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Highlights

e The gravitational field of the shape model is converted to
the oblate and the prolate spheroidal harmonic representa-
tion

e High-frequency effects are mitigated by increasing the
maximum degree

e The behavior of the harmonic series is studied near the
Brillouin spheroid

e Gravitational field data sets for Bennu and Castalia are
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Abstract

Gravitational field of small bodies can be modelled e.g. with mascons, a polyhedral model or in terms-0f.harmonic functions. If the
shape of a body is close to the spheroid, it is advantageous to employ the spheroidal basis functionsfor expressing the gravitational
field. Spheroidal harmonic models, similarly to the spherical ones, may be used in navigationsand geophysical tasks. We focus
on modelling the exterior gravitational field of oblate-like asteroid (101955) Bennu and prolate-like asteroid (4769) Castalia with
spheroidal harmonics. Using the Gauss-Legendre quadrature and the spheroidal basis functions; we converted the gravitational
potential of a particular polyhedral model of a constant density into the spheroidal harmonics. The results consist of i) spheroidal
harmonic coefficients of the exterior gravitational field for the asteroids Bennu and Castalia; ii).Spherical harmonic coefficients for
Bennu, and iii) the first and second-order Cartesian derivatives in the local spheroidalsSouth-East-Up frame for both bodies. The
spheroidal harmonics offer biaxial flexibility (compared with spherical harmonics), and loew computational costs that allow high-
degree expansions (compared with ellipsoidal harmonics). The obtained spheroidal models for Bennu and Castalia represent the
exterior gravitational field valid on and outside the Brillouin spheroid but'they can.be used even under this surface. For Bennu, 5
metres above the surface the agreement with point-wise integration wasrl%-or'less, while it was about 10% for Castalia due to its
more irregular shape. As the shape models may produce very high frequencies, it was crucial to use higher maximum degree to
reduce the aliasing. We have used the maximum degree 360 to achieve9-10 common digits (in RMS) when reconstructing the input
(the gravitational potential) from the spheroidal coefficients. The physically meaningful maximum degree may be lower (<< 360)

but its particular value depends on the distance and/or on the application (navigation, exploration, etc.).

Keywords: Asteroids, surfaces, Near-Earth objects, Geophysics

1. Introduction 21
22
Gravitational field of small bodies plays-a significant role in 2
a number of phenomena associated with:their exploration and 24
dynamics. For example, accurate gravitational fields are used 2
to constrain geophysical investigations or they are used for or- 2
bit determination (navigation) of other objects in the body’s 27
neighborhood. Werner & Scheetes (1996) overview the main 2s
approaches to express planetary gravity fields; mascons, poly- 2
hedral (or shape) models and harmonic representations. Each %
of them has its own drawbacks and advantages; a more de- s
tailed comparison can be found in Balmino (1994); Werner & 22
Scheeres (1996); Takahashi & Scheeres (2014) and others. 33
This contributionsbelongs to a family of harmonic modelling, 3
we focus on the exterior gravitational field of two small bodies.
There are multiple options when using the harmonic functions. *
Most straightforward is to use spherical harmonics, as they are *
not computationally demanding (e.g., they can be evaluated up *
to ultra high degrees > 10%). However, for accurate compu- **
tations these functions do not suit to irregular bodies such as *

small bodies because their corresponding spherical Brillouin *
41

42
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surface may be too far from the body so the series may not con-
verge (or converge slower) under this surface. The exception
are the solutions that employ spherical harmonics in a more so-
phisticated way; e.g., see Takahashi et al. (2013); Takahashi &
Scheeres (2014). On the other hand, instead of spherical har-
monics one can employ the ellipsoidal harmonics. Basically,
they provide triaxial flexibility, which is very suitable for more
irregular shapes. Recently, these functions were applied to the
gravitational field of Eros (Garmier et al., 2002), Vesta (Park
et al., 2014) and Martian moons (Hu & Jekeli, 2014). However,
the computation of ellipsoidal harmonics is not so straightfor-
ward and can be numerically demanding; for example, in Park
et al. (2014, p.119) it is discussed a use of quadruple precision
for stable evaluations of these harmonics about degree 24.

