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Missions to rendezvous with or capture an asteroid present significant interest both from a geophysical
and safety point of view. They are key to the understanding of our solar system and are stepping stones
for interplanetary human flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an
asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a new population of near Earth
objects presenting many advantages toward that goal. Prior to the mission, we consider the spacecraft
hibernating on a Halo orbit around the Earth–Moon's L2 libration point. The objective is to design a
transfer for the spacecraft from the parking orbit to rendezvous with 2006 RH120 while minimizing the
fuel consumption. Our transfers use indirect methods, based on the Pontryagin Maximum Principle,
combined with continuation techniques and a direct method to address the sensitivity of the initi-
alization. We demonstrate that a rendezvous mission with 2006 RH120 can be accomplished with low
delta-v. This exploratory work can be seen as a first step to identify good candidates for a rendezvous on
a given TCO trajectory.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we compute delta-v minimal spacecraft transfers
from an Earth–Moon (EM) L2 Halo orbit to rendezvous with tem-
porarily captured Earth orbiters (TCO). All computed transfers are
for a 350 kg spacecraft with 22N maximum thrust and 230 s
specific impulse, and we impose that the trajectory utilize three or
less max thrust boosts.

The only documented Earth TCO, known as 2006 RH120(or from
now on simply RH120 for brevity) serves as an important test target for
our calculations. In addition, rendezvous missions are computed to
several simulated TCOs from Granvik et al. (2012).

All transfers are designed using one of the two different grav-
itational models:

1. First, transfers are computed using the EM circular restricted
three-body problem (CR3BP) for the gravitational dynamics,
which is justified since Earth TCOs are naturally evolving near
the Earth and Moon. For these calculations, the transfer time
and precise Halo departure point are treated as free variables to
be optimized.

2. Second, the influence of the Sun is included in the dynamics using
the Sun-perturbed CR3BP, sometimes known as the Earth–Moon–
Sun circular restricted four-body problem (CR4BP). In this case an
al., Rendezvous missions to
j.pss.2015.12.013i
exact location of the spacecraft is assumed at the moment of
asteroid capture, so that a choice of rendezvous location and
transfer time determines exactly the departure point from the
Halo orbit (dubbed the synchronization problem and discussed in
detail within).

Many methodologies have been developed over the past decades to
design optimal transfers in various scenarios. Due to the complexity of
the TCO orbits and the nature of the mission, techniques based on
analytical solutions such as in Kluever (2011) for circular Earth orbits
are not suitable and we use a numerical approach such as in Chyba
et al. (2014a,b). A survey on numerical methods can be found in
Conway (2012), and for reasons related to the specifics of our problem
we choose to use a deterministic approach based on tools from
geometric optimal control versus an heuristic method such as in
Besette and Spencer (2006), Pontani and Conway (2013), Vaquero and
Howell (2014), and Zhu et al. (2009). All computations are carried out
using classical indirect methods based on the Pontryagin Maximum
Principle, combined with sophisticated numeric methods and soft-
ware. The well-known sensitivity to initialization for this type of
approach is addressed via a combination of direct methods and
continuation techniques.

Validation of our approach can be seen by comparing our work to
Dunham et al. (2013), in which the authors develop a low delta-v
asteroid rendezvous mission that makes use of a Halo orbit around
Earth–Moon L2. Their situation is different from ours in that they have
carefully chosen a idealized asteroid for rendezvous. With a one-year
transfer time, the delta-v value they realize is 432 m/s, which is
temporarily captured near Earth asteroids. Planetary and Space
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comparable to the delta-v values presented here in a less-ideal
scenario.

Analysis of all computed transfers strongly suggests that the
CR3BP energy may play a role in predicting suitable departure and
rendezvous points for low delta-v TCO rendezvous missions.
Moreover, we present evidence that TCOs with more planar and
more circular orbits tend to yield lower delta-v transfers.
2. Temporarily captured orbiters (TCO), RH120

The motivation for our work is to study asteroid capture mis-
sions for a specific population of near Earth objects. The targets,
Temporarily Captured Orbiters (TCO), are small asteroids that
become temporarily captured on geocentric orbits in the Earth–
Moon system. They are characterized as satisfying the following
constraints:

� the geocentric Keplerian energy EEartho0;
� the geocentric distance is less than three Earth's Hill radii (e.g.,

3RH;� � 0:03 AU);
� it makes at least one full revolution around the Earth in the

Earth–Sun co-rotating frame, while satisfying the first two
constraints.

In regard to the design of a round trip mission, the main advantage
of the TCOs lies in the fact that those objects have been naturally
redirected to orbit the Earth; which contrasts with recently proposed
scenarios to design, for instance, a robotic capture mission for a small
near-Earth asteroid and redirect it to a stable orbit in the EM-system,
to allow for astronaut visits and exploration (e.g. the Asteroid Redirect
Mission (ARM)).

RH120 is a few meter diameter near Earth asteroid, officially clas-
sified as a TCO. RH120 was discovered by the Catalina Sky Survey on
September 2006. Its orbit from June 1, 2006 to July 31, 2007 can be
seen in Figs. 1 and 2, generated using the Jet Propulsion Laboratory's
HORIZONS database which gives ephemerides for solar-system bodies.
The period June 2006–July 2007 was chosen to include the portion of
the orbit within the Earth's Hill sphere with a margin of about
1 month. We can also observe that RH120 comes as close as 0.72 lunar
distance (LD) from Earth–Moon barycenter (Fig. 3).

