

ANEXO 4: ESTUDIO HIDRÁULICO Y RIESGO DE INUNDACIÓN

Estudio Hidrológico y de Inundabilidad del Río Campanillas y Análisis de Soluciones Técnicas para Paliar los Efectos de sus Avenidas

Índice

Indice		iii
Índice de Tablas		v
Índice de Figuras		vii
Notación		ki
1 Introducción		3
2 Modelo Hidráulico		3
2.1. Rugosidad		3
2.2. Modelización de infraestr	ucturas	14
2.2.1. Puentes		15
2.2.2. Paso inferior		18
3 Resultados		19
3.1. Perfiles transversales		19
3.2. Comportamiento hidrodinán	nico del cauce con estructuras	24

ÍNDICE DE TABLAS

Tabla 2-1 Valores tabulados rugosidad para la formulación establecida por Cowan	4
Tabla 2-2 Cálculos del número de Manning según la formulación de Cowan	12

ÍNDICE DE FIGURAS

Figura 2-1 Puntos de información hidráulica del cauce del río Campanillas	5
Figura 2-2 Sección aguas arriba (izquierda) y aguas abajo (derecha) – Punto nº 1	6
Figura 2-3 Sección cauce – Punto nº1	6
Figura 2-4 Sección aguas arriba arroyo Pilones Punto nº 2	7
Figura 2-5 Sección cauce – Punto nº2	7
Figura 2-6 Sección cauce aguas abajo – Punto nº3	8
Figura 2-7 Sección cauce aguas arriba – Punto nº3	8
Figura 2-8 Sección cauce – Punto nº3	8
Figura 2-9 Sección cauce aguas abajo – Punto nº4	9
Figura 2-10 Sección cauce aguas arriba – Punto nº4	9
Figura 2-11 Sección cauce – Punto nº4	9
Figura 2-12 Sección cauce aguas abajo – Punto nº5	10
Figura 2-13 Sección cauce aguas arriba – Punto nº5	10
Figura 2-14 Sección cauce – Punto nº5	10
Figura 2-15 Sección aguas arriba – Punto nº 6	11
Figura 2-16 Zonificación de valores de n Manning en el cauce y llanuras de inundación	13
Figura 2-17 Infraestuctura que interactúa con el cauce del río Campanillas	14
Figura 2-18 Puentes presentes en el cauce del río Campanillas	16
Figura 2-19 Perfil transversal Puente nº1	16
Figura 2-20 Perfil transversal Puente n°2	16
Figura 2-21 Perfil transversal Puente n°3.1 y 3.2 (Puente de doble tablero)	17
Figura 2-22 Perfil transversal Puente n°4.1 y 4.2 (Puente de doble tablero)	17
Figura 2-23 Perfil transversal Puente nº 5	18
Figura 2-24 Paso inferior	18
Figura 3-1 Localización de perfiles transversales	19
Figura 3-2 Perfil transversal 1	20
Figura 3-3 Perfil transversal 2	20
Figura 3-4 Perfil transversal 3	20
Figura 3-5 Perfil transversal 4	21
Figura 3-6 Perfil transversal 5	21
Figura 3-7 Perfil transversal 6	21

Figura 3-8 Perfil transversal 7	22
Figura 3-9 Perfil transversal 8	22
Figura 3-10 Perfil transversal 9	22
Figura 3-11 Perfil transversal 10	23
Figura 3-12 Perfil transversal 11	23
Figura 3-13 Efecto de la presencia del puente nº 1 en la hidrodinámica del cauce	24
Figura 3-14 Efecto de la presencia del puente nº 2 en la hidrodinámica del cauce	24
Figura 3-15 Efecto de la presencia del puente nº 3 en la hidrodinámica del cauce	25
Figura 3-16 Efecto de la presencia del puente nº 4 y 5 en la hidrodinámica del cauce	25

1 Introducción

n el presente apartado se recogen, por tanto, los resultados de la simulación hidráulica del cauce del río Campanillas. Para ello, se ha empleado el software Iber, capaz de realizar cálculo bidimensional de flujo para ríos. Como resultados principales se presentan gráficamente las zonas inundables y los datos numéricos de las variables hidráulicas que caracterizan el flujo. Adicionalmente, se efectúa un estudio de la capacidad de desagüe de las distintas obras de paso localizadas en la red fluvial.

