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Abstract

Low-cost transfer trajectories are significant to explore asteroids with distant orbits in a multiple targets’ mission. Methods for design-
ing these trajectories optimally are proposed. The sequence of gravity-assists is evaluated by the Tisserand graph. Then, an optimization
method combining the particle swarm optimization (PSO) and the indirect method is used to optimize the low-thrust trajectories with
gravity assists. The Bang–Bang control problem in the indirect method is overcome by a smooth technique. The whole transfer trajec-
tories solving process by the shooting method is divided into several steps to overcome the difficulty and improve the efficiency.
Numerical simulations are carried out for validating the proposed method.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Both near-Earth asteroids and main-belt asteroids have
attracted space agencies to carry out explorations. Several
spacecrafts have explored these asteroids successfully,
including NEAR Shoemaker (Dunham et al., 2002),
Hayabusa-1 (Kawaguchi et al., 2008), Dawn (Russell
et al., 2007), etc. The first two spacecrafts executed
near-Earth asteroids’ missions (Dunham et al., 2002;
Kawaguchi et al., 2008) and the third one has finished ren-
dezvousing the main-belt asteroid Vesta and is on its way
to the Ceres (Russell et al., 2007). Several other future mis-
sions, such as MarcoPolo (Barucci et al., 2012),
OSIRIS-REx (Lauretta and Team, 2012), Hayabusa 2
(Tsuda et al., 2013), etc., are proposed in the past years
as well.
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Near-Earth asteroids includes three types which are
Apollo (a P 1.0 AU; q 6 1.0167 AU), Aten (a < 1.0 AU;
q > 0.983 AU) and Amor (1.0167 AU < q 6 1.3 AU)
(Morbidelli et al., 2002). Accessibility of exploring the
near-Earth asteroids by direct transfer or using the Earth
gravity assist has been studied and evaluated (Lau and
Hulkower, 1987; Qiao et al., 2006). Different from the
near-Earth asteroids, the orbits of the main-belt asteroids
are distant to the Earth. These asteroids are usually divided
into three groups according to the semimajor axis: the
inner belt asteroids (2.1 AU 6 a 6 2.5 AU), the middle belt
asteroids (2.5 AU < a 6 3.0 AU) and the outer belt aster-
oids (a > 3.0 AU) (Chen et al., 2014). Due to the orbits
of the main-belt asteroids are distant, single and multiple
gravity assists are studied to lower the mission cost and
the accessibility is evaluated (Chen et al., 2014). Dual
Mars gravity assists are shown to be the best via the anal-
ysis (Chen et al., 2014) and the dual Mars gravity assists are
used twice in the sample return mission (Dankanich et al.,
2010).
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Visiting multiple asteroids during one mission can
reduce costs and increase the scientific results obviously
(Olympio, 2011). Sears et al. and Morimoto et al. studied
a mission of sampling return of multiple near-Earth aster-
oids (Sears et al., 2004; Morimoto et al., 2004). Olympio
derived the transversality conditions for the optimal con-
trol of missions in which the multiple asteroids are visited
by rendezvous or flyby (Olympio, 2011). Besides, visiting
multiple asteroids is one of the main subjects of the global
trajectory optimization competition (GTOC). In the recent
7th edition GTOC, a mission with multiple spacecrafts for
visiting the asteroid belt is proposed (Casalino and
Colasurdo, 2015). Actually, this is a multiple targets mis-
sion with several important features such as the simultane-
ous optimization of trajectories, cooperation between
mothership and probes, etc. (Casalino and Colasurdo,
2015). Visiting near-Earth asteroids and main-belt aster-
oids in one mission can achieve scientific aims of studying
both these two kinds of asteroids and lower the cost. One
key part of designing such a mission is the transfer orbits
between the near-Earth asteroids and main-belt asteroids.

