have been considered:

xe = 0.75c, h̃ = 0.05c, α̃ = (3 + 4j)
π

180
,

ωc

U∞
= 0.16

The obtained results are represented in figure 2.6, where they are also compared with
theoretical solutions provided by Theodorsen [21] and Mateescu [16] and, as well, with
numerical results calculated with the Hernandes-Soviero method. As can be seen, the
agreement between all the solutions is very good, both for the lift and the pitching moment.

Also, as an example to show how the waves propagate, the potential φ has been plotted
in figure 2.7 as a function of x and y for a given instant and Mach number. In that figure,
it can be appreciated that the waves are originated first in the airfoil as a consequence of
its motion and, then, they propagate and dissipate among the space with a non-cylindrical
symmetry, convecting with the upstream velocity along the x− axis.

Figure 2.6: Lift and pitching moment coefficient in an harmonic motion.
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(a) x− y − φ view

(b) x− y view

Figure 2.7: Wave propagation for a harmonic motion of the airfoil. For this example,
α̃ has been set to 0 and the non-dimensional frequency ωc/U∞ to 3. Compare this

image with figure 1.4.
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2.3.3. Küssner’s problem

Finally, consider an airfoil flying at speed U∞ that enters a sharped-edge vertical gust,
as shown in figure 2.8. Assuming that the airfoil keeps flying horizontally after entering
in the gust, the induced velocities on the airfoil are, according to relation (2.6):

wp(t, x) = −wg(t, x) = −w0σ

(
t− x

U∞

)
where σ(t) is the Heaviside or step function.

U∞

w0

Figure 2.8: Scheme of an airfoil flying at velocity U∞ that enters in a vertical step-like
gust of speed w0. The airfoil is assumed to keep flying horizontally.

The lift coefficient obtained for w0 = U∞ both by the finite differences method and by
the vortex-lattice one is shown in figure 2.9. Again, the results present very good agreement
and converge to Küssner’s solution [14] when M∞ is small. However, the results provided
by the modified Hariharan-Ping-Scott method present some noise for M∞ ' 0 from t = 0
to t = c/U∞, i.e., when the airfoil has not fully entered in the gust and therefore wp
is discontinuous at some point in the airfoil. With the Hernandes-Soviero method, that
noise is avoided by choosing a time step ∆t which makes that discontinuity to advance
an integer number of grid points along the airfoil every simulated instant. Unluckily, that
criteria does not work for the finite difference method and noise still appears at the first
instants. Nevertheless, the sharp-edge gust is just an ideal case and more realistic models,
such as the hyperbolic-tangent-like or sinusoidal gusts, could provide smoother results.

Figure 2.9: Evolution of the lift coefficient after a sharp-edge gust.
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2.4. Convergence and stability comparison between the
modified and the original Hariharan-Ping-Scott
methods

The aim of this section is to show the positive effect of the improvements proposed
here for the original Hariharan-Ping-Scott method, i.e., the use of a non-uniform mesh
and an implicit time integration scheme.

On one hand, figure 2.10 shows the influence of the grid by presenting the lift coefficient
for the Wagner’s problem (with M∞ = 0.05 ' 0) obtained with: (i) the non-uniform mesh
used in previous results, (ii) an uniform mesh of 201 × 151 points for the same domain
[−10c, 10c] × [0, 10c] (say big domain) and (iii) an uniform mesh of 151 × 151 points for
a smaller domain [−3c, 3c] × [0, 6c] (say small domain). In all cases, ∆t has been set to
c/U∞/200, the grid was chosen to have nodes just at the leading and trailing edges and
the previously-explained implicit time integration scheme was used. As can be seen, the
non-uniform mesh give results that converge clearly faster to the theoretical Wagner’s
solution. At the same time, the uniform mesh and the big domain provide a solution that
seems to be proportional to Wagner’s, whereas the uniform mesh and the small domain
give the worst results.

Figure 2.10: Comparison of the evolution of the lift coefficient for different meshes.

This happens because the non-uniform mesh concentrates more points in the airfoil
(which is the focus of the waves and therefore the gradient of φ is higher there (see figure
2.7)) and also occupies a big enough region to simulate an infinite domain. With an
uniform mesh, it is very difficult to satisfy both facts at the same time unless a big and
very dense grid is used, leading in that case to memory and slowness problems.

On the other hand, figure 2.11 displays the effect of making the algorithm implicit.
There, the lift coefficient for the Wagner’s problem is plotted for different values of ∆t
and (i) the non-uniform mesh used in previous results and implicit scheme, (ii) an uniform
mesh and implicit scheme and (iii) an uniform mesh and explicit scheme. In all cases, the
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domain was the same ([−10c, 10c] × [0, 10c]). As can be seen, the explicit algorithm can
become unstable even for much smaller time steps than the used for the implicit algorithm.
Also, the solutions present less noise when using the implicit schemes.

(a)

(b)

Figure 2.11: Evolution of the lift coefficient for implicit and explicit schemes and stable
(a) and unstable (b) solutions.
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Finally, it is important to point that all the above results have been obtained with
algorithms that employ a two-node formula for approximating the term ∂φ/∂x at the
inner points (see section 2.2.2), instead of the three-node formula proposed originally by
the authors. Since a two-node formula is less accurate than a three-node one, it is possible
to wonder if the discrepancies shown before are caused by its use and not just because the
mesh is uniform or the domain is not big enough. To clarify this point, the lift coefficient
obtained with an uniform mesh, an explicit scheme and the two-node formula is compared
in figure 2.12 with the one obtained with an uniform mesh, an explicit scheme and the
three-node formula (i.e., the truly original Hariharan-Ping-Scott method). As can be seen
there, both provide the same results, thus, all the above shown discrepancies are due to
the use of an uniform mesh, a not big enough domain, etc. and never due to the use of a
two-node formula.

