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The general problem of satellite and particle dynamics about a
uniformly rotating triaxial ellipsoid with constant density is formu-
lated. The study of this problem can shed light on the dynamics
of particles and satellites when orbiting irregularly shaped bodies
such as asteroids. The physical specification of an asteroid modeled
as a triaxial ellipsoid can be reduced to two nondimensional shape
parameters (the eccentricities of the triaxial ellipsoid) and one
nondimensional parameter which is a function of the body density,
shape, and rotation rate. All these parameters may be measured
or inferred from groundbased observations. Using these three pa-
rameters, the rotating ellipsoid may be classified into Type I or
Type 11 ellipsoids depending on whether or not all synchronous
orbits about the body are unstable. This classification of the ellip-
soid has significant consequences for the dynamics of bodies in
orbits which are near-synchronous with the asteroid rotation. As-
teroids classified as Type I have stable motion associated with near-
synchronous orbits. Asteroids classified as Type II have unstable
motion associated with near-synchronous orbits. Families of planar
periodic orbits are computed for two specific ellipsoids based on
the asteroids Vesta and Eros. The stability of these families are
computed and related to the type classification of the ellipsoid.
Notes are also made on the existence of stable and unstable periodic
orbits about the asteroid Ida. Analytic approximations are also
introduced under some assumptions, leading to a simplified de-
scription of orbits about a triaxial ellipsoid. Finally, a table of
parameters and classifications for a few known asteroids and com-
ets are given.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Ininvestigating particle and satellite orbits about irregu-
larly shaped small Solar System bodies such as asteroids
and comets, there are a variety of force perturbations
which must be accounted for. These include the solar
tide, solar radiation pressure, comet outgassing, and per-
turbations due to gravitational harmonics. Solar tide per-
turbations dominate when fairly far from the body (see
Hamilton and Burns 1991), Radiation pressure forces gen-
erally cause small particles to crash on the asteroid sur-
face, yet may not affect larger particles or artificial satel-

lites to the same degree (see Hamilton and Burns 1992).
When close to the body the gravitational harmonics and,
in the case of comets, the outgassing pressure dominate
the orbitai dynamics. This paper concentrates on the ef-
fects of the nonspherical shape of the asteroid on orbits
that are close to the body.

Traditional studies of satellite motion under gravita-
tional perturbations have usually focused on the planetary
case where these effects are relatively small compared to
the attraction of the central body (Kaula 1966). When
orbiting a small, nonspheroid body these classical analy-
ses may no longer apply, due to the relatively large pertur-
bations secen by orbiters. In studying orbiter dynamics
about small bodies it is sometimes convenient to leave
the gravitational harmonics formulation aside and concen-
trate on specific mass distributions which have closed
form solutions for their gravitational potentials. This
allows the analyst to specify the major shape perturba-
tions of the central body in closed form, rather than having
to specify the many coefficients needed in a harmonic
expansion of the gravity field. Some studies have taken
advantage of this approach (Dobrovolskis and Burns 1980,
German and Friedlander 1991, Chauvineau et al. 1993).
In Dobrovolskis and Burns (1980), the attraction of a
triaxial ellipsoid is used in conjunction with a number of
other large perturbations to study ejecta in the special
case of Phobos and bodies in similar situations. In German
and Friedlander (1991), some simple shapes (triaxial ellip-
soids, dual spheres) are used to generate coefficients in a
gravitational field expansion and the short-term dynamics
about such bodies are then investigated. In Chauvineau
et al. (1993), the closed form gravitational potential of the
triaxial eHipsoid is used to search for chaotic orbits about
a specific ellipsoid with a number of different rotation
rates. Where comparable, agreement exists between their
study and the current study.

Such an approach has also been used in the study of
galactic dynamics (de Zeeuw and Merritt 1983, Martinet
and de Zeeuw 1988, Merritt and de Zeeuw 1983, Mulder
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and Hooimeyer 1984). Generally, such studies use poten-
tials with nonconstant density distributions and concen-
trate on the dynamics of particies within or close to the
potential. Of specific interest in these studies is the exis-
tence of stable periodic orbits within the potential, as the
existence of such orbits indicate possible paths stars may
follow.

If the shape of an asteroid is measured (Hudson and
Ostro 1994), it is possibie to derive a harmonic expansion
of the gravity field, assuming a constant density. Thus a
closed form potential may be viewed as an idealization,
lying between simple spherical models and actual har-
monic expansions. The triaxial ellipsoid model is signifi-
cant, however, as it incorporates the effect of the major
shape variations and can be specified based on optical
observations alone.

This paper presents a general formulation of orbiters
about uniformly rotating triaxial ellipsoids. It is seen that
the physical problem may be specified by three nondimen-
sional parameters which may all be measured or inferred
from groundbased observations. Lists of these parameters
ar¢ given in the appendix for several asteroids. Then the
dynamics of near-synchronous orbits about a general ¢l-
lipsoid are studied. It is seen that there are two classes
of rotating ellipsoids, one has two unstable synchronous
orbits and two stable synchronous orbits (the planets fall
into this type in general). The other class only has unstable
synchronous orbits, which is a departure from the usual
situation in Solar System bodies and occurs for asteroids
which tend to be more distorted, less dense, or which
spin faster. This class of ellipsoids have a strong instability
associated with near-synchronous orbits. It is interesting
to note that the asteroids Eros and Ida may be classified as
such an ellipsoid. Next, families of direct and retrograde
planar periodic orbits are computed about ellipsoids based
on the asteroids Eros and Vesta. These asteroids are of
different type, as discussed above, and the evolution of
periodic orbit families about them are different. Notes on
periodic orbits about the asteroid 1da are also given. Fi-
nally, some analytic approximations are introduced
which explain some of the observed motion in terms of
averaged osculating elements.

2. MODEL SPECIFICATION AND DERIVATION

The triaxial ellipsoid model of a small body is specified
once the size, shape, density, and rotation rate of the
small body is given. Various techniques for size, shape,
and rotation rate determination from groundbased obser-
vations are described in Magnusson et al. (1989). In-depth
explanations of these and other techniques can be found
in Asteroids II, 1989, Section II. Improvements to the
triaxial ellipsoid shape are also possible (Ostro et al. 1990,
Hudson and Ostro 1994) but are not considered here.
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Note that the density of an asteroid cannot be directly
measured in most cases and must be inferred by compari-
son with known bodies (usually the minor planets, see
Millis and Dunham 1989).