Due to the orbits of a near-Earth asteroid and a
main-belt asteroid is distant, the gravity assists are neces-
sary to lower the cost significantly. Besides, the electric
propulsion, which provides the low thrust, gives higher
specific impulse and thus is more efficient compared with
the traditional chemical propulsion (Jiang et al., 2012).
Actually, the electric propulsion has already been used in
the asteroid’s mission for visiting the Itokawa (Kuninaka
et al., 2007). So far, many works have been carried out
for dealing with low-thrust trajectory design to outer plan-
ets combined with gravity assists (Armellin et al., 2010;
Casalino et al., 1999; Jiang et al., 2012; McConaghy et al.,
2003; Rasotto et al., 2013; Woo et al., 2006). McConaghy
et al. (2003) proposed a two-step approach including the
broad search and the parameter optimization. In the broad
search, a simplified shape-based trajectory model is used
and the best trajectories are selected by a heuristic cost func-
tion. Woo et al. (2006) employed the genetic algorithms and
proposed automatic searching procedure. The methods
developed by McConaghy et al. (2003) and Woo et al.
(2006) are regarded as direct methods to deal with the opti-
mal control problems. Different with their works, the fuel
optimal low-thrust trajectories using multiple gravity assists
are studied by the indirect method in this paper. In the indi-
rect method, the optimal control problem is transformed
into a boundary value problem with the help of the
Pontryagin’s Maximum theory and then solved by a shoot-
ing method (Rao, 2009). In the study of Casalino et al.
(1999), the indirect method is used and both cases of
free-height and minimum-height flybys are studied.
Besides, the method proposed by Casalino et al. (1999) is
able to deal with both cases of constant and variable
exhaust velocity as well. Jiang et al. (2012) proposed a prac-
tical homotopic method which can be applied to solve the
low thrust trajectories combined gravity assists. Both the
studies of Casalino et al. (1999) and Jiang et al. (2012) dealt
with single gravity-assist problems. In the current paper, a
multiple gravity-assist problem is to be studied. Rasotto
et al. (2013) has proposed a method for dealing with the
multiple gravity-assist problems using the
multiple-shooting technique (Olympio, 2011). An interme-
diate point is selected within the arc between two planets
to increase the robustness (Rasotto et al., 2013). Indeed,
the multiple-shooting technique can greatly improve the
convergence of solving the boundary value problems. But
the number of the variables will increases quickly with num-
ber of the intermediate points as well. Besides, the boundary
value problems may be hard to converge without proper
guessed initial values when the number of the unknown
variables is too large. Different with the approach of
Rasotto et al. (2013), the method proposed in this paper
is developed from the practical homotopic method (Jiang
et al., 2012). The method proposed by Jiang et al. (2012)
becomes very fast and effective in its solving process by
involving two key techniques: (1) normalization of the ini-
tial costate vector; (2) switching detection. Actually, the
practical homotopic method (Jiang et al., 2012) has shown
its excellent efficiency for optimizing the low-thrust trajecto-
ries in the 5th edition GTOC (Jiang et al., 2014). The idea
herein is to divide the whole low-thrust trajectories into sev-
eral sub-trajectories and each contains only one gravity
assist for the purpose of decreasing the number of the
unknown variables. In this way, the practical homotopic
method (Jiang et al., 2012) can be applied simply and effec-
tively for optimizing each sub-trajectory. The whole
low-thrust trajectories are then obtained by a three-step
solving process. Although only the optimality of the
sub-trajectories can by guaranteed by the method in the cur-
rent paper, the proposed method is easy to converge and
can be simply extended for low-thrust trajectory optimiza-
tions with more than three gravity assists.

As for the fuel optimal control problem, there always
exists a Bang–Bang control problem which leads the con-
vergence of the shooting process to be difficult (Bertrand
and Epenoy, 2002). Bertrand and Epenoy (2002) proposed
a smoothing technique in which an index homotopy is built
to overcome this difficult. This method has been used and
developed in many studies (Chen et al., 2014; Jiang et al.,
2012; Olympio, 2011; Rasotto et al., 2013; Caillau et al.,
2012; Yang and Baoyin, 2015). Specifically, Rasotto et al.
(2013) proposed two kinds of smoothing approximations
which are the exponential approximation and arctangent
approximation. Besides, Rasotto et al. (2013) and Caillau
et al. (2012) applied the smoothing technique to the opti-
mal control problems with three-body dynamics; Yang
and Baoyin (2015) dealt with the optimal control problems
in irregular gravity fields. However, it is difficult to deter-
mine the switching points only by the smoothing technique.
Switching time optimization methods are regarded as an
efficient ways to determine the optimal Bang–Bang switch-
ing points (Lin et al., 2014; Loxton et al., 2014). In these
methods, the key technique is the time-scaling transforma-
tion by which the existence of the partial derivatives of the



Fig. 1. Illustration of the gravity-assist impulsive model.
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cost function can be guaranteed and the numerical integra-
tion becomes easier (Lin et al., 2014; Loxton et al., 2014).
But the switching time optimization methods belong to
direct methods. Alternatively, the switching detection com-
bined with the smoothing technique, which belongs to indi-
rect methods, shows its advantages in determining the
switching points accurately and efficiently as well (Jiang
et al., 2012). In this paper, the method proposed by Jiang
et al. (2012) is used. Moreover, the magnitude of the low
thrust is assumed to be varying with the distance to the
sun other than being constant in the current study.
Hence, the key equations of the switching detection
(Jiang et al., 2012) will be derived for the new case.

Moreover, this paper focuses on the specific case of
designing low thrust trajectories between a near-Earth
asteroid and a main-belt asteroid using gravity assists
which is not considered in these previous studies
(Armellin et al., 2010; Casalino et al., 1999; Jiang et al.,
2012; McConaghy et al., 2003; Rasotto et al., 2013; Woo
et al., 2006). Although the low thrust trajectories from
the Earth to the main-belt asteroids with gravity assists
have been studied in the work of Chen et al. (2014), the
spacecraft is started from a near-Earth asteroid rather than
the Earth in this paper. Hence, the selected sequence of the
gravity assist will be different from the one in the work of
Chen et al. (2014). Based on the results of Chen et al.
(2014), the best sequence of the gravity assist for transfers
between a near-Earth asteroid and a main-belt asteroid is
further analyzed and determined by the Tisserand graph
(Strange and Longuski, 2002). With the determined
gravity-assist sequence, an optimization method combining
the PSO method and the indirect method is proposed to
optimize the transfer trajectories. It is expected that the
gravity-assist analysis and the proposed optimization
method can be useful for the orbit design of future
multiple-asteroid explorations of visiting both near-Earth
asteroids and main-belt asteroids.