Figure 2.12: Evolution of the lift coefficient when using the two-node or the three-node
formula. ∆t has been set to c/U∞/400 in both cases. The absolute error has been

calculated and is of the order of 0.01.

2.5. Convergence and efficiency comparison between the
modified Hariharan-Ping-Scott and the modified
Hernandes-Soviero methods

In this section, the effect of ∆t in the convergence to the final result and in the total run
time (until an instant tn) is to be studied for the modified Hariharan-Ping-Scott and the
modified Hernandes-Soviero methods. For the latter, the saving-time truncation algorithm
presented in reference [6] has been used.

First, a harmonic motion has been imposed to the airfoil and the root mean square
(RMS) of cl has been computed. The period T has been chosen to be 0.5 c/U∞, i.e., of the
same order of the residence time of the flow particles past the airfoil, and the upstream
Mach number was set to 0.5. The results, plotted in figure 2.13(a), show that both methods
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converge with the same speed to the final value as ∆t becomes smaller. Also, it can be
seen that the absolute error between the two methods is 0.05 which, compared with the
RMS value (' 3.45), gives a relative error of 1.45%. On the other hand, the figure 2.13(b)
shows the relative error between the RMS obtained for a generic ∆t and the final RMS
(obtained for the smallest ∆t). As can be seen, for a time step 200 times lower than the
characteristic time c/U∞, the relative error is almost 0.1% for the two methods. Thus, for
low-medium frequencies, that could be a recommended time step size for achieving good
results.

(a) (b)

Figure 2.13: Effect of ∆t in the convergence of the results for a medium-frequency
harmonic motion.

The same has been done for a high-frequency motion. In this case, the period has
been chosen to be 0.05c/U∞, and the results have been plotted in figures 2.14(a)-(b). The
behaviour is the same that the shown for a low-medium frequency movement with the
exception that, now, ∆t has to be 50 times smaller that the period of the movement to
achieve 0.1% of accuracy respect the final value of RMS.

Finally, the total run time spent in solving the low-frequency-motion problem has been
plotted in figure 2.15 as a function of the simulated time tn for different values of ∆t. The
following aspects can be appreciated there:

For the finite differences method, the run time increases linearly with the simulated
time tn. This is due to the fact that, for every instant, the main run time is employed
in solving the two triangular systems associated to the equation (2.14). Since the

column vector b̂n = B̂1φ̂
n−1

+ B̂2φ̂
n−2

+ B̂pwn
p should always take more or less the

same time to be calculated, those systems should also take more or less the same
time to be solved for every instant tn.

The run time for the vortex-lattice method increases parabolically at the beginning,
and linearly from certain instant (say t∗). As pointed in reference [6], this happens
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(a) (b)

Figure 2.14: Effect of ∆t in the convergence of the results for a high-frequency harmonic
motion.

because a system of the kind Axn = b′n has to be solved every instant tn. However,
the main run time is not employed here to solve that system, but to calculate the
term b′n. Since this term depends on the whole history before (when tn < t∗), it
becomes increasingly expensive to compute as the simulation time passes by. Arrived
at t∗, the truncation method proposed in [6] starts working and it is not necessary
to calculate b′n from the whole history before, but from a non-increasing ‘recent’
history and an approximation of the ‘old’ one, making the computational cost to
stop being increasingly expensive.

For low final simulation times or big time step sizes the modified Hernandes-Soviero
method is faster than the modified Hariharan-Ping-Scott one. This is due to the fact
that, in the vortex-lattice method, the only unknowns are the values of the potential
in the airfoil panels, while the unknowns in the finite differences method are the
values of the potential in the whole mesh. Thus, the number of unknowns in the
latter method is considerably bigger than in the first one, leading to bigger systems
of equations that need more time to be solved.

However, for high final simulation times or small time step sizes, the modified
Hariharan-Ping-Scott method is the fastest one. This happens because, despite
of having to calculate more unknowns for every instant, it has as advantage that it
is not necessary to compute the influence of the whole history before (or the ‘recent’
one), as in the vortex-lattice method. In other words, the potential at tn can be cal-
culated just from the potential at tn−1 and tn−2 and the values of wp at tn, whereas
in the vortex-lattice method the potential at tn has to be computed from a lot of
instants before, making the latter method to run very slow.

To summarize all the aspects commented above, it can be said that both methods
converge equally with ∆t, but the modified Hariharan-Ping-Scott runs faster for long
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simulations because it is not necessary to compute all the history before, compensating
the fact of having to calculate more unknowns.

Figure 2.15: Effect of ∆t in the total run time.
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2.6. Wake patterns calculation

The program described before allows a rough calculation of the wake patterns. Indeed,
when the potential φnij is computed at every point of the mesh, the horizontal and vertical
perturbation velocities unij and vnij at every grid point can be obtained by finite differences,
taking into account that:

unij =

[
∂φ

∂x

]tn
xi,yj

, vnij =

[
∂φ

∂y

]tn
xi,yj

From this and using the antisymmetry of the perturbation velocity field, the values of u
and v can be calculated at any point (not necessarily a grid one) by bilinear interpolation
of the unij and vnij values at the four adjacent nodes.

Now imagine that a drop of ink is injected at the trailing edge at an instant tn. As
the perturbation velocities at that point (say unte, v

n
le) are known from the potential, the

position of that drop of ink at the following instant can be computed from the following
explicit formulas:

xn+1
ink = c+ (U∞ + unte) ∆t

yn+1
ink = vnte∆t

Notice that the upstream velocity is added to the horizontal perturbation velocity to
calculate the total horizontal speed at the trailing edge. Knowing the new position of
the drop of ink at tn+1, the velocities over that drop can be obtained, as said before, by
interpolation of the velocities at the grid points. Thus, the position of the drop at tn+2

will be:

xn+2
ink = xn+1

ink +
(
U∞ + u(tn+1, xn+1

ink , y
n+1
ink )

)
∆t

yn+2
ink = yn+1

ink + v(tn+1, xn+1
ink , y

n+1
ink )∆t

The position at the following instants can be obtained in a similar way. Therefore, the
whole wake pattern can be obtained by injecting an imaginary drop of ink at the trailing
edge every instant and following the displacements of all the drops.