Even with ground observations there is no specific in-
formation on the gravity field of the small body. The
triaxial ellipsoid provides a methodology for study which
includes the major effects of the body’s irregularity, as it
incorporates the three major dimensions of the body into
the force potential. Note that this model does not provide
a general description of the gravity field of an asteroid, as
it has three planes of symmetry. Itis, however, a versatile
model as it has a wide range of possible shapes generated
by adjusting the shape parameters. Varying these, the
body may be deformed from a sphere to a cigar to a
pancake.

To specify the ellipsoid geometrically only the three
major axes are needed. Given a constant density for the
asteroid and its shape and size, there are classical formu-
lae for the gravitational potential and its first and second
partials. These formulae all entail evaluating elliptic inte-
grals, for which simpie and robust numerical procedures
exist (Press et al. 1992, Section 6.11).

2.1. Physical Characteristics

If the total size of a body is g X b X ¢, where a =
b = ¢, then the associated triaxial ellipsoid has major
semiaxes of a/2 X b/2 X ¢/2. Let « = a/2, B = b/2,
and v = ¢/2. Then the ellipsoid is specified by its major
semjaxes @ X B X y, where a = 8 = .

Given a constant density p for the body, its gravitational
parameter g is computed as

4 )
m= T"T GpaBy, (n

where G is the gravitational constant (G = 6.672 x 1078
em?® g™! s72 and (47/3) aBy is the volume of the ellipsoid.

Define a body-fixed coordinate system in the ellipsoid.
The ¥ axis lies along the largest dimension «, the ¥ axis
lies along its intermediate dimension 8, and the Z axis lies
along its smallest dimension vy.

This analysis assumes that the ellipsoid rotates uni-
formly about its largest moment of inertia, thus the ellip-
soid rotates uniformly about the z axis. The rotation rate
of the ellipsoid is denoted as . 1t is possible to generalize
this model to an ellipsoid with nutation and precession,
but this 1s not performed in this analysis.

2.2. Gravitational Potential

The gravitational potential corresponding to a constant
density triaxial ellipsoid is classically known as a function
of elliptic integrals. There are two forms of the potential,
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ong if the point in question is in the interior of the ellipsoid
and another if the point lies exterior to the ellipsoid.

If in the interior of the ellipsoid, the gravitational poten-
tial at a point %, ¥, 7 is (MacMillan, 1930, Sections 32-37)

ViE, 5,0 =2 [" 02,5, & ) o @

Au)
1] (3)

5(2 5}2 22

+ + -
a’+u Btu yitu

dE, ¥, Z;u) = [

Alw) = Vie? + w)(B” + )y + u). 4

Note that V = 0 always.

The generalization of this potential to the exterior of
the ellipsoid is performed using Ivory’s theorem. See
MacMillan (1930, Section 35) for a derivation of this re-
sult. Then the gravitational potential of an ellipsoid at a
point £, ¥, # exterior to the body is

N A
V(x, ¥, 7) = Ml,,')_"z)tiS(Jr,y, 7 u) A 3
X, ¥, Z; ME, ¥, 2) =0, (6)

where ¢ and A are defined as before. The parameter A is
a function of £, ¥, £ and is solved for implicitly from Eq.
(6) and defines the ellipsoid passing through the point £,
¥, Z which is confocal to the body's ellipsoid. Equation
(6) is a cubic equation in A and has a unique positive root
A whenever

(%, 9.2,0)>0 (7)

(when ¥, ¥, 7 lies outside the ellipsoid}, has the root A =
0 when ¢(%, ¥, 7; 0) = 0 (when £, ¥, 7 lic on the ellipsoid
surface), and is not needed in the interior of the ellipsoid
{when &(%, ¥, Z; 0) < 0). Thus, the potential defined by
Eqgs. (5) and {6) is valid for the exterior and interior of
the ellipsoid as long as A = 0 whenever in the interior of
the constant density ellipsoid.

To give the discussion clarity and generality, it is useful
to normalize the variables via a time and length scale.
Denote the scale time to be 1/w and the nondimensional
time as 7:

T=wl. 8

Choose the largest semiaxis of the ellipsoid, a, to be the
length scale and the nondimensional space variables to
be x, y, and z where

x=%a 9
y=¥a (10)
z=Zla. (11)
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Denote the normalized ellipsoid parameters as 8 = S/e
and ¥ = y/a. The caret will be omitted when the context
is clear.

2.3. Equations of Motion

The differential equations governing the motion of a
point mass in a rotating coordinate frame is given as (Win-
tner 1947, Chapter I1I)

P-y=U,
y+2x= U, (12)
i=U,
where the potential U is defined as
U= % (x2+ y) — 8Vix, v, 2) (13)
3y e O
V3] ety oo (14)
Aw) = V(1 + v)(B2 + v}y + v) (15)
N x2 yz 2 _
¢(x’y’z’v)7]+v+,82+v+'y2+v I (16)
_
&= i (17N

The parameter A > 0 is solved for from ¢(x, ¥, z; A} =0
whenever ¢{x, y, z; 0) > 0, else A = (). Also, the inequali-
tiecs 1 = B = y are assumed to hold. The notation U,
denotes the partial derivative of the potential U with re-
spect to the variable x. Note that these equations are
given in a rotating coordinate frame, which has an angular
rate of unity in the normalized system of units adopted.
Any motion in these normalized units is easily converted
to dimensional units by applying the transformations
(8)-(11).

The parameter & is a function of the ellipsoid shape,
size, density, and rotation rate:

§ = 4008y (18)

3w”
Note that these are ali quantities which may be inferred, to
some degree of accuracy, from Earth-based observations.
The parameter & is, effectively, the ratio of the gravita-
tional acceleration to the centripetal acceleration acting
on a particle at the longest end of the ellipsoid, assuming
that the ellipsoid has all its mass concentrated at the ori-
gin. Should the ellipsoid be a sphere, then it is the true
gravitational acceleration to ceniripetal acceleration ratio
on the equator. See the Appendix for a listing of this
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parameter for some known asteroids and comets. Note
that the density of asteroids and comets is a poorly known
quantity in general, thus we have assumed some nominal
values in the following analysis (generally 3.5 g cm ™).

