
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Master thesis
Industrial Engineering Master Degree

Flowshop Scheduling Problem
with TCIT minimization

Author: Paula Sánchez de los Reyes
Tutor: Paz Pérez González

Dept. of Industrial Organisation and
Business Management
School of Engineering
University of Seville

Sevilla, 2023

Master thesis
Industrial Engineering Master Degree

Flowshop Scheduling Problem with
TCIT minimization

Author:
Paula Sánchez de los Reyes

Tutor:
Paz Pérez González

Dept. of Industrial Organisation and Business Management
School of Engineering
University of Seville

Seville, 2023

Master thesis: Flowshop Scheduling Problem with TCIT minimization

Author: Paula Sánchez de los Reyes
Tutor: Paz Pérez González

The selection board appointed to judge the above-mentioned work is composed of
the following professors:

President:

Vowel/s:

Secretary:

agree to grant the qualification of:

The secretary of the court:

Date:

Acknowledgements

To my family, especially my parents, my sister and my couple, thank you for the
unconditional support you have always given me. To my tutor, for accompanying
me and giving me all her help.

Sevilla, 2023

I

Resumen

El Trabajo Fin de Máster presentado aborda la minimización del tiempo total de
espera de las máquinas (Total Core Idle time) dentro de un problema determinista
de programación del taller de flujo permutado. El interés de la minimización de este
objetivo viene estrechamente ligado con la minimización del consumo energético
del problema.

En este Trabajo Fin de Máster se presenta la adaptación de los métodos
más eficientes desarrollados para objetivos clásicos (makespan y total completion
time o total flowtime), para la minimización del Total Core Idle time.

En cuanto a las heurísticas, NEH, NEHM, LR-NEH y PFH-NEH son las
heuristicas adaptadas a nuestro problema. Por otro lado, IG, IGALL y VBIH
son las metaheurísticas adaptadas. Además, se aplica una búsqueda local basada
en una primera mejora con intercambios generales en todas las heurísticas y
metaheurísticas que la contienen.

El primer objetivo del documento es la calibración de cada uno de los métodos
adaptados, eligiendo así cada uno de los parámetros en cuestión para cada una de
las heuristicas y metaheuristicas. Para ello se utilizan las instancias de Taillard.

A continuación, una vez calibrados los métodos, se comparan las heurísti-
cas y metaheurísticas utilizando las instancias de Vallada. Finalmente, la conclusión
que se obtiene de dicho estudio es la elección de la heuristica construcitva
NEHM como las más eficientes dentro de las estudiadas y la VBIH dentro de las
metaheuristicas.

Por último, cabe señalar que este documento se ha redactado en Latex, el
código del método se ha escrito en C, el tratamiento de los datos en Excel y el
análisis estadístico en SPSS.

III

Abstract

This document addresses deterministic permutation flowshop scheduling problem
with a new objective function, the total core idle time. The interest of this objective
is related to reduce the energy consumption of the system, taking into account the
machine energy consumption.

In this master thesis, we present the adaptation of the most efficient meth-
ods presented for classical objectives (makespan and total completion time or total
flowtime), for the minimization of the Total Core Idle time.

About the heuristics, NEH, NEHM, LR-NEH and PFH-NEH are adapted
for our problem. On the other hand, IG, IGALL and VBIH are the metaheuristics
adapted. In addition, a local search based on a first improvement with general swaps
is applied in all heuristics and metaheuristics that contain this type of operators.

The first objective of the document is to calibrate the parameters of each
method, selecting the best one. For this purpose the Taillard benchmark is used.

Then, once the methods are calibrated, the heuristics and metaheuristics
are compared using the Vallada’s benchmark. Finally, the most efficient method are
the NEHM related to the heuristics and the VBIH about the metaheuristics.

Finally, it should be noted that this document has been written in Latex,
the method code has been C, the processing of data in Excel and the statistical
analysis in SPSS.

V

Contents

Resumen III
Abstract V

1 Introduction 1
1.1 Scheduling 1
1.2 Notation 2
1.3 Flowshop 4
1.4 Problem description 4
1.5 Objective of the master thesis 7
1.6 Document structure 7

2 Literature Review 9
2.1 Introduction 9
2.2 Fm|prmu|Cmax and Fm|prm|∑C j 10
2.3 Core idle time 11

3 Constructive heuristics 13
3.1 NEH 13
3.2 NEHM 14
3.3 LR-NEH 15
3.4 PFH-NEH 17
3.5 Local search 19

4 Metaheuristics 25
4.1 Iteraty Greedy 25
4.2 IGALL 27
4.3 VBIH 27

5 Computational results 33
5.1 Testbeds description 33

VII

VIII Contents

5.2 Evaluation of the results 35
5.3 Heuristics calibration 35

5.3.1 NEHM 36
5.3.2 LR-NEH 37
5.3.3 PFH-NEH 39

5.4 Heurisics comparison 39
5.5 Metaheuristics calibration 41

5.5.1 IG 41
5.5.2 IGALL 43
5.5.3 VBIH 44

5.6 Metaheuristics comparison 47

6 Conclusions 51

Appendix A Heuristics 53
A.1 Calibration 53
A.2 Comparison 55

Appendix B Metaheuristics 59
B.1 Calibration 59
B.2 Comparison 61

List of Figures 69
List of Tables 71
List of Algorithms 73
Bibliography 75
Index 79
Glossary 79

1 Introduction

1.1 Scheduling

In order to frame the problem developed in the master thesis, a brief introduction of
the manufacturing scheduling should be done. Scheduling is understood by [16] as
the assignment of the various resources of a company to the manufacturing of a
range of products.

The first step to a good understanding is to contextualize the manufacturing
scheduling. As [16] explained, production management is the process in which
manufacturing decisions must be taken in order to ensure the delivery of goods with
maximum quality, minimum cost, and minimum lead time. These decisions depend
on the impact on the company and the scope among others. Depending on the
timing and the actors involved in these decisions, there are different levels in which
are classified. As [16] classifies, the first group is the long-term decisions, also
called strategic decisions. The scope is to establish major decisions as the plants to
build, the products, and the capacity among others. These decisions have a great
impact on all areas of the company and are often reviewed . The next decisions
mentioned by [16] are related to how these goods are used on a day-to-day basis.
These are divided into two groups, medium-term decisions (tactical decisions),
and short-term decisions (operating decisions). When it is necessary to plan the
quantity of product to be produced for a long time and the information is unknown,
the only option is by estimation. To facilitate this process it is usually to make
the aggregated production plan. This contemplates the estimation of the group of
products in weeks or months. According to these decisions it is possible to establish
material quantity, capacity... As [16] mentioned, the last decisions are short-term
decisions, establishing tasks to be done and the resources needed for doing them.
These are daily and repetitive decisions where manufacturing scheduling is located.

The scheduling decisions made by the companies are different, but there
are some common aspects that are needed by the majority. One of the common
features is the importance of decisions due to the direct impact on delivery times. As

1

2 Chapter 1. Introduction

[16] explained, it is necessary to understand that scheduling does not it a problem,
is a process that is conducted by people to make decisions. Sumarizing, scheduling
manufacturing is the decision-making process consisting on assigning the set
of operations/tasks required to manufacture a set of products to the existing re-
sources in the shop floor, as well as the time periods to initiate these operations/tasks.

Due to the complexity of the scenary, a mathematical model must be used
to make decisions. For this purpose, it is necessary to develop scheduling
models, methods to solve scheduling problems, and tools and systems to fa-
cilitate this. Then, an abstraction of reality to the solved model is assumed.
For example, we will assume that it is possible to identify units of resources
that can perform these operations/tasks and we will refer to them simply as machines.

To the best understanding of the method developed to the manufacturing
scheduling, as [16] mentioned, some concepts must be introduced. The first one
is the the definition of the unit to be executed previously mentioned. It is a task,
that can be a product, part of a product, or others and is named as job. Some
characteristics of these jobs can be whether jobs have the order of operations fixed
in advance, the possibility of preemption in operations, or if a precise machine must
do a job or can do the job at a different speed than the others. These characteristics
that constrain the model cause certain schedules to be unfeasible and therefore, the
aim of scheduling is to find at least one feasible schedule. Then, among the feasible
schedules, a way of finding the best on must be defined by selecting a criterion
or various criteria to compare them. About the criteria, the most common is the
non-decreasing function of the completion times of the jobs, as makespan or total
flow time. It is a brief intruduction which will be explained with more details
throughout the document.

Finally, about the representation of this model, is usually represented by a
Gantt diagram. This Gantt diagram can be machine-oriented or job-oriented. While
in both cases time is represented on the x-axis, machines (first one) or jobs are
represented on the vertical axis. Either one of the two represents the schedule of
jobs in each one of the machines. For a better understanding, we can look at the
figures 1.1.

1.2 Notation

As previously introduced, scheduling is a decision process to solve a real problem
by a model. Through a model we achieve focus on a certain problem of reality or a
simplification of reality that can be solved.
There are several types of models:

• Mathematical model.

1.2 Notation 3

Figure 1.1 Machine-oriented and job-oriented Gantt diagrams [16].

• Graphical models.

• Statistical models.

• Simulation models.

• Algorithmic models.

A scheduling model is a formal abstraction of a (manufacturing) scheduling
decision-making problem which is described by considering the system of
tasks/operations, the processing constraints and the criteria.

It is assumed that a scheduling model contains several numbers of jobs and
machines. More specifically we assume that there are N jobs and M machines
(N = 1,2,...,n M = 1,2,...,m).

These jobs and machines are independent and all the following data is de-
terministic:

• Task or Operation (Oi j): The number of tasks or operations for each job that
must be scheduled. According to the scheduling, there are a star time (SOi j)
and a finish time (EOi j) .

• Processing route(R j): This is the predefined route that each of the jobs must
follow, in other words, the machines order for each job.

• Processing time(pi j): The time that needs each machines to process each job.
pi j ≤ EOi j-SOi j.

• Ready dates (r j): The instant of time in which the job is available to schedule.
∀ j ∈ N,i ∈ M SOi j ≥ r j. If is necessary to use a ready date ri j ∀ j ∈ N,i ∈
M, SOi j ≥ ri j.

• Due dates (d j): The instant of time in which ideally must be processed.

• Mandatory due dates or deadlines (d j): The instant of time it is mandatory to
be processed.

4 Chapter 1. Introduction

• Due windows s [[d−
j ,d

+
j]]: A time interval where a job should be delivered.

• Costs, priorities, importance, or weights (w j): Is used by models who need to
prioritize or give importance to a job.

• Release dates for machines (rmi): The time in which the machine is available.
∀ i ∈ M, j ∈ N, SOi j ≥ rmi

The triplet α|β |γ represents the type shop floor, the restrictions, and the criteria. The
α describes the machine environment, which for the case of study is flowshop and
is denoted as Fm. The β field represents the constraints. At last, γ field represents
the objective to minimize. These three classifications will be explained deeply in
the following sections.

1.3 Flowshop

The literature classifies the scheduling problems according the machine layout, and
according to how the different job processing routes R j are specified.

Flow Shop or flowshop is the layout where every job has a number of operations
to be processed on a set of machines. For the best understanding, we can see the
Figure 1.2. In this layout there are some assumptions:

• The machines are arranged in series, each one with a different purpose.

• Each job must visit each machine, in the same specific order.

• Each machine can only process a job at the same time. For this reason, there
are several jobs waiting for the same machine.

• Each job can be processed by one machine at the same time.

• The transportation time between stages is considered null.

• The order of the jobs in each machine could be different. In many cases, for
reasons of simplicity in scheduling it is assumed that the processing sequence
is the same for all machines. In a permutation flow shop model all jobs must
follow the same machine order (i.e. the first machine is the first one for every
job). Solving the non-permutation problem is also more difficult as the possible
schedules are (n!)m towards the n! possible sequences for the permutation
problem. In order to get a visual idea of the difference, we can see the following
figures 1.3 and 1.4

1.4 Problem description

Summarising the considered problem involves is the classical PFSP (permuta-
tion flowshop scheduling problem), which considers n jobs to be scheduled on
m machines arranged in series, and all jobs will follow the same sequence

1.4 Problem description 5

Figure 1.2 Flow layout of flowshop [16].

