Trabajo Fin de Grado Ingeniería de la Energía

Potencial de Refrigeración de un Panel Fotovoltaico. Aplicación a PCM

Autor: Antón López Román Tutor: Isidoro Lillo Bravo

> Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2018

Trabajo Fin de Grado Ingeniería de la Energía

Potencial de Refrigeración de un Panel Fotovoltaico. Aplicación a PCM

Autor: Antón López Román

Tutor: Isidoro Lillo Bravo Profesor Contratado Doctor

Dep. de Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2018 Proyecto Fin de Carrera: Potencial de Refrigeración de un Panel Fotovoltaico. Aplicación a PCM

Autor: Antón López Román

Tutor: Isidoro Lillo Bravo

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2018

El Secretario del Tribunal

A todos aquellos que, sabiéndolo o sin ser conscientes de ello, me ayudaron a llegar hasta aquí.

Agradecimientos

A veces, la mejora forma de salir, es usando la puerta que otros te han mostrado.

ix

Quiero agradecer especialmente a mi familia por haberme ayudado a llegar hasta aquí, sin su apoyo incondicional estas líneas hubiesen sido del todo imposible.

Agradecer también a mi tutor, Isidoro Lillo, tanto el esfuerzo como la actitud siempre positiva mostrada a lo largo de la realización del proyecto.

Resumen

xi

Los sistemas de refrigeración de paneles fotovoltaicos actuales no cumplen con las exigencias del mercado, por lo que nuevos sistemas están siendo probados con el objetivo de aumentar la eficiencia de la generación eléctrica fotovoltaica, dentro de estos nuevos sistemas, el PCM es un fuerte candidato.

Este proyecto analiza el potencial máximo de refrigeración de un sistema fotovoltaico al cual se le incorpora el material PCM, extendiendo el análisis a distintas ubicaciones y condiciones climáticas para un periodo completo de un año. El objetivo de este estudio es determinar las máximas ganancias obtenibles usando esta tecnología, para que estos datos puedan ser usados como referencia en estudios de viabilidad o como rango comparativo.

Índice

Ag	gradecimientos	ix	
Resumen			
Índice			
Índ	dice de Tablas	XV	
Índ	dice de Figuras	xvii	
No	otación	vvi	
1		1	
T		1	
2	Sistemas de Refrigeración	3	
4	2.1 Sistemas activos	3	
4	2.2 Sistemus pusivos	3	
	2.2.1 PCIVI	5	
4	2.5 ventujus y desventujus de principales metodos de rejngeración	5	
3	Descripción General	7	
3	3.1 Alcance	7	
ŝ	3.2 Hipótesis de partida	9	
ŝ	3.3 Selección de climas	10	
-	3.4 Análisis Bibliográfico	11	
	3.4.1 Efecto del PCM	12	
	3.4.2 Hibridación	12	
4	Metodología	13	
4	4.1 Caracterización solar	13	
4	4.2 Modelo	13	
	4.2.1 Modelo del panel	13	
	4.2.2 Modelo del conjunto PV+PCM	15	
4	4.3 Método de resolución	18	
5	Resultados	10	
,	51 Ganancias energéticas	19	
	5.2 Análisis nor estados	25	
5.2 Análisis comparativo			
	5.4 Aumento de rango climático	20	
	5.5 Efecto de la temperatura ambiente	27	
	5.6 Efecto de la irradiancia	28	
	5.7 Dependencias funcionales		
1	5.8 Análisis de sensibilidad	34	
	5.8.1 Efecto del viento	34	
	5.8.2 Efecto del coeficiente ω	35	
	5.8.3 Efecto de la componente logarítmica en la ecuación (4-6)	36	
	5.8.4 Efecto de la restricción de irradiación mínima de 50 Wh/m ²	37	
	5.8.5 Efecto de la selección de T _k	38	
6	Conclusiones	39	

6.1	1 Líneas de trabajo futuro	40
7	Anexos	41
А.	Atenas	41
В.	Davos	44
С.	Stockholm	47
D.	Wurzburgo	50
Ε.	Agua Caliente	53
<i>F</i> .	Charanka	56
G.	Golmud	59
Н.	Mesquite	62
Ι.	Neuhardenberg	65
J.	Nzema	68
Refe	rencias	71

ÍNDICE DE TABLAS

XV

Tabla 2-1 Ventajas e inconvenientes de sistemas de refrigeración comunes	5
Tabla 3-1 Valores medios climáticos de las ciudades consideradas	10
Tabla 3-2 Resumen de estudios bibliográficos sobre usos de PCM [8]	11
Tabla 4-1Valores de temperatura en función del estado del PCM	14
Tabla 7-1 Irradiación, energía y ganancias. Atenas	43
Tabla 7-2 Irradiación, energía y ganancias. Davos	46
Tabla 7-3 Irradiación, energía y ganancias. Stockholm	49
Tabla 7-4 Irradiación, energía y ganancias. Wurzburgo	52
Tabla 7-5 Irradiación, energía y ganancias. Agua Caliente	55
Tabla 7-6 Irradiación, energía y ganancias. Charanka	58
Tabla 7-7 Irradiación, energía y ganancias. Golmud	61
Tabla 7-8 Irradiación, energía y ganancias. Mesquite	64
Tabla 7-9 Irradiación, energía y ganancias. Neuhardenberg	67
Tabla 7-10 Irradiación, energía y ganancias. Nzema	70