2.4. Symmetries in the Equations of Motion

There arec a number of symmetries present in these
equations, due to the form of the potential I/. First note
the threefold symmetry of J:

Ulx,y, z) = Ulxx, £y, *2). (19)
This holds as U and A are functions of x?, ¥2, and z? only.
In terms of the full equations of motion, and the space

and time coordinates, the equations are invariant under
the transformations:

(—x:ysZsT)_)(x!y! _Z,T) (20)
x,v,z.m—=x, -y, 2, -7 2n
(x, Y, 2 T)—>(_X. ¥, Z, _7) (22)

These transformations may be composed onto each other
to find additional invariant transformations.

Another way to view these transformations is as how
they act on initial conditions and time. Motions starting
from the following initial condition pairs can be trans-
formed into each other under the appropriate transforma-
tions given above:

(xosyo)zo’i—ov)}n!‘.zusﬁro)_)

(Xos Yor —Zas Xos Yos —Z0sTo)  (23)

(X Yor 2o Xos Yo Zo» To) =
(Xgs —Yor Zas ~Xos Yos ~2gs Ty} (24)

(Xos YosZos Xo» Yos Loy To)
(—Xg1 Yos 2o Xos —Vo» —Zos —To).  (29)

The reversal of the time sign indicates that the trans-
formed motion goes backward in time.

A special subset of these initial conditions are those
which transform into themselves, leading to motion which
is symmetic about a line in a plane. Should any orbit have
two such symmetries, then it is a periodic orbit (Marchal
1990, Section 10.6). These are discussed later.

3. JACOBI INTEGRAL

There is an integral of motion immediately apparent in
the equations of motion (12}, This results from the uniform
rotation of the ellipsoid. The statement of this integral is

D. J. SCHEERES

T %(xz + 2+ 1Y) (26)

T-Ulx,y,z5)=—-C, (27)
where the parameter C is the Jacobi constant of the sys-
tem, T is the kinetic energy of the satellite in the rotating
coordinate frame, and U is defined in Eq. (13). Given a
set of initial conditions, the value of the resultant constant
is conserved during all periods of motion. Note that the
constant is conserved even if the particle trajectory inter-
sects the ellipsoid in the course of its motion.

3.1. Zero-Velocity Surfaces

A brief description of the zero-velocity surfaces and
their interpretation is given. This discussion has many
similarities to the standard discussion of the zero-velocity
surfaces in the restricted three-body problem (Moulton
1914, Chapter VIII). Note that, by definition, I/ > (. Thus
if € <0, then T > 0 and the satellite can never come to
rest in the rotating frame. Further, then there are no a
priori bounds on where the particle may not travel.

Conversely, should C > 0, then there is the possibility
that T = 0 on some surface in x, y, z space, called a
surface of zero-velocity. These surfaces are important as
they partition the space into regions of allowable (T > 0)
and unaliowable (T < () motion. Of special interest are
any surfaces which guarantee that the particle is trapped
in the vicinity of the ellipsoid or is bounded away from
the ellipsoid.

Asis the usual procedure in such analyses, first consider
the zero-velocity surface when € 2 0 and then discuss
the changes in these surfaces as C decreases toward 0.
Setting T = 0, the equation to solve to find the zero-
velocity surface is

%(xz +y) = 8V(x,y,2) = C. (28)

Recall that V(x, v, z) = 0. Then note that V(x, y, 2} =
V(0, 0, 0), thus if C + V{0, 0, 0) > 0, there is only one
solution to this equation, a perturbed cylinder of radius
r=V20C+6V(x,y,2) < V2C. As C — =, or as 7 —
=oo, then r — V2C. Motion 1s allowable outside of this
cylinder only. As C decreases this cylinder moves inward.

When C = —§V(0, 0, 0) another zero-velocity surface
bifurcates at the center of the ellipsoid. As C decreases
further this zero-velocity surface expands and, depending
on the parameters of the ellipsoid, will eventually intersect
and then surround the ellipsoid itself, leaving space be-
tween the zero-velocity surface and the surface of the
ellipsoid. At this point, moticen is allowable in the space
above the surface of the ellipsoid, and such motion cannot
escape from the vicinity of the ellipsoid. As before, there
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is still a zero-velocity surface which separates the space
near the ellipsoid from the space far from the ellipsoid.
Thus there is a band surrounding the ellipsoid where mo-
tion is not possible.

As the Jacobi constant decreases further, these two
surfaces will touch at two symmetric points along the x-
axis. The location of these points may be computed by
solving the algebraic equation

U*x,,0,0) = 29)
X, #0 (30)
A=x2-1. 31

These points correspond to relative equilibrium points in
the dynamical system and are called the saddle equilib-
rium points. The value of the Jacobi constant at these
points is denoted by C,. For ( decreasing from C,, parti-
cles may then travel between the space close to the ellip-
soid and the space far from the ellipsoid.

As the Jacobi constant decreases further, the zero-ve-
locity surfaces projected in the x—y plane shrink to two
symmetric points along the y axis, found by solving the
algebraic equation

U0, xy,,0) = (32)
v, # 0 (33)
A=yio1. (34)

Again, these are equilibrium peints and are called the
center equilibrium points. The value of the Jacobi con-
stant at these points is denoted by C,. For decreasing C
the zero-velocity surfaces then do not intersect the x—y
plane and only exist in the out-of-plane space. As C —
07, the zero-velocity surfaces shrink and move to the
points x = 0, ¥y = 0, z = ==, where they disappear when
C=0.

Note that these zero-velocity surfaces only have practi-
cal application when one considers direct orbits about the
ellipsoid in inertial space. Retrograde orbits {in inertial
space) generally have T & 0 with respect to the rotating
frame and thus have C < 0. Thus, while retrograde orbits
often prove to be quite stable, the value of the Jacobi
constant is such that there is no zero-velocity barrier
between them and the ellipsoid. This points to deficiencies
in using Hill stability as a complete characterization of
stability of motion.

