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The small asteroid Itokawa was visited in 2005 by the Japanese spacecraft Hayabusa. The images of the
surface showed a scenario different to previously visited asteroids. Itokawa has a small number of large
craters and many large boulders randomly distributed on most of the surface.

We analyse images taken at different surface resolution and configurations corresponding to several
regions on the asteroid’s surface. By overlapping visual images and maps of the total potential and surface
gravity, we observe a correlation between the distribution of boulders and these parameters. The boul-
ders on the surface were identified by visual inspection of several images. After fitting ellipses to every
boulder, we computed their size and the size distribution from decimeters to several meters at different
locations in the surface. We found that the size distribution is correlated with the total potential and the
surface gravity. A steeper size distribution shifted towards the small objects is observed in the low neg-
ative total potential (high surface gravity), which corresponds to the Muses-C region. Meanwhile, in the
‘‘head’’ and ‘‘bottom’’ regions of high potential (low surface gravity), we obtain a shallower size distribu-
tion, shifted towards the large boulders.

We confirm there is a size segregation that is correlated with the gravity field which can be explained
under the action of the Brazil nut effect. There is a global relocation of boulders, with large ones going
into the high potential regions and small ones into the low potential ones. A shape segregation is also
observed on the location of the boulders: more rounded ones are found in the regions of high potential,
while more elongated ones are frequent in regions of low potential.

� 2014 Elsevier Inc. All rights reserved.
1. The asteroid eccentricity of the orbit is moderate ðe ¼ 0:280Þ, but its inclination
In late 2005 the Japanese mission Hayabusa reached the Near-
Earth Asteroid 25143 Itokawa (1998 SF36) (Fujiwara et al., 2006).
In the following months the spacecraft made a rendezvous around
the asteroid acquiring images of the its surface and selecting the
sampling site where it made a couple of touch downs.

The images of the surface taken with the on board instrument
AMICA showed a completely different picture in comparison to
the other asteroids previously visited by spacecrafts: while the
other asteroids (much larger than Itokawa) have a surface with
many craters and generally covered by a thick regolith layer, Itok-
awa has a small number of large craters and, more strikingly, the
presence of a large number of boulders randomly distributed in
most of the surface (Saito et al., 2006).

Itokawa is an Earth-crossing asteroid with a perihelion distance
of q ¼ 0:953 AU and an aphelion distance of Q ¼ 1:695 AU. The
with respect to the ecliptic is very low ði ¼ 1:622�Þ. The asteroid is
an slow rotator with a rotational period of 12.1 h (Fujiwara et al.,
2006) (similar reference for the following data). The asteroid’s
dimensions are 535, 294, and 209 m (�1 m). The total surface area
is 3:93� 105 m2 and the volume is 1:84ð�0:092Þ � 107 m3. The
diameter of a sphere of equal volume would be 320 m. Itokawa
is an S-type asteroid. The bulk density is �1:95ð�0:14Þ g/cm3

(Abe et al., 2006).
The dynamical evolution of Itokawa at present is very chaotic

due to frequent close encounters with the Earth. The low-inclina-
tion leads to a high impact probability with our planet. The ques-
tion of dynamical origin was analysed by Michel and Yoshikawa
(2005) in a statistical way, as it is not possible to trace the evolu-
tion from the source region to the present due to the chaotic nature
of the dynamics. Using the NEO model of Bottke et al. (2002) and
Michel and Yoshikawa (2005) determined the most likely source
region for the present orbit of Itokawa: the m6 secular resonance
in the inner main belt (64% probability) and the Mars-crosser
population (35% probability). This result is consistent with the
S-type spectra of Itokowa.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2014.10.011&domain=pdf
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It is worth to compare the small size of Itokawa, with the other
asteroids visited by spacecraft: (951) Gaspra – 18� 11� 9 km,
(243) Ida – 30� 13� 9 km, (253) Mathilde – 66� 48� 46 km
and (433) Eros – 33� 13� 13 km.

Itokawa’s global shape has been compared with a sea otter.
Three regions were distinguished: a small lobe called the ‘‘head’’,
a large lobe called the ‘‘body’’ or ‘‘bottom’’, united by a finer zone
called the ‘‘neck’’ (Fujiwara et al., 2006) (see Fig. 1). On the surface
we can distinguish two distinct types of terrain: a rough terrain
that covers most of the surface that includes numerous large boul-
ders, and a few patches of a flat and smooth terrain covered by reg-
olith. The rough terrains are found in the ‘‘head’’ and the ‘‘bottom’’,
while the smooth terrain is found in the ‘‘neck’’.

By analysing the Itokawa’s rotational lightcurves of over a dec-
ade, Lowry et al. (2014) computed the YORP-induced radiative tor-
ques and they found that Itokawa might have a centre-of-mass
which is displaced from the geometric centre-of-figure. This result
was interpreted using different models of an inhomogeneous inte-
rior: Model (1) an object composed of two separate bodies with
very different bulk densities, or Model (2) an object with a com-
pressed neck region of higher density located between the body
and head.