The obtained results for harmonic motion at three different Mach numbers are shown
in figure 2.16, where it can be seen that they are not smooth enough. This is due to
the facts that viscosity has not been considered and that the velocity field is calculated
assuming always that the wake is placed in the x axis, and not taking into account its real
position. Indeed, it is shown in reference [6] that, at least for M∞ = 0, if these two facts are
considered, the obtained wake pattern is very smooth and very similar to those obtained
experimentally by Bratt [5]. However, it is more convenient to have a formulation based on
vorticity (such as the vortex-lattice method), and not in the potential φ, to consider these
two facts and to get smooth results. Since an equivalence exists between potential and
vorticity [6], a method that calculates the latter from φ and uses then the vortical-wake
formulation is suggested for future developments.

Nevertheless, the results shown in figure 2.16 provide, at least, a qualitative behaviour
of the wake. As seen there, the main change in the patterns takes place from M∞ = 0.2 to
M∞ = 0.4, i.e., when compressibility starts to be noticed3. Below and above that range,

3The incompressible approximation is valid when M2
∞ � 1.
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the patterns look very similar. In general, it can be said that the compressibility makes
the patterns decrease their amplitude and become smoother. A better study of the effect
of the compressibility and other parameters (such as the oscillation frequency) in that
patterns is proposed for future developments.

Figure 2.16: Wake patterns for different Mach numbers and a harmonic motion of
parameters: h̃/c = 0.019, α̃ = 0 and ωc/U∞ = 17.1578. The flow goes from right to

left.





Chapter 3

Coupling of airfoil dynamics with
the modified Hariharan-Ping-Scott
method

3.1. Introduction

In the previous chapter, a finite differences method that calculated the forces over an
airfoil was described. In order for that method to work, the vertical movement of the
airfoil, described by the position of its camber line zp = zp(t, x), had to be given as an
input. This was useful for solving some problems of interest in unsteady aerodynamics,
like the Wagner’s, Theodorsen’s and Küssner’s ones, where the airfoil’s motion is known
and to calculate the forces over the airfoil is of interest.

However, the vertical movement of the airfoil is just the unknown in some typical
problems in aeroelasticity. For example, consider an airfoil like the one shown in figure
3.1, that is submitted to an incident flow U∞ and is attached to a fixed point through
springs and dampers. If the airfoil is in static equilibrium and suffers a small perturbation,
it will start oscillating with unknown damping ratio (positive or negative) and frequency.
Since that airfoil may represent the typical section of a three-dimensional wing, it is of
interest to calculate the airfoil’s response given its mechanical properties and the flow
conditions in order to prevent phenomenons like flutter or divergence.

khch

U∞

kα, cα

α

h

Figure 3.1: Typical section of a wing represented by a rigid airfoil attached to a fixed
point by springs and dampers.
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method

In that and many other examples, the airfoil’s motion depends on the aerodynamic
forces (apart from the inertial, damping, elastic and any other external ones) and vice
versa. Thus, in order to compute the response of the airfoil, it is necessary to couple the
modified Hariharan-Ping-Scott method, which gives the aerodynamic forces by means of
the airfoil’s movement, with the airfoil movement’s law, which provides an equation for the
displacements by means of the actuating forces. This leads to a scheme that will be called
coupled Hariharan-Ping-Scott method, coupled HPS method or coupled finite differences
method and that is presented first in section 3.2. Later, some simple problems are solved
in section 3.3 with that method in order to validate it and to provide some insight of
possible applications.

3.2. Description of the coupled Hariharan-Ping-Scott
method

3.2.1. Main concepts

In a general case, the chamber line of the airfoil can be described in terms of m known
shape functions ψk(x) and m generalized coordinates qk(t) whose evolutions along the
time are unknown1:

zp(t, x) = φk(x)qk(t)

From the definition of wp(t, x) (equation (2.6)), it follows that:

wp(t, x) = ψkq̇k + U
∂ψk
∂x

qk − wg(t, x)

In this method, the fluid domain has to be discretized into a grid in the same way that
happened with the method described in the previous chapter, and all the vectors φ, wn

p,
etc. keep their meaning. According to this and to the latter equation, the vector that
contains the induced velocities over the airfoil can be written as:

wn
p = Wuun −wn

g

where:

Wu =


U∞

∂ψ1(xile)

∂x
· · · U∞

∂ψm(xile)

∂x
ψ1(xile) · · · ψm(xile)

...
. . .

...
...

. . .
...

U∞
∂ψ1(xite)

∂x
· · · U∞

∂ψm(xite)

∂x
ψ1(xite) · · · ψm(xite)


un =

[
q1(tn) . . . qm(tn) q̇1(tn) . . . q̇m(tn)

]T
wn

g =
[
wg(t

n, xile) . . . wg(t
n, xite)

]T
If the equation above is substituted into (2.10), it follows that:

B0φ
n −BpWuun = B1φ

n−1 + B2φ
n−2 −Bpwn

g (3.1)

Notice that, at an instant tn, the unknowns are φn, that contains the values of the
potential in the grid points at that instant, and un, that contains the current values

