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Evaluation of the Dynamic Environment
of an Asteroid: Applications to 433 Eros

D. J. Scheeres ¤

University of Michigan, Ann Arbor, Michigan 48109-2140
and

B. G. Williams† and J. K. Miller‡

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Methods of analysis to quickly and systematically evaluate the dynamical environment close to an asteroid are
presented, concentrating on the effect of the asteroid’s gravity � eld and rotation state on a spacecraft orbit. Such an
analysis is useful and needed for missions to small solar system bodies such as asteroids and comets, where the true
mass, gravity � eld, and rotation state will not be known until after the spacecraft rendezvous with the body and
these quantities are estimated. Generally, after these quantities have been estimated, the complete mission pro� le
must be redesigned in accordance with the actual values found at the asteroid. An integral part of this redesign
is the characterization of dynamics close to the asteroid, speci� cally the computation of orbit stability close to
the body and the practical limits on how close the spacecraft can � y to the body before large perturbations are
experienced. Numerical computations of such an evaluation applied to the asteroid 433 Eros, the target of the Near
Earth Asteroid Rendezvous (NEAR) mission, using preliminary models of the asteroid obtained during NEAR’s
December 1998 � yby of Eros are presented.

I. Introduction

T HE prospect of orbital missions to asteroids and comets has
opened the door on a new and fruitful area of research in astro-

dynamics: the study and quanti� cation of the stability and naviga-
bility of spacecraft orbits in close proximity to rotating, irregularly
shaped bodies. This area of study is challenging because each new
body has its own peculiarities in terms of size, shape, density, and
rotation state, and complicatedbecause these quantities are often not
known until after the spacecraft has its rendezvous with the body.
Thus, preencounter mission and navigation plans must always be
kept � exible and general enough to accommodate a wide range of
possible body parameters. To enable a relatively rapid mission and
navigation design once the spacecraft arrives at the body requires
that systematic approaches to the characterization and evaluation
of the orbital dynamics about asteroids be formulated prior to en-
counter. In this paper we present some results that allow such a char-
acterization to be performed and apply them to the estimated mass,
shape, and rotation state of asteroid 433 Eros, the target asteroid of
the Near Earth Asteroid Rendezvous (NEAR) mission. The same
procedures outlined here are also applicable to any arbitrary body
in uniform rotation, the extension of the characterizationprocess to
bodies in nonuniform rotation being signi� cantly different.1

The speci� c issues focused on are the computation of orbit stabil-
ity limits about uniformly rotating bodies. We will investigate both
analytical formulas with which to express the perturbation felt by
a spacecraft orbit and speci� c numerical computations that can be
performed to establish stability limits. Our ultimate goal is to com-
bine these two modes of analysis into a single systematic approach
to understanding and evaluating the dynamic environment about an
asteroid or comet. The current analysis rests on a series of previous
analyses made of the problem of orbiting a comet or asteroid.2 ¡ 7

This paper synthesizes these previous results and extends them to
practical mission applications for a spacecraft.
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II. Model De� nition
To evaluate the dynamics of a spacecraft close to an asteroid

requires a description of the gravitational � eld of the asteroid and
its rotational state. Both of these items can be obtained following
rendezvous with the target asteroidby reducing radiometric tracking
data, optical imagesof the asteroid, and any other measurements that
may be available.8 This model and parameter estimation is the � rst
order of business and must be performed prior to the detailed design
of close-proximity operations.

For numerical computations in this paper we use the preliminary
model of asteroid 433 Eros, obtained during the December 1998
� yby of that asteroid by the NEAR spacecraft. Thus, this paper
presents a case study that can be used to aid the design of the NEAR
spacecraft orbital mission about Eros.

A. General Asteroid Model
The general model for a uniformly rotating asteroid consists of a

rotation period and a gravity � eld. Because of internal dissipation
forces that act on rotating asteroids, they eventually relax into a
uniform rotation about their largest moment of inertia regardless of
their initial rotational state. For most asteroids with rotation periods
of a day or less, the time for this relaxation to occur is relatively
short in terms of solar system time-scales.9,10 Thus, the majority of
asteroids are believed to be in or close to a uniform rotation state,
and this justi� es our restriction to this case.

The standard gravity � eld model used for navigation operations
about a small body is the spherical harmonic expansion � eld, which
can be estimated from the radiometric data, combined with optical
data to � x the relative orientation of the asteroid with respect to the
spacecraft. The usual speci� cation of this � eld is truncated at some
degree and order and is expressed as

U =
l

r

NX

i = 0

iX

j = 0 (R0

r

í

P j
i (sin d )[Ci j cos( j k ) + Si j sin( j k )] (1)

where l is the asteroid mass times the universal gravitational con-
stant; R0 is the normalizing radius, usually taken as either the radius
of the circumscribing sphere about the asteroid or the mean vol-
umetric radius; P j

i is the associated Legendre function; Ci j and
Si j are the spherical harmonic gravity coef� cients, and r , d , and k
are the radius, latitude, and longitude coordinates, respectively, of
the spacecraft in the asteroid � xed frame. For the NEAR mission,
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N = 16 is the highest degree and order of the harmonic expansion
that will be used.8 Usually, the gravity � eld is expanded about the
center of mass of the asteroid, yielding C1 j = S11 = 0, and with its
coordinate axes oriented so that they lie along the principal axes of
inertia, yielding C21 = S21 = S22 = 0.