The total number of blocks larger than 5 m is roughly 500
(Saito et al., 2006). This leads to a number surface density of
blocks larger than 5 m of 1:3� 103 km�2, more than an order of
magnitude larger than the number observed in the Near-Earth
S-type asteroid Eros. The cumulative boulder size distribution
per unit area of Itokawa was first computed by Saito et al.
(2006), they obtained a power-index of �2:8 down to a boulder’s
diameter of approximately 5 m on the entire surface. A more
detail analysis of the size distribution based on high-resolution
images was done by Michikami et al. (2008). Nonetheless, the
analysis was limited to boulders larger than 5 m. They obtained
a mean index on the entire surface of �3:1� 0:1. But they made
a separate analysis for the East and West sides and the head and
body portions, obtaining a range of values from �2:8 to �3:2. The
boulder’s size distribution was further studied by Mazrouei et al.
(2014). By applying a different measuring technique and a better
method to compute the cumulative size distribution, they
obtained a mean index on the entire surface of �3:3� 0:1, and
index of �3:1� 0:4 and �3:6� 0:2 for the head and body, respec-
tively. A drawback of all these previous studies was the limited
range of boulder sizes to compute the distribution: from 5 to
30 m, less than one decade.

In this work we revisit the problem of the distribution of boul-
ders on the surface of Itokawa, but we extend the analysis to a lar-
ger set of regions and to boulders of smaller sizes. In order to
analyse the distribution we require: to define a shape model
Fig. 1. Overlapping of triangular facets on an image taken with the AMICA camera
on-board of Hayabusa.
(Section 2); to obtain the viewing conditions of the images
(Section 3); and to compute the total potential and gravity on
the surface (Section 4). The distribution of boulders on the surface
is presented in Section 5. In the appendix we raise the question
whether the distribution of boulders on the surface represents
the distribution of the interior. The results are analysed in Section
6 and the conclusions are presented in Section 7.
2. The shape model

The shape model is constructed by applying multi-image photo-
clinometry on the set of �600 science images provided by the
AMICA instrument on board the Hayabusa spacecraft (Gaskell
et al., 2008a). The global topography models (GTM) are derived from
the implicitly connected quadrilateral format. The construction of a
GTM begins with a low-resolution reference shape such as a tri-
axial ellipsoid. The shape model comprises triangular plates (facets)
and vertices that are specified in a body-fixed coordinate system.
The vertices are represented by three-vectors and the facets are rep-
resented by a set of 3 vertices’ indexes. Gaskell et al. (2008b) provide
several shape models with different number of vertices and facets.
The number of vertices are scaled with the following equation:
Nvertices ¼ 6 ðqþ 1Þ2, where q ¼ ½64;128;256;512�. In this work we
will generally use the model with q ¼ 128, i.e. 99,846 vertices and
196,608 facets.

The Itokawa fixed frame is defined in a way that the largest
diameter corresponds with the x-axis of the asteroid ellipsoid
and the positive direction goes towards the ‘‘head’’ region. The z-
axis corresponds with the spin vector and the positive y-axis can
be derived from the latter two.

Using the GTMs, Gaskell et al. (2008a) made a new estimate of
Itokawa’s surface area of 4:0403� 105 m2 and of the volume of
1:773� 107 m3.
3. Viewing the images

To compare images taken with the AMICA camera on board
Hayabusa and the shape model, we required information about
the viewing configuration of the camera relative to the asteroid.
To compute the viewing parameters we used the information sys-
tem named SPICE provided by NASA.

SPICE (Acton et al., 2011) is a set of software routines (the SPICE
toolkit) and a suite of data formats that help a scientist use ancil-
lary data to plan scientific observations from a space vehicle and
to analyse the science data gathered from those observations. It
is comprised of a set of packages called kernels that have critical
information about the spacecraft, instruments, and all objects
and parameters involved in the mission. Some kernels specific to
the mission can be downloaded from the NASA-PDS website. These
kernels tell us for example the pointing direction of the AMICA
camera relative to a fixed coordinate frame in the spacecraft; these
are called Frame Kernels.

With the support of J.L. Vázquez García, we made use of the
SPICE library and kernels to compute the camera position, the cam-
era target and the camera up vector from the UTC time of the expo-
sure that appears in the image header. In Fig. 1 we present an
image of Itokawa and a model with 49,152 triangular facets
ðq ¼ 64Þ.

Recently, Barnouin and Kahn (2012) have provided a data set of
images taken by the AMICA camera, supplemented with informa-
tion for each pixel. The data set is named: Hayabusa AMICA Images
with Geometry Backplanes (hereafter HAIGB). This data set
includes the Derived Data Record (HAIGB-DDR) for 1339 images
in FITS format. Each of the HAIGB-DDR files is essentially a
16-layered image cube. The HAIGB-DDR contains geometric
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information for each pixel of these images. The first layer or band
of this cube has the pixel values of the original fits images deliv-
ered to the PDS by the Hayabusa team. The remaining layers
include the location of each pixel on the surface of the asteroid,
the solar incidence angle, emission angle and phase angle at each
pixel when the image were acquired, and data on the local slope
relative to gravity, the acceleration due to gravity and the elevation
relative to a reference gravitational potential at each pixel, assum-
ing a constant density asteroid.