1Again, repeated index means summation.
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of the generalized coordinates and velocities. Since the latter equation was enough for
calculating φn when the movement of the airfoil (i.e., un) was known, now there are 2m
more unknowns and therefore 2m more equations are needed. Those equations come from
the movement’s law of the airfoil which, generally, is linear and can be written in the form:

mij q̈j(t
n) + cij q̇j(t

n) + kijqj(t
n) = Qaeroi (tn) +Qexti (tn)

where mij , cij and kij are the components of the constant mass, damping and stiffness
matrixes (say M,C,K, respectively), whereas Qaeroi and Qexti are the components of the
aerodynamic and external2 generalized forces. The latter relation can be transformed into
the following system of first-order differential equations:

dqi
dt

= q̇i

mij
dq̇j
dt

= −kijqj − cij q̇j +Qaeroi +Qexti

Using now the definition of un, the system above reads as:

M∗du
n

dt
= K∗un + IQ (Qn

aero + Qn
ext) (3.2)

where:

M∗ =

[
Im×m 0m×m
0m×m M

]
K∗ =

[
0m×m Im×m
−K −C

]
IQ =

[
0m×m
Im×m

]
Qn

aero = [Qaero1 (tn), . . . , Qaerom (tn)]T

Qn
ext =

[
Qext1 (tn), . . . , Qextm (tn)

]T
and where Im×m and 0m×m are the identity and the null matrixes of dimensions m×m,
respectively.

The vector Qn
aero that appears in equation (3.2) depends on the unknown φn. Indeed,

the relation (1.11) can be approximated by:

Qaeroi (tn) ' 2ρ∞

ˆ c

0

φ(tn, x, 0+)− φup(tn−1, x, 0+)

∆t
ψidx︸ ︷︷ ︸

=I1

−

2ρ∞U∞

ˆ c

0
φ(tn, x, 0+)

dψ

dx
dx︸ ︷︷ ︸

=I2

+ 2ρ∞U∞ψi(c)φ
n
ite

At the same time, the term I1 can be approximated by the trapezoidal rule, leading to:

I1 = ρ∞ (∆x)I ψi(xI)
φnI − φ

n−1
I

∆t

2External forces encompass any forces that are not inertial, damping, elastic or aerodynamic ones.
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where I = ile, . . . , ite and:

(∆x)I =


xI+1 − xI ; I = ile
xI+1 − xI−1; I = ile + 1, . . . , ite − 1
xI − xI−1; I = ite

Similarly, the term I2 reads as3:

I2 = ρ∞U∞ (∆x)I ψ
′
i(xI)φ

n
I

Taking this into account, the vector Qn
aero can be written in the following matricial form:

Qn
aero = Q∗0

(
φn − φn−1

)
−Q∗1φ

n + Q∗2φ
n

with:

Q∗0 =
ρ∞
∆t

1 . . . ile . . . ite . . . Nφ 0
...
0

0
...
0

(∆x)ile ψ1(xile)
...

(∆x)ile ψm(xile)

· · ·
. . .

· · ·

(∆x)ite ψ1(xite)
...

(∆x)ite ψm(xite)

0
...
0

0
...
0



Q∗1 = ρ∞U∞

1 . . . ile . . . ite . . . Nφ 0
...
0

0
...
0

(∆x)ile ψ
′
1(xile)

...
(∆x)ile ψ

′
m(xile)

· · ·
. . .

· · ·

(∆x)ite ψ
′
1(xite)

...
(∆x)ite ψ

′
m(xite)

0
...
0

0
...
0



Q∗2 = 2ρ∞U∞

1 . . . ite . . . Nφ 0
...
0

0
...
0

ψ1(c)
...

ψm(c)

0
...
0

0
...
0


or, in a more compact way:

Qn
aero = Q0φ

n + Q1φ
n−1 (3.3)

where Q0 = Q∗0 −Q∗1 + Q∗2 and Q1 = −Q∗0. All of these matrixes are sparse.

Finally, consider the following finite difference approximation for the term dun/dt that
appears in equation (3.2):

dun

dt
' 3un − 4un−1 + un−2

2∆t
(3.4)

If relations (3.3)-(3.4) are substituted now into (3.2), it follows that:

−IQQ0φ
n +

(
3M∗

2∆t
−K∗

)
un = IQQ1φ

n−1 + M∗ 4un−1 − un−2

2∆t
+ IQQn

ext

The latter matricial equation, altogether with the relation (3.1), provide a system of
Nφ + 2m scalar equations for Nφ + 2m scalar unknowns, which are the components of φn

3Consider that
dψi
dx

= ψ′i.
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and un. That system can be written in the following form:

[
B0 −BpWu

−IQQ0
3M∗

2∆t
−K∗

] [
φn

un

]
=

[
B1 0Nφ×2m

IQQ1
2M∗

∆t

] [
φn−1

un−1

]
+

[
B2 0Nφ×2m

02m×Nφ −M∗

2∆t

][
φn−2

un−2

]
+

[
−Bp

02m×Np

]
wn

g +

[
0Nφ×m

IQ

]
Qn

ext (3.5)

where Np is the number of grid points located in the airfoil. Also, the system above reads
as:

C0Υn = C1Υn−1 + C2Υn−2 + Cgwn
g + CQQn

ext (3.6)

where Υn = [φn,un]T is a vector that contains all the unknowns, and where the values of
C0, C1, C2, etc. can be easily derived by comparing with equation (3.5).

3.2.2. Computation of the first instants

The formula (3.6) is valid for a general instant tn, where the values of the solution at
the previous instants tn−1 and tn−2 are known. Thus, the calculation of the solution at
the first instants have to be considered apart.