Figure 1.3 Flow layout of flowshop [16].

Figure 1.4 Flow layout of flowshop [16].

(permutation assumption). Jobs and machines are available at time zero.
Preemption of jobs is not allowed. The objective function is to minimize the
Total Core idle time (TCIT). The Total Core Idle Time is defined by [22] as
the idle time between two consecutive jobs in a flowshop schedule (see Figure
1.5). It is demonstrated by [22], who shows that problem PFSP with TCIT is
NP-hard in the strong sense. In this master thesis, the interest of this objective
function is that, the core idle time is the time that the machine should be in

6 Chapter 1. Introduction

standby status, consuming less energy than during the processing time of the
jobs.

The core idle time minimization in the PFSP opens a new line of re-
search in the literature about Energy Efficiency PFSP, due to the relation of
this objective with the energy consumption of the system when the machines
are idle (stand-by status).

As in the classical PFSP, the speed of the machine is not configurable, and
the processing times are constant. Additionally, machines may be turned-on
once the first job is going to be processed, and turned-off when the last job is
finished, so during front and back idle times machines are off instead of the
standby mode.

Before the definition of the objective function, the components of idle
time must be presented:

– Front Idle Time of machine i, FITi,2 ≤ i ≤ m: time before machine i
processes the job in the first position.

– Core Idle Time of job in position k of machine i, CITi,[k],2 ≤ i ≤ m,2 ≤
k ≤ n: time between the completion time of job in position k 1 and the
starting time of job in position k in machine i.

– Back Idle Time of machine i, BITi,1 ≤ i ≤ m−1: time after the machine
i has finished the last job before the completion of the overall schedule.

Formally, the core idle time of machine i is defined as

CITi =
n

∑
k=2

(Ci,[k]− pi[k]−Ci,[k−1]) (1.1)

Where, pi[k] is the given processing time of job scheduled in position k in
machine i, and Ci,[k] is the variable providing the completion time of job
scheduled in position k in machine i.

Therefore, Total Core Idle Time is defined as

TCIT =
m

∑
i=1

CITi (1.2)

The relation between TCIT and makespan is deeply analysed by [22]. Taking
into account the conclusions from that study, the optimal solution provided
by makespan minimization is not the optimal solution for TCIT. However, the
relation between both measures is that TCIT minimization provides better
results for makespan than the opposite (makespan minimization is not efficient

1.5 Objective of the master thesis 7

Figure 1.5 Front/Core/Back Idle Times (FIT/CIT/BIT) in a PFSP [5].

for TCIT). This means that specific approximate methods from the literature
developed for makespan may not provide directly good solutions for TCIT,
and specific methods for this new objective should be developed.

1.5 Objective of the master thesis

The deterministic permutation flowshop scheduling problem (PFSP)
has been widely studied considering different (single) objective func-
tions, usually makespan (see e.g. [6, 24, 2, 10, 12, 17]), total completion
time (see e.g. [11, 9]), and due-date related objectives (see e.g. [32, 11, 3, 13]).

As, to the best of our knowledge, approximate methods have not been
applied to the PFSP with TCIT minimization, in this master thesis, the main
idea is to test methods proposed in the literature for related problems, in
order to check their efficiency for this objective. Related problems can be
PFSP with makespan and total completion time, due to the relation between
these objectives and machine idle times [22]. We have adapted the following
approximate methods in the literature developed for makespan to TCIT: the
constructive heuristic NEH [25], and the metaheuristics IG ([30]), IGALL
[7] and VBIH [34]. It has not been possible to include in this work the
state-of-the-art method by [10], due to the high computational effort needed
by this method in the adaptation, since the accelerations and critical path
methods applied to the makespan are not adaptable to the TCIT with similar
complexity to the total completion time, see e.g. [11]. Additionally, we have
adapted one approximate methods developed for total completion time: the
LR-NEH, since, according to [29], it is the best constructive heuristic with
respect to the quality of the solution.

1.6 Document structure

As we have already seen, the document starts with an Introduction (Chapter
1). It is composed of an introduction of the main characteristics of Scheduling

8 Chapter 1. Introduction

(Section 1.1), contextualizing the notation used (Section 1.2), and following
with a description of Flow shop layout (Section 1.3). The next section is the
definition of the problem (Section 1.4), and finally, this section in which the
document structure is summarized.

After this, a literature review is presented (Chapter 2). It is composed by a
introduction of the same in which manufacturing scheduling en general terms
is presented. After that’s the literature review of the classical problems is de-
veloped. Finally, a more specific review of the considered problem is presented.

The next chapter details the construcitve heuristics (Chapter 3). More
specifically the presented method are NEH, NEHM, PFH-NEH and LR-NEH.
The metaheuristics are presented in Chapter 4 . The metaheuristics are IG,
IGALL and VBIH.

In Chapter 5, the computational results of these heuristics and meta-
heuristics are presented. The chapter starts with a description of the testbed
used as set of instances (Section 6.1), following with the calibration of the
heuristics (Section 6.2) and the comparison of the same (Section 6.3). The two
following sections are the calibration and comparison of the metaheuristics
(Section 6.3 and Section 6.4).
Finally, the last chapter of the document presents the conclusions (Chapter 6).

2 Literature Review

2.1 Introduction

Manufacturing scheduling has been widely studied in recent times due to
its applicability to real cases. Can be found a large number of papers about
this topic. More specifically flow shop scheduling has great importance
within the scope. The most studied problems are permutation flowshop
minimizing makespan (Fm|prmu|Cmax) and permutation flowshop minimiz-
ing total flowtime (Fm|prmu|

n
∑
j=1

C j). For this reason, we can find a lot of

heuristics and metaheuristics proposed for these two problems. Another
problem studied in the literature and which is related to the objective of
our problem is the permutation flowshop minimizing total energy consumption.

With regard to the problem addressed in the master thesis, the
(Fm|prmu|TCIT), the scenario is totally different. Idle times-related
objectives have been scarcely considered in the literature.

It is clear that the minimization of the makespan is directly related to
the minimization of the idle times (see [20]). However, [22] analyze the
relation between total core idle time (TCIT), defined as the idle times between
jobs, avoiding including the front idle time generated by the first job in a given
schedule, and the makespan. Taking into account the conclusions from that
study, the optimal solution provided by makespan minimization is not the
optimal solution for TCIT. However, the relation between both measures is
that TCIT minimization provides better results for makespan than the opposite
(makespan minimization is not efficient for TCIT).

9

10 Chapter 2. Literature Review

2.2 Fm|prmu|Cmax and Fm|prm|∑C j

In this section, we focus on some of the main methods developed for the
classical objectives of makespan and total flow time.

[25] developed the most influential algorithm in the literature for the permu-
tation flowshop problem with makespan minimization i.e. Fm|prmu|Cmax,
the NEH. This has marked the entire scheduling investigation. Many papers
have been based on improving the proposed algorithm. It should be noted
that one of the most important algorithms of the master thesis is the NEH.
It was [33] was improved the complexity of the NEH algorithm, reducing it
from O(n3m) to O(n2m). [15]) studied the implementation of different initial
sequences for the NEH. It showed that the best initial sequence is the one used
in the classical NEH approach (i.e. no increasing order of the sum of the
processing).

Another heuristic studied in this master thesis is the NEHM proposed by [27].
It is one of the clear examples of the influence of the NEH in the rest of the
heuristics proposed. This method is applied to a hybrid flow shop (multiple
parallel machines per stage) minimizing the Total Energy Consumption (TCE).

Focused on the total flow time minimization, the LR-NEH proposed
by [29] is implemented. As is noted in this paper is a good trade-off between
CPU time and quality. It is a constructive heuristic based on the NEH and
the LR proposed by [21]. Following the total flow time minimization, the
PFH-NEH proposed by [27] is implemented. As the LR-NEH, it is based on
the combination of the PF [23] and the NEH already mentioned.

Metaheuristic algorithms for the PFSP appeared much later than the
heuristic. Among the earliest approaches, we find the simulated annealing
algorithm of [26], which is fairly simple in the sense that it uses a constant
temperature and an insertion neighborhood. About the metaheuristics
developed in the master thesis the first and more important is the Iterated
greedy proposed by [30] to the makespan objective. IG generates a sequence
of solutions by iterating over greedy constructive heuristics using two main
phases: destrution and construction. Another metaheuristic developed in this
master thesis with Core idle time minimization is the IGALL proposed by [7].
It is based on the same concept of the Iterated Gready with optimization of
partial solutions.

The last one method adapted from the PFSP with Total Flow time
minimization is the VBIH. It is developed by [34] based on a variable block
insertion.

2.3 Core idle time 11

To summarize all the methods applied, the article of reference and
the adaptation made is the table 2.1

Table 2.1 Summarize of the methods applied.

Method Reference Problem Adaptation
NEH [25] Fm|prmu|Cmax Objective function

NEHM [28] HFm|prmu|Cmax,TCE Objective function and type of shop floor
LR-NEH [29] Fm|prmu|∑C j Objective function

PFH-NEH [27] Fm|prmu|TCE,∑C j Objective function
IG [30] Fm|prmu|Cmax Objective function

IGALL [7] Fm|prmu|Cmax Objective function
VBIH [34] Fm|prmu|∑C j Objective function

Along these studies, the most widely used benchmark has been the
one proposed by [33]. Lately [35] carried out a study of problem instances
to develop a new hard benchmark with difficult problems, which shows
significant differences between algorithms. This master thesis uses these
two benchmarks, the first one for the calibration and the second one for the
comparison.

2.3 Core idle time

As already mentioned, since the first work published by [19] a lot of studios
are published about makespan and total flow time objectives. However, as
we already mentioned, other measures are more suitable in some industrial
environments, such as idle and waiting times.

In flow shop scheduling, waiting time of jobs and idle time of ma-
chines are often considered because of their impact on many manufacturing
environments and applications. In the literature, no-wait and no-idle
constraints are considered for problems minimizing Cmax mainly.

Core Idle time is found in the literature introduced in the objective
function, in some heuristics method and as constraints. Related with the
objective function, idle time is usually found in the minimization of the total
machine completion time.

[18] developed efficient solutions method for the minimization of the

12 Chapter 2. Literature Review

completion time for two set o dominates machines. [14] discussed the
minimization of weighted sum of machine completion times with minimal
and maximal time lags and provided the np-hard nature of the problem.

[31] considered the problem of minimizing Cmax and ∑C j with assignment
flexibility of tasks. They concluded that there is no solution found which
simultaneously minimizes both objectives. Additionally, some multi-criteria
approaches have been considered, for example [36]. As [22] summarize to the
best of our knowledge, ∑CITi have only been rarely discussed as objective
functions, for this reason the scope of our master thesis must be developed.

About the latest contributions related on the core idle time we found
[4]. In the same line that we previously mentioned, this paper aimed to
develop four new MILP models to optimize the total idle and waiting times in
the permutation flowshop problem.

We found [1] that studies four single-objective variants of the permu-
tation flowshop scheduling problem, where two objectives are considered:
the weighted sum of the makespan and the core waiting time, and the
weighted sum of the makespan and the core idle time. For each objective,
both the problem with the assumption of semi-active solution and the one
without it are considered. Two Mixed Integer Linear Programming (MILP)
formulations and one Constraint Programming (CP) formulation are presented.

To conclude, in the literature review is observed that the TCIT mini-
mization is not adressed by aproximated methods. It is therefore proposed to
adapt these heuristics and metaheuristics and to be able to obtain this analysis.

3 Constructive heuristics

In this section, we describe the simple heuristic NEH, and constructive
heuristics NEHM, PFH-NEH, and LR-NEH, previously mentioned in Section
1, and adapted for the TCIT objective.

3.1 NEH

The NEH was developed by [25] for the PFSP with the makespan objective.
We use the same procedure with the TCIT criterion. The pseudo-code of the
method is presented in 1.

Previously we shall define the data needed to compute this heuristic.
The only data needed are the number of jobs, the number of machines, and the
processing times.