2. Problem statement and basic analysis

2.1. Problem statement

A spacecraft propelled by low thrusters is assumed to
have finished a rendezvous mission with a near-Earth aster-
oid at the initial time t0. The initial position vector r0 and
velocity vector v0 are assumed to be the same as the
near-Earth asteroid. Then, the spacecraft starts to execute
an interplanetary transfer by the low thrust. The dynamical
equation of the low-thrust propelled spacecraft in the helio-
centric ecliptic reference frame, when only the spherical
gravity of the sun is considered beside the low thrust for
preliminary designs, is (Jiang et al., 2012)

_r ¼ v; _v ¼ � l
r3

r þ T maxu
m

a; _m ¼ � T maxu
Ispg0

ð1Þ

where r and v are the position and velocity vectors, respec-
tively, l is the gravitational constant of the sun, u is the
engine thrust ratio, m is the mass of the spacecraft, Isp is
the thruster specific impulse, g0 = 9.80665 m/s2 is the stan-
dard acceleration of the gravity at sea level, and Tmax is the
instantaneous maximal thrust magnitude and is assumed to
be depended on the distance r from the sun:

T max ¼ T 0=r2 ð2Þ
Here, T0 is maximal magnitude of the thrust at the dis-

tance 1 astronomical unit (AU) to the sun. At terminal time
tf, the spacecraft is assumed to rendezvous a main-belt
asteroid, i.e., its terminal position and velocity vectors, rf

and vf, are the same as the asteroid.
To lower the cost of the interplanetary transfer, gravity

assists are assumed to be used. In this paper, the impulsive
model of gravity assists which has been employed for pre-
liminary trajectories’ design or analysis (Chen et al., 2014;
Jiang et al., 2012; Sims and Flanagan, 1997) is used. In this
model, the position spacecraft is assumed to the same as
the gravity-assist planet at the instantaneous
gravity-assist time tGA:

rðtGAÞ � rP ðtGAÞ ¼ 0 ð3Þ
The change of the velocity is shown in Fig. 1 and the fol-

lowing equations are satisfied (Jiang et al., 2012):

v� ¼ vP þ v�1 ð4Þ
vþ ¼ vP þ vþ1 ð5Þ
kv�1k ¼ kvþ1k ¼ v1 ð6Þ

cos d ¼ v�1 � vþ1
v2
1

; d 6 dmax ð7Þ

where “�” and “+” denote the instantaneous time before
and after the tGA, vP is velocity vector of the
gravity-assist planet, v�1 and vþ1 are inbound or outbound
excess velocity vectors, respectively, and d is the turn angle.
The maximal turn angle dmax is determined by (Jiang et al.,
2012)

sin
dmax

2
¼ 1

1þ rp
minv2

1=lP
ð8Þ
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where lP is gravitational constant of the planet and rp
min is

the minimum flyby radius.
As shown in Fig. 1, the locus of the outbound excess

velocity vector is a circular which is perpendicular to the
vector of the inbound excess velocity when the turn angle
is specified. Define a gravity-assist frame o-ijk, where

i ¼ v�1
kv�1k

; k ¼ vP � v�1
kvP � v�1k

; j ¼ k� i ð9Þ

Then, the following equation can be obtained:

vþ1 ¼ v1ðcos di þ sin d sin uj þ sin d cos ukÞ ð10Þ

The impulse provided by the gravity assist is

DvGA ¼ vþ � v� ð11Þ
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Fig. 2. Ra–Rp plots for NEA, Earth, Mars and MBA.
2.2. Gravity-assist sequence analysis

The Tisserand graph is an analytical method developed
by Strange and Longuski (2002) for analyzing sequences of
gravity assists. This method has been used to select
gravity-assist planets for rendezvousing main-belt asteroids
by a spacecraft launched from the Earth (Chen et al.,
2014). In the study of Chen et al. (2014), the dual Mars
gravity assist is shown to be most effective and the Venus
is inefficient for main-belt asteroid missions. Different with
their study, the spacecraft is launched from a near-Earth
asteroid rather than the Earth. The Venus is ignored in
the current study as well due to the assumption that only
the near-Earth asteroids with orbits close to the Earth
are considered in this paper. The Ra–Rp plot (i.e. one form
of the Tisserand graph) (Chen et al., 2014), in which the
horizontal axis and ordinate axis denote the periapsis Rp

and apoapsis Ra of the transfer orbit connecting the corre-
sponding celestial body, respectively, is used herein for
gravity-assist sequence analysis.

In the graphical method, the orbits of all celestial bodies
are assumed to be circular and coplanar (Strange and
Longuski, 2002). Specially, these celestial bodies include
the Earth, Mars, near-Earth asteroids and main-belt aster-
oids in the current study. Based on the previous study
(Chen et al., 2014), the Mars gravity assist should be effec-
tive due to the orbit of the near-earth asteroid is close to
the Earth. Indeed, the effect of the Mars gravity assist will
be demonstrated by the Ra–Rp plots. To further study the
effectiveness of the Earth gravity assist when the spacecraft
is launched from a near-Earth asteroid, both cases for
semimajor axis a of the near-Earth asteroid being larger
or smaller than the Earth will be checked. Herein, the semi-
axis of the near-Earth asteroid is chosen to be 0.9 AU or
1.1 AU. Besides, the semimajor axis of the target
main-belt asteroid has no direct impact on the effectiveness
of the Earth gravity assist because the Mars gravity assist is
suggested (Chen et al., 2014) before arriving at the main
belt. Hence, the semimajor axis of the main-belt asteroid
herein is arbitrarily chosen to be 2.5 AU in the graphical
analysis.
The Ra–Rp plots for the near-Earth asteroid, Earth,
Mars and main-belt asteroid are shown in
Fig. 2(a) and (b). The abbreviations NEA and MBA repre-
sent near-Earth asteroid and main-belt asteroid in this fig-
ure as well as the figures and tables below. In the Ra–Rp