4. The total potential and surface gravity

The total potential ðUtotalÞ is the sum of the gravitational poten-
tial ðUgrav Þ plus the rotational centrifugal potential ðUrotÞ:

Utotal ¼ Ugrav þUrot; ð1Þ

the unit of the potentials are J/kg.
Let’s consider a body with a volume ðVÞ and internal density ðqÞ,

which depends on the position ð~rÞ. The gravitation potential at a
position~r is given by:

Ugravð~rÞ ¼ �G
Z

V

qð~r0Þ
j~r0 �~rj d3~r0: ð2Þ

A solid body rotating with an angular velocity ~x has a rotational
centrifugal potential ðUrotÞ given by

Urotð~rÞ ¼ �
1
2
j~x�~rj2: ð3Þ

The surface gravity vector ð~gÞ is calculated by

~g ¼ �rUtotal: ð4Þ

The fifteenth and sixteenth layer of the HAIGB-DDR images pro-
vide the modulus of the surface gravity and average gravitational
potential at each pixel on the surface of the asteroid, respectively.
These values were calculated using the method described in Cheng
et al. (2002) using a constant density for Itokawa of 1.95 g/cm3 and
a rotation rate of 1:44� 10�4 rad/s. With this density and rotation
rate the surface gravity and gravitational potential on the surface
Fig. 2. Overlapping of the total potential on images taken with the AMICA camera. Ima
‘‘head’’, (c) ST_2421011334_v – West, and (d) ST_2424157005_v – ‘‘bottom’’.
can be computed via integration (Cheng et al., 2002; Barnouin-
Jha et al., 2008, see e.g.). The computation method has its limitation
because an interior constant density is assumed and the surface is
approximated by a set of facets or plates. Nevertheless, the plate
models used for the purpose of determining the DDR backplanes
were the closest in resolution to the pixel scale of a particular
AMICA image Barnouin and Kahn (2012), and therefore the differ-
ences should be small.

In Figs. 2 and 3 we select a few grey-scale images to show dif-
ferent sides of Itokawa and we overlap colour coded plots of the
total potential and the surface gravity given by the Barnouin and
Kahn (2012) data set, respectively. The total potential is in the
range �0.01677 J/kg in Muses-C to �0.01129 J/kg in the ‘‘head’’.
The surface gravity is in the range 5:68� 10�5 m/s2 in the ‘‘head’’
to 9:04� 10�5 m/s2 in Muses-C. Boulders of sizes in the range
tenths to tens of meters can be observed on the surface. As already
noted by Fujiwara et al. (2006), there is a correlation between the
size of the boulders and the potential: large boulders are concen-
trated in the regions of higher potential (the reddish areas in the
‘‘head’’ and the ‘‘bottom’’), and smaller boulders are located in
regions of lower potential (the bluish area in the ‘‘neck’’). Similarly
the highlands in the ‘‘body’’ with medium and large-size boulders
have intermediate values of the potential (whitish areas). Similar
considerations can be drawn between the surface gravity and the
distribution of boulders on the surface: large boulders are located
in the regions of low surface gravity, and small ones in the regions
of high surface gravity. This qualitative conclusion is clearly shown
in the previous overlapped plots.

5. The distribution of boulders on the surface

5.1. Size distribution

Particles (grains) are classified according to their sizes. In
Geology, particle rocks larger than 256 mm are defined as boulders
after Wentworth (1922).

In order to make a quantitative analysis of the correlation
between the potential and the boulder sizes, we extend the
ges used in this composite are: (a) ST_2417520833_v – East, (b) ST_2482160259_v –



Fig. 3. Overlapping of the modulus of the surface gravity on images taken with the AMICA camera. Images used in this composite are: (a) ST_2417520833_v, (b)
ST_2482160259_v, (c) ST_2421011334_v, and (d) ST_2424157005_v.
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boulder counting done by Michikami et al. (2008). We select
several images in different regions on the surface of Itokawa and
compute the size distribution in each of them. Images were
selected from: the ‘‘head’’, the ‘‘bottom’’ (‘‘Arcoona Regio’’), ‘‘body’’
highlands (‘‘Ohsumi Regio’’), North Pole (‘‘Sagamihara Regio’’),
Transition zone (close to ‘‘Komaba Crater’’) and several areas in
‘‘Muses-C Regio’’.

The regions used for boulder counting are highlighted in Fig. 4
and listed in Table 1. In Fig. 5, these regions are located in the same
maps of the total potential shown in Fig. 2.

In each regions we have done two separate analysis:

� Boulder counting – The images are loaded in SAOImage DS9. The
images are visually inspected and the boulders are recognised
by eye. The ‘‘Region’’ tool in DS9 is used to overlap an ellipse
on top of each boulder. Each ellipse can be rotated to fit the
orientation of the boulder. An ASCII table is produced with
information of the location of the centre of the ellipse, the
semi-major and semi-minor axes (a; b in pixel units) and the
orientation angle. A couple of examples of the identification of
boulders are presented in Fig. 6. The numbers of boulders
counted in each region are listed in Table 1.
� Region’s parameters – We require information about several

parameters of each region, e.g.: location, area, image scale,
emission angle, mean value of the total potential and surface
gravity. This information can be obtained from the shape model
shown in Section 2; the viewing conditions obtained from SPICE
as described in Section 3; and the potential and surface gravity
computed as in Section 4. Nonetheless, some of the studied
regions are included in the data set provided by Barnouin and
Kahn (2012). We use the HAIGB-DDR files based on the
Gaskell et al. (2008a) shape model.
In those cases identified with the letter ‘‘G’’ in the Type column
of Table 1, we first extract the location of the pixels where the
boulder counting was done. Using the values of the different
layers in the HAIGB-DDR files, the latitude, longitude and
potential listed in Table 1 are computed as the mean value
among the selected pixels. In order to characterise the variation
of the potential in each region, we compute the dispersion
around the mean value of the potential (the standard deviation)
among the selected pixels; the values are listed in Table 1. The
image scale is computed as the mean value of the quadratic sum
of the horizontal and vertical pixel scale (in m per pixel). The
surface area (in [m2]) is computed as the sum over all the pixels
of the horizontal ðhesciÞ times the vertical ðvesciÞ pixel scale,
corrected by the cosine of the emission angle ð�iÞ; i.e.:
Area ¼
X