The first step is to define the initial sequence. The NEH behold sorts
all jobs in non-increasing order of the sum of their processing times.
Previously the sum of the processing times is calculated as:

Pj =
m

∑
i=1

(pi j) (3.1)

Once is obtained the initial sequence starts the body of the algorithm. First,
a one-size sequence with the first job of the non-increasing order sequence
is composed. Next step consists in insert the following job from the initial
sequence on all possible positions of the partial sequence selected in the
previous step. Then, in the position in which suppose the minimum core idle
time the job is inserted.This step is repeated until the last job of the partial
sequence is inserted. When the last job is inserted we obtained a sequence
with size n.

13

14 Chapter 3. Constructive heuristics

Related to the complexity of the problem, [33] proposed an improve-
ment to reduce in orther to run in time O(n2m) instead of O(n3m) for the
minimization of makespan as obejctive function. This acceleration consists
on calculate:

– The earliest completion time of each job on each machine of the partial
sequence of size k-1.

ei j = max{ei, j1,ei1, j + pi j}, j = 1...k1; i = 1...m (3.2)

– The time between the starting time of the job and the final of the operations.

qi j = max{qi, j+1,qi+1, j}+ pi j, j = 1...k1; i = 1...m (3.3)

– The third step is to calculate the earliest completion time in all machines
for all jobs due to the insertion of the job k:

fi j = max{ fi−1, j,ei, j −1+ pik}, j = 1...k; i = 1...m (3.4)

Finally, the makespan of the partial sequence with the job k inserted on the ith
position is:

Cm j = max{ fi j +qi j} (3.5)

Doing this process is not necessary to compute the complete makespan for
each partial solution. However, the acceleration cannot be applied for other
objectives such as the total completion time [8] and it cannot be applied to the
total core idle time either.

3.2 NEHM

In addition, many NEH-derived methods are implemented in order to improve
the original NEH. Some of these variants are in the line of change the initial
sequence.

In this document, the modification of the NEH takes into account the
strong impact of the first job of the sequence in the idle time of each machine.
The NEH-M(X) heuristic was proposed by [28] to the hybrid flowshop
scheduling problem minimizing total energy consumption and total
flow time. The reason to implement this heuristic for our problem (still
being developed for another problem) is the already mentioned relation-
ship with the core idle time. The pseudo-code of the method is presented in 12.

3.3 LR-NEH 15

Related to the input needed to schedule the heuristic, the data needed
are the number of jobs, the number of machines, the processing times. X
determine the number of times that the NEH algorithm is repeated changing
the first job of the initial sequence. The details of the heuristic are explained
below. Initially, the jobs are sorted in the same way as in the NEH. The obs
are sorted in non-increasing order of their processing time: Previously the
sum of the processing times is calculated as:

Pj =
m

∑
i=1

(pi j) (3.6)

Once this initial sequence is ordered by the criterion previously mentioned
start the body of the algorithm. The first iteration is the same as the original
NEH, a one-size sequence with the first job of the non-increasing order
sequence composed. The next step consists in insert the following job from
the initial sequence on all possible positions of the partial sequence selected
in the previous step. Then, in the position in which suppose the minimum
core idle time the job is inserted.

Then, the remainder of iterations are generated by choosing different
jobs as the first job and implementing this procedure. In the h-th iteration,
the job in position h in the initial sequence is chosen as the first job of the
partial solution. Once the first job of this h-th solution is selected, the NEH
procedure is applied.

Finally, X n-size solutions generated by applying x times the NEH al-
gorithm with different first jobs are obtained. The last step is to choose the
one with the minimum value of the objective function. A summary of this
heuristic is presented by.

3.3 LR-NEH

The next heuristic implemented for our problem is the LRNEH(X) heuristic
developed by [29] to the minimization of the total flow time. Should be
noted that takes into account the main influence of the first job in the
objective function. It is a composition of the classical NEH and the LR
developed by [21] for the minimization of the total flow time. Related to
the input needed to schedule the heuristic, the data needed are the num-
ber of jobs, the number of machines, the processing times, and the parameter d.

First, the LR(x) algorithm represented in the pseudo-code 12 is ex-
plained. For the best understanding of the heuristic, previously should be
defined the index function that will be the main important concept of the

16 Chapter 3. Constructive heuristics

algorithm.

To calculate the index function, we start to having a partial sequence
formed by k already scheduled jobs (π) and a partial sequence formed by n-k
unscheduled jobs (U). This index function is composed by:

– The weighted total machine idle time, calculated for each job j ∈ U and
each position k ∈ π that can be occupied:

ITj,k =
m

∑
i=2

mmax(Ci−1, j,Ci,[k])

i+ k(m− i)/(n−2)
(3.7)

– The total flowtime of jobs j and λ , where λ is a single artificial job
considering the other jobs in U and its processing time is the average of
the processing times of these jobs:

ATj,k =Cm, j +Cm,λ (3.8)

Summarizing this two terms:
– Ci,[k]: The completion time of the job in the k−th position at machine i.

– Cm, j: The completion time of the job j in the last machine.

– Cm,λ : The completion time of the artificial job λ .
Then, the index function is computed as:

ξ j,k = (n− k−2)ITj,k +ATj,k (3.9)

About procedure, the LR heuristic begins calculating the index function for
the n jobs. This initial sequence in generated sorting this n jobs in ascending
order of their index function.

Then, the body of the procedure is repeated until generate x n−size
sequence. For each iteration l ∈ x, remove the l job of the previous sequence,
in which initially, jobs are sorting in ascending order of their index function to
generate a one-size sequence with the remove job. The next step is to calculate
the index function for the remaining jobs. The job with the minimum value
of the index function is inserted in the one−size sequence. This procedure
based on calculate the index function of the remaining jobs and inserted in the
sequence mentioned is repeated until generate a n-size sequence. Should be
noted that ties are broken by selecting the one with the minimum weighted
total machine idle time. This procedure is repeated x times, generating x
sequence. The sequence with the minimum objective function is selected as
final sequence.

3.4 PFH-NEH 17

Once the LR(x) heuristic is explained, we will now to understand the
LR−NEH(x) constructive heuristic. The pseudo-code of the method is
presented in 15.

As mentioned above, the heuristic depend on the parameter d. It de-
termines the criteria of change to apply the LR to apply the NEH heuristic.
The LR−NEH(x) is based on generate x sequences applying both algorithm.
Next, this procedure is explained.

The constructive heuristic begins applying the LR method. Then, the
index function is calculated to the n jobs. The job with the minimum value
of the index function is remove and insert in the one-size sequence. Then, a
d-size sequence is generated applying the LR method.

Starting from a d−size sequence, the NEH algorithm is apply. The
n−d jobs are sorting in non-decreasing order of their processing time. Then,
the final sequence is generated inserting all the remaining jobs in all positions,
selecting the one with the minimum value of the objective function. The final
sequence of this iteration is obtained. As already mentioned, this procedure is
repeated x times, generating x different sequence. Each with the minimum
value of the objective function is selected.

3.4 PFH-NEH

The next heuristic implemented for our problem is the PFH-NEH(X) heuristic
developed by [28] to the minimization of the total flow time and total energy
consumption. Should be noted that focuses on the main influence of the first
job in the objective function.

Related to the input needed to schedule the heuristic, these are the
number of jobs, the number of machines, the processing times, a initial
sequence and a job index.

First, the PF(x) algorithm is explained. The pseudo-code of the method is
presented in 28. For the best understanding of the heuristic, previously should
be defined the cost function that will be the main important concept of the
algorithm.

This index function is composed by:

18 Chapter 3. Constructive heuristics

– A weight calculates as:

wi =
m

i+ j(m− i)/(n−2)
(3.10)

– The weighted sum of the idle times of job π j on all machines:

ITj =
m

∑
i=2

w j max(Cπ j,i−1 −Cπ j−1,i,0) (3.11)

Then, the cost function is computed as:

cFj = (n− j−1)ITj +Cπ j,m (3.12)

About procedure, the PF heuristic part of a initial sequence (π) and a
job index. The first step is to remove of the π sequence the job in the position
indicate by the job index. Then, the cost function is calculated for the
remaining jobs. The job with the minimum value of the cost function is
removed and inserted in the final sequence (Π). These steps are repeated until
a n−size sequence is formed.

Once the PF heuristic is explained, let us now to understand the
PFH−NEH(x).The pseudo-code of the method is presented in in 13.
The PFH−NEH(x) is based on generate x sequences applying both algorithm.
Next, this procedure is explained.

The initial order is determined by calculating the f Di values as given
below:

f D j =
2

m−1

m

∑
i=1

(m− i)pπ j,i +
m

∑
i=1

pπ j,i (3.13)

Then the body of the algorithm is repeated x times. In the h− th iteration,
the PF heuristic is applied based on the input of this initial order and the hth
position as job index. Once a n− size sequence is obtained applying the PF
algorithm, the NEH heuristic is applied. The NEH starts by the sequence
formed by the PF method. Then a one-size sequence with the first job is
generated. The remaining jobs are inserted in the position in which suppose
the minimum core idle time.

Then the sequence with the minimum value of the objective function
is selected as output of the method. The last step is to apply the insertion local
search with general swaps to the complete solution as long as it is improved.
The pseudo-code of the local search is presented in10]

3.5 Local search 19

3.5 Local search

About the local search, a first improvement with general swaps is applied in
all heuristics and metaheuristics that contain it.

It starts with a initial sequence previously generated. Then the body
of the algorithm is applied. It is based on insert a determinate job in all
position until a improvement of the objective function is found.

The procedure stars by removing the first job of the sequence and in-
serting in all possible position on the sequence. This procedure is repeated for
all the jobs in all positions.

The algorithm ends when one of these two options occurs:
– The algorithm ends when a better solution is reached, even if it has not

been tested with the remaining works

– When all the jobs in the sequence have been inserted in all possible
position of the sequence.

Then, the best solution is selected.

Algorithm 1: NEH [27]
Input: instance data
Output: Πb, ob jb

1 begin
2 Pj:=total processing time o f each job j ;
3 Π0:=sort the jobs in descending order o f Pj;
4 π1:=π0

1 ;
5 for k = 2 to n do
6 Π=Insert π0

k in the best position of Π;
7 Πb:=Π;
8 ob jb:=Ob j(Πb);
9 return Πb, ob jb

20 Chapter 3. Constructive heuristics

Algorithm 2: NEH-M [28]
Input: instance data, x
Output: Πb, ob jb

1 begin
2 Pj:=total processing time o f each job j ;
3 Π0:=sort the jobs in descending order o f Pj;
4 Π′:=Π0;
5 for h = 1 to x do
6 Swap the positions of jobs π ′

1 and π ′
h;

7 πh
1 :=π ′

1;
8 for k = 2 to n do
9 Πh=Insert π ′

k in the best position of Πh;

10 Πb:=The best solution among (Π1,Π2...Πx);
11 ob jb:=Ob j(Πb);
12 return Πb, ob jb

3.5 Local search 21

Algorithm 3: LR
Input: instance data,x
Output: Πb, ob jb

1 begin
2 α0:=sort the jobs in ascending order o f ξ j0;
3 for l = 1 to x do
4 π l

1:=αl;
5 U :=Remove αl f rom α;
6 for k=2 to n do
7 Calculate ξ jk f or all the jobs f rom U ;
8 π l

k:=Take the job with minimum ξ jk;
9 Remove job j f rom U ;

10 Πb:=The best solution among (Π1,Π2...Πx);
11 ob jb:=Ob j(Πb);
12 return Πb, ob jb

Algorithm 4: LR-NEH
Input: instance data,x
Output: Πb, ob jb

1 begin
2 α0:=sort the jobs in ascending order o f ξ j0;
3 for l = 1 to x do
4 π l

1:=αl;
5 U :=Remove αl f rom α;
6 for k=2 to d do
7 Calculate ξ jk f or all the jobs f rom U ;
8 π l

k:=Take the job with minimum ξ jk;
9 Remove job j f rom U ;

10 β :=sort U in ascending order o f total processing times;
11 for k=1 to n−d do
12 Πl=Insert βk in the best position of Πl;

13 Πb:=The best solution among (Π1,Π2...Πx);
14 ob jb:=Ob j(Πb);
15 return Πb, ob jb