The spherical harmonic gravity � eld is the best descriptor of the
asteroid gravity � eld when outside of the circumscribing sphere
about the asteroid (the circumscribing sphere is the sphere of min-
imum radius that contains the asteroid, centered at the expansion
center of the gravity � eld). When inside of this sphere, the spherical
harmonic expansion � eld may diverge and no longer yield accurate
information about the true gravity � eld. For the case of an ideal
ellipsoid, the harmonic expansion will diverge if the ratio of the
largest and smallest dimensions of the ellipsoid is greater than

p
2

(Ref. 11). This same result is seen to hold, approximately, for irreg-
ular shapes that are roughly ellipsoidal in shape. For Eros, the ratio
of maximum to minimum dimension is approximately 2.3, much
larger than the divergence limit, and indicative that the gravity � eld
will likely diverge when near the surface.12

For most orbital applications, this divergence is not of great con-
cern because the spacecraftwill normally remain outside of this cir-
cumscribing sphere. For situations in which a landing or extremely
close pass over the asteroid surface is desired, however, this diver-
gence will affect the design, prediction, and control of the spacecraft
orbit. In these situations it is necessary to specify the asteroid grav-
ity � eld using a formulation that does not diverge. There are several
different approaches to this problem; the one which we use here is
based on modeling the gravity � eld of the asteroid as the summation
of gravity � elds of tetrahedra, for which a closed-form formula is
known.12,13

For the purposes of the analysis, both the harmonic expansion
� eld and the tetrahedron � eld will be used, the integrating software
switching from one gravity � eld speci� cation to the other when
crossing through a sphere slightly larger than the circumscribing
sphere. To ensure equality of the two � elds, the harmonic expansion
will be computed using the shape model and a constant density
assumption,12 an approach that has been applied previously.1,5

In addition to the gravity and rotation models, it is also important
to incorporate the perturbations from the sun in any detailed anal-
ysis of the motion of a spacecraft about an asteroid. There are two
main contributions from the sun: gravity and radiation pressure. The
effectof the solar gravity becomes pronounced as the distance of the
spacecraft from the asteroid increases. Generally, at some point the
solar gravity dominates the spacecraft dynamics, and the nature of
motion changes fromsimple orbital motion about acentralbody.The
radiation pressure from the sun has a constant direction and mag-
nitude at a given distance of the asteroid from the sun. Again, the
effect of this force becomes more pronounced as the spacecraft � ies
farther away from the asteroid. We will assume that the spacecraft
will remain close to the central body, reducing the solar effects to
small perturbations. As a result, they will not be accounted for in this
analysis.

B. Speci� c Model of 433 Eros
On 23 December 1998, the NEAR spacecraft had a close � yby of

asteroid433 Eros, simultaneously imaging the asteroidand tracking
the spacecraft. Resulting from these images and tracking data are
estimatesof the asteroid shape and overall mass, two key parameters
that can be used to generate the models needed for computation in
this paper.

The mass estimate of the asteroid was computed and yielded an
estimated value of the gravitational parameter:

l = 5 £ 10 ¡ 4 km3/s
2 (2)

with formal error of 1 £ 10 ¡ 4, 1 ¡ r . This large error was due to the
distance of the � yby (4000 km) and the relative speed between the
spacecraft and asteroid (1 km/s). Thus, the computations given in
this analysis must be treated as uncertain and cannot be made more
accurate until the NEAR spacecraft has its rendezvous with Eros
(currently scheduled to occur in February 2000).

The shape model of Eros was obtained from the NEAR Multi-
spectral Imager science team14 and has a 5-deg surface resolution.
It has a total estimated volume of approximately 3000 km3 and a
mean (volumetric) radius of 8.97 km. This shape will also be re� ned
following the NEAR spacecraft rendezvous with the asteroid.

We have transformed the shape model into a triangular plate
model with 2432 vertices and 4860 plates, centered it at its volumet-
ric center, and oriented it along its principal axes of inertia (assum-
ing constant density). We compute the constant density gravitational
� eld coef� cients corresponding to the given shape.15 Of particular
interest are the second-degree and order gravity � eld coef� cients
C20 and C22:

R2
0C20 = ¡ 26.755 km2 (3)

R2
0C22 = 12.752 km2 (4)

In our analytical section we will normally take R0 = 1 because it
is an arbitrary constant, hence specifying the coef� cients C20 and
C22 as dimensional. These particular values of the gravity � eld will
be used extensively in our analysis, as well as the full gravity � eld
computed from the shape model.

Finally, for the Eros rotation period we use a value of 5.27 h. This
estimate is based on ground-based observations of Eros using both
optical and radar imaging and is considered to be extremely well
known.16 The rotation rate of the asteroid is denoted as x T .

C. Equations of Motion
Having discussed in detail the main perturbations acting on a

spacecraft close to an asteroid, we can state the general equations of
motion in this frame. There are two forms of the equations of motion
that are useful for our analysis. The � rst states the equations in the
body-� xed frame, a frame with uniform rotation. In this coordinate
system the central gravity � eld does not change with time and,
because the rotational rate of the asteroid does not change either,
the equations of motion are time invariant.

In the body-� xed reference frame the equations of motion are

ẍ ¡ 2x T Çy = x 2
T x + Ux (5)

ÿ + 2x T Çx = x 2
T y + Uy (6)

z̈ = Uz (7)

Because these equations are time invariant, an additional integral of
motion exists (termed the Jacobi constant) and is

J = 1
2
( Çx2 + Çy2 + Çz2) ¡ 1

2
x 2

T (x2 + y2) ¡ U (8)

The Jacobi integral can be used to derive sharp limits on when
a spacecraft cannot impact with the asteroid surface, providing a
degree of safety for some types of orbital operations.

An alternate description of the orbit dynamics is found using a
special subset of the Lagrange planetary equations. These equations
express the change in orbital elements, or other integrals of motion
of the Kepler problem, as a function of perturbing forces acting
on the spacecraft. These equations are generally not convenient for
numerical computation in an asteroid system, but are useful for the
development of analytic approximations to evaluate the effectof the
rotating gravity � eld on the orbiting spacecraft.