A reasonable trade-off between the spherical and ellipsoidal
harmonics is provided by the spheroidal harmonics. Although
they offer only biaxial flexibility (oblate and prolate spheroidal
harmonics), their computation is not so demanding and one
can obtain very high degrees (say > 10* depending on the
flattening). Hence, we may expect the same computational
costs as with the spherical harmonics but better performance
near the surface of more irregular (non-spherical) bodies. Re-
cently, the computation of spheroidal harmonics or the asso-
ciated Legendre functions of the second kind was the sub-
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ject of many authors, e.g. (Gil & Segura, 1998), (Segura &
Gil, 1999), (Fukushima, 2013, 2014). Here, we use hypergeo-
metric functions and standard definitions from Hobson (1931);
Abramowitz et al. (1965), their description is given in Appendix
A. The possibility to reach higher degrees becomes important
when converting the gravitational fields from shape (polyhe-
dral) models to harmonic representations. This is because, as
pointed out in Takahashi & Scheeres (2014, p. 172), the polyhe-
dral gravity signal may generate information of infinitely high
degrees and orders. As shown below, by using high-degree
expansions of spheroidal harmonics such aliasing can be suc-
cessfully mitigated. The oblate spheroidal harmonics are tradi-
tionally used in Earth and planetary sciences such as geomag-
netism, geodesy etc; e.g., Winch (1967); Maus (2010); Lowes
& Winch (2012); Pavlis et al. (2012). However, as shown in
Fukushima (2014), there are plenty of non-spherical small bod-
ies, to which also prolate spheroidal harmonics are applicable.
Following the motivation from Fukushima (2014) and theto
choice of the target small bodies in Takahashi & Scheerestor
(2014), we employ the spheroidal harmonics to express thetoe
gravitational field of two small bodies; the oblate-like asteroid1os
(101955) Bennu and the prolate-like asteroid (4769) Castalia. o
The resulting spheroidal models are based on available shaperos
models of both bodies with a given density. Although assum-tos
ing the constant density may be limiting, the obtained harmonic1or
models can provide a suitable starting point for further geophys-oe
ical and navigational tasks. One obvious advantage of the har-1oe
monic representation is that the series allows for spectral filter=io
ing, which can support further geophysical exploration of short-
wavelength structures such as impact basins Zuber et al. (1994);1:2
Smith et al. (2012), eliminating the effect of topography for
crust and mantle modelling (Wieczorek et al., 2013)etc. For the113
illustration, Appendix B provides plots of the Cartesian deriva-
tives from the spheroidal harmonic degree 5. Allthe input data,,,,
the resulting gravitational field models and data grids are pro-,,,
vided at http://galaxy.asu.cas.cz/planets/findex.php?page=sgfm.,,q

17

2. (101955) Bennu 118
119

This Apollo Near Earth Asteroid (NEA) is the primary target,,,
of the OSIRIS-REx Asteroid Sample Return Mission (Drake,,,
et al., 2011). The prime objective of the mission is to measure,,,
Yarkovsky effect on-this‘asteroid (Chesley et al. 2014) and also,,,
to investigate physical, mineralogical and chemical properties,,,
and to return samples of its material (Lauretta et al. 2014). The,
spacecraft will'also be used to measure Bennu’s gravity field by
means of radioscience (Scheeres et al. 2012).

(101955) Bennu was discovered in September 1999 by the'
LINEAR survey (former designation 1999 RQ36). Later on, it127
turned out to be a Potentially Hazardous Asteroid with possi—128
ble impacts in the second half of the next century (Milani et al.129
2009). It was closely observed in optical and infrared bands130
and also by Arecibo and Goldstone radars in its last three ap-
paritions. Therefore, we have detailed knowledge of some of
its physical characteristics. The mean diameter of Bennu is
492 + 20 m (the dimensions of the three principal axes being,
respectively, 565 = 10 m, 535 + 10 m and 508 + 52 m). Its shape

280

260

240

220

3

Figure 1: Shape model for Bennu (a polyhedron with triangular facets) and the
bounding oblate spheroid with semiaxes from Table 2 (the colorbar indicates
the distance from the origin).

resembles that of 1999 KW, primary (Ostro et al. 2006), but
there is no satellite larger than 15 m (Nolan et al. 2013). The re-
flectance spectradindicate;that Bennu is a primitive B-type aster-
oid (Clark et al. 2011) with low albedo of 4.5 + 0.5% (Lauretta
et al. 2014).

The pfecise shape model, taken from Planetary Data Sys-
tem' (PDS), issatesult of radar delay-Doppler observation and
lightcurverobservations (Nolan et al., 2013). Its volume is
0.0623+0.006 km? (ibid). Together with infrared observations,
it was possible to estimate its mass and bulk density with high
accuracy. The derived bulk density is 1260+70kg/m?* and since
the'likely meteorite analog density is known, the macroporosity
was estimated as 40 + 10% (Chesley et al. 2014).

3. (4769) Castalia

(4769) Castalia is also an Apollo NEA. It was discovered
in August 1989 at the Palomar Observatory as 1989 PB and
observed by radar shortly after its discovery (Ostro et al.
1990). Later, a detailed shape model (Neese, 2004) was ob-
tained from radar observations published by Hudson & Ostro
(1994) and it is also available at PDS2. Tt is a bifurcated ob-
ject consisting of two irregular, kilometer-sized lobes with a
volume of 0.6678 km®. We assume it has a mean density of
2100 + 400 kg/m? (Scheeres et al. 1996) and rather high poros-
ity of 40% to 60% depending on the meteorite analog density
assumption. The accuracy of the shape model is not known but
discussed in Hudson & Ostro (1994).

4. Spheroidal modelling of the exterior gravitational field

Since the density variations of Bennu and Castalia are not
known, we shall assume these bodies are of a constant den-
sity given in the preceding sections. With a constant density,
the spheroidal modelling becomes quite straightforward. We
start with Eq. (1), with which one can obtain the gravitational

"http://sbn.psi.edu/pds/resource/bennushape.html
’http://sbn.psi.edu/pds/resource/rshape.html
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Figure 2: Shape model for Castalia (a polyhedron with triangular facets) and the
bounding prolate spheroid with semiaxes from Table 2 (the colorbar indicates
the distance from the origin).

oblate and prolate spheroid
bounding sphere =--=----
normal

155

Figure 3: Oblate and prolate spheroids and the convention for denoting‘the
semi-axes. The symbol u denotes always the smaller axis of the spheroid while
a, denotes the second one, ¢ is the polar angle on the bounding sphere.