In Granvik et al. (2012), the authors investigate a population
statistic for TCOs. Their work is centered on the integration of the
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Fig. 1. Orbit of RH120 in the Earth–Moon CR3BP rotating reference frame.
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trajectories for 10 million test-particles in space, in order to clas-
sify which of those become temporarily captured by the Earth's
gravitational field – over eighteen-thousand of which do so. Their
results suggests that RH120 is not the only TCO and that it is
relevant to compute a rendezvous mission to RH120 to gain insight
whether TCOs can be regarded as possible targets for transfers
with small fuel consumption, and thus cost.

The choice of targets for our rendezvous mission sets us apart
from the existing literature where transfers are typically designed
between elliptic orbits in the Earth–Moon or other systems (Cail-
lau et al., 2012; Mingotti et al., 2011) and (Mingotti et al., 2010), or
to a Libration point (Folta et al., 2013; Picot, 2012) and (Ozimek
and Howell, 2010; Vaquero and Howell, 2014). Rendezvous mis-
sions to asteroids in the inner solar system can be found in
Dunham et al. (2013) and Kuninaka (2005) but they concern
asteroids on elliptic orbits which is not the case for us since TCOs
are present complex orbits and therefore require a different
methodology.

Our assumption on the hibernating location for the spacecraft,
a Halo orbit around the Earth–Moon unstable Libration points L2,
is motivated in part from the successful Artemis mission (Russell
and Angelopoulos, 2013; Sweetser et al., 2011) and in part from the
constraint on the duration of the mission, mostly impacted by the
time of detection of the asteroid. Indeed, the Artemis mission
demonstrated low delta-v station keeping on Halo orbits around L1
and L2.
3. Optimal control problem and numerical algorithm

3.1. Equations of motion

We introduce two models, the circular restricted three-body
problem (CR3BP) (Koon et al., 2011) is first used to approximate
the spacecraft dynamics and thenwe refine our calculations with a
Sun-perturbed model (CR4BP). The first approximation is justified
by the fact that a TCO can be assumed of negligible mass, and that
the spacecraft evolving in the TCO's temporary capture space is
therefore attracted mainly by two primary bodies, the Earth and
the Moon.

The CR3BP model is well known, and we briefly recall some
basic properties and notation which is useful for the remainder of
the paper. We denote by ðxðtÞ; yðtÞ; zðtÞÞ the spatial position of the
spacecraft at time t. In the rotating coordinates system, and under
proper normalization (see Table 1), the primary planet identified
here to the Earth, has mass m1 ¼ 1�μ and is located at the point
ð�μ;0;0Þ; while the second primary, identified to the Moon, has a
mass of m2 ¼ μ and is located at ð1�μ;0;0Þ. The distances of the

spacecraft with respect to the two primaries are given by ϱ1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþμÞ2þy2þz2

q
and ϱ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�1þμÞ2þy2þz2

q
respectively. The

potential and kinetic energies, respectively V and K, of the system
are given by

V ¼ x2þy2

2
þ1�μ

ϱ1
þ μ
ϱ2

þμð1�μÞ
2

; K ¼ 1
2
ð _x2þ _y2þ _z2Þ: ð1Þ

We assume a propulsion system for the spacecraft is modeled by
adding terms to the equations of motion depending on the thrust
magnitude and some parameters related to the spacecraft design.
The mass of the spacecraft is denoted by m and the craft's max-
imum thrust by Tmax. Under those assumptions, we have the fol-
lowing equations of motion:

€x�2 _y ¼ ∂V
∂x

þTmax

m
u1; €yþ2 _x ¼ ∂V

∂y
þTmax

m
u2; €z ¼ ∂V

∂z
þTmax

m
u3 ð2Þ

where uð�Þ ¼ ðu1ð�Þ;u2ð�Þ;u3ð�ÞÞ is the control, and satisfies the
temporarily captured near Earth asteroids. Planetary and Space
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Fig. 2. Orbit of RH120 in the Earth–Sun CR3BP rotating reference frame.

Table 1
Numerical values for the CR3BP and the CR4BP.

CR3BP parameters CR4BP parameters

μ 1.2153� 10�1 μS 3:289 � 105

1 norm. dist. (LD) 384,400 km rS 3:892 � 102

1 norm. time 104.379 h ωS �0:925 rad/norm. time
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constraint JuJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1þu2

2þu2
3

q
r1, and with Tmax=m normalized.

A first integral of the free motion is given by the energy of the
system E¼ K�V . We will later use E to analyze the choice of the
rendezvous point and the parking orbit for the spacecraft. It is well
known that the uncontrolled motion of the dynamical system has
five equilibrium points defined as the critical points of the
potential V. Three of them L1; L2 and L3 are aligned with the Earth–
Moon axis and have been shown to be unstable, while the two
others are stable and are positioned to form equilateral triangles in
the plane of orbit with the two primaries. Since our goal is to
maximize the final mass we must include the differential equation
governing the variation of the mass along the transfer:

_m ¼ �βTmax JuJ ð3Þ
where the parameter β, the thruster characteristic of our space-
craft, is given by β¼ 1

Ispg0
(it is the inverse of the ejection velocity

ve), with Isp being the specific impulse of the thruster and g0 the
acceleration of gravity at Earth sea level.