For our computations it is useful to use the canonical form of
the Lagrange equations17 that express the change in orbit Keplerian
energy, angular momentum, and angular momentum projected onto
the z axis as a function of the gravitational perturbations acting on
them. The equations describing these changes can be expressed as

dC

dt
=

@R

@t
(9)

dG

dt
=

@R
@ x

(10)

dH

dt
=

@R

@ X
(11)
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where

C = ¡ l / 2a (12)

G =
p

l a(1 ¡ e2) (13)

H = G cos i (14)

R = U ¡ l / r (15)

and a, e, i , x , and X are the osculating orbital elements. Equations
(10) and (11) are taken from classical results,17 whereas Eq. (9)
is derived by applying the chain rule, taking the partial of R with
respect to the true anomaly f � rst and then taking the partial of the
true anomaly f with respect to the time.5 Note that we neglect to add
the additional equations describing the dynamics of the argument of
periapsis, longitude of the ascending node, and mean epoch because
we will not explicitly study those equations here.

It is important to restate the Jacobi integral in terms of the vari-
ables considered here. In this system the integral takes on a partic-
ularly simple form when so evaluated:

J = C ¡ x T H ¡ R (16)

where x T is again the rotation rate of the asteroid, C is the Keplerian
energy, H is the angular momentum projected onto the z axis, and
R is the perturbing potential.

III. Analytic Characterization
First we describe the application of approximate, analytical anal-

ysis to characterize spacecraft orbital dynamics about a uniformly
rotating body. The results from such an analysis are not as exact
as our numerical computations, but have general application be-
cause several key parameters can be left in functional form. There
are two basic analytic characterizations that can be performed, both
involving terms from the second-degree and order gravity � eld.

A. Effect of Asteroid Oblateness
The effect of the C20 gravity term, or the oblateness, on a space-

craft orbit has been studied extensively in connection with the Earth
orbiter problem.18 ¡ 20 To accurately capture this effect analytically
requires the inclusion of higher-order gravity terms, such asC40. The
relevant items for this analysis are the secular rates in argument of
periapsis, the longitude of ascending node, and the mean anomaly.
The leading terms of that analysis are

d ¯x

dt
=

3nC20

2p2 (5
2

sin2 i ¡ 2

´
(17)

d ¯X

dt
=

3nC20

2p2
cos i (18)

n̄ = n

µ
1 +

3C20

p
1 ¡ e2

2p2 (3

2
sin2 i ¡ 1

¶́
(19)

Note that the secular rates of these angles can become very large
when orbiting close to asteroids. The leading frequency of these
variations, A20 = 3nC20 / (2p2), can be computed for Eros to be

A20 = ¡ 85.6
h
1 ê ã

7
2 (1 ¡ e2)2

i
deg/h (20)

where ã is the spacecraft semimajor axis normalized by the mean
asteroid radius (8.97 km for Eros) and e is the orbital eccentricity.
The corresponding frequency for an Earth orbiter is 0.415 deg/h.
Thus, for operations within several mean radii of the asteroid, the
spacecraftorbit will be subject to large secular rates in its orbit-plane
orientation and in-plane orientation.

Once an orbit is chosen that is safe from most destabilizing in� u-
ences, such as a retrograde orbit, these large secular rates must still
be accounted for and cannot, except in a few speci� c orbit geome-
tries, be directly controlled. The impact and control of these effects
have been evaluated for the NEAR orbital mission plan.4

B. Effect of Asteroid Ellipticity
Although the effect of a large asteroid oblateness has been clas-

sically characterized, the effect of a large asteroid ellipticity has not
been closely studied. The dif� culties encountered in studying the
effect of this term are due to the time-varying nature of the interac-
tion between asteroid and spacecraft. For a terrestrial planet where
the ellipticity is in general small, these effects can be partly char-
acterized by simple averaging theories.21 At asteroids where these
ellipticities can approach 0.8 and even higher, however, classical
analyses fail.

For asteroids this effect has been studied numerically in the
literature,2 ¡ 6 where it has been clearly established that, due to inter-
actionof a spacecraftorbit with the asteroidellipticity, the spacecraft
orbit can transition from a seemingly safe orbit into an impacting
or escaping orbit within a few orbit periods. There are a variety of
ways in which this effect can be studied; a later section investigates
the effect by computing equilibrium points and periodic orbits and
evaluating their stability. In this section we present a new approach
to the analysis6,7 that gives explicit predictions of the effect of the
main component of the asteroid ellipticity, the C22 gravity term, on
a spacecraft orbit.

The force potential due to the C22 gravity term is

U22 = (3 l / r 3)C22 cos2 d cos(2 k ) (21)

where d is the spacecraft declination in the body-� xed frame and
k is the body-� xed longitude. Expanding the potential in terms of
osculating orbit elements yields

U22 =
¡
3 l C22 ê r 3

¢£
1
2 sin2 i {cos 2 X cos 2 x T t + sin 2X sin 2x T t}

+ cos4(i / 2){cos 2( x + X ) cos 2( f ¡ x T t )

¡ sin 2( x + X ) sin 2( f ¡ x T t )}

+ sin4(i / 2){cos 2( x ¡ X ) cos 2( f + x T t)

¡ sin 2( x ¡ X ) sin 2( f + x T t )}
¤

(22)

where the body-� xed and inertial coordinate frames are assumed to
be aligned at time t = 0.