ÍNDICE DE FIGURAS

Figura 1-1 Rendimiento de un panel PV frente a la temperatura del mismo. Atenas	1
Figura 1-2 Variación de temperaturas medias para cada rango de irradiancia. Atenas	2
Figura 2-1 Estado posible del PCM	4
Figura 3-1 Esquema de colocación de paneles, a) soporte individual b) panel sobre tejado c) panel sobre con PCM refrigerado	re tejado 7
Figura 3-2 Ciclo ideal de funcionamiento de un sistema fotovoltaico con PCM	8
Figura 3-3 Temperatura ambiente media mensual en las 4 ciudades consideradas	10
Figura 3-4 Irradiación mensual en las 4 ciudades consideradas	11
Figura 4-1 Distribución de temperaturas en Estado 1	15
Figura 4-2 Distribución de temperaturas en Estado 2	16
Figura 4-3 Distribución de temperaturas en Estado 3	17
Figura 5-1 Ganancia porcentual VS Temperatura de cambio de fase PCM. Atenas	19
Figura 5-2 Número de horas diurnas por estado para cada T _k	20
Figura 5-3 Distribución porcentual de tiempo por estados para cada Tk	21
Figura 5-4 Ganancias en función de T _k para T_pcm= T _k y T_pcm=F(estado). Atenas	21
Figura 5-5 Temperatura Tp_roof media nocturna y diurna	22
Figura 5-6 Energía eléctrica mensual generada con y sin PCM	23
Figura 5-7 Ganancias frente a Temperatura ambiente	23
Figura 5-8 Ganancia porcentual por tramo frente a Ta	24
Figura 5-9 Distribución de Ta	24
Figura 5-10 Tiempo por estados frente a tiempo solar verdadero	25
Figura 5-11 Tiempo por estados mensual	25
Figura 5-12 Ganancia porcentual Vs temperatura de cambio de fase PCM	26
Figura 5-13 Tp_roof media mensual. Nzema	27
Figura 5-14 Tp_roof media mensual. Atenas	27
Figura 5-15 Distribución mensual de tiempo por estado. Nzema	28
Figura 5-16 Distribución mensual de tiempo por estado. Atenas	28
Figura 5-17 Irradiación acumulada por rango de Tp_roof. Davos	28
Figura 5-18 Irradiación acumulada por rango de Tp_roof. Stockholm	28
Figura 5-19 a) Temperatura ambiente b) Temperatura del panel c) Irradiación d) Temperatura ambient * Irradiación vs Ganancias en los 4 climas principales con $T_k=30^{\circ}C$	te diurna 29
Figura 5-20 a) Temperatura ambiente b) Temperatura del panel c) Irradiación d) Temperatura ambient * Irradiación vs Ganancias en los 10 climas estudiados con T _k =30°C	te diurna 30
Figura 5-21 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. T _k = 30° C	31
Figura 5-22 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. T _k =15°C	31

Figura 5-23 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. T_k =45°C	32
Figura 5-24 Temperatura ambiente diurna multiplicada por la Irradiación v s Ganancias en periodo m $T_k\!\!=\!\!30^{\circ}\!C.$ Atenas	nensual. 32
Figura 5-25 Temperatura ambiente diurna multiplicada por la Irradación vs Ganancias. a) $T_k=15^{\circ}C$ b) T_k Atenas	k=45°C. 33
Figura 5-26 Efectos del viento sobre las ganancias	34
Figura 5-27 Análisis de sensibilidad 3D del parámetro ω	35
Figura 5-28 Análisis de sensibilidad 2D del parámetro ω	35
Figura 5-29 Efectos de la componente logarítmica en la ecuación (4-6)	36
Figura 5-30 Irradiación y número de horas por tramo de irradiancia	37
Figura 5-31 Porcentaje de tiempo por estados $T_k=25$	38
Figura 5-32 Porcentaje de tiempo por estados $T_k=35$	38
Figura 7-1 Irradiación acumulada frente a temperatura del panel. Atenas	41
Figura 7-2 Temperatura media nocturna y diurna del panel sobre tejado. Atenas	41
Figura 7-3 Distribución mensual de tiempo por estados. Atenas	42
Figura 7-4 Irradiación y ganancias mensuales. Atenas	42
Figura 7-5 Energía eléctrica mensual generada. Atenas	43
Figura 7-6 Irradiación acumulada frente a temperatura del panel. Davos	44
Figura 7-7 Temperatura media nocturna y diurna del panel sobre tejado. Davos	44
Figura 7-8 Distribución mensual de tiempo por estados. Davos	45
Figura 7-9 Irradiación y ganancias mensuales. Davos	45
Figura 7-10 Energía eléctrica mensual generada. Davos	46
Figura 7-11 Irradiación acumulada frente a temperatura del panel. Stockholm	47
Figura 7-12 Temperatura media nocturna y diurna del panel sobre tejado. Stockholm	47
Figura 7-13 Distribución mensual de tiempo por estados. Stockholm	48
Figura 7-14 Irradiación y ganancias mensuales. Stockholm	48
Figura 7-15 Energía eléctrica mensual generada. Stockholm	49
Figura 7-16 Irradiación acumulada frente a temperatura del panel. Wurzburgo	50
Figura 7-17 Temperatura media nocturna y diurna del panel sobre tejado. Wurzburgo	50
Figura 7-18 Distribución mensual de tiempo por estados. Wurzburgo	51
Figura 7-19 Irradiación y ganancias mensuales. Wurzburgo	51
Figura 7-20 Energía eléctrica mensual generada. Wurzburgo	52
Figura 7-21 Irradiación acumulada frente a temperatura del panel. Agua Caliente	53
Figura 7-22 Temperatura media nocturna y diurna del panel sobre tejado. Agua Caliente	53
Figura 7-23 Distribución mensual de tiempo por estados. Agua Caliente	54
Figura 7-24 Irradiación y ganancias mensuales. Agua Caliente	54
Figura 7-25 Energía eléctrica mensual generada. Agua Caliente	55
Figura 7-26 Irradiación acumulada frente a temperatura del panel. Charanka	56
Figura 7-27 Temperatura media nocturna y diurna del panel sobre tejado. Charanka	56
Figura 7-28 Distribución mensual de tiempo por estados. Charanka	57

Figura 7-29 Irradiación y ganancias mensuales. Charanka	57
Figura 7-30 Energía eléctrica mensual generada. Charanka	58
Figura 7-31 Irradiación acumulada frente a temperatura del panel. Golmud	59
Figura 7-32 Temperatura media nocturna y diurna del panel sobre tejado. Golmud	59
Figura 7-33 Distribución mensual de tiempo por estados. Golmud	60
Figura 7-34 Irradiación y ganancias mensuales. Golmud	60
Figura 7-35 Energía eléctrica mensual generada. Golmud	61
Figura 7-36 Irradiación acumulada frente a temperatura del panel. Mesquite	62
Figura 7-37 Temperatura media nocturna y diurna del panel sobre tejado. Mesquite	62
Figura 7-38 Distribución mensual de tiempo por estados. Mesquite	63
Figura 7-39 Irradiación y ganancias mensuales. Mesquite	63
Figura 7-40 Energía eléctrica mensual generada. Mesquite	64
Figura 7-41 Irradiación acumulada frente a temperatura del panel. Neuhardenberg	65
Figura 7-42 Temperatura media nocturna y diurna del panel sobre tejado. Neuhardenberg	65
Figura 7-43 Distribución mensual de tiempo por estados. Neuhardenberg	66
Figura 7-44 Irradiación y ganancias mensuales. Neuhardenberg	66
Figura 7-45 Energía eléctrica mensual generada. Neuhardenberg	67
Figura 7-46 Irradiación acumulada frente a temperatura del panel. Nzema	68
Figura 7-47 Temperatura media nocturna y diurna del panel sobre tejado. Nzema	68
Figura 7-48 Distribución mensual de tiempo por estados. Nzema	69
Figura 7-49 Irradiación y ganancias mensuales. Nzema	69
Figura 7-50 Energía mensual generada. Nzema	70