plots, the curves represent v1 contours of the planets or
asteroids. The v1 is defined as the velocity difference
between the transfer orbits and the orbit of a celestial body.
The contours are obtained as follows. Denote the angle
between the v1 and the velocity of each planets or asteroids
as a. With a given a and the magnitude of the v1, the peri-
apsis and apoapsis of the transfer orbit can be determined.
By varying a while maintaining the magnitude of the v1, a
series of Ra and Rp for a v1 contour can be obtained. In
this study, the a is equal to 0� at the upper bound of each
contour and it increases to 180� at the lower bound of the
contour. Besides, the value of the contours for each celes-
tial body increases from right to left with the interval of
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Fig. 3. Illustration of the effectiveness of the Earth gravity assist.
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1 km/s. For example, there are nine v1 contours for the
Earth and the value of these contours is 1–9 km/s from
right to left. Moreover, in order to find a transfer orbit
between two celestial bodies, there should be an intersec-
tion of the v1 contours of these two celestial bodies. The
angle a can be changed by gravity assists. Hence, one inter-
section can be shifted to another intersection on the same
contour by the planet’s gravity assists. However, the capac-
ity of the gravity assist for changing a is limited. The capac-
ity of one gravity assist is reflected by the tick markers on
the planets’ contours. Specifically, there can be a shift on a
curve but the shift cannot pass more than one tick marker
by one gravity assist. More detail information for the
Ra–Rp plots can be found in the works of Chen et al.
(2014) and Strange and Longuski (2002).

As shown in Fig. 2, the v1 contours of the Mars can
connect the 3 km/s contour of the main-belt asteroid while
the v1 contours of the Earth and near-Earth asteroid
intercept the contour of the main-belt asteroid with value
of 5 km/s at least. Hence, the braking impulse can be
greatly decreased with the help of the Mars gravity assist.
Besides, only the v1 contour of the Earth or the
near-Earth asteroid with high value can connect the con-
tour of the main-belt asteroid without the Mars gravity
assist which means the launch velocity should be large.
Hence, the Mars gravity assist is necessary. Minimum total
impulse cases of either using Earth gravity assist or not are
selected from Fig. 2 and plotted in Fig. 3 to illustrate the
effectiveness of the Earth gravity assist. For both cases in
Fig. 3, it can be founded that the launch impulse from
the near-Earth asteroid can be reduced with the help of
the Earth gravity assist. In Fig. 3(a), the launch impulse
is 2 km/s with the Earth gravity assist while it is 4 km/s
without the Earth gravity assist; In Fig. 3(b), the launch
impulse is 2 km/s with the Earth gravity assist while it is
3 km/s without the Earth gravity assist. Hence, the Earth
gravity assist is necessary for reducing the total impulse.
Besides, there is a potential application that is to return
the sample collected from the near-Earth asteroid during
the Earth gravity assist. Moreover, dual Mars gravity
assists are required according to the tick markers on the
v1 contour of the Mars. This phenomenon consists with
the result of the work of Chen et al. (2014).

According to Fig. 3 and the analysis above, the best
gravity assist sequence is Earth–Mars–Mars gravity assist
(EMMGA). This sequence will be used in next analysis
and simulations. Note that all trajectories corresponding
to the contours in Fig. 3 are ballistic not low-thrust pro-
pelled and the appropriate phases are assumed for ren-
dezvous and gravity assists. Actually, the impulsive
maneuver approximation is one of most effective methods
used in preliminary analysis and global searching for low
thrust trajectories designing (Olympio, 2011; Sims and
Flanagan, 1997). Besides, appropriate phases can be
found with the assumption that the allowed range of
the launch date is large enough.
3. Optimal delta-V searching

The overall process of the optimization method in the
current study for obtaining the low-thrust trajectories is
as follows. Firstly, the impulsive maneuver approximation
(Sims and Flanagan, 1997) is used for searching global
optimal delta-V trajectories. The PSO method is chosen
as the global optimization method to design the event dates
and the whole delta-V of impulsive maneuvers is obtained
by the patched conic method. Secondly, an indirect method
is used to optimize low-thrust trajectories. In the indirect
method, the event dates obtained in the previous step,
including launch time, gravity assist time and braking time,
are used as guessed values.

The patched conic method is illustrated in Fig. 4(a). The
lambert method is used directly to construct the transfer
trajectories between every two celestial bodies except for
the trajectory connecting the consecutive Mars gravity
assists. The reason for not solving this special case directly



Fig. 4. Illustration of the patched conic method.
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by the lambert method is as follows. The consecutive grav-
ity assists are ideal resonant gravity assists if no deep space
maneuver (DSM) is carried out. In this case, the trajectory
is a 360� transfer and the lambert method cannot work well
to determine the trajectory. Followed the way of Chen
et al. (2014), a DSM is assumed between the two Mars
gravity assists. Actually, the DSM is also essential in the
V1 leveraging technique to improve the effectiveness of
the consecutive gravity assists provided by the same
Planet (Sims et al., 1997). Hence, the total delta-V may
be decreased with the help of the DSM. Moreover, it
should be noted that the magnitude of the DSM can be
very small in the optimized result.