i2Region

hesci vesci

cosð�iÞ
: ð5Þ

For those images not included in the above mentioned data set,
those identified with the letter ‘‘L’’ in the Type column of Table 1,
we extract the distance of the Hayabusa spacecraft to the surface
from the data set provided by Mukai et al. (2012) of the LIDAR
instrument. From the distance and the information about the
AMICA camera provided by Ishiguro et al. (2010) (pixel size:
12 lm; focal distance: 0.1208 m), it is possible to compute the
image scale ðscale ¼ distance 	 pixel size=focal distanceÞ. The sur-
face area is then calculated as the area in pixels times the square
of the image scale. These regions are then identified in wider
images in order to get at estimate of the location, total potential
and surface gravity. All the region’s parameters are listed in
Table 1.

To compute the size distribution, we do the following steps in
each region:

� Compute the equivalent radius (in m) of the boulders (assuming
a circle of equal area to the ellipse), as
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abhescc vescc

cosð�cÞ

s
; ð6Þ

where hescc and vescc are the horizontal and vertical scale at the
centre of the ellipse, respectively; and �c is the emission angle at
this point.
� Sort the boulders in decreasing size and assign an increasing

index ðNÞ.



Fig. 4. Images of the regions where the boulder counting was performed. The selected regions are highlighted.
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With these data we compute the cumulative number size distri-
bution in each region (Fig. 7). Note that in most of the regions the
cumulative number cover over 2 up to 3 order of magnitudes,
totalising over 3700 boulders counted on the surface. Since the
counts were done in regions of different areas, in order to compare
the distributions, we transform the cumulative number into cumu-
lative number per unit area. The following steps are performed:

� Compute the cumulative number per unit area X ¼ N=Area
[m�2].
� Compute the parameters of the cumulative number per unit

area function (CNF) as described below.
The cumulative number densities for the different regions are
presented in Figs. 8 and 9. Note that there are some regions in
Fig. 5 that overlap but the images have different pixel scales; like
the regions 6 and 7, 9–13, and 14 and 15. In Fig. 9, these regions
are plotted with symbols with the same face colour, but different
shapes. By combining data from images of different pixel scale of
similar regions, we have been able to extend the size distribution
down to sub-m size boulders; while in Saito et al. (2006) and
Michikami et al. (2008), the smallest boulders in their size distribu-
tions were �5 m.

The boulders’ size distribution are usually fitted to a power law
probability density p of the type



Table 1
List of parameters of the regions where boulder counting was performed.

Nr. Region Image Lat (deg) Lon (deg) Area (px) Area (m2) Scale (m/px) Potential (J/kg) Gravity 10�5 (m/s2) Type ð	Þ

1 ‘‘head’’ 1 ST_2482160259_v �4 359 115922 36982.3 0.4348 �0.0124 ± 0.0006 6.777 G
2 ‘‘bottom’’ 1 ST_2498167622_v 2 178 69312 13157.6 0.3785 �0.0139 ± 0.0004 7.915 G
3 ‘‘bottom’’ 2 ST_2516321279_v �4 172 524288 8561.5 0.1168 �0.0136 ± 0.0003 7.761 G
4 ‘‘body’’ highlands West 1 ST_2494934387_v �4 271 225766 34336.6 0.3174 �0.0153 ± 0.0005 8.400 G
5 ‘‘body’’ highlands West 2 ST_2516129281_v �4 229 434326 26534.5 0.1848 �0.0149 ± 0.0005 8.400 G
6 ‘‘body’’ highlands East 1 ST_2506733028_v 1 142 139350 48347.4 0.4249 �0.0145 ± 0.0008 8.146 G
7 ‘‘body’’ highlands East 2 ST_2539451609_v 3 131 1021952 61.8 0.0078 �0.0144 ± 0.0001 8.011 L
8 Sagamihara ST_2486640220_b 50 248 32806 10403.5 0.4801 �0.0160 ± 0.0001 8.940 G
9 Transition zone 1 ST_2532629277_v �18 91 453118 3008.6 0.0630 �0.0162 ± 0.0002 8.547 G

10 Transition zone 2 ST_2539437177_v �2 105 1021952 127.6 0.0112 �0.0156 ± 0.0001 8.450 L
11 Transition zone 3 ST_2539429953_v �7 90 1021952 253.3 0.0158 �0.0161 ± 0.0001 8.515 L
12 Transition zone 4 ST_2539423137_v �8 71 1021952 484.5 0.0218 �0.0164 ± 0.0001 8.438 L
13 Muses-C edge ST_2532629277_v �35 62 292240 2720.9 0.0673 �0.0167 ± 0.0001 8.490 G
14 Muses-C 1 ST_2495806075_v �33 56 24807 4278.3 0.3269 �0.0166 ± 0.0001 8.425 G
15 Muses-C 2 ST_2563511720_v �16 46 1021952 65.8 0.0080 �0.0165 ± 0.0000 8.181 L

ð	Þ – Type of method to compute the area and the scale parameters: G-based on the Barnouin and Kahn (2012) Geometry Backplanes; L-based on the distance to the surface
given by the LIDAR instrument (Mukai et al., 2012). Images ST_2539429953_v and ST_2563511720_v were taken from distances of 159.2 and 80.85 m, respectively. These
regions are identified in images with a larger view, like ST_2482160259_v and ST_2495806075_v, respectively, in order to get the estimates of the potential and surface gravity.