2 MODELO HIDRÁULICO

A continuación, se adjuntan los cálculos de parámetros hidráulicos como el coeficiente de Manning y la caracterización de las infraestructuras presentes en la cuenca bajo estudio.

2.1. Rugosidad

Para la correcta simulación del régimen hidráulico de una determinada avenida es necesario adoptar valores coherentes y adecuados del coeficiente de Manning para el cauce, las llanuras y del resto de zonas existes en la superficie a modelar.

Para la obtención de unos valores lo más aproximados a la realidad se recopiló una extensa información fotográfica de diferentes tramos del cauce con la que se caracterizaron los distintos tramos a partir de su naturaleza y propiedades morfológicas. En concreto, se ha utilizado la clasificación de tramos fluviales propuesta por Cowan, que permite, mediante una sencilla formulación, obtener el número de rugosidad de Manning. De esta forma:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) \cdot m_5$$

donde no depende del material que conforma el lecho

nı depende del grado de irregularidad del lecho

n2 depende del tipo de variación de la sección transversal

n3 depende del efecto relativo de obstrucciones

n4 depende de tipo de vegetación existente

m5 es función de la cantidad de meandros

cuyos valores se encuentran tabulados según tabla adjunta:

Tabla 2-1 Valores tabulados rugosidad para la formulación establecida por Cowan

Condicion	nes del canal		Valores
	Tierra		0.020
Material	Roca cortada		0.025
considerado	Grava fina	n ₀	0.024
	Grava gruesa		0.028
	Liso		0.000
Grado de	Menor		0.005
irregularidad	Moderado	- n ₁	0.010
	Severo		0.020
Variaciones de la	Gradual		0.000
sección transversal	Ocasionalmente alternante	n ₂	0.005
del canal	Frecuentemente alternante		0.010-0.015
	Despreciable		0.000
Efectivo relativo de	Menor		0.010-0.015
obstrucciones	Apreciable	n;	0.020-0.030
	Severo		0.040-0.060
	Baja		0.005-0.010
Variation of the	Media		0.010-0.025
Vegetación	Alta	n4	0.025-0.050
	Muy alta		0.050-0.100
	Menor		1.000
Cantidad de meandros	Apreciable	m ₅	1.150
	Severa	_	1.300

Para aplicar dicha formulación se recopiló la siguiente información acerca del cauce fluvial del río Campanillas, la cual se concreta para los puntos que se muestan en la siguiente figura.

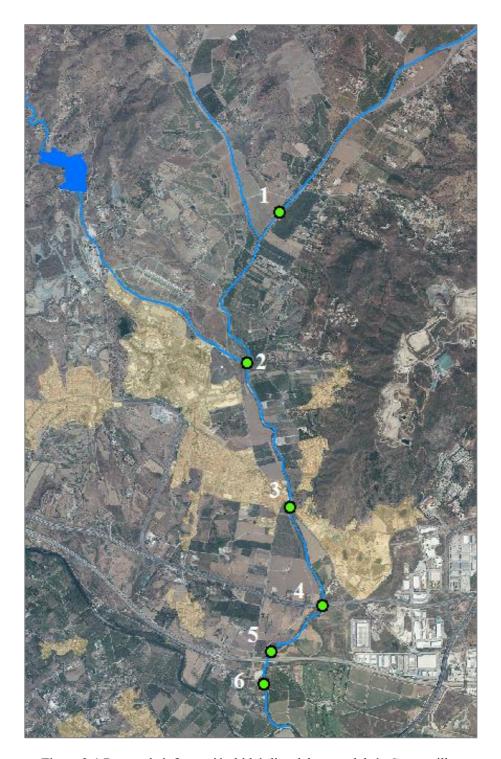


Figura 2-1 Puntos de información hidráulica del cauce del río Campanillas

Punto nº 1 Cauce río Campanillas

Figura 2-2 Sección aguas arriba (izquierda) y aguas abajo (derecha) – Punto nº 1

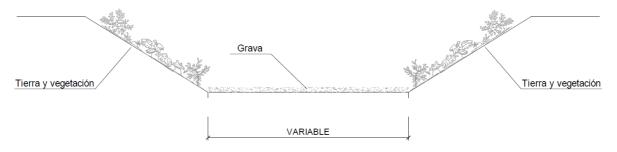


Figura 2-3 Sección cauce – Punto nº1

- Geometría: Trapecial
- Regularidad de la sección: media
- Revestimiento: cauce en tierras con vegetación abundante en márgenes. Presencia de grava.