As the TCO's distance from the Earth–Moon L2 equilibrium
point can go as far a 12 lunar distance in our transfer computa-
tions, it becomes necessary to take into account the potential force
of the Sun. To this end, we will also consider CR4BP, a Sun-
perturbed Earth–Moon CR3BP, as in Mingotti et al. (2007). In the
CR4BP, we assume that the Sun follows a circular orbit around the
Earth–Moon barycenter and shares the same orbital plane as the
Earth and the Moon. Denoting by μS the normalized mass of the
Sun and rS the normalized constant distance from the Sun to the
Earth–Moon CR3BP's origin, the potential energy of the spacecraft
becomes VþVS, where VS is given by

VSðx; y; z;θÞ ¼
μS

rS
�μS

ϱ2
S

ð x cos θþy sin θÞ: ð4Þ

In (4), θðtÞ ¼ θ0þtωS is the angular position of the Sun at
a given time t, with ωS being the angular velocity of the Sun
and θ0 being the angular position of the Sun at initial time 0.
The distance from the spacecraft to the Sun is ϱSðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�rS cos θðtÞÞ2þðy�rS sin θðtÞÞ2þz2

q
. The numerical values
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
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are given in Table 1. The equations of motion of the Sun-perturbed
model take the same form as (2) but with VþVS replacing V.

3.2. Numerical methods

We first introduce the necessary conditions for optimality in
the Earth–Moon CR3BP model and expand to the CR4BP.

Let q¼ ðqs; qvÞT where qs ¼ ðx; y; zÞT represents the position
variables and qv ¼ ð _x; _y; _zÞT the velocity ones. From Section 3.1, our
dynamical system without the Sun perturbation is an affine con-
trol system of the form:

_q ¼ F0ðqÞþ
Tmax

m

X3
i ¼ 1

FiðqÞui ð5Þ

where the drift, in R6, is given by

F0ðqÞ ¼

_x; _y; _z

2 _yþx�ð1�μÞðxþμÞ
ϱ3
1

�μðx�1þμÞ
ϱ3
2

�2 _xþy�ð1�μÞy
ϱ3
1

�μy
ϱ3
2

�ð1�μÞz
ϱ3
1

�μz
ϱ3
2

0
BBBBBBB@

1
CCCCCCCA
; ð6Þ

and the control vector fields are FiðqÞ ¼ e!3þ i with e!i forming the
orthonormal basis of IR6. When considering the CR4BP, the main
difference is that the Sun's position depends explicitly on the time
due to the angular position of the Sun and thus the dynamics is no
longer autonomous, i.e. the fourth, fifth and sixth components of
the drift vector field F0 depend explicitly on t:

FS0ðq; tÞ ¼

_x; _y; _z

2 _yþx�ð1�μÞðxþμÞ
ϱ3
1

�μðx�1þμÞ
ϱ3
2

�ðx� rS cosθÞμS
ϱ3
S ðtÞ

�μS cos θ
r2S

�2 _xþy�ð1�μÞy
ϱ3
1

�μy
ϱ3
2
�ðy� rS sin θÞμS

ϱ3
S ðtÞ

�μS sin θ
r2S

�ð1�μÞz
ϱ3
1

�μz
ϱ3
2
� zμS

ϱ3
S ðtÞ

0
BBBBBBB@

1
CCCCCCCA

ð7Þ

The time dependency implies that we need to take into account
the angular position of the Sun at the initial time, knowing that its
angular position on June 1, 2006 is θ06�01�2014 ¼ 1:10439 rad.
Then, once we select a rendezvous point on RH120 it imposes the
time of rendezvous, that we denote by trdv and based on the
transfer duration tf we can compute the Sun's angular position at
the initial time using θðtrdv�tf Þ ¼ θðtrdvÞ�ωStf . This allows us to
overcome the complexity of free final time when the Sun is
included in the model.

Let us denote by qrdvð�Þ the rendezvous transfer trajectory, we
consider the rendezvous transfer from an initial point qrdvðt0Þ on a
parking orbit O0A IR6 to a final position and velocity qrdvðtf Þ on the
temporarily captured near Earth asteroids. Planetary and Space
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RH120 orbit. Note that the initial and final positions and velocities
are variables of the global optimization problem. The criterion to
maximize is the final mass which is equivalent to minimizing the
fuel consumption or the delta-v ¼ R tf

t0
Tmax JuðtÞ J

mðtÞ dt. Since the mass
evolves proportionally to the norm of the thrust, our criterion is
equivalent to the minimization of the L1-norm of the control:

min
uAU

Z tf

t0
JuðtÞJ dt; ð8Þ

Where U ¼ fuð�Þ;measurable bounded and JuðtÞJr1 for almost
all tg, t0 and tf are respectively the initial and the final time.

Remark that since we choose O0 to be a Halo orbit around a
libration point, it is uniquely determined by a single point of the
orbit using the uncontrolled CR3BP dynamics, which will play an
important role for one of the necessary optimality conditions
below. Notice, that even though the Halo orbit is a periodic orbit in
the CR3BP only and not in the CR4BP we chose it to be our
hibernating location for the spacecraft in both situations which is
clearly justified by the results of the Artemis mission.