22 Chapter 3. Constructive heuristics

Algorithm 5: PF [27]
Input: instance data, Π∗, Index
Output: Πb, ob jb

1 begin
2 U :=Π∗;
3 π1:=uindex;
4 U :=Remove uindex f rom U ;
5 for j = 2 to n do
6 for k = 1 to n− j do
7 π j=Uk;
8 Calculate Cπ j,i ∀ i;
9 It j=∑

m
2 w jmax(Cπ j,i−1 −Cπ j−1,i,0);

10 cF j=(n− j−1)xIt j +Cπ j,m;
11 if k=1 then
12 job=π j;
13 BestCoe f =cF j;
14 BestI=It j;
15 if cF j ◁BestCoe f then
16 job=π j;
17 BestCoe f =cF j;
18 BestI=It j;
19 if cF j=BestCoe f then
20 if It j ◁BestI then
21 job=π j;
22 BestCoe f =cF j;
23 BestI=It j;

24 π j= job;
25 Remove pi j f rom U ;
26 Πb:=Π;
27 ob jb:=Ob j(Πb);
28 return Πb, ob jb

3.5 Local search 23

Algorithm 6: PFH-NEH [27]
Input: instance data
Output: Πb, ob jb

1 begin
2 Π0:=sort the jobs in ascending order o f f D j;
3 if n◁ = 100 then
4 x = n;
5 else
6 x = 1;
7 for k = 1 to x do
8 Π′=PF(π0

,k);
9 Π′′=NEH(Π′);

10 Πk=LocalSearch(Π′′);
11 Πb:=The best solution among (Π1,Π2...Πx);
12 ob jb:=Ob j(Πb);
13 return Πb, ob jb

Algorithm 7: Local search
Input: instance data, Π0, ob j0
Output: Πb, ob jb

1 begin
2 Πb:=Π0;
3 ob jb:=ob j0 for j = 1 to n do
4 for k = 1 to n do
5 if k! = j then
6 ΠV =Insert π0

j in the k position of Π0;
7 if Ob jΠV ◁objb then
8 k := n j =: n Πb:=ΠV ;
9 ob jb:=Ob j(Πb);

10 return Πb, ob jb

4 Metaheuristics

The next step, with the purpose of obtaining better solutions than with the
previous heuristics and enrich the problem evaluation, the implementation of
a metaheuristic seems appropriate. In this section, IG, IGALL and VBIH are
presented as the metaheuristics adapted for our problem.

Note that, the main adaptation besides the objective function, is the
initial sequence. Has been decided to tested each of the metaheuristics with
all the heuristics as initial sequence. The objective is to make a complete
analysis of the problem.

4.1 Iteraty Greedy

The first metaheuristic adapted is the original Iterated Greedy (IG) algo-
rithm. The pseudo-code of the method is presented in 22.The algorithm
is composed of two phases. The destruction phase removes some jobs
from a previously input sequence and the construction phase consists on
the application of a greedy constructive heuristic to complete the sequence
generated by the destruction phase. Then, a selection criterion must be
applied to decide to apply the iteration to the sequence recently formed or
to the previous one. This procedure is repeated until a stopping criterion is met.

To a best understanding, should be explained the original method de-
veloped by [30] for Fm|prmu|Cmax. This original IG starts with a initial
solution obtained by the NEH heuristic. The destruction phase is based on
eliminate d jobs of the sequence π , generating a partial sequence πD with n-d
jobs and another sequence πR with these d jobs removed.

Then the construction phase is applied. It is based on insert the re-
moves jobs applying the NEH mechanism. Each job of the πp partial sequence
is inserted in all positions of the π partial sequence. The position in which the

25

26 Chapter 4. Metaheuristics

best objective function is obtained, is definitively inserted. The job inserted in
the πD sequence is removed from the πp sequence. It is repeated until there
are no any jobs in the πp sequence and the piD reaches to be a complete solution.

Additionally, a local search method is added to improve the solution
quality, choosing a local search algorithm based on searching a neighborhood
by insertion. This is, a job is removed of the sequence and inserted into
every possible position on the sequence from the previous solution, when
a improvement of the objective function is reached the job is inserted in
that position, else no insertion is applied. This step is applied on every job
with a randomly order of until an improvement occurs or every job had inserted.

The last step an acceptance criterion to decide whether or not the new
sequence is accepted as the initial solution for the next iteration. [30]
decides to implement the temperature extracted from the simulated annealing
procedure, specifically the temperature that [26] proposed for their simulated
annealing algorithm to solve the problem Fm|prmu|Cmax:

Temperature = T

m
∑

i=1

n
∑
j=1

Pi j

nm10
(4.1)

T was empirically tested and decided to be T = 0.5. The stopping criterion
has been decide to be time-based, related with the size of the instance. It is
computed as:

t = n (m/2) 20 milliseconds. (4.2)

Once the original IG is explained should be indicated the adaption on our
problem. As mentioned above, as the initial sequence has been tested all
the heuristic adapted in our master thesis (NEH, NEHM, LR−NEH and
PFH−NEH). The comparison will be shown in the next chapter. Another
adaptation has been the local search applied. Has been compared some local
search and has been decided what provides the best results for our problem.
The local search implemented is the based on first improvement with general
swaps. Should be noted that it is the local search applied in all heuristics and
metaheuristics that contain each.

Finally, the main adaption is the objective function computed, being
the already mentioned Fm|prmu|TCIT problem.

About the d parameter, is will be decided in the calibration phase.

4.2 IGALL 27

4.2 IGALL

The next metaheuristic adapted is the IGALL developed by [7]. The
pseudo-code of the method is presented in 23. It is a variation of the original
IG added a local search to the partial sequence. The first step is the destruction
phase, d jobs are removed by the initial sequence and stored in a partial
sequence.

It is time to apply the modification of the Iteraty Greedy. The next
step is to implement a local search to the partial solution. The application of
this phase can lead to different search directions.

Then the construction phase based on insert the removes jobs apply-
ing the NEH mechanism is apply to the improved partial sequence. Each job
of the πR improve partial sequence is inserted in all positions of the π partial
sequence. The position in which the best objective function is obtained, is
definitively inserted.

Additionally, as the IG, the local search [10] is applied to improve the
quality of the solution. As mentioned above, a local search based on first
improvement with general swaps is implemented.

The last step an acceptance criterion to decide whether or not the new
sequence is accepted as the initial solution for the next iteration. The
same criteria based on temperature extracted from the simulated annealing
procedure is used.

Temperature = T

m
∑

i=1

n
∑
j=1

Pi j

nm10
(4.3)

T was empirically tested in the next chapter and the stopping criterion is the
same as is explained.

4.3 VBIH

The third and last metaheuristic adapted is the VBIH algorithm developed by
[34] for the PFSP with total completion time and blocking constraint. Worth
mentioning that it is similar to the IG and IGALL already explained. The
pseudo-code of the method is presented in 25.

In the original VBIH, the initial sequence considered is obtained by
the application of the PFH-NEH heuristic. In our adaptation will be tested
with all the heuristics developed in the master thesis. About the body, as in

28 Chapter 4. Metaheuristics

the previous two method a destruction phase is applied.

The main difference between VBIH and the IG is the number of jobs
removed in the destruction phase. The VBIH method is based on removed
a block of a variable number of jobs in each iteration. Block moves with
different block sizes can be employed because the block size b changes during
the algorithm, with b ∈ (bmin,bmax).

The next step is similar to the IGALL, a local search 10 is applied to
the partial sequence of size b. As above mentioned, the local search is based
on first improvement with general swaps. After that, the destruction phase is
implemented. The improve block of job is inserted in all possible position of
the partial sequence of size n− b. The position in which the best objective
function is obtained, is definitively inserted. Then, a local search based on
first improvement with general swaps is applied to the complete sequence.

Once the block is inserted, if the new solution of the construction
phase is better than the previous best solution, it is selected as the new best
solution. Then, the same block size is kept as long as the solution improves.
Otherwise, the block size is changed incrementally (b = b+1).

If the solution is worse, an acceptance criterion to decide whether or
not the new sequence is accepted as the initial solution for the next iteration
is implemented. The same criteria based on temperature extracted from the
simulated annealing procedure is used. T was empirically tested in the next
chapter and the stopping criterion is the same as is explained.

4.3 VBIH 29

Algorithm 8: IG [27]
Input: instance data, T , k
Output: Πb, ob jb

1 begin
2 Π0 := (π1, . . . ,πn) initial sequence;
3 ob j0 := Ob j(Π);
4 Πb := Π0;
5 ob jb := ob j0;
6 Πd :=∅, Πp :=∅;
7 while Stopping criterion is not satisfied do
8 Πd := Destruction(Π0,k);
9 Π′ :=Construction(Πd,Πp);

10 Π′′ := LocalSearch(Π′);
11 ob j′′ := Ob j(Π′′);
12 if ob j′′ ≤ ob j0 then
13 Π0:=Π′′;
14 ob j0:=ob j′′;
15 if ob j′′ ◁ob jb then
16 Πb:=Π′′;
17 ob jb:=ob j′′;

18 else
19 if r ◁ exp(−(ob j′′−ob j0)/T) then
20 Π0:=Π′′;
21 ob j0:=ob j′′;

22 return Πb, ob jb

30 Chapter 4. Metaheuristics

Algorithm 9: IGALL [7]
Input: instance data, T , k
Output: Πb, ob jb

1 begin
2 Π0 := (π1, . . . ,πn) initial sequence;
3 ob j0 := Ob j(Π);
4 Πb := Π0;
5 ob jb := ob j0;
6 Πd :=∅, Πp :=∅;
7 while Stopping criterion is not satisfied do
8 Πd = Destruction(Π0,k);
9 Πp=Localsearch(Πp);

10 Π
′=Construction(Πd,Πp);

11 Π
′′=LocalSearch(Π′);

12 ob j′′:=Ob j(Π′′);
13 if ob j′′◁= ob j0 then
14 Π0:=Π′′;
15 ob j0:=ob j′′;
16 if ob j′′ ◁ob jb then
17 Πb:=Π′′;
18 ob jb:=ob j′′;

19 else
20 if r ◁ exp(−(ob j′′−ob j0)/T) then
21 Π0:=Π′′;
22 ob j0:=ob j′′;

23 return Πb, ob jb

4.3 VBIH 31

Algorithm 10: VBIH [27]
Input: instance data, T , bmin, bmax
Output: Πb, ob jb

1 begin
2 Π0 := (π1, . . . ,πn) initial sequence;
3 ob j0:=Ob j(Π);
4 Πb:=Π0;
5 ob jb:=ob j0;
6 while Stopping criterion is not satisfied do
7 b:=bmin;
8 while b ◁ bmax do
9 Πp:=Remove a block of a jobs from Π0;

10 Πp′:=LocalSearch(Πp);
11 Π′:=Insert the block into the best position of Πp′;
12 Π′′:=LocalSearch(Π′);
13 ob j′′:=Ob j(Π′′);
14 if ob j′′◁= ob j0 then
15 Π0:=Π′′;
16 ob j0:=ob j′′;
17 if ob j′′ ◁ob jb then
18 Πb:=Π′′;
19 ob jb:=ob j′′;

20 else
21 b = b+1;
22 if r ◁ exp(−(ob j′′−ob j0)/T) then
23 Π0:=Π′′;
24 ob j0:=ob j′′;

25 return Πb, ob jb

5 Computational results

5.1 Testbeds description

In order to compare the heuristics and metaheuristics adapted for our problem,
a testbed should be selected. If the optimally solution could be obtained, the
result of the method would be with this optimal solution. In the reality, a
comun testbed should be used to compare the proposed method with others
method implemented. To have the capacity to compare with method proposed
by others studies an existing testbed is used.

The most used beachmarks nowdays is the one proposed by [33]. However,
[35] proposed a beachmarks with the objective to be amenable for statistical
analysis and discriminant when several algorithms are compared. Both
consists in generate a set of instances with processing times between 1 and 99.