The time variables in Fig. 4(a) are as follows: the initial
time t0, the Earth gravity assist (EGA) time tEGA, the first
Mars gravity assist (MGA1) time tMGA1, the DSM time
tDSM, the second Mars gravity assist (MGA2) time
tMGA2, and the terminal time tf. Five impulses are assumed
to be provided by the thrusters. Dv0 is the launch impulse,
Dvf is terminal brake impulse, Dv̂EGA and Dv̂MGA2 are
impulses executed instantaneously after the gravity assists,
and DvDSM is the impulse for the DSM. Moreover, DvEGA,
DvMGA1 and DvMGA2 are impulses provided by the Earth or
Mars.

In Fig. 4, L means solving a transfer leg by the Lambert
solution and OP means solving a transfer leg by the orbit
propagation. Hence, there are two kinds of gravity assist
as shown in Fig. 4(b) and (c). This is because the target
position of the spacecraft when the DSM is executed can-
not be obtained only by the tDSM. At other five time, the
target position is equal the position of the asteroids or
planets. The relationships of the velocity after and before
the gravity assist, vout and vin, in Fig. 4(b) and (c) are

vout ¼ vin þ DvGA þ Dv̂GA ð12Þ

vout ¼ vin þ DvGA ð13Þ

DvGA is chosen to minimize the magnitude of Dv̂GA in Eq.
(12) while it is determined by the two gravity-assist angles
d and u as shown in Fig. 1.

The optimal delta-V index can be chosen as
J ¼ kDv0k þ kDv̂EGAk þ kDvDSMk þ kDv̂MGA2k
þ kDvf k ð14Þ

where k � k denotes second norm of the vector.
To solve the optimal delta-V problem, the particle

swarm optimization (PSO) method (Pontani and
Conway, 2010; Kennedy, 2010) is used. The optimal vari-
ables are xi (i = 1, . . ., 8) 2 [0, 1]. Then, the following vari-
ables required for patched conic method are expressed by
these optimal variables:

t0 ¼ t0s þ ðt0f � t0f Þx1

tEGA ¼ t0 þ dtmaxx2

tMGA1 ¼ tEGA þ ðdtmax � ðtEGA � t0ÞÞx3

tDSM ¼ tMGA1 þ ðdtmax � ðtMGA1 � t0ÞÞx4

tMGA2 ¼ tDSM þ ðdtmax � ðtDSM � t0ÞÞx5

tf ¼ tMGA2 þ ðdtmax � ðtMGA2 � t0ÞÞx6

uMGA1 ¼ 2px7

dMGA1 ¼ dmaxx8

ð15Þ

Once the variables above are determined, the ballistic tra-
jectories can be then obtained. And the optimized time
variables are to be further used in the following
low-thrust trajectory design. Besides, the state variables
of impulsive transfers at each tGA

+ and tGA
� will be

employed as temporary boundary-value conditions.
4. Low-thrust trajectory optimization

4.1. Optimal control for variable-thrust trajectory

To minimize the fuel consumption, the following index
is chosen:

J ¼ k0

Z tf

t0

T maxu
Ispg0

dt ð16Þ

where k0 is positive constant. According to the
Pontryagin’s Maximal Theory, the following Hamiltonian
H is built (Jiang et al., 2012; Zeng et al., 2014):

H ¼ kr � vþ kv � �
l
r3

rþ T maxua

m

� �
� km

T maxu
Ispg0

þ k0

T maxu
Ispg0

ð17Þ

where kr, kv and km are co-state variables.
Based on the Euler–Lagrange conditions, the differential

equations for the co-state variables can be obtained:

_kr¼
l
r3

kv�
3lr �kv

r5
rþkv �

2T 0ua

r4
r�2ðkm�k0Þ

T 0u
Ispg0r4

r

_kv¼�kr

_km¼ kv �
T maxua

m2

ð18Þ
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The optimal thrust direction and magnitude should be
chosen to guarantee that the Hamiltonian is minimized.
Hence, the optimal thrust direction and magnitude can
be obtained as follows:

a� ¼ � kv

kkvk
ð19Þ

u� ¼
1; q < 0

0; q > 0

½0; 1�; q ¼ 0

8><
>: ð20Þ

where the expression of the switching function q is

q ¼ 1� I spg0kkvk
k0m

� km

k0

ð21Þ

So far, the optimal control expressions have been
derived as Eqs. (19) and (20).

4.2. Multiple-point-boundary-value problem

The ordinary differential equations for this optimal con-
trol problem are Eqs. (1) and (18) which are

_x¼ f ðx;U ; tÞ ¼

_r¼ v

_v¼� l
r3 rþ T maxu

m a

_m¼� T maxu
Ispg0

_kr ¼ l
r3 kv � 3lr�kv

r5 rþ kv � 2T 0ua

r4 r� 2ðkm � k0Þ T 0u
Ispg0r4 r

_kv ¼�kr

_km ¼ kv � T maxua

m2

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

In this paper, the initial and terminal time are assumed
to be fixed to the optimized values in Eq. (15). According
to the assumptions in Section 2.1, the initial and terminal
constraints are

rðt0Þ � rNEAðt0Þ ¼ 0

vðt0Þ � vNEAðt0Þ ¼ 0

mðt0Þ � m0 ¼ 0

ð23Þ

rðtf Þ � rMBAðt0Þ ¼ 0

vðtf Þ � vMBAðt0Þ ¼ 0
ð24Þ

respectively. A terminal transversality condition can be
obtained due to no mass constraint in Eq. (24):