3.2. Hill-Stability Radius

A useful application of the Jacobi integral is to deter-
mine the maximum radius at which a nominally circular
orbit has a Jacobi constant equal to or less than the value
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FIG. 1. Zero-velocity curves for a triaxial ellipsoid.

at the saddle equilibrivm points (Fig. 1). Inside of this
radius Hill stability may no longer exists and thus it is
possible for the initially circular orbit to eventually crash
onto the surface of the ellipsoid. Outside of this radius
Hill stability exists and provides a guarantee that the parti-
cle will never come within the zero-velocity curves sur-
rounding the ellipsoid. The value of the Jacobi constant
at the saddle equilibrium point (with location x,) is

1

C, =52 = 8V(x,,0,0. (35)

The radius at which an initially circular orbit has a Jacobi
constant value equal to the C,, denoted as »*, must be
solved for from the equation

c,=1m-1 E—wk)z—aV(o 0. (36)
s Ty 70

This is a nonlinear equation and must be solved for numer-
ically. Note that the potential is evaluated along the y-
axis as this gives the maximum radius at which an initially
“*circular’ orbit loses its Hill stability. Also note that the
initial velocity is modified to be nondimensional and is
evaluated in the rotating coordinate frame. The value of
r* is given for some specific asteroid-like ellipsoids in the
Appendix.
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4. EQUILIBRIUM POINTS AND THEIR STABILITY

In studying direct orbits about an ellipsoid in an inertial
frame, it is of interest to find circular, synchronous orbits.
In the rotating reference frame, these synchronous orbits
are equilibrium points of the equations of motion. For
eilipsoids of revolution about the equator (o = B), there
are an infinity of such points. For a general triaxial ellip-
soid, there are at most four such points exterior to the
body.

It is also of interest to compute the stability of these
synchronous orbits. Classical results for orbits about
planet-like ellipsoids reveal that two of these synchronous
orbits are unstable and two are stable (Kaula 1966). When
investigating asteroid- or comet-like ¢llipsoids, these re-
sults are not necessarily true. It then becomes possible
for all four synchronous orbits to be unstable. This results
has implications for satellite dynamics about an asteroid.

Algebraically, the equilibrium points are found by find-
ing all solutions to the equations

U.r(xov Yor2o) =0 37N
Ufxos Yo, 200 =0 (38)
U (%o, Y05 20) = 0. (39)

From Eq. (13), U, = 0 if and only if z = 0. Thus the
problem may be reduced to finding all solutions of

38 1= dv _
S [ X ] RURC
36 = dv .
AN U
G (X0, ¥, 03 A) = 0. (42)

Solutions to these equations are discussed in the following
subsections, The solution x = y = 0, at the center of the
ellipsoid, is not discussed.

The stability of these equilibrium points is also an item
of interest, as the phase space surrounding these points
may be characterized once their stability properties are
known. The stability of motion in the vicinity of these
points is inferred from a study of the solutions to the
variational equations expanded about these points. Using
such an analysis {Brouwer and Clemence 1961, Chapter
X), the conditions for the equilibrium points to be stable
are

UseloUpylo =0 (43)
4_Uxxlo_Uy)rlu>0 (44)
4 - Uxxlo - (jyylo)2 - 4UxonUyy|o >0, (45)
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The out-of-plane oscillations about these equilibrium
points are stable, as can be noted since the potential U/
is convex in the variable z about each point.

If all the stability conditions are satisfied, then the re-
sulting motion is a harmonic oscillation about the equilib-
rium point. This oscillation has two fundamental frequen-
cies associated with it. Each frequency describes a
libration of the particle trajectory about the equilibrium
point.

If stability condition (43) is violated, then condition (43)
is satisfied and the resulting motion in the vicinity of
the equilibrium point consists of a stable and unstable
hyperbolic manifold and a harmonic oscillation. Should
condition (44) be violated also, a similar result applies.

If stahility condition (45) is violated, then condition (43)
is satisfied. Then the resuiting motion in the vicinity of
the equilibrium point consists of a stable and unstable
spiral, i.e., consists of a hyperbolic motion multiplied by
a rotation. In this case, all motion will in general spiral
away from or toward the equilibrium point.

Now the position and stability of each of the equilibrium
points is investigated in turn.

4.1. Saddle Equilibrium Points

First consider the solution when x, # 0 and y, = 0.
Note that x, lies along the longest axis of the ellipsoid.
The equation to solve in this case reduces to

=3_8 = dv
2 i (1 + v)A()

A =x2 1.

1 (46)

47

Note that the solution A,, and hence x, also, may be
expressed by a transcendental equation involving elliptic
functions. We do not use this property explicitly, but
instead solve Eq. (46), when necessary, using the implicit
function theorem and Newton iteration. Call these the
saddle equilibrium points, for reasons which will become
obvious, and denote their coordinates by tx,and y, = 0.

it is interesting to note that these equilibrium points
are not guaranteed to exist. If the ineqguality

38 (= dv

Y TS IND)

(48)

is violated, then the saddle equilibrium points do not exist,
either interior or exterior to the ellipsoid. Note the follow-
ing inequality and identity:

3= du 3= dv

IIE 0 (1 +u)5f25§ o (1 +v)A) (49
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This implies that a necessary condition for the inequality
to be violated, and for the saddle points to not exist, is
& < 1.

Should inequality {(48) be violated, then it is imagined
that the ellipsoid would not be physically stable as a parti-
cle placed at the end of the ellipsoid (at x = =1} would
fly off due to centripetal acceleration. Otherwise the body
must have an internal cohesive force in addition to gravity.
The saddle equilibrium points exist for all the bodies con-
sidered in this paper. Note that this condition for a *‘physi-
cally stable™ ellipsoid is different than the condition for
a uniformly rotating triaxial ellipsoid to be a figure of
equilibrium (Chandrasekhar 1969). Generally, the figure
of equilibrium condition supersedes the saddle point exis-
tence condition.

To compute the stability of the saddle points, substitute
the values x, and y, into the second partial derivatives
and simplify to find
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Ux.t | 5 = A(Ag)

(50)

35 = du
Upli=1 2 Ls (B2 + wAu) S

Given that 8 < 1, then U, {, < 0, as can be inferred
from Eq. (46). 1tis also clear that U, |, > 0. Thus stability
condition (43) is clearly violated while condition (43) is
satisfied. The status of condition (44} is not as clear. How-
ever, this stability condition does not change the basic
instability type of the saddle points, which is hyperbolic.
Thus, any satellite placed at or near these points will be
influenced mostly by the hyperbolic stable and unstable
manifolds, and its general motion will be to depart from
the vicinity of the point. Also, it is possible to choose
initial conditions in the neighborhood of the saddle points
to find periodic orbits (albeit unstable). Note that the
saddle equilibrium points are similar to the L,, L,, and
L, equilibrium points in the restricted three-body problem
(Moulton 1914, Chapter VIII).