156
potential on an arbitrary surface by integrating’over a polyhe-

dral shape model of the asteroid. In ouf.case, weshave chosen153
the surfaces of the oblate and the prolate spheroid depicted in,,
Figures 1, 2. The lengths of the seémi-axes were chosen to en-,
compass the small body by thespheroid, whose surface is kept, ,
close to the body (its shape.model). The harmonic coefficients,
are obtained by the spheroidal harmonic analysis applied to the
potential computed with Eq. (1);"see Section 4.2. The choice,
of the gravitational potential for the analysis is customary and,
one can employ other variable based on Eq. (1). The result
of the analysis is a)set of the harmonic coefficients called the,
spheroidal model, of the exterior gravitational field. With these
harmonic coefficients various gravity field data can be obtained
by the spheroidal synthesis; Appendix B gives the relevant re-
lations for the first and second Cartesian derivatives of the grav-
itational potential that can be used with Eq. (2).

Before we proceed with the analysis, it will be useful to in-
troduce the adopted convention for the spheroid. Start with a
relation between the (global) Cartesian and the spheroidal co-
ordinates from Table 1, for which we use the convention de-1er
picted in Figure 3. The smaller semi-axis is always denoted byes
u, while the larger semi-axis has the length equal to a,. Theses
rotational symmetry is evident from Figure 3 and Table 1. 170

4

Table 1: Relation between the Cartesian and the spheroidal coordinates, where
9 € [0,n] is the polar angle, A € [0, 2n) is the azimuth, u is always the smaller
semi-axis compared with a,, as shown in Figure 3. The quantity E> = aﬁ —u?

is usually called the numerical eccentricity.

Coordinate Oblate Prolate
X1 Vu2 + E2 sin 9 cos A usin cos A
X2 Vu? + E2sin¥sin A usin cos A

X3 ucos Vu? + E2 cos ¢

1.84 1.86 1.88 -1 9 1 ?)%1 02

Figure 4: Gravitational potential on the outer spheroid for Bennu computed
with EqA(1) — the.input signal to the harmonic analysis (in m?s~2).

4.1. Gravitational potential from the shape model

Assuming a constant density, the gravitational potential of a
small body can be calculated by a surface integration (Werner
& Scheeres, 1996, Eq.1)

V:@ffﬁ-?ds, )
2
S

where G is the gravitational constant, p is the density of a body
and the vector 77 and 7 is the normal and the radius vector, re-
spectively. In the discrete case, i.e. with the surface S in terms
of a shape model, the integral in Eq. (1) as well as its derivatives
with respect to the Cartesian coordinates can also be found in
Werner & Scheeres (1996). Equation (1) according to Werner
& Scheeres (1996) was used for computing the gravitational
potential on the outer spheroid that entered a subsequent har-
monic analysis. The input to the analysis is shown in Figure 4
for Bennu and in Figure 5 for Castalia.

4.2. Harmonic analysis on the spheroid

The solution to the exterior Dirichlet problem for the
spheroid provides the gravitational potential V (i, 9, 1) = V as
(Lebedev, 1972, p.218)

GM v Qn,m(n)(

V= — Z Z C; cosmd+8y, sin m/l) P
\Jug + E? n=0 m=0 On.m(110)
o 2)
where C, .S, denote the cosine and sine harmonic coeffi-

cients of degree n and order m, GM stands for the planeto-
centric (here the asteroid-centric) gravitational constant, u is
the semi-axis of the reference spheroid according to Figure 3,
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Figure 5: Gravitational potential on the outer spheroid for Castalia computed
with Eq. (1) — the input signal to the harmonic analysis (in m?s~2).

P = Pyn(cos?) and Q,,, is the associated Legendre func-
tion of the first and the second kind, respectively. The angle

204

205

¥ is sometimes called the reduced co-latitude (the polar angle=

of a bounding sphere). Note the bar in Legendre function P, ,
denotes the normalization that keeps its values in the numeri-
cal range of the computer; e.g., see Press (2007, p.294). The
term Q, (o) in Eq. (2) is somewhat arbitrary but it follows
the convention adopted by Hobson (1931, p.417). The argu-
ments 79 and 7 share the same value for the linear eccentricity
E* = &®> —u} = a* — u* so that the spheroids u and u, are
confocal. The prolate and oblate spheroidal harmonics differ in
the argument 5. For the oblate case it holds = % (with i the

imaginary unit), while it is = —'”ZEJ'EZ in the prolate case. The

definition of Q,,,, and the relevant computational schemies_ are
subject of Appendix A. Generally, the series in Eq. (2) sums up
to infinity and a set of harmonic coefficients limited’by a eertain
integer Ny is usually called the gravitational (or gravity) field
model.

Once we work with the (u,1,1) domaing in ;which the
Laplace’s equation is separable, the hafmonic coefficients can
be obtained by the spheroidal harmonic analysis

207

208

e ur + E?
¢, % Onm(10) ff vl cos m/ll_’n,m(ﬁ) do,

Sew GM  Quu(n) sinmA
3)

where we integrate.the potential over a spheroid with do refer-
ring to the surface o indicated in Figure 3 by the dashed line
(the surface o is the bounding sphere; see Lowes & Winch,
2012, p. 6). Equation (3) presents nothing else than the spheri-
cal harmonic apalysis from Press (2007, p. 296) adapted for the
spheroidal coordinates and multiplied by Q,, ,, functions (Lowes
& Winch, 2012).