Notación

xxi

Тр	Temperatura del panel (K)
Tp_free	Temperatura del panel con soporte individual (K)
T_pcm	Temperatura que alcanza el conjunto panel fotovoltaico+PCM (K)
Tp_roof	Temperatura del panel sobre tejado (K)
T_k	Temperatura de cambio de fase del PCM (K)
Та	Temperatura ambiente (K)
Ta_d	Temperatura ambiente durante las horas de luz (K)
Tc	Temperatura de la célula de silicio (K)
T _{ref}	Temperatura de referencia (K)
vf	Velocidad del viento (m/s)
G_k	Irradiancia sobre plano del panel (W/m ²)
GT	Irradiancia mensual ponderada sobre plano del panel (W/m ²)
ω	Coeficiente de montaje sobre tejado
γ	Coeficiente corrector de la eficiencia por irradiancia
β_{ref}	Coeficiente corrector por temperatura (°C ⁻¹)
η_p	Rendimiento del panel
η_{ref}	Rendimiento de referencia
η_c	Rendimiento de la célula de silicio
η	Rendimiento
log_{10}	Logaritmo en base 10
Р	Potencia (Wh/m ²)
PCM	Siglas de Phase Change Material. Material de cambio de fase
ACS	Siglas de Agua Caliente Sanitaria
PV	Siglas de Photovoltaic Panel. Panel fotovoltaico
Roof	Referido al montaje sobre tejado
k	Coeficiente de integración (Km ² /W)

sos avances de la humanidad a lo largo del tiempo siempre han estado ligados a su capacidad para manejar y gestionar las fuentes de energía. En la época actual, con el gran crecimiento poblacional unido a la mejora de las condiciones de vida, el requerimiento energético global es cada vez mayor, mientras que la fuente principal de energía, el petróleo, es un bien finito del cual los expertos aseguran que ya ha alcanzado su pico de producción.

En un contexto como éste, se hace cada vez más patente la necesidad de migrar a un sistema energético alternativo, siendo las llamadas energías renovables la opción más demandada. Dentro de las energías renovables, las posibilidades de la energía solar son las más prometedoras, especialmente la solar fotovoltaica, pues su capacidad de generación distribuida en todo tipo de escala, la robustez del sistema por ausencia de equipos móviles y el abaratamiento al que se ha visto sometida en los últimos tiempos hacen de ella una tecnología muy atractiva tanto para su uso industrial como individual.

Existen a día de hoy dos grandes desafíos que debe enfrentar la tecnología solar fotovoltaica para su crecimiento [1]. El primero es su variabilidad, con gran dependencia de la climatología local, la época del año y la hora del día. Esto unido a la dificultad tecnológica del almacenamiento energético provoca la necesidad de sobredimensionar los sistemas para cubrir la demanda. El segundo gran problema de la tecnología fotovoltaica es su escaso rendimiento, pues menos del 20% de la energía recibida es transformada en energía útil.

Figura 1-1 Rendimiento de un panel PV frente a la temperatura del mismo. Atenas

El rendimiento de un sistema solar fotovoltaico depende fundamentalmente de dos parámetros: la calidad del semiconductor y la temperatura de funcionamiento del mismo [2] [3] [4]. Las altas temperaturas alcanzadas en los paneles derivadas de la radiación solar no transformada en electricidad en la placa, generan una pérdida de rendimiento del orden de 0.4% por cada $^{\circ}C^{1}$ [5] [6]. Para solucionar este problema se han propuesto varias soluciones de refrigeración.

Figura 1-2 Variación de temperaturas medias para cada rango de irradiancia. Atenas

¹ células de silicio

on el objetivo de reducir las pérdidas de rendimiento debido al aumento de temperatura en las placas, así como el desgaste y reducción de vida útil que conllevan las altas temperaturas de funcionamiento [2] [3] [4], diversos sistemas de refrigeración se han diseñado e implementado. Tradicionalmente éstos se clasifican en activos y pasivos.

2.1 Sistemas activos

Las tecnologías de refrigeración activas proporcionan una mayor tasa de reducción de temperatura, pero consumen potencia en su actividad, por lo que el efecto global de mejora de rendimiento se ve altamente reducido. Dentro de los sistemas de refrigeración activa más comunes se pueden encontrar refrigeración forzada por corriente de aire o líquido, con uso secundario de esa corriente o evacuación al ambiente del calor residual.

2.2 Sistemas pasivos

Para evitar el consumo energético inherente en la refrigeración activa, se han generado soluciones de refrigeración pasiva como la inmersión en líquido, la modificación de la estructura para permitir corrientes de convección naturales etc. Pese a no consumir potencia, sus beneficios globales son mucho más reducidos que en el caso de refrigeración activa, implicando muchas veces modificaciones costosas, poco robustas o que aumentan mucho la complejidad del sistema.

En los últimos años, se ha ensayado un nuevo material llamado PCM (del inglés *phase change material*) como elemento viable a ser utilizado como sistema de refrigeración pasiva.

2.2.1 PCM

Un material PCM es un material capaz de almacenar energía en forma de calor latente. En sistemas energéticos, la situación óptima se establece en el cambio de fase de sólido a líquido, para evitar problemas de volúmenes y presiones del gas derivados del cambio de fase líquido-gas. Actualmente la tecnología permite elegir el punto de cambio de fase (T_k) deseado dentro de un rango considerablemente amplio.

Los materiales PCM se clasifican principalmente en dos grupos: orgánicos e inorgánicos. A pesar de que existen diferencias en cada uno de los grupos y subgrupos, las principales ventajas de un sistema de almacenamiento en PCMs son su alta densidad energética, la posibilidad de uso del calor almacenado, la capacidad de mantener su temperatura constante durante el cambio de fase y la repetibilidad del ciclo. Por otro lado, sus desventajas más notables son: su baja transmisividad, su alto coste y su alto peso.