As seen in Section 3, the saddle points are the boundary
points between regions of allowable motion close to and
far from the ellipsoid. Thus, motion starting close to these
points will in general be trapped either near the ellipsoid
or away from the ellipsoid. Another way of stating this is to
note that one pair of cach of the point’s stable and unstable
manifolds lies close to the ellipsoid while the other pair lies
away from the ellipseid. Thus, when passing close to these
points in phase space, the final motion of a satellite will be
close to or far from the ellipsoid depending upon which pair
of manifolds the satellite is influenced by.

4.2. Center Equilibrium Points

Next consider the solution for x, = 0 and y, # 0. Recall
that the y, axis lies along the intermediate size length of
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the ellipsoid. The equations to solve for this case reduce
to

_ 38 = dv
‘*2kwuwmm (52)

Ao =¥5— B (53)
Again, the solution for A, and y, may be expressed by a
transcendental equation involving elliptic functions. Call
these equilibrium points the center equilibriom points.
Their coordinates are denoted as x, = 0 and xy_. They
are important for characterizing the asteroid with respect
to satellite motion.

Similar to the saddle points, there are cases when these
equilibriom points do not exist. A necessary condition for
these points to not exist is that the saddle points not exist.
We assume in general that these equilibrium points exist
in the ellipsoids under consideration.

To compute the stability of these points, substitute the
values x, and y, into the second partial derivatives and
simplify to find

_ 38> du
Uaele =1 2La+mmm (>4)
Unle =505 (59)

Given that 8 < 1, then U |, > 0, as inferred from
Eq. (52). It is also clear that U/,,|. > 0. Thus stability
condition (43) is clearly satisfied. The status of condi-
tions (44) and (45) are not as clear, and may or may
not be satisfied, depending on the parameters of the
ellipsoid: 8, 8, ¥.

A few notes may be made concerning the order in which
conditions (44) and (45) may be violated. Assume that the
parameter & is fixed and that the parameters 8 and y will
be decreased from § = y = 1 (keeping v = ), thus
deforming a sphere into an ellipsoid. Taking Eqgs. (54) and
{55) to the limit for a sphere yields

lim U,,[|.=0 (56)
Byl
lim U, = 3. (57)
Boy—1

Under these limits, both condition (44) and (45) are satis-
fied. Given this, and that condition (43) is satisfied, it is
evident that condition (45) must be violated before condi-
tion (44) may be violated when deforming a sphere into
a general ellipsoid. Thus, as a body is progressively de-
formed from a sphere, it is stability condition (45) that
delineates between whether the center points are stable
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or unstable. If condition (44) becomes violated subse-
quently, it will not have as large a qualitative effect as it
will only pertain to the orientation of the stable and unsta-
ble manifolds of the center points and will not affect the
instability type.

For ellipsoids where all the stability conditions are satis-
fied, the center points are stable in the sense that motions
started near them will oscillate about the center point
indefinitely. For ellipsoids where the stability condition is
not satisifed, the center points become complex unstable,
Then, any motion started near the center point will spiral
away from the center point. As there are no isolating zero-
velocity surfaces associated with the center points, the
final motion will be to eithér fall onto or escape from the
ellipsoid.

Whether the center points are stable or unstable has a
large influence on the stability of near-synchronous orbits
about the ellipsoid. When the center points are stable,
motion started in near synchronous orbits tend to remain
bounded away from the ellipsoid, as the region of regular
curves in phase space near the center points makes pas-
sage through these curves to the surface of the ellipsoid
difficult. .

When the center points are unstable the phase space
around the center points is influenced by the unstable
spiral manifolds. The generic motion under the influence
of these manifolds is to spiral away from the center
point. It is important to note that the spiral the satellite
will follow tends to act in both the angular and the
radial directions. The generic motion of a satellite along
these unstable manifolds seems to either crash into the
ellipsoid or suffer repeated close approaches to it. Due
to the distorted shape of the ellipsoid, these close
approaches may cause the satellite to gain hyperbolic
speeds and escape the ellipsoid. If the motion is contin-
ued through crashes with the ellipsoid the generic final
motion associated with the unstable manifold is an
escape from the vicinity of the ellipsoid. Thus, near-
synchronous orbits about ellipsoids with unstable center
points can be characterized as being unstable in general.
It is not uncommon to observe a near-synchronous,
near circular orbit crash onto an ellipsoid (with unstable
center points) within a matter of days.

In this paper ellipsoids with stable center equilibrium
points are called Type 1 ellipsoids, while those with
unstable center equilibrium points are called Type 11
ellipsoids. It is evident that the crashing problem asso-
ciated with Type II ellipsoids is related to near
synchronous motion about the ellipsoid. Thus, when
orbiting about a Type II ellipsoid, it is in general best
to avoid near synchronous orbits. Conversely, it will
be unlikely to find orbiting debris in near-synchronous
orbits about Type I1 ellipsoids.
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5. COMPUTING ELLIPSOID TYPE

It is of interest to characterize when an ellipsoid is
of Type I (stable center points) and when it is of Type
IT (unstable center points). In general, this characteriza-
tion is a function of the three parameters: B8, v, 8.
Given these numbers for any ellipsoid, it is possible to
compute stability condition (45) and check which cate-
gory the ellipsoid falls into. This condition may be
represented as a two-dimensional surface in the three-
dimensional space 83, v, 8. Figure 2 presents a projection
of this surface onto the B8 X & plane for values of y =
0, B/2, B. Given specific values of B, v, and 8, the
ellipsoid is of Type Il if it lies beneath the appropriate
curve in Fig. 2. Finally, observe that the curves do not
extend all the way to 8 = 1. For y = 3, the curve
stops at a value of 8 = 0.928. For ¥ < B8 the curve
stops an an increasing value. In general, for all 8 greater
than these values at the end of the curve, the ellipsoid
can only be of Type I. This is intuitively evident as
any oblate ellipsoid (8 = 1) is definitely of Type I
independent of y, and hence there will in general be a
small interval less than 8 = 1 where the Type I property
is maintained.