Fig. 5. The regions presented in Fig. 4 are identified on the same maps of the total potential as those presented Fig. 2.

Fig. 6. Examples of the identification of boulders by fitting an ellipse to each boulder with the ‘‘Region’’ tool in DS9. (a) ‘‘head’’ 2 – ST_2539429953_v and (b) Muses-C 2 –
ST_2563511720_v.
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Fig. 7. Cumulative size distribution of boulders on different regions over
the surface. The y-axis corresponds to the cumulative number for each individual
count.
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pðDÞ ¼ CD�a; ð7Þ

where a is the constant exponential parameter known as the expo-
nent and C a normalisation constant and D is the boulder diameter.
The power law represents boulders down to some minimum boul-
der diameter ðDminÞ, giving the normalisation constant
C ¼ ða� 1ÞDa�1

min , provided a > 1. The cumulative distribution func-
tion ðPÞ is then

Pð> DÞ ¼ D
Dmin

� ��ða�1Þ

: ð8Þ

The cumulative number per unit area function is then calculated as:
CNF ¼ Pð> DÞ=Area.

The exponent of the distributions as well as the minimum
diameters are estimated with a method which combines a
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Fig. 9. Cumulative (per unit area) distribution of boulders on different regions over
the surface. The lines are colour coded according to the groups described in Fig. 8. In
the upper right corner we draw blue lines with slopes of �1;�2;�3 and �4. The
horizontal black full-line corresponds to a cumulative number per unit area
X ¼ 0:01 m�2. The vertical black dashed-line corresponds to a boulder’s diameter
D ¼ 2 m. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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maximum-likelihood fitting method with goodness-of-fit tests
based on the Kolmogorov–Smirnov statistic, as described by
Clauset et al. (2009). The maximum-likelihood estimator of the
exponent a is given by:

â ¼ 1þ n
Xn

i¼1

ln
Di

Dmin

" #�1

; ð9Þ

where Di; i ¼ 1; . . . ;n, are the observed values of the diameters,
such that Di P Dmin, and n is the total number of points. To estimate
the minimum diameter, we compute the Kolmogorov–Smirnov sta-
tistic for different values of Dmin, which is simply the maximum dis-
tance between the CNFs of the data and the fitted model; the
estimate dDmin is the value of Dmin that minimises this distance.

The exponent of the CNF ða� 1Þ and the minimum diameter
ðDminÞ are listed in Table 2, as well as the numbers of objects
ðNfitÞ up to Dmin. The diameters ðDcomÞ corresponding to a cumula-
tive number per unit area X ¼ 0:01 m�2 are also listed in this
Table, as well as the cumulative number per unit area XDf for a
given value of D ¼ 2 m.

The uncertainty in a is computed as:

ra ¼
a� 1ffiffiffi

n
p þ Oð1=nÞ: ð10Þ

The uncertainty in Dcom is computed as the intersection of the power
laws with exponents a� 1� ra with the cumulative number per
Table 2
Several parameters of the regions where boulder counting was performed. See the text fo

Nr. Region Num. bould. FIRST EXPONENT

Dmin (m) Num. fit CNF exp. Dcom (

1 ‘‘head’’ 1 184 5.24 68 2.98 2.97
2 ‘‘bottom’’ 1 47 3.22 49 2.68 2.22
3 ‘‘bottom’’ 2 482 2.80 40 3.22 2.21
4 ‘‘body’’ highlands West 1 181 6.01 30 3.55 3.02
5 ‘‘body’’ highlands West 2 120 4.56 36 3.83 2.71
6 ‘‘body’’ highlands East 1 117 4.90 48 4.10 2.79
7 ‘‘body’’ highlands East 2 153
8 Sagamihara 66 1.77 60 2.86 1.46
9 Transition zone 1 875 1.39 195 2.73 2.76

10 Transition zone 2 165
11 Transition zone 3 795 0.67 82 2.96 2.17
12 Transition zone 4 184
13 Muses-C edge 192
14 Muses-C 1 23 1.36 22 3.71 1.13
15 Muses-C 2 223
unit area X ¼ 0:01 m�2. A similar procedure is applied for the com-
putation of the uncertainty in cumulative number per unit area XDf

for a given value of D ¼ 2 m. The uncertainty in a;Dcom and XDf are
shown in the error bars in the later Fig. 11.

In addition to the estimate of the exponents and the minimum
diameters of the CNFs, we applied a goodness-of-fit tests to the
data sets. Following Clauset et al. (2009), we generate synthetic
data sets with the given values of exponents and minimum diam-
eters for each CNF, and we compare the Kolmogorov–Smirnov sta-
tistic of the best-fit power law and the synthetic data set. The p-
value is defined to be the fraction of the synthetic distances that
are larger than the empirical distance. All the fitted power-law
shown p-values significantly larger than 1, which means that the
differences between the empirical data and the model can be
attributed to statistical fluctuations, and the power-laws are a good
fit to all the data sets.