kmðtf Þ ¼ 0 ð25Þ

The intermediate gravity assists are regarded as interior
point constraints and the intermediate dates are assumed to
be variable. For each gravity assist, there are a four dimen-
sional equality constraint and a one dimensional inequality
constraint (Jiang et al., 2012):

w ¼
rðtGAÞ � rP ðtGAÞ

v�1 � vþ1

� �
¼ 0

r ¼ 1� rp=rmin 6 0

ð26Þ
where rp is flyby radius and rmin is minimum flyby radius.
In the works of Jiang et al. (2012), the transversality condi-
tions for a gravity assist have been derived as

krðtþGAÞ ¼ krðt�GAÞ � v1�3

kvðtþGAÞ ¼ v4 î
þ þ 1

rmin

jB

kvðt�GAÞ � v4 î
� þ 1

rmin

jA ¼ 0

Hðt�GAÞ � HðtþGAÞ � v1�3 � vP ðtGAÞ

þ v4ð̂iþ � î�Þ � aP ðtGAÞ �
1

rmin

jC ¼ 0

ð27Þ

Detail information for A, B, C and i can be found in
their work. Besides, a complementary slackness condition
should be added due to the inequality constraint, which
is (Jiang et al., 2012)

j � r ¼ 0; j P 0 ð28Þ

The unknowns for this multiple-point-boundary-value
problem (MPBVP) are 34 dimensional, which are

�X ¼ ðk0; kr0; kv0; km0; tEGA; tMGA1; tMGA2; v
EGA
1�4 ; vMGA1

1�4 ;

� vMGA2
1�4 ; jEGA; jMGA1; jMGA2; DvEGA; DvMGA1; DvMGA2Þ ð29Þ

The boundary conditions for the shooting function
Uð�X Þ includes Eqs. (23)–(26) and (28) last two conditions
in Eq. (27) and a normalization condition (Jiang et al.,
2012)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 þ vEGA

1�4 � vEGA
1�4 þ jEGA � jEGA þ � � �

q
¼ 1 ð30Þ
4.3. Solving method

Eq. (20) indicates the optimal control is a Bang–Bang
control which leads to the convergence of solving the
shooting function being very difficult (Bertrand and
Epenoy, 2002). A smoothing technique, in which a homo-
topy is built, has been proposed to overcome this difficulty.
In this paper, the following homotopy is used:

J ¼ k0

T max

I spg0

Z tf

t0

½u� euð1� uÞ�dt ð31Þ

The optimal control law is continuous provided e is not
equal to zero. The parameter e establishes the connection
between the energy optimal criteria (e = 1) and fuel optimal
criteria (e = 0) (Jiang et al., 2012; Yang and Baoyin, 2015).
The detail homotopic process can found in the work of
Jiang et al. (2012). In their work, a switching function
detection technique is used to determine the switching
point accurately. The key issue is to calculate the switching
function at (k + 1)th step using the information at kth step
(Yang and Baoyin, 2015):

qkþ1 ¼ qk þ _qkhþ 1

2
€qkh2 ð32Þ



Fig. 5. Three-step solving process.
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As for the problem that the thrust magnitude is not con-
stant, the first and second orders of the switching function
are

_q ¼ I spg0kr � kv

k0mkkvk
ð33Þ

€q ¼ Ispg0

k0mkkvk
_kv � kr þ _kr � kv �

_mkr � kv

m
þ ðkr � kvÞ2

kkvk2

 !
ð34Þ

The shooting function of this MPBVP has 35 unknowns
totally. In the work of Jiang et al. (2012), it has been shown
the proposed method is very efficient for solving the opti-
mal trajectory which contains one gravity assist.
However, the good convergence cannot be guaranteed by
applying the previous method (Jiang et al., 2012) directly
due to the larger number of unknowns. To deal with this
problem, the low thrust trajectories using triple gravity
assists are divided into three trajectories as shown in
Fig. 5 and then solved by a three-step method.

In Fig. 5, a symbol with “�” denotes that the value of
the variable is obtained by the PSO method in Section 3.
A symbol with “^” denotes the value of the variable is
obtained from the optimal low thrust trajectory in the pre-
vious step. The detail process of the three-step method is as
follows. In the method shown in Fig. 5, each step solves
one optimal low thrust trajectory containing a single
Table 1
Orbital elements of the asteroids and planets.

Item Epoch (MJD) a (AU) e

Earth 54,000 1.0008404 0.016507
Mars 54,000 1.523677 0.0934357
2009 DB43 56,000 1.102335 0.172238
van Albada 56,000 2.240859 0.204204
interior point (i.e. only one gravity assist). For example,
the only interior point constraints in step 1 are Eqs. (26)–
(28) associated with the Earth gravity assist. As for the tra-
jectory 1, the initial time, terminal time and the guessed
Earth gravity assist are the results from the PSO searching.
The initial and terminal boundary conditions are chosen so
that the state variables (position, velocity and mass) are
equal to the ones which are obtained from the PSO search-
ing at the launch time and instantaneous time before the
first Mars gravity assist. After the optimal low thrust tra-
jectory 1 has been obtained, the time and state variables
(position, velocity and mass) at the Earth gravity assist
are updated using the results of the optimized trajectory
1. Then, these updated values are employed to be the initial
conditions for the trajectory 2. Analogous to the trajectory
1, the optimal trajectory 2 is obtained and the state vari-
ables at the first Mars gravity assist are then used for solv-
ing the trajectory 3. Once the optimal trajectory 3 has been
solved, the whole low-thrust transfer using triple gravity
assists can be obtained by patching the first half of the tra-
jectory 1 and trajectory 2, and the whole trajectory 3.
Actually, the patched trajectories are represented by solid
lines while the non-patched trajectories are represented
by dash lines in Fig. 5. It should also be noted that the ini-
tial boundary condition of the trajectory 1 and the terminal
boundary condition of the trajectory 3 consist with the Eqs.
(23) and (24) due to the assumptions in Section 2.1.
Importantly, the optimization method for the low thrust
trajectories in each step is the practical homotopic method
proposed by Jiang et al. (2012) with updated dynamical Eq.
(22) and the condition of the accurate detection of the
switching points 32–34.
5. Simulations and results