209

The bounding spheroids depicted in Figures 1, 2 associatedzo
with 7 present our choice for the so-called Brillouin surface (orar
the outer Runge surface, see Freeden & Gerhards, 2012, p. 25),z212
below which the outer harmonic coefficients do not convergeers
(Takahashi & Scheeres, 2014). These spheroids are by theirzis
whole surface above all masses so that Eq. (1) can be used forass
expressing the outer gravitational potential. Note that the equiv-2s
alent spherical Brillouin surface would be farther from the as-z17

5

teroid at the poles for the oblate body, and at the equator for the
prolate body, respectively.

Note that Eq. (1) may also serve as a starting point for com-
puting various partial derivatives of the potential from a shape
model (Werner & Scheeres, 1996). In this case (a grid-wise ap-
proach followed by the quadrature), the harmonic analysis must
be accommodated accordingly. Among many partial deriva-
tives of V, the most suitable input quantities seem to be the
derivatives with respect to u (i.e., V,, V,, etc.). This is because
only the Q,,, functions in front of the integration symbol need
to be differentiated; e.g., Eq. (3) for V, reads

_ 2 2
¢ NTE 0,0 Bsma -
ff V(9,2 sin m/an,m(ﬂ) do.

Sem GM  3Quu(n)/du
)

5. Choice of the spheroid parameters

Parameters of the biaxial encompassing spheroids shown in
Figure 1 and2 were found by the following procedure. First,
we foundsthe semi-axes ay, by, ¢, of the triaxial ellipsoid that
best fitsthe shape/model. This was done by least-squares fitting
of the quadratic surface in terms of its general form (Rektorys,

1994)

3 3 3
pididi+2 ) ridi = 1 5)

=1 j=1 i

i=1

I

J
where the parameters p;;, 7; define the quadratic surface and { €
{x,y,z}. Because the coordinate axes and the origin of Bennu
and Castalia shape models coincide with principal axes (Nolan
et al., 2013; Hudson & Ostro, 1994), we can use a simplified
form of Eq. (5) (Andrews & Séquin, 2014)

(6)

2 2 2
P11X] + paXy + p33xz =1,

where the mixed and linear terms responsible for the rotation
and translation are avoided.
Then, the semi-axes az),b(’),cg) of the triaxial ellipsoid can

be obtained from the eigenvalue problem [A(pi i) = D] V=0,
where D = Al and V contain the eigenvalues and the eigenvec-
tors, respectively (with I the identity matrix). The semi-axes
are then (Ruiz et al., 2013)

ai> 0 0
0 b;> 0 |=D. 7
0 0 ¢?

We have checked the results from Eq. (6) with those from
Eq. (5) with differences of a few centimetres (relative agree-
ment 107°).

In order to get the parameters ay, by of the spheroid, the two
closest values from a’o, bg), c’0 have been averaged. The spheroid
ap, by is chosen to be a reference spheroid that intersects the
shape model and that is indicated by 79 in Eq. (2). With a fixed
value of numerical eccentricity E* = |a — b| the semi-axes of
the outer (bounding) confocal spheroid were found by looking
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Table 2: Parameters of the spheroids used in this study. Note the magnitude251
of a corresponds with b and u for Castalia because the x,y, z were rotated for2?
90° about the y—axis; then a new z—axis is the spheroid’s axis of rotationalzss
symmetry according to Figure 3. For Bennu E% = 1.1308 - 10* m? while it iSpsy

Eé = 6.0987-10° m? for Castalia. The semiaxes are given in meter, the density,,

inkg-m™. .
Name Density ai/by/c alb a,/u 257
Bennu 2100 259/250/231 254231 (A +E2)/27L
Castalia 1260  901/480/420 450/901 974/(a? — E2)¥
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Figure 6: Spectra of the spheroidal gravity field models of Bennu and Castalia.
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271

for a point P of the shape model that has a maximum value of?2
the semi-axis bp. Finally, any choice u > bp with fixed E? may

define an outer confocal spheroid with respect to the reference®”
spheroid. The outer spheroids for both bodies are depicted in®"*

Figure 1 and 2 and Table 2 provides their numerical parameters.”
276

277
278
6. Results — harmonic models of the exterior gravity fieldwz
280

In order to obtain spheroidal coefficients, the spheroidal har-zst
monic analysis was applied to a grid with the gravitational po-zs
tential calculated with Eq. (1) and shown in" Figures, 4, 5. Az
choice of the maximum degree of the harmoniC seties is cus-zs
tomary but it should be chosen with care to capture a high-zss
frequency signal. In general, these high frequencies may comezss
both from the density/mass anomalies (not possible here duess
to the assumption of the constant density) inside the body andzss
from the shape model. Thedatter issue is pointed out in Taka-zse
hashi & Scheeres (2014, p-172) by stating that “The polyhedralzso
gravity field ... contains information of infinitely higher-degreezs
and higher-order expansion”. This is caused by the discretiza-2e
tion in terms of triangular facets producing high frequencies.zss
Hence, to reduce onto look at the effect of these high frequen-ze
cies on low-degree coefficients, the harmonic analysis can bezss
performed up to’higher spheroidal harmonic degrees and orderszss
(more in Sec. 6.1.1).