Let the perturbation from the equilibrium position —which is given by the initial
conditions qk(0), q̇k(0)— take place at t0 = 0. For previous instants tn < t0, φn and
un can be assumed to be zero but, when the airfoil moves at tn = t0, the fluid flow is
perturbed and the potential starts to be non-null. Its value at the grid points can be
obtained by making φn−2 = φn−1 = 0 in the expression (3.1):

φ0 = B0\
[
Bp

(
Wuu0 −w0

g

)]
Notice that u0 is not un unknown for this instant, yet is given by the initial conditions:

u0 = [q1(0), . . . , qm(0), q̇1(0), . . . , ˙qm(0)]T

A possible way to proceed now could be to assume Υ−1 = 0 and Υ0 = [φ0,u0]T

and to start integrating from t1 using expression (3.6). However, the sudden change of
the conditions qk, q̇k leads to sudden change of the potential φn that, at the same time,
leads to high values of the aerodynamic forces at t = 0. These high values can provoke
another fast changes in the displacements/velocities of the airfoil, in a way that the values
of qk(t), q̇k(t) are not close to the initial conditions qk(0), q̇k(0) when t ' 0 (see figure
3.2).

Although this procedure may represent correctly the physics of the problem, it has
been understood here that qk(0), q̇k(0) are the initial conditions for the final movement,
not perturbations that lead to second fast changes in qk(t), q̇k(t) that, in turn, stay as
initial conditions for the final movement.

To make qk(0), q̇k(0) be the initial conditions for the final movement, let the airfoil
stay in its perturbed state for a lapse of time ∆t between t−1 = −∆t and t0 = 0, instead
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for a punctual instant t0. In that case:

φ−1 = B0\
[
Bp

(
Wuu0 −w0

g

)]
φ0 = B0\

[
B1φ

−1 + Bp

(
Wuu0 −w0

g

)]
u−1 = u0

With this, Υ−1 and Υ0 can be computed and the marching-time method governed by
(3.6) can be started.

As an example, figure 3.2 shows the vertical displacement h of a rigid airfoil obtained
with the two different approaches explained above. The initial conditions were h(0) =
0.025 and ḣ(0) = 0. As can be seen, with the second approach —where the airfoil is
forced to stay in its perturbed state for a lapse of time ∆t before t = 0—, the initial
evolution of h(t) is smoother, tends to h(0) when t → 0 and its slope ḣ(t) is also zero
at t = 0. Also, the results converge with those obtained with the coupled Hernandes-
Soviero method described in [6]. However, with the first approach —where the airfoil is
in its perturbed state just for a punctual instant—, the results are not that accurate, h(t)
presents a quasi-step change for h in the initial instants (so it does not tend to the initial
condition when t→ 0) and its slope is not zero at t = 0.

Figure 3.2: Illustration of the effect of the two different approaches.

3.2.3. Efficient scheme implementation. Summary of all the steps

As it happened with the finite difference method of the previous chapter, a system of
equations has to be solved for every simulated instant tn and the matrix of that system
(C0) is constant, very big and sparse. Thus, a LU factorization with rows and columns
permutations can be used again to accelerate the scheme. In this case:

P′C0Q′ = L′U′ (3.7)
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Here, the prime symbol is used to avoid confusions with the matrixes that took part
in the LU decomposition used in the previous chapter for the modified HPS method.
Following the same reasoning as the one presented in section 2.2.3, it is possible to define
the permuted vector of unknowns Υ̂n as Υn = Q′Υ̂n and to compute it by solving the
two triangular systems that appear in the following equation:

Υ̂n = U′\
(
L′\

(
Ĉ1Υ̂n−1 + Ĉ2Υ̂n−2 + Ĉgwn

g + ĈQQn
ext

))
(3.8)

where Ĉ1 = P′C1Q′, Ĉ2 = P′C2Q′, Ĉg = P′Cg and ĈQ = P′CQ.

Once Υ̂n is calculated, the values of un can be extracted from it. Indeed, since un

corresponds to the last 2m rows of Υn and Υn = Q′Υ̂n, un can be obtained by multiplying
the submatrix formed by the last 2m rows of Q′ (say UΥ̂) by Υ̂n, i.e.:

un = UΥ̂Υ̂n (3.9)

where: (
UΥ̂

)
ij

=
(
Q′
)
Nφ+i,j

, i = 1, . . . , 2m, j = 1, . . . , Nφ + 2m

In order to clarify all the ideas before, the method has been summarized in the following
steps:

Input data:

� Flow conditions: ρ∞, U∞, a∞ and wg(t, x).

� Mesh and time simulation data: xi, yj , c, ∆t and tf .

� Mass, damping and stiffness matrixes (M, C, K), initial conditions (qk(t =
0), q̇k(t = 0)) and external generalized forces (Qextk (t)).

� Shape functions ψk(x) and their derivatives ψ′k(x).

First, compute matrixes A0 and A1 as pointed in section 2.2.2; then, calculate B0,
B1, B2 and Bp as shown in section 2.2.1; and finally, construct matrixes C0, C1,
C2, Cg and CQ as explained in section 3.2.1.

Perform the LU factorization of C0 with rows and columns permutations (equation
(3.7)).

Permute C0, C1, C2, Cg and CQ to obtain Ĉ0, Ĉ1, Ĉ2, Ĉg and ĈQ as indicated
just after equation (3.8). Obtain UΥ̂ as well.

Assume tn = ∆t, calculate Υ−1, Υ0 as pointed in section 3.2.2 and obtain Υ̂−1 =
Q′\Υ−1, Υ̂0 = Q′\Υ0.

� Evaluate Υ̂n using equation (3.8).

� Extract the generalized coordinates and velocities from Υ̂n through relation
(3.9).

� Actualize variables:

Υ̂n−2 ← Υ̂n−1, Υ̂n−1 ← Υ̂n, tn ← tn + ∆t
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3.3. Results

In order to validate the method described before and to provide simple examples of
possible applications, it has been tested with three problems: (i) the flutter point calcu-
lation of a rigid flat airfoil with two degrees of freedom, (ii) the flutter point calculation
of a flexible cantilevered panel and (iii) the response to a sharp-edge gust of a rigid airfoil
with free vertical displacement.