There are some regions where the cumulative number per unit
area X should be fitted with a broken power law with a high expo-
nent for the large diameters (‘‘max exponent’’) and a low exponent
for the small ones (‘‘second exponent’’). This occurs in regions 4, 5,
9, and 11, as shown in Fig. 7. Note that the diameters limiting the
two power laws are much larger than the cut-off diameter due to
completeness, therefore the broken power law seems to be a real
effect and not an artifact as a consequence of an incompleteness
bias. In these cases of broken power laws, we compute the expo-
nent with the method described above for the large diameters,
while for the small diameters we do a linear fit from the Dmin

obtained in the large diameter fit, down to the cut-off diameter
(see e.g. the two curves in Fig. 8b). The second exponent as well
as the other parameters of the fits are also listed in Table 2.

Some overlapping regions with different pixel scales present
different exponents, like the cases of regions 6 and 7 (Fig. 8c),
and 14 and 15 (Fig. 8e). These cases also correspond to regions with
cumulative number densities that should be fitted with a broken
power law, but the diameter at the breaking point is in between
the smaller values of the regions with the larger pixel scale
(regions 6 and 14) and the larger values of the regions with the
smaller pixel scale (regions 7 and 15, respectively).

On the other hand, the regions 9–12 in the ‘‘Transition zone’’
have overlapping CNF (Fig. 8d). In region 9 and 11 we are able to
fit broken power laws, while regions 10 and 12 have a CNF with
an exponent similar to the second exponent of the two previous
regions.

Michikami et al. (2008) computed the size distribution down to
boulders of �5 m in 4 wide regions of the surface of Itokawa.
They obtain the following values of the exponents: ‘‘head’’ –
a ¼ �2:8� 0:1, ‘‘bottom’’ – a ¼ �3:2� 0:1, West – a ¼ �2:9� 0:1,
r the definition of the parameters and the method to compute the exponents.

SECOND EXPONENT

m) XDf 10�2 (m�2) Dmin (m) Num. fit CNF exp. Dcom (m) XDf 10�2 (m�2)

3.25
1.33
1.37
4.33 2.34 170 1.92 1.70 0.73
3.18 2.30 113 1.89 1.59 0.63
3.94

0.19 134 1.71 4.34 3.76
0.41
2.41 0.56 842 1.85 3.90 3.43

0.49 78 2.40 2.73 2.10
1.28 0.35 350 2.09 3.76 3.74

0.58 144 2.68 2.05 1.06
0.66 77 3.52 0.88 0.06

0.12
0.21 27 2.64 0.87 0.11
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East – a ¼ �3:2� 0:1. Meanwhile, Mazrouei et al. (2014) obtained
an exponent of a ¼ �3:5� 0:1 for all the blocks larger than 6 m; sep-
arating into the ‘‘head’’ and the ‘‘body’’ (‘‘bottom’’), the exponents
are a ¼ �3:1� 0:4 and a ¼ �3:6� 0:2, respectively. The exponents
obtained in our analysis cover a wider range of values, in particular
in the cases of broken power laws. We note a few differences
between our method to present the size distribution and to compute
the exponent respect to the previous works. Michikami et al. (2008)
computed the size distribution by binning the data, which it is not
recommended as already pointed out by Mazrouei et al. (2014)
(Clauset et al., 2009, see also). Either Michikami et al. (2008) and
Mazrouei et al. (2014) computed the exponents of the cumulative
size distributions by applying a linear fit in the log–log plot up to a
completeness diameter determined by eye. Clauset et al. (2009)
had shown that this least-squares fitting method can produce sub-
stantially inaccurate estimates of parameters for power-law distri-
butions. In addition, our estimates of the exponents were done by
using a wider range of diameters.

Taking into account these caveats, we proceed to compare our
results with the previous works. In the ‘‘head’’ we obtain a value
of a ¼ �2:98� 0:36, while in the ‘‘bottom‘‘ (‘‘body’’ in their plot)
we have a couple of measurements: a ¼ �2:68� 0:38 and
a ¼ �3:22� 0:51. These values are compatible with Michikami
et al. (2008) estimates, but they are somewhat smaller (in absolute
values) respect to Mazrouei et al. (2014). In the West and East side
we fit broken power laws; the exponents of Michikami et al. (2008)
are in between our estimates of the first and second exponents.
Looking at their Fig. 4, where they plot the cumulative number
per unit area for the West and East sides, we note that also in their
case a broken power law could be observed, although they only fit
a single power law.
5.2. Shape distribution

Since we have fitted an ellipse to each boulder, we have infor-
mation about the ellipticity of the boulders. The ellipticity is

defined as e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

q
. Round boulders have ellipticities close to

0, while elongated boulders have values close to 1.
The differential and cumulative distributions of the boulder’s

ellipticities in the different regions are presented in Fig. 10a and
b, respectively. The regions are listed in decreasing values
of the gravitational potential. We choose regions with a similar
boulder’s size range; we explicitly exclude regions with close-up
images and those with few boulders. Note that in the cumulative
distribution (Fig. 10b) the curves of the lower potential are
generally shifted to larger ellipticities. This result is discussed in
Section 6.2.
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6. Analysis and results

6.1. Size segregation

We compare the CNFs of the different regions in relation to the
value of the total potential and the surface gravity. In Fig. 11, we
show the maximum exponent of the CNFs ða� 1Þ in each region
(a), and the second exponent in the case of broken power laws
(b) versus the total potential. In Fig. 11c and d we present the diam-
eters ðDcomÞ corresponding to a cumulative number per unit area
X ¼ 0:01 m�2 and the cumulative number per unit area XDf for a
given value of D ¼ 2 m, respectively, versus the total potential.
Dcom and XDf are used to compare the location of the CNFs curves
in the X� D phase space.