El objetivo del uso de los PCMs en un sistema de refrigeración pasivo es aprovechar el calor latente del material

para evitar el aumento de temperatura del panel fotovoltaico. Para ello, el material PCM es encapsulado y adherido a la parte trasera del panel. En muchos casos son necesarios sistemas especiales de transmisión de calor para asegurarse de que la transmisividad del sistema panel+PCM sea correcta. Así mismo, la estructura del panel debe ser reforzada. Los efectos de disipación de calor por convección en la parte trasera del panel también se pueden ver afectados, dependiendo de su tipo de integración.

Figura 2-1 Estado posible del PCM

2.3 Ventajas y desventajas de principales métodos de refrigeración

En la Tabla 2-1 [7] [8] [9] se presenta un resumen de las principales ventajas e inconvenientes de los sistemas de refrigeración, tanto activos como pasivos, más utilizados en sistemas fotovoltaicos.

TÉCNICA	VENTAJAS	DESVENTAJAS
Circulación natural de aire	 Sin coste inicial Sin mantenimiento Sin ruidos Sin consumos 	 Baja conductividad Baja transferencia Grandes variaciones de temperatura del panel Baja predictibilidad (viento) Tendencia a acumulación de polvo Capacidad de refrigeración reducida
Circulación forzada de aire	 Mayor tasa de transferencia que convección natural Flujo controlable Mayor reducción de temperatura que en convección natural Calor residual utilizable 	 Alto coste inicial Alto coste eléctrico Mantenimiento Ruido
Refrigeración líquida	 Mayor tasa de transferencia de calor que refrigeración por aire Mayor conductividad y capacidad calorífica del agua frente al aire Mayor reducción de temperatura del panel frente al aire Calor residual utilizable 	 Alto coste inicial Alto coste de mantenimiento Muy alto coste eléctrico Baja vida útil Ruido Corrosión Necesidad de tratamiento de aguas
Refrigeración termoeléctrica (Peltier)	 Sin ruido Bajo mantenimiento Fácil integración Tamaño reducido 	 Refrigeración en función de Ta Consumo eléctrico Requiere eliminación de calor en la parte caliente
Inmersión en líquido	 Gran capacidad de disipación Gran control de temperatura 	 Ionización del agua Problemas por fugas en empaquetados Deposición de sólidos disueltos en placas y conductos Corrosión Mantenimiento
РСМ	 Bajos costes de mantenimiento Sin consumo eléctrico Temperatura de panel estable Uso de calor residual Sin ruidos 	 Alto coste inicial Problemas de tóxicos, incendios, corrosión u otros derivados de la composición elegida del PCM Baja conductividad panel-PCM Sin datos sobre vida útil Refuerzo de estructura soporte Disposición tras vida útil

Tabla 2-1 Ventajas e inconvenientes de sistemas de refrigeración comunes

Existe numerosa documentación científica sobre el uso de los materiales PCM acoplados a paneles fotovoltaicos, pero gran parte de ella es referida a periodos cortos de tiempo o en condiciones favorables. A lo largo de este trabajo se analiza el límite superior de funcionamiento del conjunto placa fotovoltaica + PCM para un periodo completo de un año estándar, en diferentes ubicaciones y climas. Se analizan las ganancias eléctricas derivadas de la reducción de la temperatura de funcionamiento de la placa fotovoltaica y el consecuente aumento del rendimiento de ésta.

3.1 Alcance

Debido a las limitaciones físicas y económicas de la implementación de experimentos de larga duración para analizar los efectos del material PCM instalado sobre una placa fotovoltaica, es conveniente la realización de estudios teóricos que analicen el potencial de refrigeración de estos sistemas para cada tipo de clima.

A lo largo de este proyecto se analiza de manera teórica el comportamiento de un sistema PV-PCM ideal, Figura 3-1 c), comparándolo con una placa PV equivalente sin ningún tipo de refrigeración Figura 3-1 b). Este caso es el considerado como situación de referencia a lo largo de todo el proyecto.

Figura 3-1 Esquema de colocación de paneles, a) soporte individual b) panel sobre tejado c) panel sobre tejado con PCM refrigerado

El ciclo del sistema PCM+panel fotovoltaico ideal se esquematiza en la Figura 3-2. Este ciclo empieza cuando no existe irradiación, caso en el que el material PCM se encuentra a temperatura ambiente, al igual que el panel. Según va aumentando la irradiación, el panel se va calentando, transmitiendo este calor al PCM. Llega un punto en el que la temperatura del conjunto panel+PCM alcanza la temperatura de cambio de fase del material (T_k). En ese momento el material PCM comienza a derretirse, manteniendo la temperatura constante durante el proceso, y manteniendo la temperatura del panel a esta misma temperatura. Este proceso continuará mientras persista la irradiación y el PCM no se haya derretido completamente. Según descienden los niveles de irradiación, la placa se mantendrá a la temperatura de cambio de fase del PCM hasta que éste se haya solidificado completamente. Una vez solidificado el panel, y con la irradiación disminuyendo, la temperatura del panel descenderá hasta la temperatura ambiente, momento a partir del cual el ciclo volverá a empezar.

Figura 3-2 Ciclo ideal de funcionamiento de un sistema fotovoltaico con PCM

El ciclo mostrado en la Figura 3-2 es un ciclo ideal, que no tiene en cuenta los posibles efectos adversos tales como que la irradiación siga aumentando o manteniéndose cuando el PCM ya se encuentra totalmente licuado. En este caso el PCM deja de ser útil. Este proceso está altamente relacionado con la cantidad de masa de la que disponga el PCM. Otra posibilidad es que el descenso de irradiación sea muy rápido, provocando que la fusión del material PCM se convierta en un lastre que mantiene la temperatura del panel por encima del valor que tendría el panel de referencia.

Mención aparte tienen dos situaciones críticas en el comportamiento del PCM. Por un lado que las temperaturas exteriores (Ta) nocturnas sean elevadas con respecto a la temperatura de cambio de fase del material. Esto puede provocar que el material no se solidifique completamente durante la fase nocturna, empezando el ciclo al día siguiente parcialmente licuado y perdiendo así efectividad. Este fenómeno está muy ligado con la cantidad de masa de la que disponga el PCM. El otro caso crítico ocurre cuando la temperatura ambiente es superior a la temperatura de cambio de fase del material. En este caso el material es completamente ineficaz.