The large number of variables in our problem adds complexity
to the search for a solution. In particular, in the case of free final
time we expect an infinite time horizon with a control structure
that mimics impulsive maneuvers. To simplify our optimal pro-
blemwe have two options, either we fix the transfer time or we fix
the structure of the control. If we fix the final time, the sensitivity
of the shooting method can be addressed by using the solution of a
smoother criterion than the L1-norm, for instance the L2-norm,
and linking it to the target criterion by a continuation procedure,
see Gergaud et al. (2004). We take a different approach, however,
that can be applied to both our models and decide to fix the
structure of the control. In the sequel we focus on designing
transfers associated to controls with a piecewise constant norm
with value in f0;1g and four switchings. We are motivated by two
reasons. First, as mentioned above from a purely computational
point of view, leaving the control structure free adds up com-
plexity to the optimization problem that is difficult to address.
Second, our desire is to mimic impulse strategy justifies a piece-
wise constant control either at its maximum or zero and pre-
liminary calculations with a free number of switchings with sev-
eral rendezvous points demonstrated that statistically the optimal
control naturally converges to one with at most three boosts. One
to leave the departing orbit, one to redirect the spacecraft in
direction of the rendezvous point and a final one to match the
position and location of the asteroid at the encounter. More pre-
cisely, we consider control functions that are piecewise continuous
such that there exists times t0rt1rt2rt3rt4rtf with (see
Figure 3)

JuðtÞJ ¼
1 if tAðt0; t1Þ [ ðt2; t3Þ [ ðt4; tf Þ
0 if Aðt1; t2Þ [ ðt3; t4Þ:

(
ð9Þ
Fig. 3. Control function modeling thrust impulses over time.
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Here the final time tf is free in the CR3BP and fixed in the
CR4BP, as explained in the next paragraph. Note that our numer-
ical method will be able to select the best control strategy even if it
has less than three boosts.

When dealing with the CR4BP, we decide to add some practical
constraints to the rendezvous problem. First, we add a synchro-
nization constraint stating that we know the position of the
spacecraft on O0 at the capture time of the TCO, that is June 1,
2006 for RH120. The initial position is denoted qHaloL2, and is given
in the numerical results section. Moreover, we impose that the
departure date of the rendezvous transfer has to occur once the
trajectory of the TCO is known, that is after the date it is detected
to which we add 30 days to take into account the necessary
computations to predict accurately its trajectory. We call detection
date the actual detection plus the 30 day trajectory prediction
date; so, is impossible for the transfer to aim at a target point that
the TCO visited before the detection date or even a few days after
that date. These two constraints are aimed at depicting more
realistic transfers. The considered departure dates will be fixed
with a discretization of 15 days. The rendezvous dates will also be
fixed and use a one day discretization from RH120's detection to
RH120's escape date.

3.2.1. Necessary conditions for optimality
The maximum principle provides first-order necessary conditions

for a trajectory to be optimal (Pontryagin et al., 1962). Details
regarding the application of the maximum principle to orbital
transfers can be found in many references, including Caillau et al.
(2012) and Pontryagin et al. (1962). We denote by XðtÞ ¼ ðqðtÞ;mðtÞÞ
A IR6þ1 the state, where q¼ ðx; y; z; _x; _y; _zÞ is the position and velo-
city of the spacecraft and m its mass. The conditions are mostly the
same for both models, so we first give the conditions for the Earth–
Moon CR3BP and then give the modifications to apply when dealing
with the problem in the Sun-perturbed model. The maximum
principle applied to our optimal control problem, in the Earth–Moon
CR3BP, states that if ðqð�Þ;mð�Þ;uð�ÞÞ ¼ ðXð�Þ;uð�ÞÞ is an optimal solution
defined on ½t0; tf �, then there exists an absolutely continuous adjoint
state ðp0; pXð�ÞÞ ¼ ðp0;pqð�Þ; pmð�ÞÞ, defined on ½t0; tf � such that:

� ðp0; pXð�ÞÞa0; 8 tA ½t0; tf �, and p0r0 is a constant.
� Let H, the Hamiltonian, be Hðt;XðtÞ; p0; pXðtÞ;uðtÞÞ ¼ p0 JuðtÞJþ

〈pXðtÞ; _X ðtÞ〉, then

_X ðtÞ ¼ ∂H
∂pX

ðt;XðtÞ; p0; pXðtÞ;uðtÞÞ; for a:e: tA ½t0; tf �; ð10Þ

_pXðtÞ ¼ �∂H
∂X

ðt;XðtÞ; p0; pXðtÞ;uðtÞÞ; for a:e: tA ½t0; tf �; ð11Þ

where 〈; 〉 denotes the inner product.
� Hðt;XðtÞ; p0; pXðtÞ;uðtÞÞ ¼max Jν J r1Hðt;XðtÞ; p0; pXðtÞ;νÞ; 8 t s.t. J

uðtÞJ ¼ 1 (maximization condition).
� Ψ ðtiÞ ¼ 0 for i¼ 1;…;4.
� Hðtf ;Xðtf Þ;p0;pXðtf Þ;uðtf ÞÞ ¼ 0, if tf is free.
� 〈pqðt0Þ; F0ðqðt0ÞÞ〉¼ 0 (initial transversality condition).
� pmðtf Þ ¼ 0.

The function Ψ ð�Þ is the so-called switching function correspond-
ing to the problem with an unrestricted control strategy and we

have Ψ ðtÞ ¼ p0þTmax
JpvðtÞ J
mðtÞ �pmðtÞβ

� �
.

The maximization condition of the Hamiltonian H is used to
compute the control on ½t0; t1� [ ½t2; t3� [ ½t4; tf � and we have uðtÞ
¼ pvðtÞ

JpvðtÞ J for all tA ½t0; t1� [ ½t2; t3� [ ½t4; tf �. The initial transversality
condition reflects the fact that the initial departing point is free on
the Halo orbit O0. Remark that since the data for the TCO's tra-
jectory are given as ephemerides, there are no dynamics equations
temporarily captured near Earth asteroids. Planetary and Space
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to describe those orbits in the CR3BP or the Sun-perturbed model.
Thus, we cannot compute the tangent space to a TCO point and we
cannot extract a transversality condition for pqðtf Þ at the rendez-
vous point. Since we expect numerous local extrema for this
optimal control problem, it is however preferable to solve the
problem for fixed rendezvous points on a discretization of the
TCO orbit.