We apply a linear fit to the data in each of the plots of Fig. 11
just to highlight the trends in the dataset. The fits were done with
a sigma-clipping method; i.e.: after the linear fit, the data points
that are further than 3r from the predicted value are discarded,
and a new fit is computed until the process converges. For the fits
presented in the plots of Fig. 11 it was not necessary to discard any
data point.

As shown in Fig. 11a, there is a slight trend of steeper CNF (lar-
ger exponent) with lower potentials. The second exponent pre-
sented in Fig. 11b shows a more pronounced trend. In Fig. 11c
and d, we observe a decrease in the corresponding diameter for a
given cumulative number per unit area, or a decrease in the cumu-
lative number per unit area a given diameter, which it can be inter-
preted as a shift of the CNFs towards smaller boulders for lower
values of the total potential. In addition, the existence of broken
power laws could be interpreted in the same framework. The CNFs
for the high potential regions have single power laws (at least in
the range of boulder sizes analysed in our counts) with small expo-
nents. For intermediate potentials, there is an under abundance of
large boulders and an overabundance of intermediate size ones.
This effect produces a broken power law, with a large exponent
for the large sizes and a lower exponent for the small sizes. For
low potentials, there are fewer large boulders and more small ones.
Therefore, the diameters where the power laws break are shifted
towards smaller sizes for lower potentials (Fig. 11e).

These results support global size segregation of boulders in
Itokawa, and are in agreement with the preliminary observations
presented in Section 4.

Since the size distributions observed on the surface represent
the situation in the interior below, as it was shown in the appendix,
there appears to be a global relocation of boulders, with large ones
going into the high potential regions and small ones into the low
potential ones. Size segregation is a well-known phenomena in
granular physics (Rosato et al., 1987; Knight et al., 1993;
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Fig. 11. (a) The maximum exponent of the CNFs ða� 1Þ versus the total potential. In the cases of a broken power law with two exponent, we choose for this plot the maximum
one, which is the one valid for larger sizes. The numbers close to the data points are the region numbers of Table 2. (b) The second exponent of the CNFs ða� 1Þ versus the total
potential, for those cases where we have a broken power law. (c) The diameters ðDcomÞ corresponding to a cumulative number per unit area X ¼ 0:01 m�2 versus the total
potential. (d) The cumulative number per unit area ðXDf Þ corresponding to a fixed diameter of D ¼ 2 m versus the total potential. (e) For broken power laws, the diameters
where the power laws break versus the total potential. The two numbers close to the data point are the numbers of the regions of the first and second exponent.
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Kudrolli, 2004). It is also known as the Brazil Nut Effect (BNE),
because it can be easily seen when one mixes nuts of different sizes
in a can; the large Brazil nuts rise to the top of the can. Unless there
is a large difference in the density of the grains, a mixture of differ-
ent particles will segregate by size when shaken: large particles
rise to the top occupying the region of higher gravitational poten-
tial; while small ones go to the regions of lower potential, i.e. the
bottom.

As it is speculated in Miyamoto et al. (2007), the size sorting
observed in Itokawa could be due to the seismic shaking produced
by repetitious impacts. Nevertheless, they have not performed any
experiments to test this.

Tancredi et al. (2012) performed numerical simulations based
on the Discrete Element Methods (DEM) of a set of particles in dif-
ferent gravity environments under the action of several shaking
processes. They have shown that the Brazilian nut effect is present
even in low-gravity environments like the surface of Itokawa. They
simulate a 3D box filled with many small spherical particles and a
large one undergoing repeated displacements of the floor under
different gravity regimes. The numerical experiments try to repro-
duce the behaviour of boulders close to the surface under the pas-
sage of a seismic shock coming from below. They observed that the
Brazil nut effect operates in all gravity regimes (including Itokawa),
on different timescale and for threshold displacement velocities
that decrease as surface gravity decreases.

Nevertheless, these tests only show that size segregation could
occur on the surface of a low-gravity object. It is still necessary to
prove that global relocation of boulders correlated with the gravity
field could occur. Numerical simulations of this process are in
development, and the results will be presented elsewhere.

The global relocation of boulders could have consequences for
the mass and density distribution in the body’s interior. If the small
particles concentrate in the region with the lowest potential close
to the centre-of-mass, and they tend to have a higher degree of
compacting, the body could acquire a mass distribution similar
to the second model proposed by Lowry et al. (2014) to explain
the displacement of the centre-of-mass, the model with a com-
pressed ‘‘neck’’ region of higher density located between the
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Fig. 12. The median ellipticities of different regions as a function of the total potential.
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‘‘body’’ and ‘‘head’’ (see Section 1). This hypothesis should be
tested with numerical simulations of the global relocation of boul-
ders, like the ones we have in progress.
6.2. Shape segregation

Shape segregation was observed in numerical simulations of
spherocylinders (Abreu et al., 2003) as well as particles with more
complex shapes (Roskilly et al., 2010). For these simulations the
authors did not use DEM, but rather a Monte Carlo method, which
is another modelling technique that has been applied to complex
materials including particulates. In Abreu et al. (2003) the sphero-
cylinders were characterised by the aspect ratio ð/Þ defined as the
ratio between the length of the cylindrical portion and the diame-
ter of the hemispherical part. For a binary mixture of spherocylin-
ders of very different aspect ratios, they found a segregation of
round particles to the bottom and long spherocylinders to the top.