To evaluate the effect of the C22 term over one orbit, integrate
over Eqs. (10) and (11), treating all of the orbit elements as constant
and only allowing the time and true anomaly to vary. We integrate
over one encounter, from apoapsis to apoapsis, choosing the orbital
elements of x and X such that they are � xed at their periapsis values,
which at t = 0 corresponds to these elements being speci� ed in the
body-� xed frame:

D G =

Z T /2

¡ T / 2

@R

@ x
dt (23)

D H =

Z T / 2

¡ T / 2

@R

@ X
dt (24)

The corresponding change in the orbit energy, D C , can be directly
solved for from the Jacobi integral, Eq. (16):

D C = x T D H + U22( f = p ) ¡ U22( f = ¡ p ) (25)

Evaluation of these equations yields the results

D G = ¡ 6C22

p
l / p3

£
cos4(i /2) sin 2( x + X )I 1

2

+ sin4(i / 2) sin 2( x ¡ X ) I 1
¡ 2

¤
(26)

D H = ¡ 6C22

p
l / p3

£
1
2

sin2 i sin 2X I 1
0 + cos4(i /2)

£ sin2( x + X ) I 1
2 ¡ sin4(i / 2) sin 2( x ¡ X )I 1

¡ 2

¤
(27)

D C = ¡ 6C22 x T

p
l / p3

£
1
2

sin2 i sin 2 X
©

I 1
0 ¡ (1 ¡ e)3 I ¡ 2

0

ª

+ cos4(i / 2) sin 2( x + X )
©

I 1
2 ¡ (1 ¡ e)3 I ¡ 2

0

ª

¡ sin4(i / 2) sin 2( x ¡ X )
©

I 1
¡ 2 ¡ (1 ¡ e)3 I ¡ 2

0

ª¤
(28)
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where the integrals I n
m have the de� nition

I n
m =

Z p

¡ p

(1 + e cos f )n cos(m f ¡ 2 x T t ) d f (29)

These integrals cannot be expressed in closed form in general except
for the particular case

I ¡ 2
0 =

sin
¡
2 p

p
x 2

T a3 / l
¢

q
x 2

T p3 ê l

(30)

The numerical quadrature of these integrals has been treated
previously.7

These integrals express how the spacecraft true anomaly rate in-
teracts with the asteroid rotation rate and, in general, have a com-
plicated form. The values of these integrals are best presented as
contour plots as a function of nominal orbit periapsis radius and
eccentricity. Figures 1 and 2 show the contour values of the inte-
grals I 1

2 and I 1
¡ 2 for comparison. We see that, in general, I 1

2 À I 1
¡ 2 in

the region that interests us. Similarly, we � nd that I 1
2 À I 1

0 . Several
important insights are immediately obtained on inspection of the
contour plots and the functional form of Eqs. (26–28). Most impor-
tant, direct, low-inclination orbits will be subject to the terms I 1

2 ,
whereas retrograde, near equatorial orbits will be primarily subject
to the terms I 1

¡ 2. By the inspection of the contour plots, it is ob-
vious that direct orbits will experience much larger changes in en-
ergy and angular momentum for each orbit, whereas the retrograde

Fig. 1 Contour plot of integral I1
2 evaluated at Eros.

Fig. 2 Contour plot of integral I1
¡ 2 evaluated at Eros.

Fig. 3 Contour plot of fractional change in Keplerian energy per orbit,
computed speci� cally for Eros.

Fig. 4 Contour plot of fractional change in angular momentum per
orbit, computed speci� cally for Eros.

orbits will experience little, if any, change per orbit. This result
explicitly predicts the relative stability of retrograde orbits noticed
previously in the literature2 ¡ 5 and predicts the large variations in
energy and angular momentum in a concise and clear fashion. In
the following we will neglect I 1

¡ 2 and I 1
0 to gain a simpler form for

Eqs. (26–28).
In Figs. 3 and 4 we present contour plots of the fractional change

in orbit energy and angular momentum per orbit, using the appropri-
ate Eros constants. These contours are computed using only the I 1

2
integrals, per the preceding discussion. Thus, each of the contours
will scale as cos4(i /2) sin[2( x + X )], allowing the results to be gen-
eralizedto a range of orbit inclinations and body-relative geometries
(recall that the argument of periapsis and longitude of the ascending
node de� ne the location of periapsis in the body-� xed frame). Us-
ing this result we can qualitatively predict the expected perturbation
experienced by an orbit and use this to compute acceptable limits
for proximity operations.

There are many applications of these formulas, including the set-
ting of limits for the minimum periapsis of a spacecraft orbit and
the design of very close passes over the asteroid. Related formulas
have been used to design relatively safe close � ybys over the Eros
surface.22 In that application the functions are used to predict which
surface � ybys will cause the spacecraft apoapsis and period to in-
crease, ensuring ample time following a close � yby to transition the
orbit into a safe orbit at a suf� cient distance from the asteroid.



470 SCHEERES, WILLIAMS, AND MILLER

IV. Phase Space Characterization
Next we consider explicit characterizations that can be made con-

cerning the phase space about a uniformly rotating asteroid. These
characterizations consist of applications of the Jacobi integral and
the explicit computation of families of periodic orbits and their sta-
bility about the asteroid.

A. Stability Against Impact
Perhaps the most common applicationof the Jacobi integral to dy-

namic systems is found in the restricted three-body problem where
it is used to de� ne the zero-velocity curves (cf. Ref. 23). We will
make a similar application here. The zero-velocity curves of the
current system are found by computing the contours of the grav-
ity plus centripetal potential in the body-� xed position space x , y,
and z, where J denotes a particular value of the Jacobi constant.
These contour lines then de� ne the limits of physical motion that a
spacecraft can have in the body-� xed space, given that value of the
Jacobi constant. In general, the spacecraftdynamics must satisfy the
inequality constraint

U + 1
2
x 2

T (x2 + y2) + J ¸ 0 (31)

which constrains the spacecraftto lie on one side of the zero-velocity
curves. Figure 5 shows the zero-velocity curves corresponding to
the Eros shape model.3 ¡ 5 A silhouette of Eros is also shown.