Con estas consideraciones se puede vislumbrar el efecto decisivo que tiene tanto la temperatura de cambio de fase del material PCM como la cantidad de masa de éste.

3.2 Hipótesis de partida

El objetivo de este estudio es obtener los niveles de refrigeración máximos, y por tanto, ganancias máximas posibles usando la tecnología PCM. Para ello una serie de hipótesis se han tenido en cuenta, siempre con el objetivo de permanecer en el extremo más favorable.

El material PCM dispone de masa infinita cuando la temperatura del panel supera la temperatura de cambio de fase, por lo que la temperatura del panel+PCM nunca superará dicha temperatura. Esto es lo mismo que disponer de un sistema de refrigeración como el mostrado en la Figura 3-1 c).

En el momento en el que la temperatura del panel de referencia descienda por debajo de la temperatura de cambio de fase del PCM, la temperatura del conjunto panel+PCM será la temperatura del panel de referencia. Esto es lo mismo que decir que el material PCM no tiene inercia térmica, y siempre se solidifica completamente en el momento en el que la temperatura del panel de referencia descienda por debajo de T_k, independientemente de la masa que faltase por solidificarse. Como en el caso anterior esto podría conseguirse con una refrigeración independiente.

El PCM empieza el ciclo diario completamente solidificado, independientemente de la temperatura exterior.

La transmisividad del material PCM es total, el panel y el PCM siempre se encuentran a la misma temperatura.

El PCM no afecta a las condiciones de refrigeración del panel.

Una descripción más detallada sobre las temperaturas y estados del PCM se detalla en 4.2.2 Modelo del conjunto PV+PCM.

A mayores de este análisis se esboza el comportamiento del panel+PCM bajo la consideración de que el sistema se encuentra siempre a la temperatura de cambio de fase, independientemente de la situación o climatología exterior. Este modelo, que incluye pérdidas cuando la temperatura del panel de referencia desciende por debajo de la temperatura de cambio de fase, se utiliza con fines comparativos y explicativos.

3.3 Selección de climas

Se consideran cuatro climas para el análisis, siendo estos: Atenas, Wurzburgo, Estocolmo y Davos. Estos climas son seleccionados en concordancia con la norma [UNE-EN 12976-2:2006] [10] debido a sus características climáticas.

Ciudad	Irradiación media mensual [kWh/m ² ·mes]	Temperatura ambiente media anual [°C]	
Atenas	163	18	
Davos	149	4	
Wurzburgo	105	10	
Estocolmo	96	8	

Tabla 3-1 Valores medios climáticos de las ciudades consideradas

Figura 3-3 Temperatura ambiente media mensual en las 4 ciudades consideradas

Figura 3-4 Irradiación mensual en las 4 ciudades consideradas

El objetivo de esta selección climática es disponer de valores característicos que permitan la extrapolación de los datos obtenidos a cualquier clima.

3.4 Análisis Bibliográfico

La literatura científica en torno a los sistemas PV+PCM es abundante, y la investigación alrededor de los mismos sugiere un aumento de ella en un futuro cercano. Pese a ello, la mayor parte de los artículos y demostraciones están limitados en cuanto a la duración de los mismos. En la Tabla 3-2 se puede observar que la duración media de las pruebas es inferior a 15 días, salvo para el caso de un año de Hendricks and Sark [11]. Ello sugiere la necesidad de estudios con periodos de tiempo mayores, donde las condiciones climáticas varíen ostensiblemente.

Ref.	Methodology	Weather condition	PCM tested	Period	Findings
Hasan et al. (2015)	Experimental numerical	Cool warm	Salt hydrate fatty acids	14-16 days	The daily average power savings was found to be 7.7% in hot climate in the best case
Hassan et al. (2014)	Experimental numerical	Hot	Paraffin, Salt hydrate, fatty acids	12 hrs	The maximum drop in peak temperature by using PCM was 5 $^{\rm o}{\rm C}$ on a cloudy day and 11 $^{\rm o}{\rm C}$ on clear sky condition
Hasan et al. (2014b)	Experimental numerical	Cool warm	Fatty acids Salt hydrate	14-16 days	System is cost effective only in warmer climates
Aelenei et al. (2014)	Experimental numerical	Cool	-	2-days	The maximum electrical efficiency of this BIPV-PCM can reach 10% and the thermal one 12%
Biwole et al. (2013)	Experimental numerical	1	Acronym SP/PCM paraffin		A time lag of 1 h was observed to reach 34.9 °C while the PCM always maintained PV temperature below 50 °C
Hendricks and Sark (2013)	Experimental numerical	Moderate hot		Year	Energy gain from PV-PCM system was 3.3 kW h in hot and 1.8 kW h in cold climate
Huang (2011)	Experimental numerical	Cool	Combinations of paraffin	3-days	Combination of RT27 and RT21 achieves the highest temperature reduction during the daily operation
Sharma et al. (2016)	Experimental		Paraffin	160 min	The open-circuit voltage improvement, at 1000 W/m ² was 4.4% with a reduction in module temperature of 3.8 °C
Sarwar (2012)	Experimental numerical	H	Lauric acid palmitic acid	1 	Lauric acid and palmitic acid PCMs were found to drop the module temperature by 22 °C and 19.5 °C respectively
Maiti et al. (2011)	Experimental numerical	Indoor outdoor	Paraffin wax metal-wax composite	7 hrs	The PV-PCM system with embedded metal shreds maintains the temperature around 65–68 °C for 3-h compared with paraffin only which reached 84 °C in less than 50 min
Lillo et al. (2011)	Experimental	12-sites	PCMs with different melting points	152	CPV-PCM system yields 37.2% more power than CPV-only system in hot climate and 18% in cold climate
Wu (2009)	Experimental	-	Paraffin	-	A temperature drop of 18 °C with 10% increase in electrical efficiency is achieved by the CPV-PCM system at high intensity 672 $\rm W/m^2$

Tabla 3-2 Resumen de estudios bibliográficos sobre usos de PCM [8]

Varios autores coinciden en señalar las zonas de alta irradiancia y bajas variaciones climáticas durante el año como los principales candidatos para la colocación de los sistemas PV+PCM [12] [13]. Estas ubicaciones son idóneas dado que al poseer temperaturas ambiente similares a lo largo del año permiten un aprovechamiento óptimo del material PCM, facilitando su completa fusión diurna y regeneración nocturna. Se estima, según este criterio, que las mejores ubicaciones serían África, Sur-Asia, Australia y Sur y Centro América.