When dealing with the problem in the CR4BP, the transfer dura-
tion is determined by the rendezvous point on the TCO orbit and the
initial time of the transfer. Furthermore, as the position of the
spacecraft at RH120's capture, on June 1, 2006, is fixed to qHaloL2,
knowing that the initial time gives the initial position of the spacecraft
on the Earth–Moon Halo orbit. Thus, since the detection constraint
leads us to consider a finite number of departure dates, each problem
in the CR4BP has a fixed initial and final time. Thus, the necessary
conditions of optimality of this problem do not include the initial
transversality condition and the final Hamiltonian cancellation. In
addition to these two changes, the Sun-perturbed model has a dif-
ferent expression of _X .

3.2.2. Shooting method
Our numerical method is based on the necessary conditions

given in Section 3.2.1. Let ZðtÞ ¼ ðXðtÞ; pXðtÞÞ; tA ½t0; tf �, and uðq; pÞ
the feedback control expressed using the maximization condition.
Then, we have _Z ðtÞ ¼ΦðZðtÞÞ where Φ comes from Eqs. (10) and
(11). The goal is to find Zðt0Þ, t1, t2, t3, t4 and tf (when we consider
the free final time for the CR3BP) such that the following condi-
tions are fulfilled:

1. Ψ ðtiÞ ¼ 0 for i¼ 1;⋯4;
2. Xðtf Þ is the prescribed rendezvous point;
3. Xðt0ÞAO0, and the initial transversality condition is verified

(only for the CR3BP);
4. Hðtf Þ ¼ 0 in the CR3BP with free final time.

The problem has been transformed into solving a multiple points
boundary value problem. More specifically, wemust find the solution of
a nonlinear equation SðZðt0Þ; t1; t2; t3; t4; tf Þ ¼ 0, respectively SðpXð0Þ;
t1; t2; t3; t4Þ ¼ 0 in the CR4BP, where S is usually called the shooting
function. When looking for Zðt0Þ, we are actually only looking for ðt0;
pXð0ÞÞ since Xðt0Þ is completely defined by one parameter.

The evaluation of the shooting function is performed using the
high order numerical integrator DOP853, see Hairer et al. (1993).
The search for a zero of the shooting function is done with the
quasi-Newton solver HYBRD of the Fortran minpack package. Since
Sð�Þ is nonlinear, the Newton-like method is sensitive to the initial
guess, and leads us to consider heuristic initialization procedures.
We combine two types of techniques, a direct method and a
continuation method. The discretization of the TCO's orbit requires
the study of thousands of transfers, we use a direct method for a
dozen rendezvous and expand to other points on the orbit using a
continuation scheme. The motivation is that direct methods are
robust but time consuming while continuation methods succeed
for our problem in most cases rapidly. The direct method uses the
modeling language Ampl, see Fourer et al. (1993), and the opti-
mization solver IpOpt, see Waechter and Biegler (2014), with a
second-order explicit Runge–Kutta scheme. Details on advanced
continuation methods can be found in Gergaud et al. (2004) and
Caillau et al. (2012), but we use a discrete continuation which is
enough for our needs.

Moreover, note that in order to fulfill the initial transversality
condition, we first prescribe Xðt0Þ on the parking orbit and find a zero
of the shooting function satisfying all the other conditions. Afterward,
we do a continuation on Xðt0Þ along the departing parking orbit in the
direction that increases the final mass. Once a framing of the best
Xðt0Þ with respect to the final mass is found, we perform a final single
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
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shooting to satisfy the initial transversality condition along with the
other conditions, which is motivated by the fact that we could very
likely find a local maximum on Xðt0Þ rather than a local minimum
because of the periodicity of the initial parking orbit. We avoid this by
first manually ensuring that the Xðt0Þ we find will be the one for the
best final mass and not the worst. However, our continuation proce-
dure on Xðt0Þ does not always succeed, mainly because of the high
nonlinearity of the shooting function, as the trajectories we find can
be long. Even if some of the extremals we find do not satisfy the initial
transversality condition with the aimed accuracy (typically a zero of
the shooting function is deemed acceptable if JSðZðt0Þ; t1;2;3;4;f ÞJr
10�8), they are still rather close to satisfy it (of the order of 10�4). For
theCR4BP, we took a different approach to limit the number of cal-
culations and continuations. First as we mentioned previously, we still
assume that the spacecraft is parked on an Halo orbit around the L2
equilibrium point of the CR3BP but we now impose its location at the
time of RH120 capture. Its departure position from its hibernating orbit
is then determined by the prescribed rendezvous point and the fixed
duration of the transfer in that case, which permits to ignore the initial
transversality condition and simplifies the algorithm.
4. Numerical simulations and results

This section is divided into subsections as follow. In Section 4.1
we compute the best rendezvous transfer from the hibernating
Halo orbit to RH120 assuming a free final time. Since we assume a
free final time the CR3BP model is used for our calculations. The
main goal is to determine a lowest bound estimate for the delta-v
with respect to the position of the rendezvous point on RH120 orbit
and the duration of the transfer, as well as to gain insight on
specific characteristics of this rendezvous point. Our calculations
are also expanded to four other TCOs to demonstrate the gen-
erality of our algorithm. In Section 4.2, by fixing the final time we
produce a plausible scenario with respect to detection time and
transfer duration using the insights found in Section 4.1 and the
CR4BP model. Section 4.3 expands on the analysis of the char-
acteristics of the rendezvous points on RH120 that produce the
most efficient transfers, our observations are supplemented by a
statistical study on a larger pool of TCOs.