Punto nº 2 Cauce río Campanillas

Figura 2-4 Sección aguas arriba arroyo Pilones– Punto nº 2

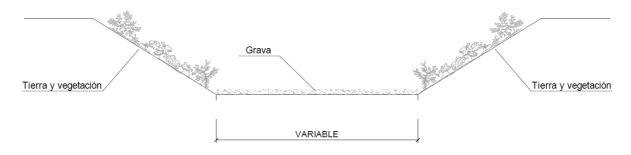


Figura 2-5 Sección cauce – Punto nº2

- Geometría: Trapecial
- Regularidad de la sección: media
- Revestimiento: cauce en tierras con vegetación abundante en márgenes. Presencia de grava.

Punto nº 3 Cauce río Campanillas

Figura 2-6 Sección cauce aguas abajo – Punto nº3

Figura 2-7 Sección cauce aguas arriba – Punto nº3

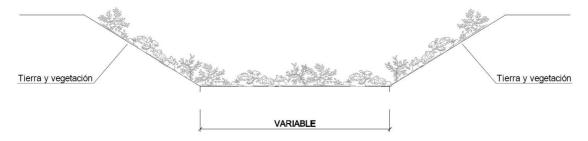


Figura 2-8 Sección cauce – Punto nº3

- Geometría: Trapecial
- Regularidad de la sección: media
- Revestimiento: cauce en tierras con vegetación abundante en márgenes. Presencia de grava.

Punto nº 4 Cauce río Campanillas

Figura 2-9 Sección cauce aguas abajo – Punto nº4

Figura 2-10 Sección cauce aguas arriba – Punto nº4

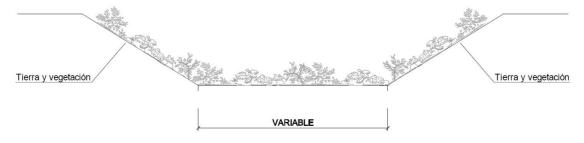


Figura 2-11 Sección cauce – Punto nº4

- Geometría: Trapecial
- Regularidad de la sección: media
- Revestimiento: cauce en tierras con vegetación abundante en márgenes

Punto nº 5 Cauce río Campanillas

Figura 2-12 Sección cauce aguas abajo – Punto nº5

Figura 2-13 Sección cauce aguas arriba – Punto nº5

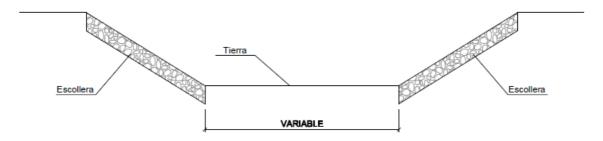


Figura 2-14 Sección cauce – Punto nº5

Descripción del cauce:

- Geometría: Trapecial

- Regularidad de la sección: Buena

- Revestimiento: cauce en tierras con vegetación y escollera en ambos márgenes

Punto nº 6 Cauce río Campanillas

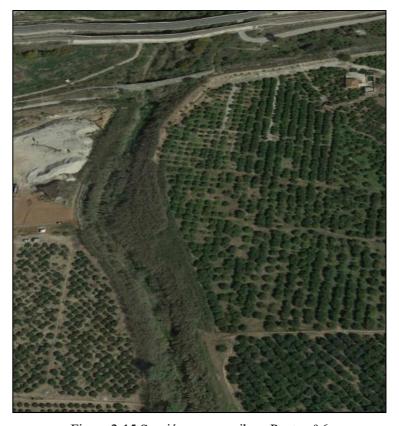


Figura 2-15 Sección aguas arriba – Punto nº 6

Descripción del cauce:

- Geometría: Trapecial

- Regularidad de la sección: Buena

- Revestimiento: cauce en tierras con vegetación abundante en ambos márgenes

A partir de toda la información recopilada, se poseguió a realizar una estimación del valor de la rugosidad media del cauce del río Campanillas, mostrándose a continuación los cálculos realizados.