For the purpose of characterizing spacecraft dynamics about this
body, we are primarily interested in � nding the value of the Jacobi
constant such that, for all values of J less than this, the zero-velocity
curves are guaranteed to separate the trajectory space containing the
asteroid and the space not containing the asteroid. Then we have ex-
plicitly that a spacecraft in orbit in the outer region with the appro-
priate Jacobi integral value can never, under gravitational dynamics
alone, impact onto the asteroid surface. For the Eros shape model,
this value of J is found to be J0 = ¡ 5.109 £ 10 ¡ 5 km2/s2. To ensure
stability against impact, we must choose the initial spacecraft con-
ditions such that the spacecraft position resides in the outer portion
of the zero-velocity curve and that the value of the Jacobi integral
is less than or equal to J0:

C ¡ x T H ¡ R ·J0 (32)

which provides a simple check in terms of osculating orbital ele-
ments for whetheror not the spacecraftmight impactwith the surface
at some point in the future. This relation can be expressed in terms
of initial osculating elements for an assumed direct, equatorial orbit

Fig. 5 Zero-velocity curves about Eros projected into the x–y plane.

Fig. 6 Stability against impact curve for equatorial, direct orbits.

speci� ed by its periapsis radius, eccentricity, and initial longitude k
in the body-� xed frame:

¡ l (1 + e) / 2r p + x T

p
l r p(1 + e) + U (r = r p , k ) + J0 = 0

(33)

where the force potential U is evaluated from the actual gravity � eld.
Figure 6 shows a plot of the limiting stability against impact curve
for the Eros system (including the full effect of the gravity � eld)
in terms of initial periapsis radius and eccentricity for an equatorial
orbit. Initial orbits to the left of the line in Fig. 6 may impact with
Eros at some point in the future, orbits to the right of this line will
not impact with Eros.

What we � nd from this analysis is that direct, circular orbits must
lie outside of 34 km from Eros tonot be able to impact on the surface.
Note that this does not mean that the spacecraft will not undergo
large perturbations and changes in its orbit from the gravity � eld.

B. Periodic Orbit Characterizations
Another approach to the stability characterizationof orbits about

an asteroid is to study the stability of periodic orbit families about
the body. If families of periodic orbits can be found that lie near
orbits of interest, then the stability of the periodic orbits (something
that is easily computed) can be directly related to the expected sta-
bility properties of the neighboring orbits. We will consider some
basic families of periodic orbits and will concentrate most of our
discussion on their geometrical limits for stability. In this context,
the existence of a stable orbit will imply that a spacecraft placed
near such an orbit will not experience large changes in its orbital
elements over time spans of interest, usually days to weeks. An
unstable orbit implies that, depending on the characteristic time of
the instability, the spacecraft may deviate markedly from the orig-
inal trajectory in a fairly short time. The characteristic instability
times of orbits about asteroids can be rather short and may interfere
with orbital operations. This is especially true when one consid-
ers the navigation of spacecraft because � ying in an unstable orbit
environment implies that the orbit uncertainty becomes stretched
at a hyperbolic rate, leading to greater uncertainties of where the
spacecraft is.24

Firstwe discuss computational issues for periodic orbits and some
special resonance properties that these orbits have. Then we discuss
synchronous orbits, direct equatorial periodic orbits, and retrograde
equatorial periodic orbits. A few comments on the stability of out-
of-plane orbits are also given.
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1. Computational Issues
The traditional approach to analytical or numerical computation

of periodic orbits relies heavily on the symmetric properties of the
forces in the system.Examples of this include the computation of pe-
riodic orbits in the restricted three-body problem and the Hill prob-
lem, best exempli� ed by the seminal work of Hénon (see Ref. 23).
This approach has also been used to compute symmetric periodic
orbits about triaxial ellipsoids.3 For application to real objects, how-
ever, there are no symmetries in the force � elds, and the periodic
orbit computation must be generalized to a form that does not rely
on such symmetries.

The approach is an application of the Poincaré map with the sur-
face of section chosen to be normal to a convenient surface in phase
space, generally chosen to correspond to a position rl = c. Where rl

is a position coordinate in Cartesian space, l equals 1, 2, or 3, and
c is a constant value that the trajectory passes through each orbit
(often taken to be equal to zero). The Poincaré map is then de� ned
as the map from one (transversal) crossing of the surface rl = c to
the next. The transversal condition needed for the Poincaré map def-
inition is guaranteed by requiring that Çrl 6= 0 whenever rl = c. With
this de� nition, including the conservation of the Jacobi integral, it
is possible to remove the two variables rl and Çrl from consideration,
creating a four-dimensional map from the Poincaré surface to itself.

To extend this map to its � rst linear variation, we � rst com-
pute the state transition matrix (STM) along the nominal trajec-
tory, which takes the full six-dimensional state from the � rst sur-
face crossing to the next surface crossing. We denote the matrix as
U i j , i, j = 1, 2, . . . , 6, where i denotes the row and j denotes the
column of the matrix. For a time-invariant dynamic system (such as
our uniformly rotating asteroid), a closed trajectory will have two
unity eigenvalues that causes the STM to be useless in converging on
a � xed point (which corresponds to a periodic orbit in this system).
To create the 4 £ 4 monodromy matrix for this general situation
we must remove the two unity eigenvalues from the system. The
procedure for doing this is described next.25

To create the lower dimensional map, we � rst constrain the linear
variation to lie completely on the Poincaré surface. For the initial
linear state, this is easily enforced by setting d rl (0) = 0. After the
� rst return, which takes a nominal time T , the l coordinate is not
necessarily zero:

d rl (T ) =
6X

j = 1, 6= l

U l j d x j (0)

where d xi = d ri , i = 1, 2, 3, and d xi + 3 = d Çri , i = 1, 2, 3. To force the
� rst return of d rl to be zero requires that the time of � rst return vary
linearly with the initial state:

d rl (T + d T ) =
6X

j =1, 6= l

U l j d x j (0) + Çrl (T ) d T (34)

Because of the transversality assumptions, this relationship can be
solved for the value of time d T , which forces the linear variation of
the � rst return to lie on the Poincaré surface:

d T = ¡
1

Çrl(T )

6X

j = 1, 6= l

U l j d x j (0) (35)

The linear variation about the Poincaré map then becomes

U i j (T ) ¡ [ Çxi (T ) / Çrl (T )]U l j (T ), i, j = 1, 2, . . . , 6, 6= l
(36)

and is formally a 5 £ 5 linear map that conforms to the Poincaré
surface.