An ellipse can be approximated by a 2D spherocylinder of
length equal to two times the focal length and a diameter equal
to two times the periapsis distance. The aspect ratio is then calcu-
lated as: / ¼ 1=ð1=e� 1Þ.

In Roskilly et al. (2010), the particulates were characterised by
the radius of gyration. The radius of gyration of a 3D object is cal-
culated as R ¼

ffiffiffiffiffiffiffiffiffi
I=M

p
, where I is the moment of inertia and M the

mass of the object, while for a 2D object is R ¼
ffiffiffiffiffiffiffi
I=A

p
, where A is

the area. An average over the radii of gyration with respect to
the principal axis was considered by the authors as an indication
of the ‘effective size’ of the objects. Roskilly et al. (2010) concluded
that: ‘‘. . .when a particulate system containing particles of exactly
the same size, but different shapes, is subjected to large amplitude
low frequency shaking, the particles with the largest ‘effective
size’, as measured by the radius of gyration, move to the top.’’ They
concluded that the process of shape segregation is similar to the
size segregation discussed above; they said: ‘‘it appears that segre-
gation may occur by voids opening below larger objects that can
only be filled with smaller particles.’’

The radii of gyration of an ellipse are: R ¼ fa=2; b=2g; where a
and b are the semiaxes of the ellipse. The ratio of average radius
of gyration of an ellipse respect to a circle of the same area can
be expressed in term of the eccentricity of the ellipse as:

Rrelative ¼ ðaþ bÞ=2
ffiffiffiffiffiffi
ab
p

¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

Þ=2ð1� e2Þ1=4.
Nevertheless, results presented in the thesis of Ramaioli (2008)

are in contradiction to the results presented by Abreu et al. (2003)
and Roskilly et al. (2010). While the later authors used Monte Carlo
simulations, Ramaioli (2008) performed simulations using DEM, as
well as laboratory experiments with glass spherocylinders.
Ramaioli (2008) concluded that short spherocylinders tend to
migrate to the top of long spherocylinders; a trend opposite to
the other authors. Further simulations and experimental studies
should be done to settle this problem.

What do we observe in our dataset? The differential and
cumulative distributions of ellipticities were shown in Fig. 10a
and b, respectively. The regions are listed in decreasing value of
the potential. Note that in the cumulative distribution of elliptic-
ities presented in Fig. 10b, the curves corresponding to regions of
high potential are above to those of low potential, particularly in
the regions of large ellipticities. In Fig. 12a and b we present the
medians and the upper quartiles (75%) of each distribution of
ellipticities as a function of the corresponding total potential,
and apply a linear fit to the data. A trend of decreasing median
and upper quartiles ellipticities with increasing total potential is
observed. Similar trends are observed in the distribution of aspect
ratios and radii of gyrations. Round boulders are located in the
regions of higher potential, while more elongated objects are in
the regions of lower potential. This is shape segregation similar
to that observed by Ramaioli (2008), in opposition to the trend
expected by the results by Abreu et al. (2003) and Roskilly
et al. (2010).
7. Conclusions

Our main conclusions are summarised as follows:

� There is a correlation between the size of the boulders and the
potential: large boulders are concentrated in the regions of
higher potential, and small boulders are located in regions of
lower potential, as shown in the figures where we overlap a
grey-scale of the surface of Itokawa and a colour coded plots
of the total potential.
� The cumulative size distribution on different regions of the sur-

face of Itokawa was computed and fit to a power-law function.
The exponents and the minimum diameters corresponding to a
given cumulative number per unit area were computed for each
region.
� Based on modelling the distribution of boulders, we found that

the size distribution computed from an analysis of the boulders
on the surface is a good representation of the size distribution in
the interior just below.
� There is a slight trend of steeper cumulative number per unit

area function (larger exponent) with lower potentials; as well
as a shift of the cumulative number per unit area function to
smaller sizes for lower potentials and higher surface gravities.
� Regions with intermediate potentials present broken power

laws, which correspond to an overabundance of intermediate
size boulders. The diameter where the power is discontinuous
is shifted towards smaller sizes for lower potentials.
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� These results supports the hypothesis that the size segregation
is a global process; there is a global relocation of boulders, with
large boulders going into the high potential regions and small
boulders into the low potential ones.
� The size sorting could be due the seismic shaking produced by

repetitious impacts, as it was shown to operate in the low-gravity
environment of Itokawa by Tancredi et al. (2012).
� Shape segregation is observed on the distribution of boulders:

more rounded boulders are found in the regions of high poten-
tial, while more elongated objects are more frequent in regions
of low potential. This result is in accordance to the DEM simu-
lation and laboratory experiments preliminary presented by
Ramaioli (2008); but in contradiction to the numerical simula-
tions based on Monte Carlo techniques presented by Abreu
et al. (2003) and Roskilly et al. (2010).
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