Tabla 2-2 Cálculos del número de Manning según la formulación de Cowan

SEGUN COWAN:

Condiciones del río:					
material del cauce:	A	terroso			
	В	rocoso			
	C	gravoso fino			
	D	gravoso grueso			
	material del cauce adoptado:			$\mathbf{A} = 0,$	020
Grado de irregularidad:	A	ninguna			
	В	leve			
	C	regular			
	D	severo			
	Grado de irregularidad adoptado:			$\mathbf{B} = 0,$	005
Secciones	A	leve			
Variables	В	regular			
	С	severo			
	variación de la seccción adoptada:			$\mathbf{B} = 0,$	005
Efecto de las obstruccione	s:	A	despreciables		
		В	menor		
		С	apreciable		
		D	severo		
F	Efecto de las obstrucciones adoptado:			$\mathbf{B} = 0,$	010
	vegetación:	A	ninguna		
	-	В	poco		
		C	regular		
		D	alta		
	vegetación adoptada:			\mathbf{C} = 0,	025
	grado de sinuosidad:	A	Insignificante		
	<u> </u>	В	regular		
		C	considerable		
	grado de sinuosidad adoptado:			$\boxed{\mathbf{A}} = 1,$	000
	valor de '' n '' adoptado según COWA!	M n=		0,06	

Además, se recurrió a bibliografía existente y de acuerdo a la experiencia de los modelos físicos elaborados por el CEDEX, el cual, con modelizaciones físicas y matemáticas de procesos tormentosos, con datos conocidos de precipitación y láminas de agua en cauces o llanuras de inundación de la cuenca sur mediterránea, obtuvo los valores de rugosidad de los cauces de una forma más precisa para la zona bajo estudio, resultado un valor para el cauce del río campanillas algo menor del obtenido por el método de Cowan.

Con estas premisas se han considerado los siguientes valores de Manning:

- Cauces normales con vegetación: 0,045-0,05
- Núcleos urbanos: 0,13 (Urbano)
- Zonas urbanizadas de carácter rural: 0,08 (Urbano 2)
- Superficies agrícolas: 0,04 (Agrícola)
- Superficie de vegetación arbórea: 0,055 (Vegetación 2)
- Supericie de carreteras inundables: 0,02 (Infraestructura)
- Encauzamientos y obras de drenaje transversal en hormigón armado: 0,03 0,035
- Encauzamientos en escollera o mampostería: 0,040

La implementación de los valores de rugosidad en la malla de cálculo del modelo IBER resulta tal y como se puede observar en la siguiente figura.

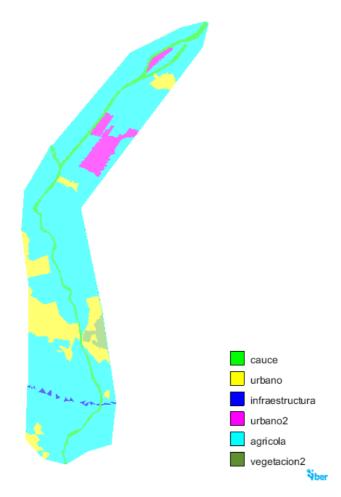
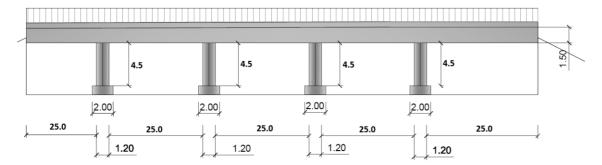


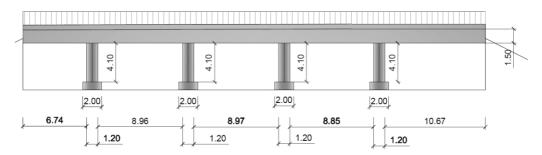
Figura 2-16 Zonificación de valores de n Manning en el cauce y llanuras de inundación