También es común entre los diferentes autores la conclusión de que estos sistemas de refrigeración no son económicamente viables dado el estado del arte actual de los mismos [9] [12] [13], pero la opinión no es unánime [8]. Sin embargo, en la mayoría de esos análisis no se consideran los beneficios derivados del aumento de vida de las placas gracias al efecto termalizador del material PCM.

Con el objetivo de maximizar el rendimiento del PCM en ubicaciones con altas variaciones climáticas a lo largo del año, se ha estudiado la posibilidad de añadir diferentes capas de material PCM con diferentes puntos de fusión. Esto permite un funcionamiento parcial del sistema para todos los rangos climáticos, permitiendo mantener los efectos beneficiosos, aunque de forma parcial.

3.4.1 Efecto del PCM

El PCM acoplado a las placas fotovoltaicas ha demostrado que no sólo puede reducir la temperatura de funcionamiento, sino que debido a la disminución de los gradientes de temperatura a los que se ve sometida la placa, la vida útil de ésta puede ser ligeramente extendida [14] [15].

Por otro lado, ante altas temperaturas y debido a la inercia térmica del PCM, el conjunto placa+PCM puede alcanzar temperaturas mayores a las que tendría una placa fotovoltaica que careciese de este sistema [16]. Este caso se daría típicamente cuando la temperatura ambiente descendiese rápidamente, sin dar tiempo a que el PCM evacúe el calor acumulado.

Pese a que existen abundantes estudios y propuestas para mejorar la transferencia de calor entre la placa fotovoltaica y el material PCM, la conductividad térmica de los materiales PCM es muy baja [16], siendo esto un gran impedimento en el desarrollo de la tecnología de materiales de cambio de fase en paneles fotovoltaicos.

El uso del PCM implica añadir una cantidad de masa considerable al sistema captador de energía, por lo que un refuerzo de la estructura soporte debería ser considerado.

En este documento no se tendrá en cuenta ni estos fenómenos ni otros efectos perjudiciales en los que podría derivar el uso del material PCM acoplado a los paneles fotovoltaicos. Así mismo se considera que la unión panel – PCM es perfecta y por lo tanto la temperatura del panel es siempre la misma que la del PCM.

3.4.2 Hibridación

Existe la posibilidad de hibridar el sistema para obtener de forma simultánea energía eléctrica y térmica. Esta energía térmica puede ser usada para distintos fines, por ejemplo, para el sistema ACS. Con este sistema, la refrigeración activa del material PCM dejaría de ser un coste añadido para convertirse en un beneficio directo. Pese a lo interesante que pueda parecer este sistema, la exergía de la corriente de refrigeración del material PCM es considerablemente baja, siendo una temperatura típica del sistema la temperatura de cambio de fase del material, del orden de 30°C.

4.1 Caracterización solar

La caracterización solar viene determinada por la base de datos Meteonor 6.0. Esta base de datos aporta los valores horarios de radiación sobre superficie horizontal e inclinada en un ángulo igual a la latitud de la ubicación. Estos últimos son los valores usados en el proyecto. Así mismo de esta base de datos se extraen otros valores usados como la temperatura ambiente y la fuerza del viento, todo ello en base horaria.

La base de datos está referida a un año tipo.

4.2 Modelo

Las bases de datos climáticas de las distintas ubicaciones son importadas a un fichero de Excel, donde se procede a su tratamiento. Así mismo se usa la herramienta MatLab para preprocesar los datos.

Para evitar datos irrelevantes, se considera cualquier irradiancia por debajo de 50W/m² como estado nocturno, despreciando sus efectos sobre el total general.

4.2.1 Modelo del panel

Se considerarán tres escenarios: paneles fotovoltaicos con soporte individual, paneles colocados sobre tejado y paneles con material PCM acoplado en su parte trasera. Todos ellos se encuentran orientados al sur (hemisferio norte) y con una inclinación igual a la latitud de la ubicación.

El cálculo de la temperatura del panel se realiza usando la ecuación propuesta por E. Skoplaki et al. [17] cuyos parámetros son la temperatura ambiente, la irradiancia, un coeficiente de montaje (ω) y la velocidad del viento.

$$Tp = Ta + \omega * \left(\frac{0.32}{8.91 + 2.0 * vf}\right) * G_k$$
(4-1)

La temperatura ambiente, la irradiancia y la velocidad del viento son obtenidos directamente de las bases de datos de cada ubicación. El coeficiente de montaje se define como:

$$\omega = \frac{k_{integración}}{k_{libre}} \tag{4-2}$$

Para su determinación se hace uso del intervalo propuesto por E. Skoplaki et al. [17], (1.0-2.7) tomando su valor medio: 1.8.

La temperatura del conjunto panel + PCM se define en función del estado en el que se encuentre el mismo tal y como se representa en la Tabla 4-1.

Estado	T_pcm
1	T_k
2	T_k
3	Тр
4	menor (T _k ,Ta)

Tabla 4-1Valores de temperatura en función del estado del PCM

Esta selección de temperaturas para el conjunto panel + PCM maximiza el rendimiento de éste, considerando un funcionamiento ideal y una masa infinita, como se indica en el apartado 4.2.2 Modelo del conjunto PV+PCM.

El cálculo de la potencia generada por los distintos paneles se realiza multiplicando el rendimiento de éstos por la irradiancia.

$$P = \eta * G_k \tag{4-3}$$

Y para el cálculo del rendimiento recurrimos de nuevo a E. Skoplaki et al. [17].

$$\eta_c = \eta_{ref} * [1 + \beta_{ref} * (T_c - T_{ref}) + \gamma * \log_{10} G_T]$$
(4-4)

En este caso G_T es la irradiancia mensual ponderada. Una modificación de esta ecuación fue propuesta por C. J. Smith et al. [12], evitando el uso de irradiancias mensuales ponderadas y usando valores instantáneos G_k (4-5).

$$\eta_c = \eta_{ref} * \left[1 + \beta_{ref} * \left(T_c - T_{ref}\right) + \gamma * \log_{10} \frac{G_k}{1000}\right]$$
(4-5)