Althought this testbed are proposed to minimixing the makespan, we
evaluate these sequences for our problem in our study in order to compare the
Total Core Idle time obtained by the different algorithm. In order to used the
two testbed presented, first, the well-known Taillard testbed [33] has been
used to calibrate. It is distributed between n ∈ {20,500} and m ∈ {5,50}. The
combination of number of jobs and machines and the number of instance for
each size is represented in 5.1. About the processing times, are uniformly

Table 5.1 Number of instances by size of Taillard instances.

n x m 5 10 20 50
20 10 10 10
50 10 10 10

100 10 10 10
200 10 10
500 10

33

34 Chapter 5. Computational results

generated between 1 and 99. Each size has 10 instances, in total 120 instances.
The benchmark set of instances from Vallada has been used to compare all the
heuristics and metaheuristics. It consists of 240 large instances and 240 small
instances.

Small instances are a set of 240 with the following combinations of
number of jobs (n) and number of machines (m): n = {10,20,30,40,50,60},
m = {5,10,15,20}. It could be seen in 5.2. For each combination 10
instances are generated, so in total, we have 6 × 4 × 10 = 240 small
instances. Regarding the large instances, they are also a set of 240 where
n = {100,200,300,400,500,600,700,800} and m = {20,40,60}. It could
be seen in 5.3

Table 5.2 Number of instances by size of Vallada’s small instances.

n x m 5 10 15 20
10 10 10 10 10
20 10 10 10 10
30 10 10 10 10
40 10 10 10 10
50 10 10 10 10
60 10 10 10 10

Table 5.3 Number of instances by size of Vallada’s big instances.

n x m 20 40 60
100 10 10 10
200 10 10 10
300 10 10 10
400 10 10 10
500 10 10 10
600 10 10 10
700 10 10 10
800 10 10 10

The reason why we selected Vallada to compare the different methods is
that Taillard’s instances are not equidistant, which means, the difference
between the number of jobs/machines between two consecutive instances is
not the same. In order to make a best statistical analysis the equidistant set of
instances generated by [35] is selected.

5.2 Evaluation of the results 35

5.2 Evaluation of the results

To calibrate using the Taillard instances and to compare using the Vallada
instances the Relative Deviation Index (RDI) has been selected as the perfor-
mance measure. It is a indicator used to size the result obtained compared to
the best and worst results reached. It is computed by the following equation:

RDIi =
TCITim −TCITimin

TCITimax −TCITimin
(5.1)

with TCITim the objective value for instance i obtained by method m, TCITimax
the maximum value obtained for instance i across all the methods, and TCITimin
the minimum.

5.3 Heuristics calibration

In this section, the constructive heuristics (NEHM, LR-NEH, and PFH-NEH)
have been calibrated. To calibrate the parameter of the constructive heuristics,
we carry out a design of experiments. For this purpose, we use Taillard’s
benchmark set.

As mentioned above, due to the importance of the first job of the se-
quence on the objective function, all of the constructive heuristics is based on
repeated some procedures changing their initial job. In each iteration, when
the first the job is selected the body of the algorithm is applied. This process
is repeated x times.

In the design of experiments, the proposed heuristics have one param-
eter: the number of solutions generated (x). The main characteristic of the
parameter x is the dependence of the number of jobs of the instance. If x
is set as a function of n, as n grows, so does the number of iterations. Is
clearly remarkable that as n increases, x increases then the CPU inverted
increases. For this reason, the decision of the value of the parameter x should
be made checking if the CPU inverted compensates or not. Regarding these
considerations, the cases are shown in Table 5.4.

Table 5.4 Cases of constructive heuristics.

CASE 1 CASE 2 CASE 3 CASE 4
X = n if n ≤ 100 X = n if n ≤ 200 X = n if n ≤ 100 X = n if n ≤ 200
X = 1 if n > 100 X = 1 if n > 200 X = 20 if n > 100 X = 20 if n > 200

36 Chapter 5. Computational results

To the best knowledge of the parameter, the 2 criteria to be taken into account
will be explained below:

– The number of job from which the number of job change.

– The value of x that assume since the change.
Then, each of the cases will be explained:

– CASE 1: x is set as n for all the instances with a number of jobs less than
100. At the moment the number of jobs exceeds 100, x is set as 1.

– CASE 2: x is set as n for all the instances with a number of jobs less than
200. At the moment the number of jobs exceeds 200, x is set as 1.

– CASE 3: x is set as n for all the instances with a number of jobs less than
100. At the moment the number of jobs exceeds 100, x is set as 20.

– CASE 4: x is set as n for all the instances with a number of jobs less than
200. At the moment the number of jobs exceeds 200, x is set as 20.

It should be noted that is the combination of two variation of the two criteria:
– The number of job from which the number of job change can be 100 or

200.

– The value of x that assume since the change can be 1 or 20.
In order to compare the cases, we calculate the ARDI (Average Relative
Deviation Index) and The average computation time (Avg. CPU), in which the
algorithm finds the final solution.

5.3.1 NEHM

The parameter to be calibrated is x, i.e. the number of iterations. The decision
of the parameter should be taken on the basis of the relation of the CPU
inverted and the quality of the solution. As shown Figure 5.1 the case that
obtain the best results is the Case 4.

Figures 5.2 and 5.1 clearly indicate that the cases with high CPU lev-
els result in better ARDI values. However, no great improvement is obtained
compared to the increase in time spent. The plots demonstrate no statistically
significant difference between the four cases.

Should be highlighted the power of the original NEH to reach a good
solution in few iterations. That repeating the algorithm not improve to a great
extend the solution only shows the capacity to reach a good solution in few time.

Due to this considerations, Case 1 (x = n if n ≤ 100 and x = 1 if
n > 100) is selected for being the fastest in terms of CPU and provide a good
solution.

5.3 Heuristics calibration 37

Figure 5.1 95% Confidence Intervals for NEHM.

Figure 5.2 CPU average for NEHM.

5.3.2 LR-NEH

The parameter to be calibrated is x, i.e. the number of iterations. The decision
of the parameter should be taken on the basis of the relation of the CPU
inverted and the quality of the solution. As we can see in Figures 5.3 and 5.4,

38 Chapter 5. Computational results

Figure 5.3 95% Confidence Intervals for LR-NEH.

Figure 5.4 CPU average for LR-NEH.

the results clearly indicate that the cases with high CPU levels result in better
ARDI values.

However, in this heuristic, the difference between the time spent and

5.4 Heurisics comparison 39

Figure 5.5 95% Confidence Intervals for PFH-NEH.

the improvement of results is even greater. The plots demonstrate no
statistically significant difference between the four cases. Therefore, Case
1 (x = n if n ≤ 100 and x = 1 if n > 100) is selected for being the fastest in
terms of CPU.

5.3.3 PFH-NEH

The parameter to be calibrated is x, i.e. the number of iterations. The decision
of the parameter should be taken on the basis of the relation of the CPU
inverted and the quality of the solution. As we can see in Figures 5.5 and
5.6, the results clearly indicate that the cases with high CPU levels result in
better ARDI values. However, no great improvement is obtained compared to
the increase in time spent. The plots demonstrate no statistically significant
difference between the four cases. Therefore, as in the other heuristics Case
1 (x = n if n ≤ 100 and x = 1 if n > 100) is selected for being the fastest in
terms of CPU.

5.4 Heurisics comparison

Once the constructive heuristics are calibrated, is time to compare the results
with Vallada test best. In order to compare all the heuristics, we must set the
parameter x like in Case 1.
As we can see in 5.7, the plots demonstrate statistically significant differences

40 Chapter 5. Computational results

Figure 5.6 CPU average for PFH-NEH.

Figure 5.7 95% Confidence Intervals for Heuristics.

between NEHM and NEH, and between PFH-NEH and LR-NEH. However,
there are no significant differences between NEH and PFH-NEH. The best
result is provided by the NEHM heuristic.

5.5 Metaheuristics calibration 41

5.5 Metaheuristics calibration

5.5.1 IG

Summing up the procedure, it starts with a initial sequence an then the
algorithm is applied. All the experiments for the metaheuristics are carried
out fixing a stopping criterion of maximum time t = n (m/2) 20 milliseconds,
so efficiencies will be easy and fast to compare.

The parameters of which depends are:

– The initial sequence obtained by one of the heuristics adapted.

– The parameter T : The parameter of which depend the temperature pro-
posed for the simulated annealing algorithm.

– The parameter d: The number of jobs removed in the destruction phase.

Although NEHM is the best heuristic and we have just decided to choose the
parameter x like Case 1, is should be to compare again for one reason: The
NEHM is the best in terms of RPI but is the most CPU-heavy. We must check
if the time invested in the initial sequence is beneficial to the final result.
Taking each of the heuristics as a starting sequence, the first step is to compare
all heuristics setting Case 1.

The first parameter to calibrate is heuristic. The results in terms of
RDI are shown 5.8. As we can see, the plots demonstrate statistically
significant differences between LR-NEH and PFH-NEH, but not between
NEHM and LR-NEH.

If we focus on comparing the NEHM with the LR-NEH, we draw the
following conclusions

– If we choose the NEHM as the initial sequence, we get slightly better
results.

– The above conclusion reflects that the more time invested in the initial
sequence (NEHM compare with LR-NEH), the better results we obtain.

The NEHM is chosen as the initial sequence. The next step is to calibrate the
parameter T . The values taken for calibration are T = {0.1,0.2,0.3,0.4,0.5}.
Therefore we have 5 different combinations to be tested. As we can see in the
graph of 5.9 the best result is provided by the T = 0.2. Although we can state
that T = 0.2 provides the best results, there are no significant differences.

42 Chapter 5. Computational results

Figure 5.8 95% Confidence Intervals for IG for different Heuristics as the initial
sequence.

Figure 5.9 95% Confidence Intervals for IG for different values of T .

Finally, the last parameter to tune is the number of jobs removed in
the destruction phase. To calibrate the parameter d, we make the same
process as for the parameter T . The values taken for calibration are d = 2,3,4.
Attending to the Figure 5.10, we can state that for d = 3 we obtain the best
results without significant differences.

5.5 Metaheuristics calibration 43

Figure 5.10 95% Confidence Intervals for IG for different values of d.

Figure 5.11 95% Confidence Intervals for IGALL for different Heuristics as the
initial sequence.

5.5.2 IGALL

Summing up the procedure, it starts with a initial sequence and then the
algorithm is applied.

44 Chapter 5. Computational results

All the experiments for the metaheuristics are carried out fixing a
stopping criterion of the same maximum time, so efficiencies will be easy and
fast to compare.
The parameters of which depends are:

– The initial sequence obtained by one of the heuristics adapted.

– The parameter T : The parameter of which depend the temperature pro-
posed for the simulated annealing algorithm.

– The parameter d: The number of jobs removed in the destruction phase.

As we have already done for the IG, the first parameter to calibrate is the
heuristic. The argument is the same as we stated previously, although NEHM
is the best heuristic and we have just decided to choose the parameter x like
Case 1, we decided to compare again for one reason: The NEHM is the best in
terms of RPI but is the most CPU-heavy. We must check if the time invested
in the initial sequence is beneficial to the final result. Taking each of the
heuristics as a starting sequence, the first step is to compare all heuristics
setting Case 1. The results in terms of RDI are shown in Figure A.2. As we
can see, the plots demonstrate statistically significant differences between
NEHM and others.

Conclusion reflects that the more time invested in the initial sequence
(NEHM compare with LR-NEH), the better results we obtain. The NEHM is
chosen as the initial sequence.

The next step is to calibrate the parameter T . The values taken for
calibration are T = 0.1,0.2,0.3,0.4,0.5 As we can see in 5.12 the best result
is provided by the T = 0.2. Although we can state that T = 0.2 provides the
best results, there are no significant differences.

Finally, the last parameter to tune is the number of jobs removed in the
destruction phase. To calibrate the parameter d, we make the same process as
for the parameter T . The values taken for calibration are d = 2,3,4. Attending
to the Figure 5.13 we can state that for d = 2 we obtain the best results with
significant differences with d = 4 but without significant differences with d=3.

5.5.3 VBIH

Summing up the procedure, it starts with a initial sequence an then the algo-
rithm is applied. All the experiments for the metaheuristics are carried out
fixing a stopping criterion of the same maximum time, so efficiencies will be
easy and fast to compare.
The parameters of which depends are:

– The initial sequence obtained by one of the heuristics adapted.

5.5 Metaheuristics calibration 45

Figure 5.12 95% Confidence Intervals for IGALL for different values of T.

Figure 5.13 95% Confidence Intervals for IGALL for different values of d.