2.2. Modelización de infraestructuras

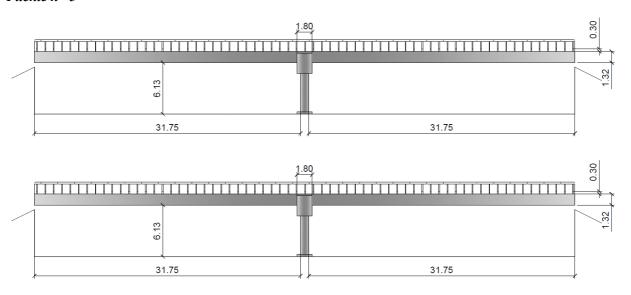
Interactuando con el río Campanillas se encuentran presentes 5 puntos del cauce donde se localizan infraestucturas tipo puentes, existiendo un total de 7 puentes a modelizar. Además, interviniendo en la superficie inundable, interviene un paso inferior localizado en la parte inferior de la cuenca del río Campanillas, el cual también será modelizado.

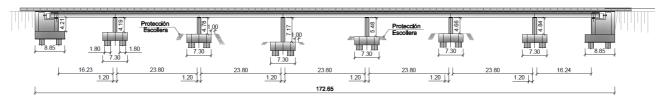

Figura 2-17 Infraestuctura que interactúa con el cauce del río Campanillas

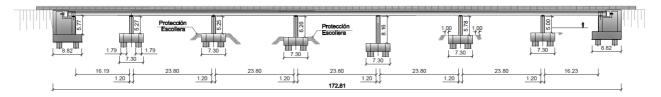
A continuación, se expondrá los detalles de la modelización de dichas infraestructuras en el modelo de inundación realizado en IBER.


2.2.1. Puentes

En primer lugar, se realiza una caracterización geométrica de todos los puentes existentes, lo cual queda reflejado en las siguientes imágenes.


Puente nº 1:


Puente nº 2:



Puente n º 3

Puente nº 4

Puente nº 5

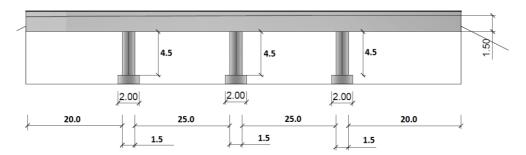


Figura 2-18 Puentes presentes en el cauce del río Campanillas

La cota del tablero se extrajo del modelo digital del terreno a través de los siguientes perfiles transversales que representan la sección donde se ubica el puente.

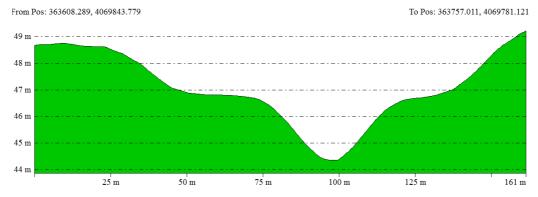


Figura 2-19 Perfil transversal Puente nº1

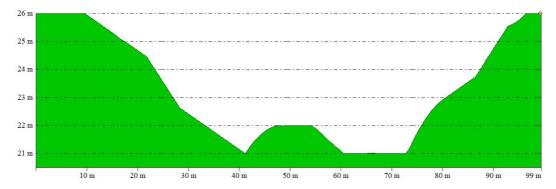


Figura 2-20 Perfil transversal Puente n°2



Figura 2-21 Perfil transversal Puente n°3.1 y 3.2 (Puente de doble tablero)

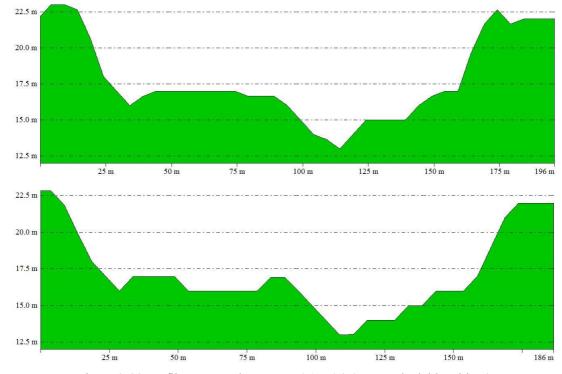


Figura 2-22 Perfil transversal Puente nº4.1 y 4.2 (Puente de doble tablero)