The final harmonic analysis was applied to the Gauss-*’
Legendre grid up to degree and order 360 of a dimension2®
361 x 720 points (see Sec. 6.1.1). This kind of grid is sam-2%
pled at latitudes with P,(#) = O and it leads to the Gauss-3©
Legendre quadrature (Press, 2007). The precision of the har-
monic analysis was checked by the backward computation of
the potential from the obtained coefficients. For both bodies
we obtained a relative accuracy of 1077 that means the origi-
nal and the computed potential have minimally seven common

digits (with RMS about 9-10 digits). The coefficients up to de-
gree 60 are displayed in Figure 6. We can see that the power of
the coefficients dramatically decreases with increasing degree,
especially for Bennu due to its simpler shape.

Note the maximum degree 360 does not necessarily mean
that a physically meaningful signal will be present over such
high frequencies. Here the degree of 360 increased the num-
ber of common digits in the backward test by reducing the
aliasing. Nevertheless, the question what degrees or individ-
ual coefficients can be neglected (if any) may be important in
the applications such as geophysical exploration or navigation
of the explorers in the body’s neighbouthood (e.g., for the mis-
sion OSIRIX-REx). Besides the accuracy of the coefficients,
the role of high-degree coefficients depends not only on the dis-
tance from the body but also on'the function computed with
these coeflicients. In partictlar, the partial derivatives of the
potential may be important for/detailed geophysical exploration
with gravity data, whereas these derivatives are usually more
sensitive to higher frequencies than the potential®. In Appendix
Appendix B, the gradient“components and the second-order
derivatives for both bodies are shown; to download these data
visit http://galaxy.asuzCas.cz/planets/index.php?page=sgfm.

6.1. Discussionsof error sources

Our'solutions may be affected by the errors of different na-
ture. The most obvious imperfection comes from the assump-
tionof the constant density. The obtained harmonic models are
fully subject of this methodological constraint and they should
beused with this in mind. This issue can only be investigated
with independent gravity data sets if available, e.g. with fly-by
orbits or with information on the rotational state of the asteroid.

Besides the uncertainty of the shape model (see Sections 2,
3), another imperfection origins from the inaccuracy of the den-
sity p used in Eq. (1). For Bennu it is 1260+70 kg/m? while for
Castalia it is 2100+400 kg/m3 (Scheeres et al., 1996). However,
from Eq. (1) we can see this error linearly affects the gravita-
tional potential. This means the obtained harmonic coefficients
can eventually be re-scaled if some more accurate estimate of p
is known. For example, the fraction ppey /0o1d, Where poiq is the
density used in the integration, adjusts the harmonic coefficients
to a new value pyey. The uncertainty of the bulk density (which
is assumed to be constant) is directly linked with the uncertainty
of the bulk porosity as these two are related by P = 1 — p/owm,
where py is the appropriate meteorite analog density. This re-
lation can be disentangled only with two independent informa-
tion; e.g., from a shape model from radar measurements and
from the fly-by orbit perturbations.

6.1.1. Aliasing and discretization

Furthermore, the harmonic coefficients may be affected by
aliasing due to a high-frequency signal that may come ei-
ther from the integration of a discrete shape model and the

3For example, for the Earth the mission GOCE (Drinkwater et al., 2003)
has acquired second-order derivatives to reveal more information on the Earth’s
gravitational field from a satellite altitude, whereas the same maximum degree
could hardly be obtained with the potential or its gradient observed at the same
altitude.
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Figure 7: Bennu: effect of aliasing in terms of common decimal digits (top
panels) and the corresponding power spectra.

use of spheroidal harmonics for approximating its gravitational
potential (see Takahashi & Scheeres, 2014, p.172), or from
mass/density anomalies not considered in the modelling (a
richer signal than assumed). As the density is assumed to be
constant, we face only the aliasing caused by the first issue.
In order to study this type of aliasing, we have applied the har-
monic analysis to multiple grids with varying spatial resolution,
whereas increasing the grid resolution increases the accuracy of
the obtained harmonic coefficients.

The maximum degree is linked with a grid dimension since
we employ the Gauss-Legendre quadrature for the harmonic
analysis by Eq. (3). For this quadrature we can obtain degree
N if the grid has a dimension (N + 1) X 2N. In particular, we
have used dimensions 61 x 120, 121 x 240,241 480,361 x
720 that have yielded harmonic coefficients up toithe degree
60, 120, 240, 360.