For all our calculations the spacecraft is assumed to be a mono-
propellant engine, and its characteristics are assumed to be an initial
mass of 350 kg, a specific impulse Isp of 230 s. and a maximum thrust
Tmax of 22 N. This choice is motivated by assuming a spacecraft with
similar features than the Gravity Recovery and Interior Laboratory
(GRAIL) spacecrafts. The Halo orbit from which the spacecraft is
departing is chosen to have a z-excursion of 5000 km around the EM
libration point L2, see Fig. 4. The point corresponding to the positive z-
excursion is qHaloL2 ¼ ð1:119;0;0:013;0;0:180;0Þ, and the period of
this particular Halo orbit is tHaloL2 ¼ 3:413 in normalized time units or
approximatively 14.84 days.

During the period represented in Fig. 1, asteroid RH120 does 17
clockwise revolutions around the origin of the CR3BP frame, and
3.6 revolutions in Earth inertial reference frame. The evolution of
the energy of RH120 and its distance to the Earth–Moon libration
point L2 as the asteroid evolves on its orbit are given in Fig. 5.

4.1. Rendezvous to RH120 using CR3BP, free final time

The objective of this section is to determine the best rendezvous
transfer to RH120 assuming a free final time, and to present an analysis
of the evolution of the fuel consumption with respect to the location
of the rendezvous point on the RH120 orbit. As mentioned in Section
3.2, we restrict the study to transfers with at most three boosts.
temporarily captured near Earth asteroids. Planetary and Space
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Fig. 4. Halo orbit from which the spacecraft is departing, z-excursion of 5000 km around the EM libration point L2.
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To analyze the variations of the fuel consumption with respect
to the rendezvous point on the orbit, we discretize uniformly the
orbit of RH120 using 6 h steps. For each rendezvous point of this
discretization, we compute an extremal transfer (i.e. a solution of
the maximum principle) with free final time using the techniques
explained in Section 3.

4.1.1. Best rendezvous transfer
The best transfer is represented in Fig. 6, and some relevant data is

presented in Table 2. This transfer has a delta-v of 203.6 m/s. The
rendezvous takes place on June 26, 2006 and lasts 415.5 days which
would require detection and launch about 14 months before June 1,
2006. In Fig. 7, we display the orbit of RH120 in both the rotating and
the inertial frame with the rendezvous point for the best transfer. The
best transfer exhibits 14 revolutions around the origin (in the rotating
frame) and has a significant variation in the z-coordinate with respect
to the EM plane. In particular, the z-coordinate of the rendezvous
point is �1.04 normalized units, that is about 400,000 km, and the
maximum z-coordinate along the trajectory is 5.34 normalized units,
that is about 2 million km. The departure point on the parking orbit
occurs 4.5 days after qHaloL2 . The control strategy consists of a first
boost of 19.7 s, a second boost starting after 154.7 days and lasting
51.1 min , finally, the last boost starting 261.1 days after the second
boost and lasts 13.8 s, see Fig. 8. The short initial boost could suggest
an initial jump on an unstable invariant manifold but the boost
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
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direction does not match the eigenvector of the monodromy matrix
associated to the unstable invariant manifold, see Koon et al. (2011).
However, this trajectory exploits the fact that a small initial boost
leads to a far location where the gravity field of the two primaries is
small and where the second boost can efficiently aim at the rendez-
vous point. In particular, we expect the existence of other local
minima with a larger final time, going further away from the initial
and final positions and providing an even better final mass. Also note
that this kind of strategy could not have been obtained if we had
restricted the control structure to have two boosts rather than three.

4.1.2. Fuel consumption with respect to rendezvous point
Fig. 9 shows the evolution of the final mass, the delta-v and of

the duration of the transfer with respect to the rendezvous point
on the RH120 orbit for a spacecraft departing from the Halo L2 orbit
and corresponding to the three boost control strategy. As
explained in Section 3.2.2, some of the departure points on the
Halo orbit are not fully optimized – this is the case for about two-
thirds of them. Also note that a departure point different from
qHaloL2 implies a drift phase whose duration is not included in the
transfer duration. It can be observed that the final mass has many
local extrema and that the variation of the duration of the mission
is not continuous (contrary to what we would expect). It is most
likely due to local minima or to the fact that the value of the cri-
terion (see Eq. (8)) is discontinuous with respect to the rendezvous
temporarily captured near Earth asteroids. Planetary and Space
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Fig. 6. Best 3 boost rendezvous transfer to RH120 from a Halo orbit around L2: inertial frame (left). Rotating frame (right). Bottom: zoom on the start of the departure from
the Halo orbit (rotating frame).

Table 2
Data for the best transfer from qHaloL2 to asteroid RH120.

Parameter Symbol Value

Transfer duration tf 415.8 days
Final mass mf 319.8 kg
Delta-v Δv 203.6 m/s
Final position qrdvp

(2.25, 3.21, �1.04)

Final velocities qrdvv
(2.92, �2.02, 0.46)

Max distance from L2 dmax
L2

10.63 LD
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point. Unfortunately it is not possible to show a minimum is local
without exhibiting a better minimum. As for the regularity of the
criterion, its study would lead to the analysis of an ad hoc
Hamilton Jacobi Bellmann equation that is out of scope of this
paper as a numerical study is not possible due to the dimension of
the problem.