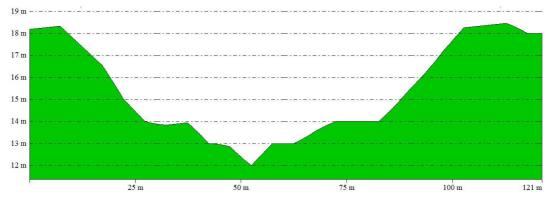


Figura 2-23 Perfil transversal Puente nº 5

2.2.2. Paso inferior

El paso inferior de la vía de ferrocarril cumple además la función de drenaje transversal, permitiendo el paso de agua de un punto a otro de las vías con el fin de evitar la anegación de zonas en las que un flujo superficial podría provocar problemas.

Para su modelado se ha introducido una estructura tipo Alcantarilla, de forma rectangular, la cual cumple con dicha función. Las dimensiones del paso inferior son de 9 m de ancho por 3 m de altura, y las cotas de la solera en el incio y final son de 15.5 m y 14.9 m.

Figura 2-24 Paso inferior

3 RESULTADOS

En este apartado de completa la información ofrecida en la Memoria acerca de los resultados obtenidos del estudio de inundabilidad realizado con el software Iber.

3.1. Perfiles transversales

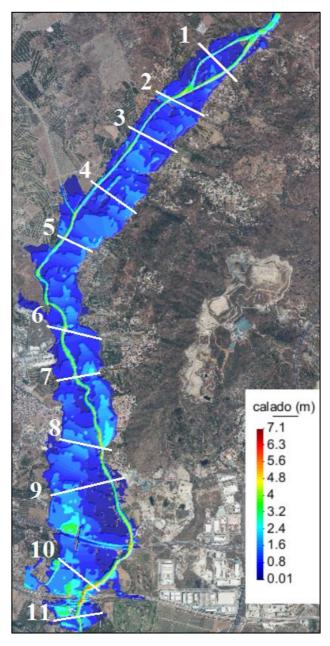


Figura 3-1 Localización de perfiles transversales

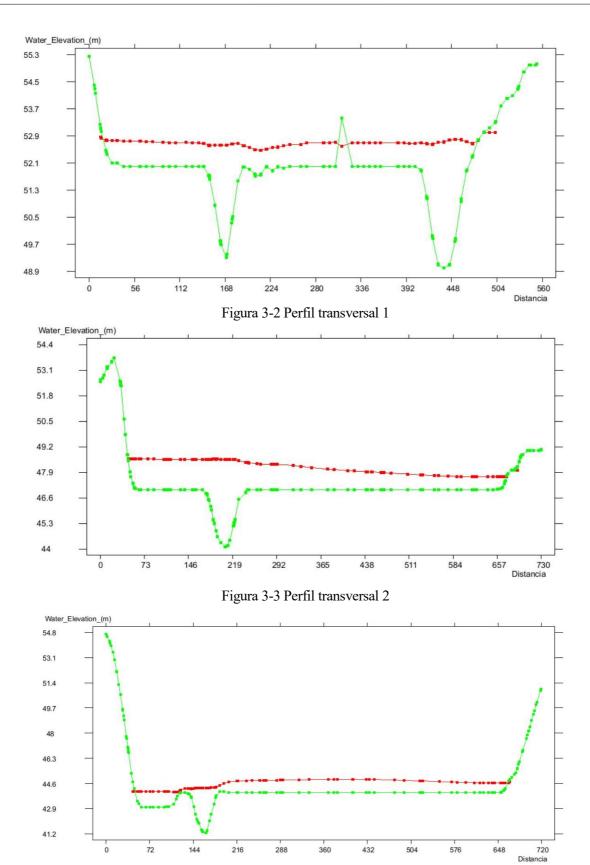


Figura 3-4 Perfil transversal 3

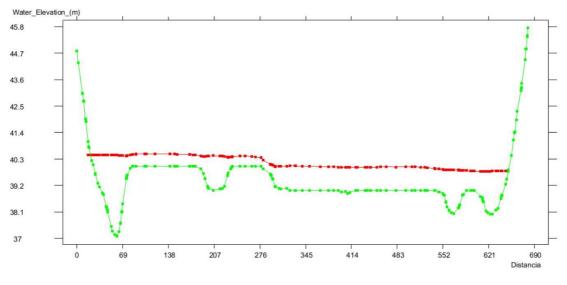


Figura 3-5 Perfil transversal 4

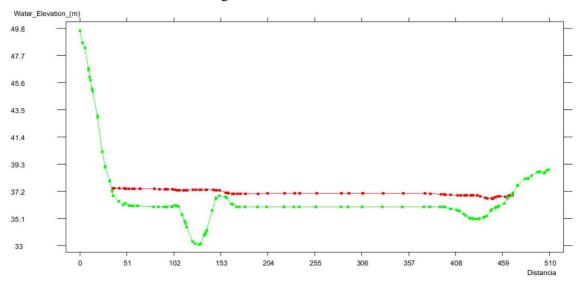


Figura 3-6 Perfil transversal 5

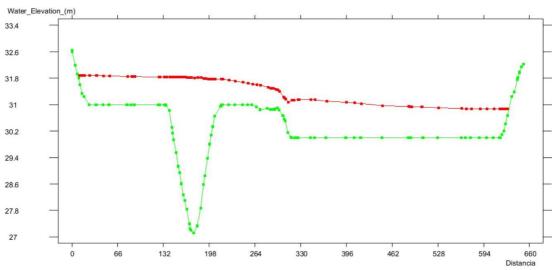


Figura 3-7 Perfil transversal 6

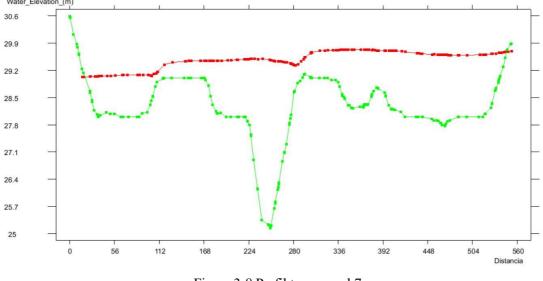


Figura 3-8 Perfil transversal 7

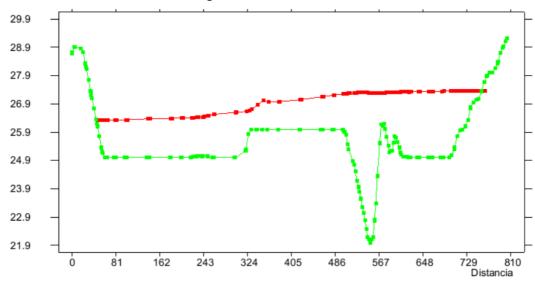


Figura 3-9 Perfil transversal 8

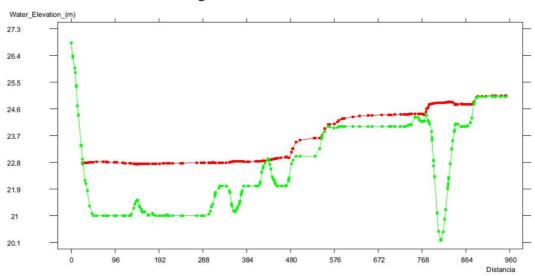


Figura 3-10 Perfil transversal 9

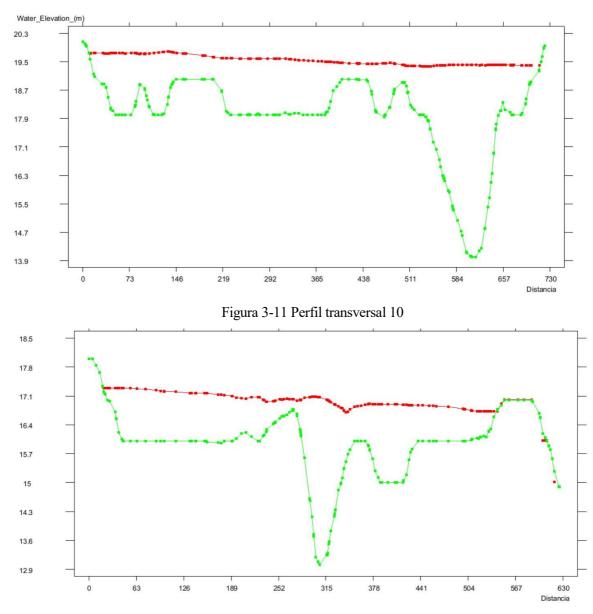


Figura 3-12 Perfil transversal 11

3.2. Comportamiento hidrodinámico del cauce con estructuras