In the first two cases, the flutter Mach number Mf has been calculated as a function
of the upstream sound speed a∞ and the results have been compared with other ones
provided by the coupled Hernandes-Soviero method described in reference [6], getting
excellent agreement. No other references to compare with have been found in the available
literature, hence, the results presented here are original or not well-known.

For the third problem, some results have been found in the literature (in reference
[20], for example). However, they are not useful for this work because they offer a very
extensive study of the influence of many parameters, and the aim of this section is just
to show simple examples that could provide some insight into possible applications of the
coupled HPS method. Thus, the few simple results obtained here will be only validated
with the coupled vortex-lattice method.

3.3.1. Flutter of a rigid airfoil

Consider a rigid airfoil attached to a fixed point with springs and dampers like the
one shown in figure 3.1. The mechanical properties of the system are given by the airfoil’s
mass ma, the x-coordinate of its gravity centre xg, the x-coordinate of the elastic axis xe,
the inertia Ie about that axis, the stiffness constants kh, kα of the linear and torsional
springs (respectively) and the damping constants ch, cα of the linear and torsional dampers
(respectively as well).

If the same degrees of freedom used for the Theodorsen’s problem (as shown in figures
2.5 and 3.1) are employed now, the airfoil’s equations of motion read as [9]:[

ma ma(xg − xe)
ma(xg − xe) Ie

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh 0
0 kα

] [
h
α

]
=

[
Qaeroh

Qaeroα

]
It has to be reminded that h and α are measured respect from the equilibrium position.
The latter equation provides the mass, damping and stiffness matrixes. On the other
hand, the shape functions associated with the degrees of freedom are:

ψh(x) = −1

ψα(x) = xe − x

Typically, the parameters of the airfoil are described in terms of the following non-
dimensional variables:

µ =
ma

ρ∞πb2
, xα =

xg − xe
b

, a =
xe − b
b

, r2
α =

Ie
mab2

where b = c/2 is the semi-chord of the airfoil. Also, the natural frequencies that the airfoil
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would have if it could only experiment vertical or rotational motion are used:

ωh =

√
kh
ma

, ωα =

√
kα
Ie

Once the parameters of the airfoil are fixed, the flutter speed can be obtained just by
a trial and error procedure. First, a flow speed U∞ is assumed and the airfoil’s motion
is computed. If the oscillations’ amplitude decreases (increases), the airfoil’s motion is
calculated again for a higher (lower) flow speed. This is done until a flow speed that
makes the amplitude keep constant (i.e., the flutter speed) is found.

The results obtained for an airfoil of parameters µ = 2, xα = 0.4, a = −0.4, r2
α = 0.25,

ωh/ωα = 0.6 and no damping are presented in figure 3.3. As can be seen there, the
flutter Mach number increases when the upstream sound speed decreases, until the latter
reaches a minimum value. From that point, Mf and a∞ both increase. Also, it can be
observed that the results provided by this coupled finite differences method show excellent
agreement with the ones provided by the coupled vortex-lattice method described in [6].
In addition, the solution obtained by neglecting compressibility effects [6] —which is given
by the equation Mfaf = U incf = const., where U incf is the flutter speed in incompressible
regime— has been also represented to check that the solution obtained by the coupled
HPS method tends asymptotically to it when M∞ → 0.

Figure 3.3: Flutter Mach number Mf as a function of the upstream sound speed a∞
for a rigid airfoil.

At the same time, the response of the airfoil at M∞ = 0.6 and different upstream
velocities is shown in figure 3.4. In the case where U∞ is equal to the flutter speed Uf , it
can be seen how the oscillations keep their amplitude constant after an initial perturbation
takes the airfoil away from its equilibrium position (h = 0, α = 0). In the cases where
U∞ is greater or lower than the flutter speed, the amplitude of the oscillations decrease or
increase, respectively.
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Figure 3.4: Evolution of the degrees of freedom along the time for U∞ values that are
lower, equal and greater than the flutter speed Uf .
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3.3.2. Flutter of a cantilevered flexible plate

Now consider a cantilevered flexible flat plate, like the one shown in figure 3.5, whose
dimensions are L×H. Let the incident flow come in the direction given by L and H →∞
in order to simulate a two-dimensional problem.

U∞

L

Hx

y

z

Figure 3.5: Scheme of a cantilevered flexible plate submitted to an incident flow.

The equation that governs the displacements of the mean line zp(t, x) of the plate is
[8]:

σ
∂2zp
∂t2

+D
∂4zp
∂x4

= ∆p (3.10)

where σ is the superficial mass density, D is the flexural rigidity and ∆p is the pressure
difference between the lower and the upper parts of the plate. At the same time, D is
given by:

D =
Eh3

p

12(1− ν2)

where E is the Young’s modulus, hp the plate thickness and ν the Poisson’s coefficient.

At the same time, the displacements of the mean line can be described by a Galerkin
decomposition:

zp(t, x) =

m∑
i=1

q̂i(t)ψ̂i(x)

where ψ̂1(x), . . . , ψ̂m(x) are the first m in vacuo vibration modes, and q̂1(t), . . . , q̂m(t) are
the corresponding generalized coordinates. These modes are obtained in reference [2] and
read as:

ψ̂i(x) = [sin (βiL)− sinh (βiL)] [sin (βix)− sinh (βix)] + . . .