The near-Earth asteroid is assumed to be 2009 DB43
and the main-belt asteroid is assumed to be van Albada.
The orbital elements of the asteroids and planets are listed
in Table 1. In the optimal delta-V searching, the launch
date is assumed in 59,140–59,500 MJD and maximum of
the flight time is assumed to be 2500 days.

Once the optimal delta-V transfer has been obtained by
the PSO method, the following parameters will be used for
optimizing the low-thrust trajectories. These parameters
are guessed intermediate time and terminal state variables
in Table 2.

Then, the three-step method process is carried out to
obtain the low-thrust trajectories. Here, the low thrust
magnitude at 1 AU is assumed to be 0.3 N and the thruster
i (deg) X (deg) x (deg) M (deg)

0.001218 1.770191 98.504893 260.350296
1.849299 49.538448 286.561587 226.112109
0.934297 43.778992 38.52093 283.364464
7.195726 355.140792 324.150502 144.442036
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Table 2
Parameters for the three-step solving process.

Item Initial time
(MJD)

Terminal time
(MJD)

Guessed intermediate
time (MJD)

Initial state variable
(AU, AU/year, kg)

Terminal state variable
(AU, AU/year)

NEA-EGA-MGA1 59448.923 60288.786 59871.765 0.538775
0.755812
0.002820
�5.983291
3.665783
0.110674
1500

�0.586627
�1.389018
�0.014693
4.784104
�0.718020
�0.028847

EGA-MGA1-MGA2 59882.238 60975.756 60288.786 0.813596
0.522950
�0.001022
�3.472516
6.255490
0.091765
1467.692572

�0.586627
�1.389018
�0.014693
5.045071
�0.917749
0.395806

MGA1-MGA2-MBA 60296.657 61592.624 60975.756 �0.479378
�1.418904
�0.014431
5.256989
�0.444256
0.485681
1435.269452

�0.873644
2.444605
�0.111541
�3.299789
�1.357957
�0.193087
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specific impulse is assumed to be 1500 s. The parameters
for the three-step solving process are listed in Table 2.

Once the three sub-trajectories have been optimized, the
whole low-cost transfer is then obtained via patching these
three optimal sub-trajectories as illustrated in Fig. 5. The
low-cost trajectories are shown in Fig. 6 and the
low-thrust profile is shown in Fig. 7.

All computations above are coded in FORTRAN lan-
guage and then executed on a personal laptop with an
Intel Core i5-4210 CPU and 4 GB RAM. In the PSO pro-
cedure, the maximum iterations are set to be 5000. The
PSO procedure is repeatedly executed 5 times and the best
result is chosen. These computations cost about 100 s. In
the three-step solving process, the computation time for
obtaining initial values of the energy optimal case in each
step is 0.140, 0.172 and 0.203 s, respectively. And the com-
putation time cost for obtaining the fuel optimal solutions
via the homotopic processes is 19.875, 6.568 and 1.295 s,
respectively. The computation time is short even for the
slowest step. Besides, the procedure of the three-step solv-
ing method is further tested several times for this example
and the results show that the convergence can be guaran-
teed. Actually, the first author, as a member of the team
of Tsinghua University, has participated in the GTOC7
and 4th edition Chinese trajectory optimization
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competition (CTOC4). In the GTOC7, a similar homotopic
procedure was used. Our team’s primary index is 32 and
only three teams (JPL, ACT/ESA-ISAS and University
of Texas at Austin) got higher primary index, 36, 35 and
35, than us.1 Moreover, a similar three-step solving method
was used in CTOC4 of which the background is to visit dif-
ferent types of small bodies (Gao, 2012). In our submitted
solution, one important part of the designed mission is the
transfer from 2010 JR34 (a near-Earth asteroid) to
Universitas (a main-belt asteroid) via EMMGA which is
very similar to the example in this paper. Our team ranked
the second with a score of 118 among the 23 registered
teams and National University of Defense Technology
ranked the first with a score of 120 (Gao, 2012). Because
the result of the National University of Defense
Technology is about a mission of visiting comets, our result
is the best one for visiting both near-Earth asteroids and
main-belt asteroids in CTOC4 which shows the good
performance of our proposed method.