Note that a sufficient condition for an ellipsoid with
parameters 8, v, and § to be of Type II is that the
corresponding ellipsoid with v = 8, with 8 held constant,
be of Type Il. This result is apparent from Fig. 2. This
sufficiency condition simplifies the computation as the
two-dimensional surface in the three-dimensional space
is now collapsed into a one-dimensional surface (a line)
in the two-dimensional space 8, 8. The ellipsoid is, in
this case, a prolate ellipsoid with its axis of rotation
perpendicular to the axis of symmetry, similar to a
cigar lying on a table with its rotation axis perpendicular
to the table. There are simplifications to the form of
the stability condition for this case.
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First note the following results for the center equilib-
rium point, assuming that y = 8 < 1. These results are
computed using the properties of the elliptic integrals:

_ 8
Uele=3 (1 A(Ac)) (58)
38
Uyylc = m (59)
A =B+ ) V1 +u (60)

Additionally, it is now possible to reduce the elliptic inte-
grals to quadratures in terms of known functions. The
equations from which we solve for A, is still, however,
transcendental.

The condition for stability (Eq. (45)) now reduces to

366 o
e (1 - A(m)

subject to the constraint

3] ViEa
2 [(1 — BB+ N
B 1 {1 + V({1 = g)I(1 + )\C}}]
-7 U - ~a =g )

Note that & is a function of w, &, and w® (Eq. (17)). Thus
& will decrease as the mass (or density) of the ellipsoid
decreases or as the size or rotation rate increases. These
effects tends to make a Type [ ellipsoid into a Type 11
ellipsoid.

In a previous paper (Chauvineau et al. 1993), orbits
were investigated about a body with normalized shape
parameters & = 1, 8 = 1/V2,y = 1/2 and with 8 = 129.76,
32.44, 8.11, 2.03 corresponding to rotation periods of 40,
20, 10, and 3 hr, respectively. Note that these parameters
are defined using our notation, The density of the body
was assumed to be 2.5 g cm ™. As stated in that paper,
the ellipsoid with rotation rates of 40, 20, and 10 hr has
stable center equilibrium points and thus are Type I ellip-
soids as discussed here. When the rotation period is 5 hr,
however, the center equilibrium points are unstable and
thus the ellipsoid is a Type 11 ellipsoid. From our current
analysis, this indicates a qualitative difference between
the longer period ellipsoids and the shorter period (5-hr)
ellipsoid. The difference being that the shorter period
ellipsoid will have severe instability in the vicinity of the
synchronous orbits, as was noted in Chauvineau et al.
(1993}, It is expected that the longer period ¢llipsoids will
have regions of (radially) stable motion associated with
near-synchronous orbits, Due to differences in parameter

(61)

1
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space, the analysis carried out in that paper does not

apply directly to the results discussed here, as that paper
concentrated more on slowly rotating asteroids.

6. PERIODIC ORBITS

Now our discussion focuses on a few families of peri-

-odic orbits computed for satellite motion about an ellip-

soid. These results are all numerical and are computed
for only a few specific ellipsoid shapes and parameters.
Two classes of planar periodic orbits are discussed, one
direct and the other retrograde with respect to inertial
space. Both these families degenerate into circular orbits
as 3, y— 1. In computing the periodic orbits, the families
are either terminated once an intersection with the ellip-
soid occurs or when the continued computation of the
family becomes too difficult.

These orbits all lie in the ellipsoid equatorial plane
(z = 0). The near-circular direct and retrograde orbits
have two distinct symmetries and thus have a quarter-
symmetry in the plane (similar to Hill’s Variation orbit;
Wintner 1947, Chapter VI). The following pairs of bound-
ary conditions are used to compute these orbits:

x(ty) = x,
y(t) =0 (63)
Xt) =0
W)= ¥y
(=0
) =y, (64)
(1)) = Xy
yit)=0.

Should any orbit satisfy both of these boundary condi-
tions, then that orbit may be extended into a periodic
orbit symmetric about both the x and the y axes. In the
following numerical studies we choose two basic ellip-
soids to investigate, one based on the asteroid Vesta,
which may be classified as a Type 1 asteroid, and the
other based on the asteroid Eros, which may be classified
as a Type 11 asteroid. Notes are also added on periodic
orbits about the ellipsoid based on the asteroid Ida, which
may also be classified as a Type II asteroid.

The stability computations of the periodic orbits follow
well established procedures for planar periodic orbits
{(Hénon 1965). The actual method used is described in
Scheeres (1992, Sections 6.9.2-6.9.4), They involve com-
putation of a characteristic quantity @ which must satisfy
the condition |a| < 1 for the orbit to be stable. A similar
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quantity may be computed which describes the out-of-
plane stability of the orbit. Files containing the initial
conditions for the periodic orbits are available by request
from the author.

6.1. Vesta

Vesta may be classified as a Type I ellipsoid. Thus,
there are two stable equilibrium points and two unstable
equilibrium points surrounding it. See the Appendix for
a list of the physical properties of the asteroid Vesta. The
following computations are given in normalized units. The
lengths are converted to kilometers via multiplication by
265. The unstable saddle equilibrium points are located
at

x, = + 194097 (65)

C, = 5.565129. (66)
The stable center equilibrium points are located at

¥y, = +1.92377. (67)

C. = 5.531994. (68)

The minimum circular orbit radius to ensure Hill stability
{against crashing onto the ellipsoid) is #* = 2.26 in normal-
ized units.

There are two families of periodic orbits associated with
each center equilibrium point. Analogous to the periodic
orbits associated with the triangle equilibrium points in the
restricted 3-body problem (Moulton 1914, chapter VIII),
these two families may be distinguished as a long period
family and a short period family. There is also a family
of unstable periodic orbits associated with each saddle
equilibrium point. This family is related to the one har-
monic frequency about the equilibrium point in the linear
approximation.

The family of retrograde periodic orbits is stable for all
x,. Note that the family of direct orbits at Vesta is stable
over most of its range, except for some small regions of
marginal stability or small instability. This strengthens
the assertions of the previous section regarding Type 1
ellipsoids, as it is clearly possible for a satellite to follow
a stable, direct orbit with altitudes close to the ellipsoid
surface. The periodic orbits all have out-of-planc stability.

Figure 3 shows the periodic orbit families as lines in
the x,, v,, C space, where x, is the initial coordinate along
the x-axis, y, is the coordinate along the y-axis where the
orbit crosses perpendicularly, and C is the Jacobi constant
of the orbit. Note that the direct orbit splits from an
essentially circular orbit into an orbit with a definite peri-
apsis and apoapsis. The periapsis of the orbit lies along
the y-axis and crosses this axis perpendicularly. Con-
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FIG. 3. Periodic orbit families about Vesta.

versely, the apoapsis lies along the x-axis and crosses this
axis perpendicularly.