[cos (βiL) + cosh (βiL)] [cos (βix)− cosh (βix)] (3.11)

where β1 < β2 < . . . are the different solutions of:

cos (βiL) cosh (βiL) + 1 = 0

The modes described by (3.11) have as drawback that involve calculations of hyperbolic
sines and cosines. Thus, when a few modes are employed and the different values of βi start
increasing, those hyperbolic sines and cosines become very high and introduce numerical
errors. In order to avoid them, these modes can be divided by e2βiL, limiting then their
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maximum value. For that purpose, define first the following functions:

S(x) =
sinx

ex

C(x) =
cosx

ex

Sh(x) =
sinhx

ex
=

1− e−2x

2

Ch(x) =
coshx

ex
=

1 + e−2x

2

It is very important to define Sh(x) as (1− e−2x)/2 and not as sinhx/ex, so the computer
never calculates the term sinhx, which is the one that introduces the numerical errors.
The same can be said for Ch(x). Using this functions, some proportional modes ψ∗i (x) can
be defined as:

ψ∗i (x) =
ψ̂i(x)

e2βiL
= e−βi(L−x) [[S (βiL)− Sh (βiL)] [S (βix)− Sh (βix)] + . . .

[C (βiL) + Ch (βiL)] [C (βix)− Ch (βix)]]

Again, the latter modes present a problem, which is that some of them have bigger values
than others, so they have more weight in the simulations and lead newly to numerical
errors. To solve this inconvenient, the following integral can be performed symbolically:

I∗i =
1

L

ˆ L

0
(ψ∗i )

2dx

which allows to define new proportional modes:

ψi(x) =
ψ∗i (x)√
I∗i

These modes verify that the integrals of their square powers are all the same:
ˆ L

0
ψ2
i dx =

1

I∗i

ˆ L

0
(ψ∗i )

2dx = L

Thus, they can be expected to have similar values and similar weight in the simulation.

Now, let zp be described in terms of the latter modes and their corresponding gener-
alized coordinates qi:

zp(t, x) =
m∑
i=1

ψi(x)qi(t) (3.12)

It can be shown that those modes verify:

d4ψi
dx4

= β4
i ψi (3.13)

ˆ L

0
ψiψjdx = 0 (i 6= j) (3.14)

Using expressions (3.12)-(3.14), equation (3.10) provides the following matricial relation: σL
. . .

σL


 q̈1

...
q̈m

+

 Dβ4
1L

. . .

Dβ4
mL


 q1

...
qm

 =

 Qaero1
...

Qaerom
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Figure 3.6: In vacuo vibration mode used for the Galerkin decomposition.

which, at the same time, gives the expressions of the mass and stiffness matrixes.

In order to reduce the number of parameters, the following dimensionless variables will
be introduced:

M∗ =
ρ∞L

σ
, U∗ =

√
σ

D
LU∞, a∗ =

√
σ

D
La∞

The results obtained for a plate with M∗ = 0.6 are plotted in figure 3.7. It can be seen
that the flutter Mach number depends on the upstream sound speed a∞ in a similar
way than in the case of a rigid airfoil (figure 3.3): the slope of the curve Mf − a∞ is
almost vertical for low values of a∞ and it starts decreasing later for bigger values of a∞.
In that figure, the solution obtained by neglecting compressibility effects [6] —which is
again given by the equation Mfa∞ = U incf = const— is also represented. As expected,
the curve M∞ − a∞ obtained with the coupled HPS method tends asymptotically to the
above mentioned curve corresponding to incompressible flow when M∞ → 0.

On the other hand, figure 3.8 shows the evolution of the generalized coordinates along
the time when the plate flutters at Mf = 0.4. Again, it can be seen that the oscillations
keep their amplitude constant, as expected.

In addition, the evolution of the flutter mode with the Mach number is plotted in figure
3.9. It can be observed that, for low Mach numbers, the flutter modes present a neck at
x/L ' 0.7 that is a consequence of the combination of the first two in vacuo modes (see
figure 3.6). For higher Mach numbers, that neck disappears and the flutter mode looks
more similar to the first in vacuo mode than to a combination of the first two modes.
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Figure 3.7: Dependency of the flutter Mach number Mf with the upstream sound speed
a∞ for a flexible plate.

Figure 3.8: Evolution of the generalized coordinates along the time when the flexible
airfoil flutters.
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Figure 3.9: Flutter mode for different Mach numbers and M∗ = 0.6.



56
Chapter 3. Coupling of airfoil dynamics with the modified Hariharan-Ping-Scott

method

Finally, as a way to check the quality of the results, the flutter mode obtained nu-
merically for M∗ = 0.74 and incompressible regime is compared in figure 3.10 with the
one obtained experimentally by Eloy and others [8]. As can be seen, both modes look
very similar, only being a slight discrepancy in the size of the neck. This happens due
to two facts: first, the plate used in the experiment is not two-dimensional and, second,
the displacements are not really small, so non-linear effects should be taken into account
to get more accuracy. Indeed, a good proof of the non-linearity is that the plate does
not always have its trailing edge at x = L when it flutters, as supposed in the numerical
method, because its length has to be approximately constant. Anyway, the results show
that the coupled HPS method seems to be accurate and reliable.

Figure 3.10: Comparison of the flutter mode obtained experimentally (below) and with
the coupled HPS method (above) for incompressible flow.
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3.3.3. Response to a vertical sharp-edge gust

Let an airfoil that is flying at constant horizontal speed U∞ enter in a vertical sharp-
edge gust of intensity w0 = U∞, as shown in figure 3.11. As a consequence of the gust,
the airfoil will experiment extra lift (see Küssner’s problem, section 2.3.3) and will start
moving up. The horizontal speed is assumed to keep being U∞. If rotation and deformation
of the airfoil are neglected for simplicity reasons, the movement will be described by the
equation:

maη̈ = Qaeroη

where ma and η are the mass and the vertical displacement of the airfoil, respectively.
The shape function associated with η is:

ψη(x) = 1

η

U∞

w0 = U∞

Figure 3.11: Airfoil entering in a vertical sharp-edge gust of speed w0 = U∞.