For degree 360 we obtained the best agreement with the input
potential and the potential computed from the coefficients. In
Figure 7 and 8 the problem is documented interms of common
digits in the harmonic coefficientsi(top panels). We compare
the solution up to degree and order 360, with all other solutions
within the first 60 degrees, Ttiis/clear that the number of com-
mon digits increases up/to more than 5 digits if the maximum338
degree increases too., Furthermore, the effect of aliasing is also339
seen in the square foot of pewer spectra (bottom panels) as the340
solutions to degrees 60, 120 and 240 depart from the solution to341
degree 360 near theserdegrees. For this reason, we take the ﬁnal342
harmonic coefficients from the solution up to degree 360. Note343
that this maximum degree does not necessarily mean that such
high degrees are physically meaningful. We recommend to use™
such coefficients that, in agreement with power spectra in Fig-**
ure 7 and 8, provide magnitudes small enough to be neglected*®

in a particular application (say < 100). o

348

6.2. Signal near the Brillouin spheroid ::
Although the obtained spheroidal models represent the exte-as
rior gravitational field with respect to the spheroid, onto whichas.

the harmonic analysis was performed, the models can formallysss
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Figure 8: Castalia: effect of aliasing in terms of common decimal digits (top
panels) and the corresponding power spectras

Table 3: Differences in'percent between Eq. (1) and Eq. (2) near the Brillouin
spheroid. The table complements Figures 9 and 10, whereas the distance is
measured along the normal from a triangular facet and the symbol ““s” for Bennu
denotes that the spherical'coeflicients were used. Note that the same maximum
degree fortheispheroidal and spherical series does not automatically provide
the same spectral content.

Distance (meters)/Degree ‘ Min ‘ Max ‘ RMS
Bennu
5/20 1074 | 32 | 0.85
5/60 10| 63 1.0
30/60 10°| 1.8 | 058
5/20 (s) 1074 | 33 | 0.86
5/60 (s) 1074 | 68 4.1
5/100 (s) 1073 | >100 | >100
Castalia
5/20 4.3 22 12
5/60 4.3 22 12
100/60 1073 14 5.4

be used in the space under the Brillouin spheroid but above
the shape model. Inside the Brillouin spheroid, the spheroidal
harmonics generally do not converge (Takahashi & Scheeres,
2014) so special care must be taken to the choice of the maxi-
mum degree. High degrees may dramatically distort the com-
puted signal under the Brillouin spheroid.

In Figure 9 we demonstrate the difference between the po-
tential computed with the spheroidal models and that computed
from Eq. (1) near the Brillouin spheroid. The black dots indi-
cate the points above the Brillouin spheroid, while the distance
from the shape model is measured along the normal to a triangu-
lar facet. The total distance along this normal to the spheroid is
shown in the bottom panels of Figure 9 for each triangular facet.
For both bodies we can see that the differences decrease with
increasing distance from the body. As seen from Table 3, as-
sociated maxima and RMS values are much smaller for Bennu



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

- \

24d = 5 m, degree = 20 ,
v 27

latitude

"-n/2 longitude

d = 100 m, degree = 60

=

longitude s !-n/2 Llongitude T2
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along the normal to each triangle of the shape model. The distance along this

s . 382
normal to the spheroid is shown in two bottom panels.

383

384

as the spheroidal approximation better suits to its shape; com=3ss
pare Figures 1 and 2. The shape of Castalia seems to bedamoresss
complex and the spheroidal harmonics seem to provide a worses?
service for representing the gravitational field. For-Bennu weses
have 1% difference in RMS in the potential 5 m<above its sur-se
face, while we have about 12% in RMS for Castalia and thesso
same distance. In case of Bennu, such a detailed gravitationalser
field model may be of special interest since the, OSIRIX-RExas2
mission is planned to reach this astergid in,2018 (Drake et al.,ae
2011). 304

395

6.3. Spherical harmonic model for Bennu 39%

Regarding a relatively “regular/shape of Bennu and a”

possible need for accurate navigation of the OSIRIS-REx”
satellite, which will*likely prefer spherical than spheroidal399
harmonics, we have also transformed Bennu’s spheroidal
coefficients into ‘the spherical coefficients by the Hotine-,,
Jekeli’s transformation defined in Hotine (1969); Jekeli
(1988).  The/resulting coefficients are also provided atso
http://galaxy.asu:cas.cz/planets/index.php?page=sgfm. a0z
The practical advantage of the spherical harmonics is theirsos
wide use across the disciplines so that a lot of existing softwaresos
can employ them. Note the more irregular shape of the bodyaos
(e.g., Castalia) the less suitable may be the spherical harmonicsas
for modelling its gravitational field with one set of coefficients,sor
e.g., see Takahashi & Scheeres (2014). 408
The spherical harmonics can also be used inside the Brioullinsos
surfaces if the series is reasonably truncated as in Figure 9 forsio
the spheroidal harmonics to degree 60. This behaviour is shownar

8
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'2aWP/d = 5 m, degree = 100! 8<%
S Pl 00

==
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Figure 10: Bennu: Degree/dependence,of the differences under the Brioullin
spheroid (in percent) between Eq. (1) and the potential computed with the
spherical coefficients.obtained from'the Hotine-Jekeli’s transformation. Com-
pare with two upper left panels of Figure 9 where the same distance from the
body is used. Note the spherical harmonic degree 60 does not correspond with
the spheroidal harmoenic degree 60 exactly; the same signal generates different
bandwidths inispheroidal and spherical harmonics.

in Figure 10, where the agreement of Eq. 1 with spherical har-
monics is'plotted as a function of the maximum degree (20, 60
and 100) 5 metres above each triangular facet. Figure 10 is to
be, compared with the two upper left panels of Figure 9, where
the same distance (5 m) from Bennu is considered. Although
degree 60 in spherical harmonics is not the same as this degree
in spheroidal harmonics, we can observe that both panels pro-
vide good agreement so that even the spherical coefficients can
be used near Bennu’s surface. Although not significantly, Ta-
ble 3 indicates why spheroidal harmonics may provide a better
service than the spherical harmonics in close proximity to the
body. The same degree 60 produces four times worse agree-
ment with Eq. (1) in terms of RMS so that spheroidal harmon-
ics, depending on the u and a,, may capture more signal with
less coefficients and may less deviate from a true field up to a
certain degree. Finally, spherical harmonic degree 100 in Fig-
ure 10 demonstrates we can expect much worse agreement for
higher spherical degrees near the Bennu’s surface.