Siendo esta ecuación la elegida para la realización del proyecto. Los valores de β_{ref} y γ son los propuestos por el autor, 0.0045 K⁻¹ y 0.12 respectivamente. La η_{ref} es la eficiencia del módulo fotovoltaico a la T_{ref} y a 1000 W/m² de irradiancia, valor típicamente suministrado por los fabricantes. Para este proyecto se ha usado el valor de η_{ref} de 0.15, y la T_{ref} son 25°C. Esta ecuación está referida al rendimiento y temperatura de la célula fotovoltaica. Para obtener las temperaturas y rendimientos del panel completo habría que incluir las pérdidas en los demás elementos del mismo, pero por ser estos bajos, podemos asumir que la temperatura y rendimiento del panel se corresponden con los de la célula, reescribiendo la ecuación (4-5) en (4-6).

$$\eta_p = \eta_{ref} * \left[1 + \beta_{ref} * \left(T_p - T_{ref}\right) + \gamma * \log_{10} \frac{G_k}{1000}\right]$$
(4-6)

Esta ecuación (4-6) es la utilizada para todos los cálculos en este documento.
4.2.2 Modelo del conjunto PV+PCM

Para el cálculo de la temperatura del conjunto panel+PCM se consideran cuatro casos posibles.

4.2.2.1 Estado 1

La temperatura del panel es mayor que la temperatura ambiente, que a su vez es mayor que la temperatura de cambio de fase del material PCM. Tp >Ta \geq T_k.

Figura 4-1 Distribución de temperaturas en Estado 1

En este estado el material PCM terminaría saturándose y perdería efectividad pudiendo incluso empeorar el comportamiento del panel por dificultar la disipación de calor. Debido al tratamiento límite que se realiza en este proyecto, se ignoran estos efectos adversos, considerando que nunca se llega a esta situación pues se dispone de masa infinita de material PCM que nunca llega a licuarse completamente, o lo que es lo mismo, la existencia de un sistema de evacuación de calor que mantiene al PCM dentro de su temperatura de fusión.

T_pcm=T_k

4.2.2.2 Estado 2

La temperatura del panel es mayor que la temperatura de cambio de fase del material PCM que es mayor que la temperatura ambiente local. Tp \ge T_k>Ta.

Figura 4-2 Distribución de temperaturas en Estado 2

Ésta es la situación ideal de trabajo del material PCM. En una situación real, el material PCM empezaría a fundirse en el momento en que la temperatura del panel alcanzase la temperatura de cambio de fase, manteniéndose así la temperatura del conjunto a la temperatura de cambio de fase del material hasta que éste se saturase. Igual que en el caso comentado anteriormente, se considera que se dispone de material infinito o de refrigeración secundaria, por lo que la temperatura del conjunto nunca superaría la temperatura de cambio de fase para este estudio.

T_pcm=T_k

4.2.2.3 Estado 3

La temperatura de cambio de fase del material PCM es mayor que la temperatura del panel, que a su vez es mayor que la temperatura ambiente exterior. T_k >Tp>Ta.

Si el material PCM no se encontrase completamente solidificado en el momento en el que la temperatura del panel equivalente descendiese por debajo de la temperatura de cambio de fase, la temperatura del conjunto se mantendría a la temperatura de cambio de fase hasta la completa solidificación, produciendo menor potencia que su equivalente sobre tejado, por encontrarse a una temperatura superior. Como en casos anteriores nos limitamos a la situación ideal, considerando que en este estado, el material PCM ha solidificado completamente.

T_pcm=Tp

4.2.2.4 Estado 4

No existe irradiancia. Horas nocturnas o con irradiancia menor a 50W/m2.

T_pcm=menor(T_k,Ta)

4.3 Método de resolución

Con las temperaturas del panel con soporte individual, panel sobre tejado y panel+PCM se obtienen los rendimientos para cada caso, ecuación (4-6), calculando posteriormente la potencia generada por cada uno de ellos, ecuación (4-3).

Las ganancias obtenidas en cada ubicación, para un T_k determinado se obtienen al restarle a la potencia generada mediante el panel+PCM la potencia generada por el panel sobre tejado. Estas ganancias serán siempre positivas por la forma de definir el panel+PCM especificada anteriormente.

Este procedimiento se repite haciendo un barrido para cada T_k , partiendo de $T_{k,min}=10^{\circ}$ C hasta un $T_{k,max}=80^{\circ}$ C.

5 RESULTADOS

Para evitar la redundancia en los resultados, se limitará la exposición de los mismos al caso de Atenas y a las gráficas y datos comparativos. El resto de los resultados se pueden encontrar en 7 Anexos bajo el epígrafe de cada ciudad estudiada.

5.1 Ganancias energéticas

Se considera ganancia a la diferencia entre la energía generada por la placa fotovoltaica + sistema PCM y la energía generada por la placa colocada sobre tejado. La curva de ganancias frente a temperatura de cambio de fase del material PCM (T_k) puede observarse en la Figura 5-1. La ganancia porcentual se define como el incremento de energía proporcionado por el sistema placa+PCM frente a la energía obtenida por la placa colocada sobre tejado.

Figura 5-1 Ganancia porcentual VS Temperatura de cambio de fase PCM. Atenas

En la Figura 5-1 se observa como las ganancias van disminuyendo según aumenta la temperatura de cambio de fase del material, hasta reducirse por completo a altas temperaturas. Este resultado es el comportamiento natural esperado, pues a medida que aumenta la T_k el efecto termalizador del PCM se atenúa hasta desaparecer por completo en el que la temperatura del panel no alcanza la temperatura de cambio de fase.

La no linealidad de la curva está relacionada con la distribución por estados del material PCM para cada T_k . Los estados 1 y 2 representan la zona lineal, por existir ganancias siempre que el PCM se encuentra en estos estados (por su propia definición en 4.2.2 Modelo del conjunto PV+PCM). El Estado 3 en cambio no proporciona ninguna ganancia. Esta distribución de estados se representa en la Figura 5-2.

Figura 5-2 Número de horas diurnas por estado para cada Tk

Con el objetivo de proporcionar una visión más clara de lo expuesto en el apartado anterior, se modifica la Figura 5-2 apilando los valores por estado, obteniendo así la Figura 5-3. En esta figura se observa con mayor claridad como para altos valores de T_k la mayor parte del tiempo el material PCM se encuentra en Estado 3, lo que no proporciona ninguna ganancia, asemejándose así esta distribución a la Figura 5-1.