Figure 3.12 shows the airfoil vertical velocity as a function of the elapsed time. Again,
the results show good agreement between the coupled finite differences and the coupled
vortex-lattice methods. For all Mach numbers, the vertical speed increases at the beginning
due to the extra lift caused by the gust. As that vertical speed becomes bigger, the total
induced speed over the airfoil decreases, as well as the effective angle of attack (see figure
3.13), causing the total lift over the airfoil to diminish. After some time, the vertical
speed is exactly the same as the gust speed, so there are not any induced velocities over
the airfoil, there is not any lift as well and therefore the airfoil stays with that speed. That
is why η̇/U∞ → 1 in all the curves.
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Figure 3.12: Vertical speed of the airfoil η̇ as a function of the elapsed time.

U∞

w0 − η̇ v

αeff

Figure 3.13: Scheme that illustrates the total incident flow velocity (blue) over the
airfoil, and the effective angle of attack αeff . The horizontal component is U∞,
whereas the vertical one is the difference between the gust speed w0 and the airfoil’s
vertical velocity η̇. Hence, when the latter is equal to the first, the effective angle of

attack is null and the lift tends to zero as time increases.



Conclusions and future
developments

In this work, two improvements have been proposed to the Hariharan-Ping-Scott
method [11] —a finite differences marching-time scheme that calculates the two-dimensional
unsteady linearized potential flow past an airfoil. The first consists in employing a non-
uniform mesh to focus more points near the airfoil, which is the origin of the convected
waves, clearly accelerating the convergence of the solution. The second relies on using
a BDF implicit time integration scheme, making the algorithm much more stable and
allowing to take bigger time step sizes.

The scheme modified with those improvements, which has been renamed as modified
Hariharan-Ping-Scott method, is only valid for problems where the airfoil motion is known.
Thus, to make it useful for solving aeroelasticity problems where the airfoil motion is just
the unknown, such as flutter, it has been coupled with the airfoil dynamics in a way
that is valid for any airfoil (flexible or rigid, cantilevered or hinged, etc.) that presents a
linear equation of motion. This coupling has proved to be accurate and has also provided
results that have not been found in the available literature, such as the flutter of a flexible
cantilevered panel.

Also, the efficiency of the modified Hariharan-Ping-Scott method and the modified
Hernandes-Soviero method’s —a vortex-lattice scheme presented by Hernandes and So-
viero [12][13] modified with a truncation algorithm proposed by Colera and Pérez-Saborid
[6]— have been compared. For short simulations, the modified Hernandes-Soviero method
has proved to be the fastest one because the number of unknowns (the potential at the
airfoil points) is lower. However, for long simulations, the modified Hariharan-Ping-Scott
method is the fastest one because, despite of the bigger number of unknowns (the potential
at the whole mesh, not only in the airfoil points), it does not have to calculate the influence
of great part of the history before, as it happens in the Hernandes-Soviero method.

The latter conclusion can be extended out of the unsteady aerodynamics field to say
that, in general, finite differences methods can be faster than boundary element methods
when solving the two-dimensional wave equation in the time domain4. Indeed, since two-
dimensional waves have a dissipative nature, a wave that is generated at any point will
always affect to all the space inside its wavefront. Thus, for solving any 2D wave equation
in the time domain with a boundary element method —such as the vortex-lattice— it is
necessary to store the whole evolution of the variables at the boundaries —or part of it if

4Of course, boundary elements methods may present other advantages respect finite differences methods,
but they are not going to be analysed here.
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a truncation method is used— and to calculate its influence at every instant, leading to
memory and slowness problems. However, as commented before, finite differences methods
do not need to store all or great part of the history before and therefore they do not present
those problems. In return, a bigger number of unknowns has to be handled, but this can
be done in an efficient way by using adequate sparse matrixes.

Both the modified Hariharan-Ping-Scott method and the coupled one with the airfoil
dynamics (renamed as coupled Hariharan-Ping-Scott method) have proved to give accurate
results in an efficient way. Also, they are useful for any general linear problem, unlike
other methods that are only valid for specific cases like harmonic motion or rigid profile.
Thus, they can be an excellent tool for preliminary designs, where the CFD conventional
programs are too expensive for the required accuracy.

In addition, both methods are very intuitive because they rely on the physics beyond
the fundamental equations of the linearized unsteady potential flow theory and do not leave
the time domain, unlike the classical approach for the theory, which uses many tedious
mathematical developments in the frequency domain. Also, they can be implemented with
programs like Matlab, which is accessible to students, has a simple syntax that is easy
to understand and also permits an efficient program run. Hence, they can be used as a
teaching application.

Some future developments are proposed to improve the commented methods:

The use of higher-order formulas to approximate both the spatial and the time
derivatives. This would provide more accuracy, but it must be done with care because
it could also bring stability problems.

To use an adaptive time step size instead of a fixed one.

To extend the method for supersonic regime.

To extend the methods for a three-dimensional domain. However, it has to be
remarked that a boundary element method (vortex-lattice, doublet-lattice or any
other) could be more efficient for that case because the number of unknowns would
be much lower and, as well, it would not be necessary to compute all the history
before since three-dimensional waves are non-dispersive (see figure 3.14).
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Airfoil Wake

Source at tn

κni

Wavefront of the source

at tn + ∆t′

U∞

2D:

U∞

κnij

Source at tn

Wavefront of the source

at tn + ∆t′

3D:

Figure 3.14: Difference between the two-dimensional and three-dimensional cases in
doublet-lattice and vortex-lattice methods. When the flow is two-dimensional, any
source, doublet, vortex or fundamental solution κni born at tn affects to the points
at and inside its wavefront. Thus, it is necessary to store its value during all the
simulation and to compute its influence at every simulated instant. However, when the
flow is three-dimensional, any fundamental solution κnij born at tn affects only to points
situated just at its wavefront. Thus, when the latter goes out of the wing after a time

∆t′, κnij can be erased and its influence does not have to be calculated any more.
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