Because our system has a Jacobi integral de� ned for it, one more
dimension may be removed to reduce it to a 4 £ 4 map. The mon-
odromy map corresponds to the linear map with no variations in the
Jacobi integral value.23 For our Lagrangian system, this condition
is simply stated as a single linear equation:

0 =
3X

j = 1

@J

@ Çr j

d Çr j +
3X

j = 1, 6= l

@J

@r j

d r j (37)

where the Jacobi integral was de� ned in Eq. (8) and we note that
@J /@ Çr j = Çr j for our system.Again, given our transversalityassump-
tion, this variation can be solved for the initial variation in the speed
normal to our Poincaré surface:

d Çrl = ¡ 1

Çrl

"
3X

j = 1, 6= l

@J

@ Çr j

d Çr j +
3X

j = 1, 6= l

@J

@r j

d r j

#
(38)

Applying this constraint at the initial variation (at t = 0) ensures
that the entire linear map has the same value of the Jacobi integral.
Application of the constraint eliminates the linear variation of d Çrl

as a free parameter, giving us only four independent parameters
that can be varied. Also, because the � nal mapped linear variation
must conform to this constraint, one of the � nal variables can be
eliminated from the map because it is redundant given the Jacobi
integral constraint; for convenience we remove the � nal variation of
d Çrl from the map. Reduction of these terms yields the � nal form of
our monodromy matrix:

U i j (T ) ¡
Çxi (T )

Çrl (T )
U l j (T )

¡ 1

Çrl (0)

µ
U i(l + 3)(T ) ¡ Çxi (T )

Çrl (T )
U l(l + 3) (T )

¶
@J

@x j
(0)

i, j = 1, 2, . . . , 6, 6= l , l + 3 (39)

These reductions remove the unity eigenvalues that exist for any
closed trajectory(periodic orbit) in a time invariant systemand allow
the reduced map to be used to iteratively solve for the � xed points of
the map that correspond to the closed periodic orbits. Analyzing the
eigenvalues of the 4 £ 4 monodromy matrix also provides details
on the stability of the periodic orbits in question.

Given a single periodic orbit computed using the monodromy
matrix in Eq. (39) it is possible to generate an estimate of the initial
conditions of a neighboring orbit at a slightly different value of
Jacobi constant. Following a general procedure,23 we compute the
linear correctionto a given � xed point for a � xed point with a slightly
different energy:

d x = ( I ¡ A) ¡ 1 @x0

@J
d J (40)

where the monodromy matrix A has its generic unity eigenvalues re-
moved, making the preceding inversion nonsingular for most cases,
and the partial of the Poincaré map with respect to the Jacobi integral
value is computed assuming a variation in the speed transverseto the
Poincaré surface Çrl only. These approaches allow periodic orbits to
be computed and continued numerically in generic, nonsymmetric
gravity � elds as found at asteroids.

2. Resonances in Periodic Orbits
Other than equilibriumpoints, all other periodic orbits in the Eros-

� xed frame have a de� nite period of motion and have a nonconstant
trajectory about the body. A distinction is made between periodic
orbits in the body-� xed frame and in the inertial frame. In general, a
periodic orbit in the body-� xed frame will not be a periodic orbit in
the inertial frame. However, at special values of the body-� xed orbit
period, the periodic orbit will correspond to a periodic orbit in the
inertial frame. This situation often corresponds to the intersection
of two body-� xed periodic orbit families and usually corresponds
to the onset of instability for one of these families. Thus, it is of
interest for us to understand the conditions for these resonances to
occur in our particular case.

Consider an orbit that repeats itself in the body-� xed space every
time period TP . If we consider this same orbit, now speci� ed in
terms of osculating orbit elements, it is clear that the orbit elements
(a, e, i ) must repeat with period TP , and the orbit elements of x and
M0 must shift by some value 2p m , where m = 0, § 1, § 2, . . . ,
over a time TP . The longitude of the ascending node, X , need not
repeat and instead will shift by a multiple of 2p plus an added angle
h = x T TP , where x T is the rotation rate of the asteroid. Thus, when
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this angle h is commensurate with 2 p , the body-� xed periodic orbit
is also an inertial periodic orbit, and in the vicinity of such orbits we
may expect to � nd unstable orbit behavior. This is not a necessary
condition for instability; as we shall see, orbits may also become
unstable when there are no such primary resonances.

Let us consider the two special cases of direct and retrograde
periodic orbits. For each of these, the body-� xed period is approxi-
mately

1/ TP = 1/ Tr § 1/ T0 (41)

T0 =
±

2p r
3
2

. p
l

²¡
1 + 3C20 ê 4r 2

¢
(42)

where the + sign is for retrograde orbits and the ¡ sign is for direct
orbits, Tr is the rotation period of the asteroid, and T0 is the iner-
tial orbital period of the spacecraft (computed with C20 corrections
and assuming a circular orbit). The direct orbit period has a singu-
larity when the inertial orbit period approaches the body rotation
period, corresponding to the equilibrium points and the surround-
ing phase space. In Fig. 7 we show the ratio of the direct body-� xed
orbit period over the Eros rotation period, assuming the described
formula. Plotted is the predicted ratio (found using oblate planet
theory) and the numerically computed ratio for the direct family of
periodic orbits (split into stable and unstable portions of the fam-
ily). We note commensurabilities of 3:2 at a 35-km radius, 2:1 at
a 27.5-km radius, and higher commensurabilities as the singularity
is approached. In Fig. 8 we show the ratio of the retrograde body-
� xed orbit period over the Eros rotation period, again assuming the
preceding formula. The predicted ratio and numerically computed
ratio are shown as in Fig. 7. The only signi� cant commensurabil-
ity is a 1:2 ratio at a radius of approximately 18 km. We shall see,
later, that the retrograde orbit becomes unstable in the vicinity of
this ratio. The direct orbit instabilities, however, are not as clearly
linked to the commensurabilities. This is understood in the context
of our analytical discussion, however, which shows that the orbit
perturbations felt by the spacecraft orbit can become so large as to
overwhelm the effects of resonances.