– The parameter T : The parameter of which depend the temperature pro-
posed for the simulated annealing algorithm.

– The parameter bmin: The minimum size of the block of jobs removed in
the destruction phase.

– The parameter bmax: The minimum size of the block of jobs removed in
the destruction phase.

46 Chapter 5. Computational results

Figure 5.14 95% Confidence Intervals for VBIH for different Heuristics as the initial
sequence.

As we have already done for the IG and IGALL, the first parameter to calibrate
is the heuristic. The argument is the same as we stated previously.

Taking each of the heuristics as a starting sequence, the first step is to
compare all heuristics setting Case 1. The results in terms of RDI are shown
in Figure 5.14. As we can see, the plots demonstrate statistically significant
differences between NEHM and others.

The initial sequence chosen is the NEHM. The next step is to calibrate the
parameter T . The values taken for calibration are T = 0.1,0.2,0.3,0.4,0.5.
As we can see in 5.15 the best result is provided by the T = 0.4. Although
we can state that T = 0.5 provides the best results, there are no significant
differences.

To calibrate the parameter bmin, we make the same process as for the parameter
T . The values taken for calibration are bmin = 2,3. Attending to the Figure
5.16 we can state that for bmin = 1 we obtain the best results with significant
differences.

The last parameter is bmax and and the same process is carried out.
The values taken for calibration are bmax = 3,4,5,6. Attending to the Figure
5.17 we can state that for bmax = 6 we obtain the best results with significant
differences if we compare with bmax = 3 and 4, and without significant
differences compared with bmax = 5.

5.6 Metaheuristics comparison 47

Figure 5.15 95% Confidence Intervals for VBIH for different values of T .

Figure 5.16 95% Confidence Intervals for VBIH for different values of bmin.

5.6 Metaheuristics comparison

The next section is dedicated to comparing all metaheuristics once the param-
eters were set. As we can see in Figure 5.18, the results indicate that the best
method in terms of ARDI is the VBIH. The plots demonstrate statistically
significant differences between VBIH and others.

48 Chapter 5. Computational results

Figure 5.17 95% Confidence Intervals for VBIH for different values of bmax.

Figure 5.18 95% Confidence Intervals for metaheuristics.

When analysing the influence of the number of jobs (n) and the number of
machines (m), we can draw the following conclusions.
As n increases worse results are obtained by VBIH. In fact, for n > 200 the best
metaheuristic is the IG rather VBIH. The biggest difference between VBIH
and the others is for n < 200, specifically for n = 100.
The same behavior is shown if we analysing the influence of the number of

5.6 Metaheuristics comparison 49

Figure 5.19 95% Confidence Intervals for metaheuristics for different values of n.

Figure 5.20 95% Confidence Intervals for metaheuristics for different values of m.

machines. The best results obtained by VBIH are for m = 5. As m increase
wore results are obtained by VBIH. In fact, for m = 40 and m = 60 the best
results are obtained by IG.

6 Conclusions

In this master thesis a set of heuristics, constructive heuristics and metaheuris-
tics has been tested to the Fm|prmu|TCIT problem. Approximate methods
have not been considered previously to solve this problem. Therefore, in this
master thesis the most efficient methods found in the related literature (PFSP
with makespan and total completion time minimization) have been adapted.
The calibration and comparison of method has been developed in two groups,
the heuristics and metaheuristics. To be calibrate Taillard’s benchmark [33]
has been used. However, Vallad’s benchmark [35] has been used for the
comparison due to its statistical advantages. The heuristics and constructive
heuristics has been NEH, NEHM (a modification of NEH), PFH-NEH and
LR-NEH.About the calibration, the Case 1 is choosen for all the heuristics.
The main reason of the selection is the balance between the improvement
of the objective function and the time spends to achieve it. Case 1 is based
on set the number of iteration x = n if n ≤ 100 and 1 if it exceeds 100. The
great effort in CPU necessary for instances with a large number of jobs is
evident. However, a great improvement in a short time is obtained for this
small instances.On the other hand, once the heuristics are calibrated is time
to compare. The NEHM provides the best results, but it is also the one that
spends the highest quantity of computational time.

We can conclude that these heuristics provide a good results for our
problem, but the implementation as initial sequence to the metaheuristic has
been tested. We need to compare if this CPU effort is reflected in an improve-
ment in the final solution. Another conclusion about the comparison of the
heuristics selected is the great importance of the first job of the sequence in the
objective function. All there are based on repeating a certain algorithm chang-
ing the first job, and has been shown the improvement in the objective function.

Related to the adaptation of existing metaheuristics for other prob-
lems in the literature the next conclusions has be made. First to compare
all them, the calibration should be made. The first of this parameter is the

51

52 Chapter 6. Conclusions

heuristic implemented to obtain the initial sequence. It is demonstrate that
the best heuristic to obtain the initial sequence is the NEHM. The CPUE
inverted due to repeated the algorithm changing the first job of the sequence
improve the solution. It is another evidence of the impact of the first job in the
solution. Then the others parameters are calibrate. About the comparison of
the metaheuristic, the best results is provide by the VBIH. Specifically, the
best results are provide for small instances, been the IG the best one for big
instances. We can conclude that the results reveal a good performance of the
method adapted.

To end, a future line of research could be to approach the minimiza-
tion of the TCIT with the minimization of the energy consumption of the
machines. Also, based on these results, methods with greater intelligence
could be developed based on the objective developed.

Appendix A
Heuristics

A.1 Calibration

Table A.1 LR-NEH: ARDI for each case x.

Cases
n m 1 2 3 4
20 5 0,48 0,48 0,48 0,48

10 0,75 0,75 0,75 0,75
20 0,98 0,98 0,98 0,98

Average 0,74 0,74 0,74 0,74
50 5 0,50 0,50 0,50 0,50

10 0,78 0,78 0,78 0,78
20 0,95 0,95 0,95 0,95

Average 0,74 0,74 0,74 0,74
100 5 0,41 0,41 0,41 0,41

10 0,63 0,63 0,63 0,63
20 0,96 0,96 0,96 0,96

Average 0,67 0,67 0,67 0,67
200 10 0,66 0,22 0,35 0,22

20 0,94 0,54 0,64 0,54
Average 0,80 0,38 0,49 0,38

500 20 0,65 0,65 0,38 0,38
Average 0,65 0,65 0,38 0,38

Average 5 0,46 0,46 0,46 0,46
10 0,70 0,59 0,63 0,59
20 0,90 0,82 0,78 0,76

Average 0,73 0,66 0,65 0,63

53

54 Chapter A. Heuristics

Table A.2 NEHM: ARDI for each case x.

Cases
n m 1 2 3 4
20 5 0,61 0,61 0,61 0,61

10 0,57 0,57 0,57 0,57
20 0,52 0,52 0,52 0,52

Average 0,57 0,57 0,57 0,57
50 5 0,43 0,43 0,43 0,43

10 0,54 0,54 0,54 0,54
20 0,52 0,52 0,52 0,52

Average 0,50 0,50 0,50 0,50
100 5 0,29 0,29 0,29 0,29

10 0,43 0,43 0,43 0,43
20 0,51 0,51 0,51 0,51

Average 0,41 0,41 0,41 0,41
200 10 0,37 0,17 0,24 0,17

20 0,55 0,32 0,37 0,32
Average 0,46 0,24 0,31 0,24

500 20 0,65 0,65 0,45 0,45
Average 0,65 0,65 0,45 0,45

Average 5 0,44 0,44 0,44 0,44
10 0,48 0,43 0,45 0,43
20 0,55 0,50 0,47 0,46

Average 0,50 0,46 0,46 0,45

A.2 Comparison 55

Table A.3 PFH-NEH: ARDI for each case x.

Cases
n m 1 2 3 4
20 5 0,40 0,40 0,40 0,40

10 0,85 0,85 0,85 0,85
20 0,78 0,78 0,78 0,78

Average 0,67 0,67 0,67 0,67
50 5 0,39 0,39 0,39 0,39

10 0,86 0,86 0,86 0,86
20 0,80 0,80 0,80 0,80

Average 0,68 0,68 0,68 0,68
100 5 0,82 0,82 0,82 0,82

10 0,73 0,73 0,73 0,73
20 0,89 0,89 0,89 0,89

Average 0,81 0,81 0,81 0,81
200 10 1,00 0,52 0,69 0,52

20 0,89 0,51 0,69 0,51
Average 0,95 0,51 0,69 0,51

500 20 0,98 0,98 0,67 0,67
Average 0,98 0,98 0,67 0,67

Average 5 0,54 0,54 0,54 0,54
10 0,86 0,74 0,78 0,74
20 0,87 0,79 0,76 0,73

Average 0,78 0,71 0,71 0,68

A.2 Comparison

56 Chapter A. Heuristics

Figure A.1 95% Confidence Intervals for heuristics for different values of n.

Figure A.2 95% Confidence Intervals for heuristics for different values of m.

A.2 Comparison 57

Table A.4 Heuristics: ARDI for small instances for n and m.

n m LR-NEH NEH NEHM PFH-NEH
10 5 0,49 0,52 0,10 0,30

10 0,69 0,78 0,03 0,46
15 0,80 0,60 0,06 0,38
20 0,85 0,58 0,05 0,35

Average 0,71 0,62 0,06 0,37
20 5 0,23 0,91 0,15 0,29

10 0,85 0,76 0,00 0,59
15 0,81 0,49 0,00 0,54
20 0,87 0,56 0,00 0,59

Average 0,69 0,68 0,04 0,50
30 5 0,20 0,89 0,16 0,37

10 0,66 0,88 0,05 0,40
15 0,73 0,90 0,00 0,53
20 0,90 0,59 0,00 0,48

Average 0,63 0,81 0,05 0,44
40 5 0,39 0,79 0,16 0,47

10 0,44 0,92 0,05 0,51
15 0,63 0,91 0,00 0,54
20 0,89 0,69 0,00 0,69

Average 0,59 0,83 0,05 0,55
50 5 0,34 0,65 0,05 0,57

10 0,71 0,77 0,04 0,47
15 0,62 0,92 0,05 0,36
20 0,85 0,71 0,00 0,60

Average 0,63 0,77 0,04 0,50
60 5 0,24 0,96 0,31 0,47

10 0,61 0,84 0,01 0,49
15 0,70 0,82 0,00 0,50
20 0,95 0,58 0,00 0,73

Average 0,63 0,80 0,08 0,55
Average 5 0,32 0,79 0,15 0,41

10 0,66 0,83 0,03 0,49
15 0,72 0,77 0,02 0,48

58 Chapter A. Heuristics

Table A.5 Heuristics: ARDI for big instances for n and m.

n m LR-NEH NEH NEHM PFH-NEH
100 20 0,87 0,79 0,00 0,66

40 1,00 0,37 0,00 0,43
60 1,00 0,41 0,00 0,42

Average 0,96 0,52 0,00 0,50
200 20 0,57 0,91 0,00 0,67

40 1,00 0,46 0,00 0,45
60 1,00 0,41 0,00 0,32

Average 0,86 0,59 0,00 0,48
300 20 0,50 0,12 0,12 0,90

40 0,99 0,00 0,00 0,51
60 1,00 0,00 0,00 0,26

Average 0,83 0,04 0,04 0,56
400 20 0,23 0,40 0,40 0,88

40 1,00 0,00 0,00 0,60
60 1,00 0,00 0,00 0,28

Average 0,74 0,13 0,13 0,59
500 20 0,27 0,22 0,22 0,93

40 1,00 0,00 0,00 0,52
60 1,00 0,00 0,00 0,37

Average 0,76 0,07 0,07 0,61
600 20 0,08 0,29 0,29 0,96

40 1,00 0,00 0,00 0,54
60 1,00 0,00 0,00 0,26

Average 0,69 0,10 0,10 0,59
700 20 0,33 0,13 0,13 0,98

40 1,00 0,10 0,10 0,34
60 1,00 0,00 0,00 0,33

Average 0,78 0,07 0,07 0,55
800 20 0,24 0,35 0,35 0,97

40 0,83 0,00 0,00 0,54
60 1,00 0,00 0,00 0,31

Average 0,69 0,12 0,12 0,61
Average 20 0,60 0,49 0,11 0,74

40 0,98 0,12 0,01 0,49
60 1,00 0,10 0,00 0,32

Appendix B
Metaheuristics

B.1 Calibration

Table B.1 IG: ARDI for different values of d.

d
n m 2 3 4
20 5 0,33 0,33 0,33

10 0,47 0,46 0,48
20 0,46 0,44 0,40

Average 0,42 0,41 0,40
50 5 0,30 0,27 0,28

10 0,36 0,37 0,42
20 0,39 0,38 0,40

Average 0,35 0,34 0,37
100 5 0,33 0,33 0,34

10 0,26 0,27 0,30
20 0,33 0,32 0,36

Average 0,30 0,31 0,33
200 10 0,12 0,13 0,16

20 0,20 0,22 0,27
Average 0,16 0,18 0,21

500 20 0,27 0,27 0,27
Average 0,27 0,27 0,27

Average 5 0,32 0,31 0,32
10 0,30 0,31 0,34
20 0,33 0,33 0,34

Average 0,32 0,31 0,33

59

60 Chapter B. Metaheuristics

Table B.2 IG: ARDI for different heuristic as initial sequence.