Cabe destacar la influencia de los puentes sobre la hidrodinámica del curso fluvial, dado que produce una obstrucción generando un aumento de la lámina de agua, efecto que se extiende aguas arriba de dichos puentes. A continuación, se muestran una serie de imágenes en las que se puede observar el aumento del calado en torno a la ubicación de dichas infraestructuras.

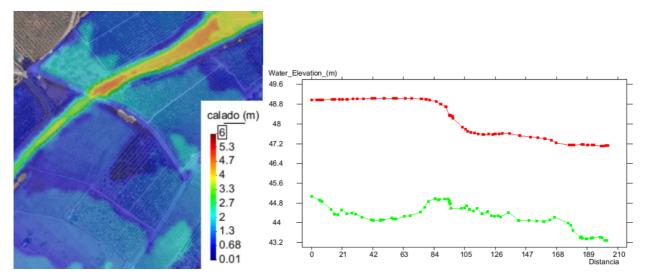


Figura 3-13 Efecto de la presencia del puente nº 1 en la hidrodinámica del cauce

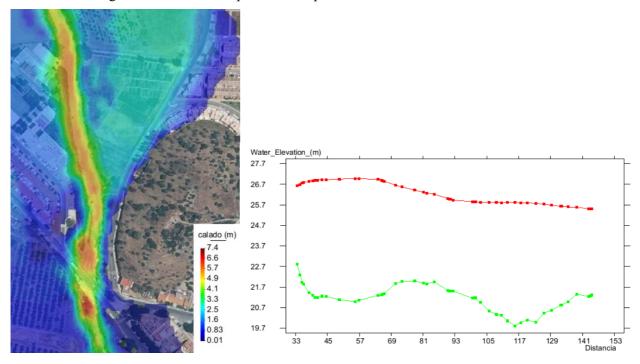


Figura 3-14 Efecto de la presencia del puente nº 2 en la hidrodinámica del cauce

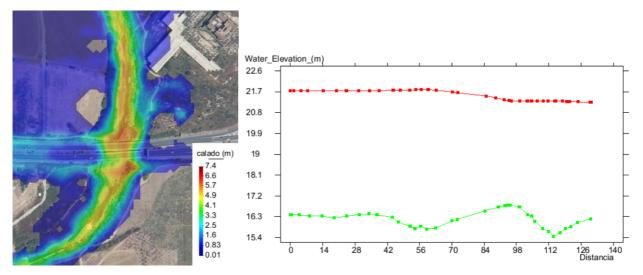


Figura 3-15 Efecto de la presencia del puente nº 3 en la hidrodinámica del cauce

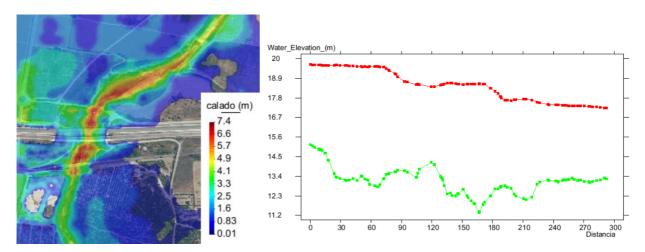


Figura 3-16 Efecto de la presencia del puente nº 4 y 5 en la hidrodinámica del cauce