Fig. 10 shows the evolution of the departure point on the hiber-
nating orbit for the spacecraft with respect to the rendezvous point on
RH120(top) as well as the three most frequent departure points on the
initial Halo orbit (bottom). More precisely, we represents the opti-
mized argument of ðy; zÞð0Þ (up to the quadrant: arctanðzð0Þ=yð0ÞÞ).
Note that the initial position on the Halo orbit directly depends on the
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
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optimized initial drift time. Since this initial drift phase has not always
been successfully optimized, this figure has to be interpreted with
caution. However, we can see that the departure position on the initial
periodic orbit seems to always be close to a multiple of π.

Comparing the evolution of the final mass from Fig. 9 and the
evolution of RH120 energy from Fig. 5, we can see that the best
final masses are obtained on the first half of RH120 trajectory, that
is for rendezvous points with energies closer to the departing
energy. For the best transfer, the energy difference between the
rendezvous point on RH120 and the departing point on the Halo
orbit is about 0.046. The rendezvous point with the closest energy
to the initial orbit occurs only slightly before the optimal ren-
dezvous point. Its final mass is 319.3 kg which is only 0.5 kg worst
than the best final mass. This remark suggests strongly that a small
difference in energy between the rendezvous point on RH120 orbit
and the departing point for the spacecraft on the Halo orbit is
advantageous.

4.1.3. Expansion to other TCOs
Further calculations on four synthetic TCOs obtained from the

database produced in Granvik et al. (2012) suggest that similar
results can be expected on a large sample of TCOs. Indeed, in Table 3
we display data regarding the best three boost transfer for four other
TCOs. These transfers have a duration of about one year each and
temporarily captured near Earth asteroids. Planetary and Space
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produce delta-v values between 223.9 m/s and 344.2 m/s. The best
transfer is for TCO1 and occurs for an energy difference between
terminal configurations of about 0.13, for TCO16 the difference is
about 0.6, 1.5 for TCO19 and 2.3 for TCO11. This reinforces the rela-
tionship between the final mass of the transfer and the energy dif-
ference of the rendezvous point with respect to the one from the
Halo orbit, see Section 4.3 for more details. It can also be noted that
the maximum distance of the spacecraft from L2 during the transfer
is similar for all four transfers which indicates that the long drift is
used to pull away from the two primaries attraction fields to make
the second boost more efficient.

4.2. Rendezvous to RH120 using CR4BP, fixed final time

In this section, we use the insights from the results obtained in
Section 4.1 to develop a more realistic scenario taking into account the
Sun perturbation, the detection time of the asteroid, the time required
to compute an accurate orbit and a transfer duration that will allow to
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
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reach RH120 within its capture time. Asteroid RH120 was actually
detected 105 days after its capture by Earth gravity, on September 14,
2006. Moreover if we add awindow of 30 days to allow completion of
the observations and calculations required to predict RH120 orbit with
enough precision, we obtain that the departure time must take place
on or after 135 days after its capture on June 1, 2006. For these
simulations, the spacecraft is assumed to be at qHaloL2 on June 1, 2006.

Based on the calculations from Section 4.1, we analyze all
possible transfers departing from the Halo orbit 135 days after
RH120 capture by discretizing the transfer duration over the
interval ½100;290� where 290 represents the constraint that the
spacecraft must reach RH120 on or before it escapes Earth's gravity
on July 31, 2007, 425 days after initial capture. We chose not to
consider transfer durations that last less than 30 days since Section
4.1 demonstrated that a shorter time implies a higher delta-v. We
use a discretization of 15 days of the departure dates over the
predefined interval ½100;290�. The best rendezvous transfer using
the Sun-perturbed model departing the Halo orbit exactly 30 days
after RH120 was detected has a duration of 255 days and the final
mass is mf ¼ 245:707 kg, or equivalently delta-v¼797.991 m/s,
see Fig. 11.

Additional simulations on different starting dates and durations
show that the best departure time that takes place at least 30 days
after detection and before it escapes capture is 180 days after
RH120 capture. This scenario provides 75 days between the
detection time and the departure of the spacecraft for the ren-
dezvous mission to determine RH120 orbit and design the transfer.
It produces a final mass of 267.037 kg, or equivalently delta-
v¼610.224 m/s, and a rendezvous date 312 days after capture, that
is April 9, 2007. Fig. 12 shows the corresponding trajectory in an
inertial frame and in the CR3BP frame, while Table 4 summarizes
the main features of this transfer.

The three boosts of this transfer last respectively 4.1 mn, 0.89 h
and 84.2 mn, while the two ballistic arcs durations are 70.6 and
61.3 days. Clearly from our simulations the Sun has an impact on
the rendezvous transfers, in particular when considering the Sun
the spacecraft does not drift as far from the Earth–Moon system
since the Sun's gravity is now unavoidable. Notice also that for
both CR4BP transfers the spacecraft shows a passage at close
proximity to the Earth to quickly modify its energy level. More
precisely, in Fig. 11 the smallest distance between the spacecraft
and the Earth is 105,478 km (0.274397 LD) and in Fig. 12 it is
35,677.2 km (0.0928128 LD). Both these are acceptable in terms of
temporarily captured near Earth asteroids. Planetary and Space
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Fig. 9. Evolution of the final mass (top left), of the Δv (top right) and transfer duration (bottom) from the Halo orbit around L2 with respect to rendezvous points on the orbit
of RH120.
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practicality with the second one at a distance about equivalent to
the geostationary orbit.

4.3. Regression analysis

The goal of this section is to determine factors that can predict
which location on a given TCO orbit is best suited for a fuel effi-
cient rendezvous transfer. In Section 4.1.2, we observed that for
RH120 a small energy difference between the departing point for
the spacecraft and the rendezvous point provides a good candidate
for an efficient transfer. Using rendezvous transfers on a larger
pool of TCOs and transfers calculated using the Sun-perturbed
model, we expand on this observation.