7. Summary

A use of the spheroidal harmonics to express the exterior
gravitational field of a small and constant-density body with a
given shape (polyhedral) model is studied.

In general, the spheroidal harmonics offer interesting biaxial
flexibility when modelling the gravitational field of (not only)
a small body. First, they can account for more irregular shape
than the spherical harmonics while the Brillouin surface can
be very close to an oblate or prolate body. Secondly, they can
easily be evaluated up to very high degrees that may help to
control the effects from aliasing and/or high-frequency noise in
the data. In addition, the harmonic representations can easily be
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filtered in the spectral domain, which may support geophysical
interpretation over a specific bandwidth and region of interest.
For example, a low-degree expansion derived from orbit per-
turbations, which usually provide information on the true grav-
itational field, may constrain a high-degree expansion derived
from the shape model to test the constant-density hypothesis, to
identify mascon-like objects, etc.

In this contribution, we have obtained spheroidal harmonic
models of the gravitational field of (101955) Bennu and (4769)
Castalia by the grid-wise spheroidal harmonic analysis. The
spheroidal model for Bennu is accompanied with the spheri-
cal model obtained by the spheroidal-to-spherical transforma-
tion. As seen from Figures 9, 10 and Table 3 for Bennu, there
is nearly identical agreement of the spheroidal and spherical
harmonics up to degree 20 about 5 metres above the surface.
For degree 60 and this altitude, however, we can see that the462
spheroidal harmonics perform slightly better than the spherical,
harmonics (1% vs. 4% agreement in RMS). With increasing,,
distance from a body, in turn, the role of either type of har-,
monics can be expected less significant. Hence, in a real appli-,
cation, the data quality and a particular purpose will best con-,
strain the choice of the basis functions. Along with harmonic,
models we provide the first and the second-order derivatives of,
the potential situated on the outer spheroid in the local South-_
East-Up frame (see Appendix B). All the data can be found at |
http://galaxy.asu.cas.cz/planets/index.php?page=sgfm. s

When converting a gravitational field of the shape models,
into the harmonic representation it was crucial to mitigate the
effect of aliasing arising from the point-wise integration with
Eq. (1). This was achieved by increasing the spheroidal har=""
monic degree of the series up to degree 360 as illustrated by Fig-
ures 7, 8 in terms of common digits in the coefficients. By the
backward computation of the gravitational potential from these
coeflicients, we have obtained 9-10 common/digits inyterms of
RMS.

The procedure described here is fully/deterministic so that all
solutions and other outputs depend_on “outer’” factors, which
need to be taken into account before the application. The most
important are i) the accuracy of‘the dénsity of the body in ques-
tion, ii) the assumption that.the density is constant, and iii) the
accuracy of the shape medel. ‘While the obtained coefficients
can easily be scaled to satisfy another value of the density, the
harmonic coefficientssmust be’/determined again if a new and
more accurate shape model becomes available.
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Appendix A. Computing Legendre functions of the second,,,
kind via hypergeometric formulation

In this paper, we compute the associated the Legendre func-
tions of the second kind (ALFs) by means of the hypergeo-
metric formulation with modifications described in this section.

From Abramowitz et al. (1965, Eq. 8.1.3) we have
Vi +my (P=1)°
2n+l(n + 1/2)[ nn+m+1
n+m+2 n+m+1 N 31
s s n ~° o )
2 2 2’ n?

Qn,m (77) L= (_l)m
(A1)

><2F1(

where n = iz and = —”‘2E+E7 is for the oblate and prolate

spheroid, respectively. The Gauss hypergeometric function is
defined as (Abramowitz et al., 1965, p. 556):

(DB O
Fi(a,B,y,06) = —, (A.2)
ah ,; @n K
where (x); = r(r)g)k) = (i;ﬁ)}!)! is the’Pochhammer symbol, I’

is the Gamma functionsand & the integer index of the hyper-
geometric series. The series is'fo be summed to a maximum
kmax guaranteeing,a numerical convergence. The speed of the
convergence can be accelerated by a transformation of the hy-
pergeometricformulation, which would change the relative size
of @, B, y.and ¢ (e.g.,'decreasing ¢ etc.).

Notedthe series/in Eq. (A.2) may contain both the positive
and negative terms so that its evaluation may also face the can-
cellation. To accelerate the summation and to avoid the cancel-
lation, we-chose a different transformation of , F'; for the oblate
and prolate cases.