Heuristic
n m LR-NEH NEH NEHM PFH-NEH
20 5 0,25 0,50 0,40 0,16

10 0,41 0,55 0,39 0,52
20 0,43 0,47 0,35 0,47

Average 0,37 0,50 0,38 0,39
50 5 0,23 0,34 0,32 0,23

10 0,41 0,42 0,31 0,41
20 0,40 0,46 0,33 0,37

Average 0,35 0,41 0,32 0,34
100 5 0,07 0,56 0,17 0,51

10 0,19 0,39 0,23 0,30
20 0,39 0,34 0,25 0,36

Average 0,22 0,43 0,22 0,39
200 10 0,12 0,12 0,11 0,18

20 0,27 0,19 0,20 0,25
Average 0,20 0,16 0,15 0,22

500 20 0,23 0,28 0,28 0,29
Average 0,23 0,28 0,28 0,29

Average 5 0,19 0,47 0,30 0,30
10 0,28 0,37 0,26 0,35
20 0,35 0,35 0,28 0,35

Average 0,29 0,38 0,28 0,34

B.2 Comparison 61

Table B.3 IG: ARDI for different values of T.

n m 0.0 0.1 0.2 0.3 0.4 0.5
20 5 0,33 0,31 0,32 0,34 0,32 0,34

10 0,46 0,47 0,45 0,48 0,48 0,47
20 0,44 0,42 0,42 0,44 0,43 0,43

Average 0,41 0,40 0,40 0,42 0,41 0,41
50 5 0,29 0,30 0,28 0,29 0,28 0,26

10 0,38 0,39 0,37 0,40 0,39 0,39
20 0,38 0,38 0,39 0,40 0,39 0,40

Average 0,35 0,36 0,34 0,36 0,35 0,35
100 5 0,36 0,34 0,32 0,33 0,31 0,31

10 0,28 0,28 0,27 0,28 0,27 0,27
20 0,33 0,33 0,36 0,33 0,33 0,34

Average 0,32 0,31 0,32 0,31 0,30 0,31
200 10 0,13 0,14 0,14 0,14 0,13 0,12

20 0,23 0,22 0,23 0,23 0,22 0,23
Average 0,18 0,18 0,18 0,19 0,18 0,18

500 20 0,27 0,27 0,27 0,29 0,25 0,27
Average 0,27 0,27 0,27 0,29 0,25 0,27

Average 5 0,33 0,32 0,30 0,32 0,30 0,30
10 0,31 0,32 0,31 0,32 0,32 0,31
20 0,33 0,32 0,33 0,34 0,32 0,34

Average 0,32 0,32 0,32 0,33 0,32 0,32

B.2 Comparison

62 Chapter B. Metaheuristics

Table B.4 IGALL: ARDI for different values of d.

d
n m 2 3 4
20 5 0,34 0,34 0,36

10 0,51 0,48 0,55
20 0,44 0,45 0,45

Average 0,43 0,42 0,45
50 5 0,29 0,28 0,28

10 0,48 0,49 0,54
20 0,46 0,49 0,50

Average 0,41 0,42 0,44
100 5 0,32 0,32 0,32

10 0,32 0,34 0,41
20 0,46 0,50 0,54

Average 0,37 0,39 0,42
200 10 0,19 0,22 0,24

20 0,34 0,36 0,38
Average 0,27 0,29 0,31

500 20 0,35 0,34 0,37
Average 0,35 0,34 0,37

Average 5 0,32 0,31 0,32
10 0,38 0,39 0,43
20 0,41 0,43 0,45

Average 0,38 0,39 0,41

B.2 Comparison 63

Table B.5 IGALL: ARDI for different heuristic as initial sequence.

Heuristic
n m LR-NEH NEH NEHM PFH-NEH
20 5 0,29 0,50 0,40 0,20

10 0,46 0,59 0,45 0,55
20 0,46 0,48 0,35 0,49

Average 0,40 0,52 0,40 0,41
50 5 0,24 0,33 0,32 0,24

10 0,53 0,57 0,40 0,52
20 0,53 0,55 0,38 0,48

Average 0,43 0,48 0,37 0,42
100 5 0,10 0,48 0,18 0,51

10 0,26 0,51 0,27 0,40
20 0,58 0,50 0,38 0,55

Average 0,31 0,50 0,28 0,48
200 10 0,24 0,20 0,14 0,30

20 0,42 0,34 0,26 0,41
Average 0,33 0,27 0,20 0,36

500 20 0,31 0,35 0,36 0,40
Average 0,31 0,35 0,36 0,40

Average 5 0,21 0,44 0,30 0,32
10 0,37 0,47 0,32 0,44
20 0,46 0,44 0,35 0,47

Average 0,37 0,45 0,33 0,42

64 Chapter B. Metaheuristics

Table B.6 IGALL: ARDI for different values of T.

T
n m 0.0 0.1 0.2 0.3 0.4 0.5

20 5 0,34 0,35 0,38 0,36 0,34 0,31
10 0,50 0,52 0,52 0,50 0,52 0,51
20 0,44 0,46 0,45 0,45 0,44 0,43

Average 0,43 0,44 0,45 0,44 0,43 0,42
50 5 0,29 0,26 0,29 0,29 0,29 0,28

10 0,49 0,51 0,51 0,51 0,49 0,52
20 0,50 0,50 0,47 0,49 0,48 0,48

Average 0,43 0,42 0,42 0,43 0,42 0,43
100 5 0,33 0,31 0,30 0,32 0,31 0,33

10 0,35 0,37 0,36 0,36 0,36 0,36
20 0,51 0,50 0,49 0,50 0,51 0,51

Average 0,40 0,39 0,38 0,39 0,39 0,40
200 10 0,23 0,21 0,22 0,22 0,21 0,22

20 0,36 0,37 0,35 0,36 0,36 0,35
Average 0,29 0,29 0,29 0,29 0,28 0,29

500 20 0,36 0,36 0,34 0,34 0,35 0,37
Average 0,36 0,36 0,34 0,34 0,35 0,37

Average 5 0,32 0,31 0,32 0,32 0,31 0,31
10 0,39 0,40 0,40 0,40 0,39 0,40
20 0,43 0,44 0,42 0,43 0,43 0,43

Average 0,39 0,39 0,39 0,39 0,39 0,39

B.2 Comparison 65

Table B.7 VBIH: ARDI for different values of bmin.

bmin
n m 1 2

20 5 0,23 0,26
10 0,38 0,43
20 0,35 0,39

Average 0,32 0,36
50 5 0,22 0,23

10 0,29 0,34
20 0,34 0,39

Average 0,28 0,32
100 5 0,28 0,29

10 0,21 0,25
20 0,29 0,36

Average 0,26 0,30
200 10 0,10 0,14

20 0,23 0,29
Average 0,17 0,21

500 20 0,37 0,42
Average 0,37 0,42

Average 5 0,24 0,26
10 0,25 0,29
20 0,32 0,37

Average 0,27 0,32

66 Chapter B. Metaheuristics

Table B.8 VBIH: ARDI for different values of bmax.

bmax
n m 3 4 5 6

20 5 0,31 0,26 0,23 0,20
10 0,47 0,42 0,38 0,36
20 0,42 0,38 0,35 0,35

Average 0,40 0,35 0,32 0,30
50 5 0,26 0,23 0,20 0,20

10 0,38 0,32 0,30 0,28
20 0,40 0,37 0,34 0,33

Average 0,35 0,31 0,28 0,27
100 5 0,31 0,28 0,28 0,27

10 0,27 0,24 0,21 0,21
20 0,38 0,32 0,30 0,29

Average 0,32 0,28 0,26 0,26
200 10 0,15 0,12 0,11 0,10

20 0,30 0,26 0,25 0,24
Average 0,22 0,19 0,18 0,17

500 20 0,40 0,39 0,40 0,40
Average 0,40 0,39 0,40 0,40

Average 5 0,29 0,26 0,24 0,22
10 0,32 0,27 0,25 0,24
20 0,38 0,34 0,33 0,32

Average 0,34 0,30 0,28 0,27

B.2 Comparison 67

Table B.9 Heuristics: ARDI for small instances for n and m.

n m IG IGALL VBIH
10 5 0,15 0,17 0,07

10 0,34 0,39 0,23
15 0,40 0,38 0,17
20 0,33 0,32 0,19

Average 0,31 0,32 0,17
20 5 0,44 0,36 0,21

10 0,69 0,72 0,46
15 0,57 0,61 0,43
20 0,61 0,63 0,44

Average 0,58 0,58 0,38
30 5 0,37 0,36 0,09

10 0,60 0,71 0,48
15 0,64 0,72 0,49
20 0,62 0,64 0,46

Average 0,56 0,61 0,38
40 5 0,56 0,51 0,30

10 0,58 0,73 0,36
15 0,61 0,71 0,52
20 0,56 0,66 0,42

Average 0,58 0,65 0,40
50 5 0,53 0,49 0,23

10 0,54 0,69 0,33
15 0,58 0,70 0,47
20 0,55 0,67 0,39

Average 0,55 0,64 0,35
60 5 0,48 0,47 0,32

10 0,53 0,64 0,31
15 0,57 0,77 0,50
20 0,51 0,70 0,41

Average 0,52 0,64 0,39
Average 5 0,42 0,39 0,20

10 0,55 0,65 0,36
15 0,56 0,65 0,43

68 Chapter B. Metaheuristics

Table B.10 Heuristics: ARDI for big instances for n and m.

n m IG IGALL VBIH
100 20 0,41 0,69 0,35

40 0,51 0,61 0,40
60 0,47 0,56 0,49

Average 0,46 0,62 0,41
200 20 0,34 0,58 0,28

40 0,32 0,52 0,41
60 0,30 0,39 0,48

Average 0,32 0,50 0,39
300 20 0,29 0,58 0,40

40 0,29 0,40 0,47
60 0,25 0,35 0,44

Average 0,28 0,44 0,44
400 20 0,30 0,44 0,42

40 0,29 0,40 0,48
60 0,24 0,33 0,41

Average 0,28 0,39 0,44
500 20 0,32 0,44 0,46

40 0,25 0,34 0,42
60 0,26 0,32 0,38

Average 0,28 0,37 0,42
600 20 0,32 0,42 0,45

40 0,28 0,35 0,39
60 0,25 0,32 0,37

Average 0,28 0,36 0,40
700 20 0,27 0,35 0,44

40 0,26 0,35 0,38
60 0,28 0,30 0,36

Average 0,27 0,33 0,39
800 20 0,37 0,46 0,52

40 0,24 0,32 0,36
60 0,26 0,31 0,33

Average 0,29 0,36 0,40
Average 20 0,41 0,54 0,40

40 0,31 0,41 0,42
60 0,29 0,36 0,41

List of Figures

1.1 Machine-oriented and job-oriented Gantt diagrams [16] 3
1.2 Flow layout of flowshop [16] 5
1.3 Flow layout of flowshop [16] 5
1.4 Flow layout of flowshop [16] 5
1.5 Front/Core/Back Idle Times (FIT/CIT/BIT) in a PFSP [5] 7