More precisely, we have that in the circular restricted three-body
problem the energy E3 is a first integral of motion, so any change in
energy must be generated from the spacecraft's propulsion. Therefore,
transfers between orbits of significantly different energy necessarily
require more delta-v which is what we observed in Section 4.1.2. In
the circular restricted four-body problem however, energy is no longer
a first integral, and theoretically the spacecraft can utilize the influ-
ence of the Sun to navigate between orbits of different energy for
cheaper delta-v. For 1000 selected rendezvous points on simulated
TCOs from Granvik et al. (2012), we computed a rendezvous transfer
departing from the Earth–Moon libration point L2 in the circular
Please cite this article as: Brelsford, S., et al., Rendezvous missions to
Science (2016), http://dx.doi.org/10.1016/j.pss.2015.12.013i
restricted four-body model, using the same features for the spacecraft
as for our calculations on RH120, i.e. a 22 Nmaximum thrust and 230 s
Isp and transfer duration between 10 and 180 days. We see in Fig. 13 a
characterization of those rendezvous points based on the energy dif-
ference from departure jE3ðrdvzÞ�E3ðL2Þj as well as the z and _z
coordinates, colored by delta-v. The figure shows clearly that those
rendezvous points with low absolute z and _z coordinates yield the
lowest delta-v values. Moreover, although there are some low delta-v
rendezvous with large energy difference, most of the low delta-v
transfers have low energy differences, indicating that the energy is still
an important factor even in the four body model.

Further exploration to determine other predictors has been con-
ducted as follows. We started from a random pool of 91 TCOs and
their corresponding best rendezvous transfers. We discarded some
extreme cases: transfers with inordinate expected fuel cost (delta-v
41000) and TCOs with average energy vastly different from that of
the departure point (absolute value of the differences greater than 4).
Running a linear multiple regression using regstats in Matlab on the
remaining 79 trajectories, we found that three predictors were sta-
tistically significant with 95% confidence. Listed in Tables 5 and 6 are
the results. These delta-v values ranged from 130 to 1600 m/s.

The regression shows that these three predictors account for
approximately 40% of the variance in the transfer cost (adj-
R2 ¼ 0:397), which implies that they may be useful in predicting
temporarily captured near Earth asteroids. Planetary and Space
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Fig. 10. The top picture represents the evolution of ðy; zÞð0Þ argument with respect to time of rendezvous on RH120. The bottom picture represents the three most frequent
departure points on the initial Halo orbit.

Table 3
Best transfer data from qHaloL2 to selected TCOs.

Parameter Symbol TCO1 TCO11 TCO16 TCO19

Transfer duration (days) tf 362.0 386.6 362.2 364.9
Final mass (kg) mf 316.9 300.5 311.0 307.1
Delta-v (m/s) Δv 223.9 344.2 266.1 294.6
Max distance from L2 dmax

L2
12.7 11.5 11.5 12.8

Time to dmax
L2 (days) tðdmax

L2 Þ 232.9 196.6 197.3 232.3
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Table 4
Data for the best Sun-perturbed transfer from qHaloL2 to asteroid RH120, with
transfer departure after RH120 detection.

Parameter Symbol Value

Transfer duration tf 132 days
Final mass mf 267 kg
Delta-v Δv 610.2 m/s
Final position qrdvp

(2.27, 0.46, �0.37)

Final velocities qrdvv
(0.79, �2.22, �0.58)

Max distance from L2 dmax
L2

4.81 LD

Table 5
Selected statistics for the multiple linear regression on the
three significant variables of interest. This indicates that the
three selected predictors explain roughly 40% of the var-
iance in the data. The f-statistic and associated p-value
indicate that this cannot be explained by random chance.

Statistic Value

Adjusted R2 0.397
f-value 18.106
p-value 6:17� 10�9

Table 6
Significant predictors of delta-v, the associated p-value from the multiple linear
regression t-tests, and the associated R2 value from the single linear regression.
Subject to the inherent difficulties of regression analysis, this implies that Lunar
planarity has the most impact on fuel costs while the other two predictors have
roughly the same impact.

Predictor Description p-value R2

Energy
difference

The difference in the energy of the
TCO and the spacecraft's departure
point (equal in this case to the EM L2
energy)

0.0169 0.163

Lunar planarity The average distance of the TCO from
the plane in which the Moon orbits
the Earth

4:35� 10�6 0.216

Barycenter
variance

The variance in the distance of the TCO
from the Earth–Moon barycenter. This
is a rough indicator of how well the
TCO adheres to a circular path around
the earth- moon system

3:10� 10�3 0.164

Fig. 13. Characterization of 1000 simulated rendezvous transfers from L2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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future transfer costs, but that there may exist some other significant
factors as well. Based on this data, we hypothesize the following
practical trends from these findings:

� TCOs with average energy similar to the spacecraft's departure
energy tend to have lower delta-v transfers.

� TCOs which travel more aligned with the lunar plane tend to
have lower delta-v transfers.

� TCOs which have roughly circular paths, or have perhaps even
large sections of roughly circular paths, tend to have lower
delta-v transfers.

It should be noted that these hypotheses come with fair caveat; we
did not vary the departure energy, the sample size of TCOs was
fairly low, and the pruning method for excluding extreme cases
relies on calculating the transfer cost initially. However, the TCOs
excluded due to extreme transfer costs alone (high delta-v and not
high geocentric energy difference) were rare (3 out of 91), so we
can probably safely ignore these as outliers.
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