Appendix A.1. Oblate ALFs

For the oblate case we employ the transformation

’ / ’ ’ —_ 6
P BLY 80 = (1= 0o By - v o= ), (A3)

which for Eq. (A.1) gives

2min+l

Qn,m (TI) :(_1) 2

Vr(n+m)! ,, -
s 121 )

« n+m+1 n—-m+1 N 3 1
2 1 2 b 2 ’n 27 1 _772 .
(A.4)
and then, by back substitution = %", we obtain
0 (lu) 1y Vr(n +m)! E nH
"\E] 2% (n+ 12!\ V)2 1+ E2
o F n+m+1 n-m+1 +3 E?
PN T T e )
(A.5)

Appendix A.2. Prolate ALFs

For the prolate case we employ a different transformation

JFi( By, 8) = (1 =8P F (y—a,y - B,7.0),
(A.6)
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which again with Eq. (A.1) gives

\r(n +m)! ('7 - 1)

m
2

Qn,m( )z(_l)m
n 2n+1(n + 1/2)1 nn—m+l (A7)
< F n-m+1 n—m+?2 31
2F 3 ) 5 ,h+ 7
and by back substitution = = +E it yields
Ou (8] =1y YTt L (Y wji—nmﬂ
i 20+ (n + 1/2)!' \u W2+ E2
< F n—-m+1 n—-m+2 +§ E?
S 2 2 22+ E2)
(A.8)

Appendix A.3. Derivatives of Q,,, and the summing scheme
Egs. (A.5) and (A.8) for the zeroth-order derivatives of O,

with respect to u can be rewritten as a multiplication of the hy-

pergeometric series and the function of u, degree and order.

00, (0) = Bum() ) tpmi(0),

k=0

(A.9)

where the superscript denotes the order of differentiation with
respect to u. From this recipe one obtains summing schemes
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2
for the first 0, = %2 and the second derivative 02, = £
as follows
6 n, a 17
Qtlt,m(u) = ﬁ - Z Apm.k +ﬂn m Z Gnamk
aﬁnm 6ﬂnm aanmk 6 X fo
Q) = = Zanmkw Z ﬁnmz v
u =0 u

The starting value is a,,0 = 1 while g, ,, functiens are to be
obtained from Eqs. (A.5), (A.8).

Appendix A.4. Checking Q° ,0) . Q2

There are multiple possibilities how,£o check,the computa-
tion of the ALFs of the second kind. Here,'we make use of the
Legendre differential equation, which allows to verify partial
derivatives of O, ,, up to the second ofder at the same time. We
proceed from Lebedev (19725 Eqs».8.6.7 and 8.6.13), where we
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set sinha = % and cosh @'= —‘“ZE+E2 Then the LDE in terms of

u for oblate functions reads

62 Qnm a Qnm
ou? u

22

m°E
+1)- ——
n(n+1) u? + E?

(u? + E?) + 2u -

] O =0
(A.10)
and similarly for the prolate functions we get
*Qum \ 2u? + E? 0Qm
Ou? du

2

(P +E?) [n( +y+ 2 E?

] Qnm =

(A.11)

From the Legendre differential equation and Eq. (A.1) we
see that Q,,,, can be multiplied by an appropriate degree-order
function that may cancel out some cumbersome terms in Eq.
(A.1). For example, we can introduce the normalization Qnm =

2n+| 1/2)!
Hyn Qo where H,,, = (12 el/2)!

lar normalization one can better control the behaviour in hlgh
degrees and orders.

u

With such or simi-
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Appendix B. Cartesian derivatives of the gravitational po-
tential in the local frame

The Cartesian derivatives of the potential in spheroidal har-
monics can be derived from ordinary partial derivatives of
Eq. (2) by using the algorithm described in Koop (1993); Ca-
sotto & Fantino (2009). The algorithm starts with the coordi-
nates from Table 1 and the associated covariant metric g;;. Here,
we provide relations specifically for the second-order deriva-
tives as they are rarely or not at all present in the literature. Fig-
ures B.11 and B.12 show their numerical’ values on the outer
spheroid. In both figures we sum from degree 5 to illustrate
the short-wavelength signal. The Cartesian derivatives in the
local South-East-Up (x,y’, ") frameifor the oblate spheroid are
defined (compare with Koop, 1993, p.31)

1 %
Vx’ = _VzaV" =V V, = _Vu
L M sing UYL
u? E? cos ¢ sin 9
Vep = o Vit 2 VM  e—
v B 1 cot ¥
TNy Lsind M SLsing !
uy v vE? cos 9 sin
Vig = 74 Vg — 2 — Vs — — Vi
u cot
Vi = —=V,+ Vu+ \%
R L2 vsintg 2
V.., = .1y
¢ T 2sing ' Lsing ™
2 2 il 2 .
1% uE“ sin” ¢ E“cos¥sind
Vor = EVuu - 14 Vi — 14 Vi

where v = Vu? + E2 and L = Vu? + E? cos? 6.
For the prolate spheroid we obtain similar relations

1 Y
Ve = Vg Vy=——Vi Vo=V,
i L 0 by usin A Te L"
2 2 .
uy 1 E“cos?sind
Vow = TgVutr Voo - ———7— Vo
v B 1 cot
WO T uLsing Ut uLsing !
uy v vE? cos @ sind
Ver = = Iz \Z 7 Vo — Vu
2
v 1 cot
Voy = — Vu+ V,
nY ul? 2sin2g 2
v B v v
ye = u?L sin® uLsing "
oV uE? cos? 9 E? cos ¢ sin 9
Vz’z’ - E Vuu L4 Vu + L4 Vz?

where itholds v = Vi2 + E2 and L = Vu? + E2 sin? 6.
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