3. Equilibrium Points
A uniformly rotating asteroid with an approximately ellipsoidal

shape will in general have four synchronous orbits about it, or four
equilibrium points.3 These points will lie, approximately, along the
long and short axes of the asteroid, close to the ideal synchronous
orbit radius rs = ( l / x 2

T )1/ 3, which equals 16.581 km for Eros. Gen-

Fig. 7 Ratio of the periodic orbit frequency over the Eros rotation
frequency for the direct family of orbits.

Table 1 Positions, stability characteristics and Jacobi constant
values for the Eros synchronous orbits

x , km y, km z, km s , h J , (km/s)2

19.546 0.364 ¡ 0.839 0.69 ¡ 5.103 £ 10 ¡ 5

¡ 19.600 ¡ 0.158 ¡ 1.170 0.70 ¡ 5.109 £ 10 ¡ 5

0.106 15.284 0.234 1.59 ¡ 4.279 £ 10 ¡ 5

¡ 0.110 ¡ 15.281 0.162 1.64 ¡ 4.279 £ 10 ¡ 5

Fig. 8 Ratio of the periodic orbit frequency over the Eros rotation
frequency for the retrograde family of orbits.

erally, the equilibrium points along the long axis of the body will lie
outside of rs and will always be saddle points, having a hyperbolic
stable and unstable manifold and two oscillatory modes (in- and
out-of-plane).

The equilibrium points along the short equatorial axis will lie
inside of rs and may eitherbe completelyoscillatoryor have complex
roots, leading to a hyperbolic stable and unstable spirals. Speci� c
criteria for the asteroid to have oscillatory or unstable equilibrium
points have been developed,3 and speci� c examples for realistic
shapes have been computed.4,5 For most asteroid shapes considered
thus far, these equilibrium points are usually unstable. Exceptions
will occur if the body has a small shape ellipticity in the equator,
rotates slowly, or has a large density.

For the Eros shape model in question, we compute the four syn-
chronous orbits (all unstable) and present their coordinates as well
as their characteristic times and Jacobi values in Table 1.

We note that the smallest value of J for the equilibrium points,
¡ 5.109 £ 10 ¡ 5, servesas the constant for the stabilityagainst impact
criterion developed earlier.

In terms of the osculating elements of such an equilibrium point,
we note that they are all constant (evident given that the period of
motion is effectively zero) except for the longitude of the ascend-
ing node, which has a secular rate equal to the rotation rate of the
asteroid.

4. Direct Periodic Orbits
The family of direct, equatorial, near circular, body-� xed periodic

orbits were computed about this model of Eros. Figure 7 shows the
family as a curve between mean orbit radius and orbit period fre-
quency divided by Eros rotation frequency. Far from the body these
orbits are stable, as expected; however, as the family comes closer to
the body they become unstable. For the circular branch of the fam-
ily this occurs at a radius of approximately 30.8 km and a Jacobi
integral value of ¡ 4.938 £ 10 ¡ 5 . Before this stability bifurcation
occurs, the family itself splits into a circular branch and two elliptic



SCHEERES, WILLIAMS, AND MILLER 473

Fig. 9 Minimum radius stable, direct circular orbit about Eros and
locations of the unstable 1:1 synchronous orbits projected into the x–y
plane.

branches; the elliptic branches lose their stability at a slightly higher
value of the Jacobi constant.

The proper interpretation of this result is that the minimum sta-
ble orbital radius about Eros will be « 31 km, but this assumes
some fairly special initial conditions. It is possible, at higher radius
values, to � nd nonperiodic orbits that are characterized by having
� nite Lyapunov characteristic exponents (indicating that they are
unstable). Thus, this limit should be considered to be an absolute
minimum for stable, direct, equatorial orbits about Eros. Note that
this minimum orbit radius violates the stability against impact limit
implying that, if suf� ciently perturbed from its stable orbit, it is
possible for the spacecraft to impact on the asteroid surface.

It is signi� cant to note from Fig. 7 that the onset of instability
is not associated with any particular resonance, leading us to con-
clude that it is associated with the increasing strength of the gravity
perturbations as the direct orbit draws closer to the rotating body
and its C22 gravity term. Observing the predicted fractional change
in orbit energy and angular momentum in the vicinity of where the
periodic orbits � rst become unstable in Figs. 3 and 4, we note that
the fractional change in each of these quantities is on the order of
3–5%, leading us to conclude that perturbations of this magnitude
may destabilize the orbit dynamics. Shown in Fig. 9 is the min-
imum radius, direct, stable circular orbit about Eros and the 1:1
synchronous orbits, all projected into the x –y plane. Also shown is
a silhouette of Eros.

5. Retrograde Orbits
Periodic orbits are also computed that lie in the equatorial plane

but travel in the opposite sense of the asteroid rotation. Figure 8
presents the orbit radius–frequency ratio curve for this orbit family.
Generally speaking, such retrograde orbits are stable at almost all
radii, even close to the asteroid surface. The reason for this stability
is easy to understand: When orbiting in the opposite sense of the
asteroid rotation, the destabilizing effect of the C22 gravity term is
diminished because its effect becomes averaged out in space due to
the large relative angular motion between the spacecraft and aster-
oid. In fact, as the spacecraft orbit becomes close to the asteroid,
its rotation rate increases, and, hence, the effective variations of
the asteroid’s gravity � eld diminish. This is clearly evident when
numerically integrated retrograde orbits are compared with predic-
tions from modeling the ellipsoid as an oblate body.3 For retrograde
orbits, we see that this comparison holds up quite well, indicating

Fig. 10 Minimum radius stable, retrograde circular orbit about Eros
projected into the x–y plane before the � rst instability interval is
encountered.

that these orbits are stable. This fact is used in the nominal design
of the Eros orbital operations4 and allows the NEAR spacecraft to
come close to the Eros surface.