6. Conclusion

The low-cost transfer between a near-Earth asteroid and
a main-belt asteroid using low thrust propulsion and mul-
tiple gravity assists has been studied. Based on the result of
Chen et al. (2014), the gravity-assist sequence is further
studied via the Tisserand graph and the sequence
EMMGA is found to be the best. The PSO method and
indirect method are combined to optimize low-thrust tra-
jectories. Firstly, the optimal delta-V trajectories designed
by the patched conic method are optimized via the PSO
method, and then the event dates and state variables of
the spacecraft at these dates are obtained for designing
the low-thrust trajectories. Secondly, the optimal control
problem of designing the low-thrust trajectories is trans-
formed into a boundary-valued problem. By the smooth
technique and the proposed three step process, the
low-thrust trajectories using multiple gravity assists can
be solved efficiently. The effectiveness of the proposed
methods is validated via numerical simulations.
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evolution of near-Earth objects. Asteroids III, 409–422.

Morimoto, M., Yamakawa, H., Yoshikawa, M., Abe, M., Yano, H., 2004.
Trajectory design of multiple asteroid sample return missions. Adv.
Space Res. 34 (11), 2281–2285.

Olympio, J.T., 2011. Optimal control problem for low-thrust multiple
asteroid tour missions. J. Guidance, Control, Dyn. 34 (6), 1709–1720.

Pontani, M., Conway, B.A., 2010. Particle swarm optimization applied to
space trajectories. J. Guidance, Control, Dyn. 33 (5), 1429–1441.

Qiao, D., Cui, H., Cui, P., 2006. Evaluating accessibility of near-earth asteroids
via earth gravity assists. J. Guidance, Control, Dyn. 29 (2), 502–505.

Rao, A.V., 2009. A survey of numerical methods for optimal control. Adv.
Astron. Sci. 135 (1), 497–528.

Rasotto, M., Armellin, R., Lizia, P.D, Bernelli-Zazzera, F. 2013. “Optimal
low-thrust transfers in two-body and three-body dynamics”. In: 64th
International Astronautical Congress, Beijing.

http://refhub.elsevier.com/S0273-1177(15)00338-5/h0005
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0005
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0005
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0010
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0010
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0015
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0015
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0015
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0020
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0020
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0020
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0025
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0025
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0025
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0035
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0035
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0040
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0040
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0040
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0045
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0045
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0045
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0050
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0050
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0050
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0055
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0055
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0055
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0060
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0060
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0065
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0065
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0065
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0070
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0070
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0075
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0075
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0075
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0080
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0080
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0100
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0100
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0100
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0105
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0105
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0110
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0110
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0110
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0115
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0115
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0120
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0120
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0125
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0125
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0130
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0130
http://sophia.estec.esa.int/gtoc_portal/wp-content/uploads/2014/09/gtoc7_ranks.pdf
http://sophia.estec.esa.int/gtoc_portal/wp-content/uploads/2014/09/gtoc7_ranks.pdf


H. Yang et al. / Advances in Space Research 56 (2015) 837–847 847
Russell, C.T., Capaccioni, F., Coradini, A., De Sanctis, M.C., Feldman,
W.C., Jaumann, R., Zuber, M.T., 2007. “Dawn mission to Vesta and
Ceres”. Earth Moon Planet. 101 (1–2), 65–91.

Sears, D., Allen, C., Britt, D., Brownlee, D., Franzen, M., Gefert, L.,
Scott, E., 2004. “The Hera mission: multiple near-earth asteroid
sample return”. Adv. Space Res. 34 (11), 2270–2275.

Sims, J., Flanagan, S. January, 1997. “Preliminary design of low-thrust
interplanetary missions.” NASA Technical Report, Document ID:
20000057422.

Sims, J.A., Longuski, J.M., Staugler, A.J., 1997. V8 leveraging for
interplanetary missions: multiple-revolution orbit techniques. J.
Guidance, Control, Dyn. 20 (3), 409–415.
Strange, N.J., Longuski, J.M., 2002. Graphical method for gravity-assist
trajectory design. J. Spacecr. Rockets 39 (1), 9–16.

Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., Nakazawa, S., 2013.
System design of the Hayabusa 2-Asteroid sample return mission to
1999 JU3. Acta Astron. 91, 356–362.

Woo, B., Coverstone, V.L., Cupples, M., 2006. Low-thrust trajectory
optimization procedure for gravity-assist, outer-planet missions. J.
Spacecr. Rockets 43 (1), 121–129.

Yang, H., Baoyin, H., 2015. Fuel-optimal control for soft landing on an
irregular asteroid. IEEE T. Aero. Elec. Sys. 51 (3).

Zeng, X., Gong, S., Li, J., 2014. Fast solar sail rendezvous mission to near
Earth asteroids. Acta Astronaut. 105 (1), 40–56.

http://refhub.elsevier.com/S0273-1177(15)00338-5/h0140
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0140
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0140
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0140
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0140
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0145
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0145
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0145
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0145
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0145
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0155
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0155
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0155
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0155
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0160
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0160
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0165
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0165
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0165
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0170
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0170
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0170
http://refhub.elsevier.com/S0273-1177(15)00338-5/h9000
http://refhub.elsevier.com/S0273-1177(15)00338-5/h9000
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0180
http://refhub.elsevier.com/S0273-1177(15)00338-5/h0180

	Low-cost transfer between asteroids with distant orbits using  multiple gravity assists
	1 Introduction
	2 Problem statement and basic analysis
	2.1 Problem statement
	2.2 Gravity-assist sequence analysis

	3 Optimal delta-V searching
	4 Low-thrust trajectory optimization
	4.1 Optimal control for variable-thrust trajectory
	4.2 Multiple-point-boundary-value problem
	4.3 Solving method

	5 Simulations and results
	6 Conclusion
	Acknowledgments
	References