From the information on the plot the periodic orbit may
be constructed as follows: given x,, v, = 0, and C, y, may
be computed by assuming that x, = 0. This completely
specifies the initial conditions for the orbit.

Figure 4 shows samples of a direct and retrograde peri-
odic orbit. Note that both of the periodic orbits in this
plot are stable. Also shown are two of the equilibrium
points. Note that the saddle and center orbits and points
have associated mirror images located on the other side
of the asteroid, not shown in the figure,

6.2. Eros

The ellipsoid based on the asteroid Eros is a Type 11
ellipsoid. A Type Il ellipsoid has four unstable equilibrium
points in & uniformly rotating reference frame. The param-
eters used for the ellipsoid based on Eros are listed in the
Appendix. Note that, for convenience, the density was
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FIG. 4. Sample periodic orbits about Vesta.
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chosen so that 8 = 1. Normalized units are used for the
following computations. The lengths are converted to ki-
lometers via multiplication by 20. The saddle equilibrium
points are located at

x, = +1.1926 (69)
C, = 1.6965. (70)
The center equilibrivm points are located at
y. = =0.92689 (71)
C. = 1.42333. (72)

The minimum circular orbit radius to ensure Hill stability
is ¥* = 2.17 in normalized units. For Type II ellipsoids
the center points no longer generate periodic orbits in
their vicinity. This is due to the local nature of the phase
space about these equilibrium points, as closed orbits
cannot be constructed in the linear system close to the
unstable center points.

The presentation of the direct and retrograde periodic
orbit families for the ellipsoid based on Eros are shown
in Fig. 5. The definitions and interpretations of these orbits
remains as before. There are some differences for these
families, however. Most importantly, note that the direct
orbits become unstable at a distance of 1.85 normalized
units from the long end of the ellipsoid (at a radius of 37
km), and remains so for the remainder of the family,
except for the small regions where the family curve passes
through an extremum with respect to the Jacobi constant
C. This range falls within the Hill stability radius of 2.17
normalized units, implying that the unstable manifoid of
the orbit may intersect the ellipsoid, which it does in
general. Conversely, as might be expected the retrograde
orbits are stable throughout the family, ¢ven though these
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FIG. 5. Periodic orbit families about Eros.
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orbits never have the Hill stability. Thus retrograde orbits
may be considered ‘*safe’” orbits in which to fly close to
such as asteroid. Note the similar conclusion arrived at
in Chauvineau er alf. (1993). Again, all the periodic orbits
have out-of-plane stability.

Not obvious in Fig. 5 is that the line defining the direct
family of period orbits in Fig. 5 terminates as a spiral in
the (x,, €) plane and does not intersect the ellipsoid. The
stability parameter of this family becomes arbitrarily large
as the family is continued along this curve.

In Fig. 6 are some samples of periodic orbits about the
ellipsoid based en Eros. In this plot the direct orbit is
unstable while the retrograde orbit is stable.

6.3. Ida

The ellipsoid based on the asteroid Ida is a Type II
ellipsoid. Again a Type 11 ellipsoid has four unstable equi-
librium points in a uniformly rotating reference frame.
The parameters used for the ellipsoid based on Ida are
listed in the Appendix. The density was assumed to be
3.5gcm 3, The normalized units are used for the following
computations. The lengths are converted to kilometers
via multiplication by 28. The unstable saddle equilibrium
points are located at

+1.2105
1.7899.

(73)
(74)

X5

s

The unstable center equilibrium points are located at

e = £0.9719
C. = 1.5366.

(75)
(76)

The minimum circular orbit radius to ensure Hill stability
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is #* = 2.14 in normalized units (= 59.9 km). This estab-
lishes the possibility of stable, near circular orbits ocutside
of 61 km. Note that a satellite of Ida has been discovered
recently (Belton and Carlson 1994). The estimated dis-
tance of the satellite from Ida is 100 km,

The direct and retrograde periodic orbits may also be
computed for this ellipsoid. They are qualitatively similar
to the families presented for Ercs. Note that for Ida the
direct doubly symmetric periodic orbits are stable for all
X, greater 1.90 units (53.1 km). Inside of this limit, these
orbits become unstable in general. As for Eros, the retro-
grade doubly symmetric periodic orbits are stable for
all x,.

7. NONSYNCHRONOUS MOTION

Finally some simple results that apply to satellite mo-
tion when not close to low-order resonances (namely not
at a low altitude and not close to a 1:1 resonance with
the asteroid rotation rate) are discussed. This situation
occurs when the satellite is far from the ellipsoid or is in
a retrograde orbit about the ellipsoid. In the first case
the ellipsoid will rotate beneath the spacecraft with a
relatively large frequency; thus, only high-order reso-
nances will exist, and their strength will be muted by the
larger orbital radius. In the second case, the satellite trav-
els in the opposite sense of the ellipsoid rotation, destroy-
ing resonance in general. In both situations the effects of
the equatorial ellipticity in the gravitational potential tend
to average to zero. This leaves the terms of zero order
as the most significant gravitational effects on the satellite.
This, in turn, is equivalent to the satellite being subject
to the field of an oblate spheroid. There is a wealth of
classical results pertaining to orbits about an oblate spher-
oid. See Brouwer (1959), Garfinkel (1958), and Kozai
(1959) for an analytic discussion of this problem.

7.1. Major Effects of an Oblate Spheroid Model

The primary perturbation relating to an oblate spheroid
model are the gravitational harmonic coefficients of de-
gree 2 and 4 and of order 0, C,; and C,,. Given a constant
density triaxial ellipsoid, these parameters may be com-
puted as (German and Friedlander 1991; note the missing
factor of 2 in the denominator of their expression for Cy)

-1

C0 =104

5(a? + 8% - 299 (77)

Cu =§-§-(3-;&~—4 [Bla* + B9 + 8y* + 2a?B7 -8 (@ + B8Yvy2l.
(78)

The major effect of these terms is the presence of secu-
lar motions in the node and argument of periapsis of the
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satellite orbit. Expressions for these secular rates can be
found in Kozai (1959; Egs. (27) and (28)). The remaining
clements are constant, on average, although all elements
suffer short period variations with attendant nonzero
means.

These results predict the stability results found for the
direct periodic orbits far from the ellipsoid and for the
retrograde periodic orbits about the ellipsoid. Further,
comparisons between analytic formulae (Kozai 1959) and
numerical integrations of satellite orbits about an ellipsoid
show overall qualitative agreement, should the proper
assumptlions apply.