There are, however,22 some notable exceptions to this stability.
These occur when resonances develop between the asteroid rotation
rate and the secular motion of the spacecraft orbits’ longitude of as-
cending node (as discussed earlier). For the case of Eros, we see
that these resonances should occur in the vicinity of 18 km, where
a 1:2 commensurability exists between the periodic orbit period
and the asteroid rotation rate. We also note an isolated instability
region around 20 km, corresponding to the intersection of the ret-
rograde orbits with an out-of-plane family of orbits with twice the
period. This result is not speci� cally predicted by the inertial reso-
nance relations and is due to more complex interactions occurring
in the phase space. Shown in Fig. 10 is the minimum radius, retro-
grade stable circular orbit about Eros, projected into the x –y plane,
before the � rst instability interval is encountered. Also shown is a
silhouette of Eros.

Based on these instability limits, a reasonable constraint to place
on retrograde, equatorial orbits is that they lie outside of 21 km from
the center of Eros. Again, the danger of � ying in or near a region
of unstable orbits is due both to the possibility that the orbit may
diverge from its nominal path and that the orbit uncertainty will
increase signi� cantly.

C. Out-of-Plane Orbits
The analysis thus far has focusedon orbits in or near to the asteroid

equatorial plane. When signi� cantly out-of-plane orbits are consid-
ered, several dif� culties arise. For the periapsis and node arguments
to have their required resonance, there aremore stringent constraints
placed on the orbit period so that, physically, the spacecraft is in the
equatorial plane after one or more rotations of the central body.
This restriction means that out-of-plane periodic orbits do not exist
at all radii as the equatorial families do, and thus are less useful in
analyzing the stability of general motions about the asteroid.

To gain some insight into the stability of polar (or higher incli-
nation) orbits we combine earlier analysis results from the stability
limit of direct periodic orbits with the analytical results found earlier
for the change in energy and angular momentum. Let us consider,
for de� niteness, the stability of a polar orbit (i = 90 deg), leading to
a scaling factor for the contour plots of cos4( p /4) = 0.25. Thus, we
must scale the contour plot by one-quarter. Because of differences
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Fig. 11 Periapsis radius–eccentricity plots of three polar orbits over
600 h (25 days); note the diffusion of the trajectories over time.

in the gravitational and orbit interaction for a polar orbit (the inter-
actions are more varied because there are more possible encounter
geometries when in the nominal orbit) a reasonable criterion for
stability appears to occur when the changes in orbit energy and an-
gular momentum are on the order of 1%. This corresponds to the 5%
contour lines on Figs. 3 and 4 and gives an indication of reasonable
stability limits for polar orbits.

The actual dynamics of polar (or of any) orbits about such a body
are quite interesting. Because of the quasi-random movement of the
argument of periapsis and longitude of the ascending node in the
body-� xed space, the changes in energy and angular momentum
will either add or subtract to the orbit, introducing the possibility of
an orbit having random walks in terms of orbit elements. Figure 11
shows three numerically integrated polar orbits, started with an ini-
tial periapsis radius of 30 km and apoapsis radii of 45, 75, and
100 km, respectively. Each is integrated for 600 h (25 days), and
their trajectory in the periapsis radius–eccentricity space is plotted.
Figure 11 shows how individual trajectories can either be con� ned
to regions of orbit element space or diffuse into escaping or impact-
ing trajectories. Whereas there is signi� cant correlation between
Fig. 11 and Figs. 3 and 4, the controlling dynamic issues are also
evidently much deeper. Current research is attempting to further un-
derstand the relation between the analytical formulas and numerical
integrations.

V. Conclusions
This paper presents a set of systematiccomputations and analyses

that parameterizethe orbit dynamics that a spacecraftwill be subject
to while in orbit about a uniformly rotating asteroid or comet. Such
a set of computations is useful for any and all orbital missions to
small bodies, as the speci� c size, shape, density, and rotation state
of those bodies will not be known prior to rendezvous with that
body. Once rendezvous occurs, it is imperative that a basic orbital
characterization of the body be performed in preparation for the
detailed navigation and mission design planning.

The computations provided give us speci� c limits on stability
against impact with the body, approximate formulas to compute
changes in orbit Keplerian energy, angular momentum, inclination,
period, argument of periapsis, and longitude of ascending node ac-
counting for the body’s oblateness and ellipticity. Also, speci� c
methodologies and results for characterizing the orbital space in
terms of periodic orbit analysis are given, with speci� c applications.
Signi� cantly, we note that retrograde orbits may become unstable
close to the asteroid for some combination of parameters.

The analysis in this paper has been speci� cally applied to the
NEAR spacecraft at the asteroid Eros, using preencounter mod-
els of that body. The most signi� cant results of that portion of the
analysis is that the minimum radius for a stable, direct, equatorial,
circular orbit is approximately 31 km; the minimum radius for a
direct, equatorial, circular orbit that cannot impact with the asteroid
surface is 34 km; and the minimum retrograde, equatorial, circular
orbit radius before instabilities appear is 21 km. Also, contour plots
are presented that can be used to delimit regions of orbit element
space (periapsis radius and eccentricity to be precise) where pertur-
bations to the spacecraft orbit may become too large. Comparison
of stability limits for direct periodic orbits indicate that when or-
bit energy and angular momentum change by more than « 3% the
spacecraft orbit begins to destabilize. This simple criterion can be
used to design orbital stability criteria for three-dimensional orbits.
Although not completely characterizing the orbital space about the
asteroid, these numbers certainly provide the basic framework from
which a mission and navigation plan can be generated.
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