5.1 95% Confidence Intervals for NEHM 37
5.2 CPU average for NEHM 37
5.3 95% Confidence Intervals for LR-NEH 38
5.4 CPU average for LR-NEH 38
5.5 95% Confidence Intervals for PFH-NEH 39
5.6 CPU average for PFH-NEH 40
5.7 95% Confidence Intervals for Heuristics 40
5.8 95% Confidence Intervals for IG for different Heuristics as the initial

sequence 42
5.9 95% Confidence Intervals for IG for different values of T 42
5.10 95% Confidence Intervals for IG for different values of d 43
5.11 95% Confidence Intervals for IGALL for different Heuristics as the

initial sequence 43
5.12 95% Confidence Intervals for IGALL for different values of T 45
5.13 95% Confidence Intervals for IGALL for different values of d 45
5.14 95% Confidence Intervals for VBIH for different Heuristics as the

initial sequence 46
5.15 95% Confidence Intervals for VBIH for different values of T 47
5.16 95% Confidence Intervals for VBIH for different values of bmin 47
5.17 95% Confidence Intervals for VBIH for different values of bmax 48
5.18 95% Confidence Intervals for metaheuristics 48
5.19 95% Confidence Intervals for metaheuristics for different values of n 49
5.20 95% Confidence Intervals for metaheuristics for different values of m 49

A.1 95% Confidence Intervals for heuristics for different values of n 56

69

70 List of Figures

A.2 95% Confidence Intervals for heuristics for different values of m 56

List of Tables

2.1 Summarize of the methods applied 11

5.1 Number of instances by size of Taillard instances 33
5.2 Number of instances by size of Vallada’s small instances 34
5.3 Number of instances by size of Vallada’s big instances 34
5.4 Cases of constructive heuristics 35

A.1 LR-NEH: ARDI for each case x 53
A.2 NEHM: ARDI for each case x 54
A.3 PFH-NEH: ARDI for each case x 55
A.4 Heuristics: ARDI for small instances for n and m 57
A.5 Heuristics: ARDI for big instances for n and m 58

B.1 IG: ARDI for different values of d 59
B.2 IG: ARDI for different heuristic as initial sequence 60
B.3 IG: ARDI for different values of T 61
B.4 IGALL: ARDI for different values of d 62
B.5 IGALL: ARDI for different heuristic as initial sequence 63
B.6 IGALL: ARDI for different values of T 64
B.7 VBIH: ARDI for different values of bmin 65
B.8 VBIH: ARDI for different values of bmax 66
B.9 Heuristics: ARDI for small instances for n and m 67
B.10 Heuristics: ARDI for big instances for n and m 68

71

List of Algorithms

1 NEH [27] 19
2 NEH-M [28] 20
3 LR 21
4 LR-NEH 21
5 PF [27] 22
6 PFH-NEH [27] 23
7 Local search 23

8 IG [27] 29
9 IGALL [7] 30
10 VBIH [27] 31

73

Bibliography

[1] Arianna Alfieri, Michele Garraffa, Erica Pastore, and Fabio Salassa,
Permutation flowshop problems minimizing core waiting time and core
idle time, Computers Industrial Engineering 176 (2023), 108983.

[2] A. Baskar and M. Anthony Xavior, New idle time-based tie-breaking
rules in heuristics for the permutation flowshop scheduling problems,
Computers & Operations Research 133 (2021), 105348.

[3] Maria Raquel C. Costa, Jorge M.S. Valente, and Jeffrey E. Schaller, Effi-
cient procedures for the weighted squared tardiness permutation flowshop
scheduling problem, Flexible Services and Manufacturing Journal 32
(2020), no. 3, 487–522.

[4] Alex Paranahyba de Abreu and Helio Yochihiro Fuchigami, An efficiency
and robustness analysis of warm-start mathematical models for idle
and waiting times optimization in the flow shop, Computers Industrial
Engineering 166 (2022), 107976.

[5] Sanchez de-los Reyes Paula, Perez-Gonzalez Paz, and M Framinan Jose,
Permutation flowshop scheduling problem with total core idle time mini-
mization, IFAC-PapersOnLine 55 (2022), no. 10, 187–191, 10th IFAC
Conference on Manufacturing Modelling, Management and Control MIM
2022.

[6] B. Dhanasakkaravarthi and A. Krishnamoorthy, A New Priority Rule for
Initial Ordering of Jobs in Permutation Flowshop Scheduling Problems,
International Journal of Advanced Computer Science and Applications
13 (2022), no. 1, 2022.

[7] Jérémie Dubois-Lacoste, Federico Pagnozzi, and Thomas Stützle, An
iterated greedy algorithm with optimization of partial solutions for the
makespan permutation flowshop problem, Computers and Operations
Research 81 (2017), 160–166.

75

76 Bibliography

[8] Victor Fernandez-Viagas and Jose M. Framinan, A new set of high-
performing heuristics to minimise flowtime in permutation flowshops,
Computers Operations Research 53 (2015), 68–80.

[9] Victor Fernandez-Viagas and Jose M. Framinan, Reduction of permu-
tation flowshop problems to single machine problems using machine
dominance relations, Computers & Operations Research 77 (2017), 96–
110.

[10] , A best-of-breed iterated greedy for the permutation flowshop
scheduling problem with makespan objective, Computers and Operations
Research 112 (2019).

[11] Victor Fernandez-Viagas, Jose M. Molina-Pariente, and Jose M. Frami-
nan, Generalised accelerations for insertion-based heuristics in permu-
tation flowshop scheduling, European Journal of Operational Research
282 (2020), no. 3, 858–872.

[12] Victor Fernandez-Viagas, Rubén Ruiz, and Jose M. Framinan, A new
vision of approximate methods for the permutation flowshop to minimise
makespan: State-of-the-art and computational evaluation, European
Journal of Operational Research 257 (2017), no. 3, 707–721.

[13] Victor Fernandez-Viagas, Jorge M.S. Valente, and Jose M. Framinan,
Iterated-greedy-based algorithms with beam search initialization for the
permutation flowshop to minimise total tardiness, Expert Systems with
Applications 94 (2018), 58–69.

[14] J. Fondrevelle, A. Oulamara, and M.-C. Portmann, Permutation flowshop
scheduling problems with time lags to minimize the weighted sum of ma-
chine completion times, International Journal of Production Economics
112 (2008), no. 1, 168–176, Special Section on Recent Developments in
the Design, Control, Planning and Scheduling of Productive Systems.

[15] Jose M. Framinan, Rainer Leisten, and Chandrasekharan Rajendran, Dif-
ferent initial sequences for the heuristic of Nawaz, Enscore and Ham to
minimize makespan, idletime or flowtime in the static permutation flow-
shop sequencing problem, International Journal of Production Research
41 (2003), no. 1, 121–148.

[16] Jose M. Framinan, Rainer Leisten, and Rubén Ruiz García, Manufactur-
ing Scheduling Systems, 2014.

[17] Kannan Govindan, R. Balasundaram, N. Baskar, and P. Asokan, A hybrid
approach for minimizing makespan in permutation flowshop scheduling,
Journal of Systems Science and Systems Engineering 2017 26:1 26
(2017), no. 1, 50–76.

[18] Johnny C. Ho and Jatinder N.D. Gupta, Flowshop scheduling with domi-
nant machines, Computers Operations Research 22 (1995), no. 2, 237–
246.

Bibliography 77

[19] S. M. Johnson, Optimal two- and three-stage production schedules with
setup times included, Naval Research Logistics Quarterly 1 (1954), no. 1,
61–68.

[20] Jin Pin Liou, Dominance conditions determination based on machine
idle times for the permutation flowshop scheduling problem, Computers
& Operations Research 122 (2020), 104964.

[21] Jiyin Liu and Colin R Reeves, Constructive and composite heuristic solu-
tions to the P||Ci scheduling problem, European Journal of Operational
Research 132 (2001), no. 2, 439–452.

[22] Kathrin Maassen, Paz Perez-Gonzalez, and Lisa C. Günther, Relation-
ship between common objective functions, idle time and waiting time in
permutation flow shop scheduling, Computers & Operations Research
(2020), 104965.

[23] S.T. McCormick, Michael L. Pinedo, S. Shenker, and B. Wolf, Sequenc-
ing in an assembly line with blocking to minimize cycle time, Operations
Research (1989).

[24] Márcia de Fátima Morais, Matheus Henrique Dal Molin Ribeiro, Ra-
mon Gomes da Silva, Viviana Cocco Mariani, and Leandro dos Santos
Coelho, Discrete differential evolution metaheuristics for permutation
flow shop scheduling problems, Computers & Industrial Engineering 166
(2022), 107956.

[25] M. Nawaz, E.E. Enscore, and I. Ham, A Heuristic Algorithm for the
m-Machine , n-Job Flow-shop Sequencing Problem, Omega 11 (1982),
no. 1, 91–95.

[26] IH Osman and CN Potts, Simulated annealing for permutation flow-shop
scheduling, Omega 17 (1989), no. 6, 551–557.

[27] Hande Öztop, M. Fatih Tasgetiren, Deniz Türsel Eliiyi, Quan-Ke Pan, and
Levent Kandiller, An energy-efficient permutation flowshop scheduling
problem, Expert Systems with Applications 150 (2020), 113279.

[28] Hande Öztop, M. Fatih Tasgetiren, Levent Kandiller, Deniz Türsel Eliiyi,
and Liang Gao, Ensemble of metaheuristics for energy-efficient hybrid
flowshops: Makespan versus total energy consumption, Swarm and Evo-
lutionary Computation 54 (2020), no. September 2019.

[29] Quan Ke Pan and Rubén Ruiz, A comprehensive review and evaluation
of permutation flowshop heuristics to minimize flowtime, Computers &
Operations Research 40 (2013), no. 1, 117–128.

[30] Rubén Ruiz and Thomas Stützle, A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem, European
Journal of Operational Research 177 (2007), no. 3, 2033–2049.

78 Bibliography

[31] Alex J. Ruiz-Torres, Johnny C. Ho, and José H. Ablanedo-Rosas,
Makespan and workstation utilization minimization in a flowshop with
operations flexibility, Omega 39 (2011), no. 3, 273–282.

[32] Andreia F. Silva, Jorge M.S. Valente, and Jeffrey E. Schaller, Metaheuris-
tics for the permutation flowshop problem with a weighted quadratic tar-
diness objective, Computers & Operations Research 140 (2022), 105691.

[33] E. D. Taillard, Benchmarks for basic scheduling problems, European
Journal of Operational Research 64 (1993), 278–285.

[34] Mehmet Fatih Tasgetiren, Quan-Ke Pan, Damla Kizilay, and Kaizhou
Gao, A Variable Block Insertion Heuristic for the Blocking Flowshop
Scheduling Problem with Total Flowtime Criterion, Algorithms 9 (2016),
no. 4, 71.

[35] Eva Vallada, Rubén Ruiz, and Jose M. Framinan, New hard benchmark for
flowshop scheduling problems minimising makespan, European Journal
of Operational Research 240 (2015), no. 3, 666–677.

[36] Betul Yagmahan and Mehmet Mutlu Yenisey, Ant colony optimization
for multi-objective flow shop scheduling problem, Computers Industrial
Engineering 54 (2008), no. 3, 411–420.

Index 79

	Resumen
	Abstract
	Introduction
	Scheduling
	Notation
	Flowshop
	Problem description
	Objective of the master thesis
	Document structure

	Literature Review
	Introduction
	Fm|prmu|Cmax and Fm|prm|Cj
	Core idle time

	Constructive heuristics
	NEH
	NEHM
	LR-NEH
	PFH-NEH
	Local search

	Metaheuristics
	Iteraty Greedy
	IGALL
	VBIH

	Computational results
	Testbeds description
	Evaluation of the results
	Heuristics calibration
	NEHM
	LR-NEH
	PFH-NEH

	Heurisics comparison
	Metaheuristics calibration
	IG
	IGALL
	VBIH

	Metaheuristics comparison

	Conclusions
	Appendix Heuristics
	Calibration
	Comparison

	Appendix Metaheuristics
	Calibration
	Comparison

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Index
	Glossary
	End/Last page
	First page