7.2. Comparison between Numerical and
Analytical Computation

In Figs. (7)—(9), nodal regression rates for circular orbits
at Eros, Vesta, and Ida are presented. Each plot compares
numerically computed secular nodal rates about the aster-
oids (modeled using the appropriate triaxial ellipsoid) with
analyticly derived secular nodal rates using Kozai's the-
ory incorporating the C,, and C,, gravitational coeffi-
cients, again corresponding to the appropriate triaxial el-
lipsoids. See Brouwer (1959} for a definition of Kozai’s
gravity coefficients. The numerical computation was per-
formed by integrating the appropriate orbit about the tri-
axial ellipsoid for | day and computing the precession of
the orbit angular momentum vector over that period.

Note the good agreement between analytical and nu-
merical results for all retrograde orbits (f > 90}. The orbits
at Eros and Ida (¢ = 50 km, ¢ = 0and a = 100 km, e =
0, respectively) both show good agreement throughout
the entire inclination range. This is a function of the orbits
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FIG. 7. Secular node rates at Eros fora = 50 km, e = 0.



DYNAMICS ABOUT UNIFORMLY ROTATING TRIAXIAL ELLIPSOIDS

T T T T T
40 | Numerical —
Analytical —---
30 -
3
3 -
~—
v
|5 -
=
@ p—
=
o
= -
]
= -
=2
-
_50 [ W S RO U N
0 20 40 60 80 100 120 140 160 180
Inclination (deg)
FIG. 8. Secular node rates at Vesta for ¢ = 500 km, ¢ = 0.

being far enough from the body for the averaging effects
to exist. Note the poor agreement in the Vesta case for
near-polar and direct orbits. This is due to a resonance
between the orbit and Vesta's rotation rate. The period
of a 500 x 500-km orbit at Vesta is =5.2 hr, while the
rotation period of Vesta is assumed to be 5.3 hr. Thus,
the presence of resonance invalidates the applicability of
the analytical formulae, as is obvious from Fig. (8). Note
that for the results to be applicable, the orbits must be
stable in semimajor axis, eccentricity and inclination. All
orbits plotted in Figs. (7)~(9) satisfy this stability.
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FIG. 9. Secular node rates at Ida for g = 100 km, e = 0.
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8. CONCLUSION

The research described in this paper defines the prob-
lem of satellite and particle dynamics about a triaxial
ellipsoid and arrives at some elementary results for this
problem, All necessary formulae needed to compute the
forces for a satellite orbiting a triaxial ellipsoid have been
presented. The problem has been nondimensionalized and
shown to depend on only three nondimensional parame-
ters; two shape parameters and one parameter relating
the mass, size, and rotation rate of the ellipsoid. Values
of these parameters may be inferred from groundbased
measurements.

The zero-velocity surfaces of a satellite in orbit about
the ellipsoid have been defined and described. The appli-
cation of Hill stability to circular orbits was also dis-
cussed, in the context of a guarantee against collision with
the ellipsoid. All synchronous circular orbits about the
ellipsoid are found as well as the conditions for their
existence. The stability of these synchronous circular or-
bits is discussed and two classes of ellipsoids are defined
according to whether any of the synchronous orbits are
stable or not. Some specific computations of periodic orbit
families for two representative ellipsoids, based on the
asteroids Vesta and Eros, are presented. Additionally,
notes on stable and unstable orbits about the asteroid 1da
are made.

An important item discussed in this paper is the exis-
tence of two types of uniformly rotating ellipsoids, called
herein as Type [ and Type Il ellipsoids. Near-synchronous
orbits about a Type I ellipsoid tend to be stable and well
behaved in a global sense. Conversely, near-synchronous
orbits about a Type II ellipsoid tend to be unstable and
usually crash onto the ellipsoid over very short time spans
{on the order of days).

The distinction between Type I and Type 1 ellipsoids
was also highlighted by the stability of the direct periodic
orbit family about the Vesta based ellipsoid and the insta-
bility of the direct periodic orbit family about the Eros
based ellipsoid. Note that in both cases the retrograde
periodic orbit famities were stable.

Finally, comparison between simple analytic results for
oblate spheroids are compared with numerical results.
Good agreement can be found if the orbiter is in a retro-
grade orbit or if the orbit is sufficiently distant from the
asteroid.

APPENDIX

Following are Tables | and 11 giving the physical and computed param-
eters of a few asteroids and a comet, The values of these parameters
are approximate and are not necessarily based on the best available
data.
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TABLE I
Physical Parameters for Some Select Small Bodies

o B Y 2nl/w  Density Oy Cy

Name  (km) (km}  (km) thr) (g/lem™ (=) (-)
Vesta 265 250 220 53 3.3 0.051 0.006
Ida 28 12 10.5 4.63 3.5 0.090 0.025
Eros 20 7 7 5.27 3.2 0.088 0.025
Gaspra 9.5 6 5.5 7 3.5 0.072 0.015
Tempel 2 8 4.25 4.25 8.9 1.0 0.072 0.017
Mean | V21 u T 25 0,100 0.024
Mean2 V2! u iz s 25 0,100 0.024

TABLE 11
Derived Quantities for Some Select Small Bodies

Name {3 ¥ & Type Saddle Center r*
Vesta 0.94 0.83 7.06 I 1.94 1.92 2.26
Ida 0.43 037 1.11 11 1.21 0.97 2.14
Eros 0.35 0.35 100 1I 1.19 0.93 217
Gaspra 0.63 0.58 5.75 11 1.86 1.76 2.57
Tempel 2 0.53 0.53  2.07 It 1.39 1.22 2.19
Mean 1 V2 172 8.11 I 2.07 2.00 2.73
Mean 2 Vi 203 11 1.37 125 2.08

Table I lists the basic physical dimensions and quantities associated
with each body. Note that all of these quantities may be measured or
inferred from groundbased observations. Table IT contains the derived
quantities stated in this paper. These include the Type of the ellipsoid
(1 or IT), the defining nondimensional parameters 3, ¥, and 8, the location
of the saddle equilibrium point (x,), the location of the center equilibrium
point (y.), and the minimum radius for initially circular orbits to ensure
Hill stability (r*). All lengths in this table are in normalized units, The
last two ellipsoids, called Mean 1 and Mean 2, were taken from Chauvi-
neau ef al. (1993) and are representative of the ellipsoid studied in that
paper.
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