Figura 5-3 Distribución porcentual de tiempo por estados para cada T_k

Cabe destacar que al no considerar los efectos negativos del PCM sobre el comportamiento de la placa, la Figura 5-1 se aleja de la realidad según va descendiendo la T_k . Esto es así dado que, a bajas temperaturas de cambio de fase, el material se saturaría durante el día o no se regeneraría durante la noche, dejando de tener efecto. Pese a ello el interés académico de la Figura 5-1 se mantiene, pues muestra el límite máximo al cual podría aspirar cualquier sistema refrigerado por PCM de acuerdo con la estrategia propuesta.

Para el caso extremo de considerar fija la temperatura del conjunto panel+PCM a T_k, a partir de entrar en el Estado 3 empezaría a tener pérdidas energéticas, pues el conjunto panel+PCM se encontraría a una temperatura superior a su referencia sobre tejado. Esto se ilustra en la Figura 5-4. Esta figura superpone la solución T_k=T_pcm para todos los estados con la Figura 5-1. En la Figura 5-4 se observa como la componente negativa introducida por las pérdidas generadas en el Estado 3 ocurre desde T_k=10°C, pero no se hace patente hasta T_k mayores, en donde el número de horas en los que el material pasa en Estado 3 se incrementa considerablemente (Figura 5-2).

Figura 5-4 Ganancias en función de Tk para T_pcm=Tk y T_pcm=F(estado). Atenas

Fijando la temperatura de cambio de fase del material, T_k , se puede realizar un análisis más detallado de cómo afectan los distintos parámetros a las ganancias obtenidas por uso de material PCM. Para fijar la temperatura de cambio de fase se siguen las recomendaciones de A. Hasan et al. [8].

"The PCM phase transition temperature should be higher than the average night time summer temperature to ensure PCM regeneration to solid in the worst case i.e., warmer nights. Additionally, the PV panel temperature during day time in winter should be substantially higher than the PCM liquidus temperature in order to ensure complete PCM melting in colder months for effective heat removal." [8]

Esto supone dos limitaciones a la elección del T_k : un límite inferior establecido por la media nocturna en verano, y un límite superior determinado por la media diurna en invierno.

En nuestro caso de referencia, Atenas, los datos climáticos proporcionan los valores mostrados en la Figura 5-5, siendo las temperaturas reflejadas en ella las medias nocturnas y diurnas para cada mes del año.

Figura 5-5 Temperatura Tp_roof media nocturna y diurna

De esta figura y de las recomendaciones dadas por A. Hasan et al [8], se establece como temperatura óptima de cambio de fase del panel ~29°C. Por redondeo se usa como valor de T_k 30°C. Este valor es usado en el resto de ciudades pese a no ser su óptimo para poder comparar los resultados obtenidos.

Un análisis mensual del caso en estudio arroja los resultados resumidos en la Figura 5-6. En ella se aprecia como las ganancias se generan principalmente durante los meses de verano. Esto se corresponde con los resultados esperados, pues sólo temperaturas superiores a la temperatura de cambio de fase proporcionan ganancias.

Figura 5-6 Energía eléctrica mensual generada con y sin PCM

Al realizar el análisis sobre la distribución de las ganancias en función de la temperatura ambiente se obtiene la Figura 5-7. En esta figura se ha considerado como ganancia relativa la mejora obtenida para cada tramo como el incremento energía con respecto al de referencia. La razón por la que la ganancia acumulada es menor que la relativa es el peso relativo de cada una de estas ganancias, obteniéndose un gran incremento en el tramo 35-40 °C, pero partiendo de un valor muy pequeño. Esto se explica más claramente en la Figura 5-8.

Figura 5-7 Ganancias frente a Temperatura ambiente

La Figura 5-8 muestra el peso relativo sobre el total de cada tramo de temperatura ambiente. Pese a que el incremento en el tramo 35-40°C es muy alto (~20%) su peso en el incremento total es relativamente bajo, como se desprende de la Figura 5-8.

Figura 5-8 Ganancia porcentual por tramo frente a Ta

Al comparar la Figura 5-8 con la Figura 5-9 se puede observar como el bajo peso relativo de la categoría 35-40°C se debe al reducido tiempo de exposición a esa temperatura.

5.2 Análisis por estados

Como se expuso en 4.2.2 Modelo del conjunto PV+PCM, el estado óptimo de funcionamiento del conjunto PV+PCM es el Estado 2. En la Figura 5-10 se han trasladado los valores horarios aportados por la base de datos climática al tiempo solar verdadero para su adición y resumen en el periodo del año estudiado. Sobre esta figura se han dispuesto los tiempos relativos de funcionamiento en cada estado del conjunto PV+PCM.

Figura 5-10 Tiempo por estados frente a tiempo solar verdadero

Cabe recordar que en una situación real tanto el Estado 1 como el Estado 3 son susceptibles de proporcionar pérdidas, siendo el Estado 2 el de funcionamiento deseado y el Estado 4 el considerado como sin irradiación.

La distribución mensual en este aspecto es la mostrada en Figura 5-11. En esta figura puede entreverse la dificultad en la selección de un valor de T_k válido para el periodo anual completo, pues en este caso, durante los meses de verano el material se encuentra gran parte del tiempo en el Estado 1, por lo que un material finito o sin refrigerar se fundiría rápidamente sin aportar beneficios; y en los meses de invierno, la temperatura que alcanzaría el panel de referencia superaría la temperatura de cambio de fase durante muy pocas horas al día, siendo por lo tanto el material PCM de muy poca utilidad.

Figura 5-11 Tiempo por estados mensual

25

5.3 Análisis comparativo

Realizando el mismo análisis hecho con Atenas en las otras 3 ciudades establecidas en 3.3 Selección de climas, se obtienen los resultados mostrados en Figura 5-12.

Figura 5-12 Ganancia porcentual Vs temperatura de cambio de fase PCM

Se puede observar un comportamiento similar en cada ciudad, pero con las curvas desplazadas. Las curvas son funciones de la diferencia de energía generada por los paneles, que a su vez depende de la irradiación y de la temperatura que alcanzan los paneles. La temperatura alcanzada depende por un lado de la refrigeración del panel (parámetro ω y velocidad del viento²) y por otro de las condiciones climáticas de temperatura ambiente e irradiación³.

Al analizar los datos específicos para las distintas ciudades se sigue usando un T_k de 30°C, pese a no ser el óptimo de cada ciudad, con la finalidad de comparar los resultados obtenidos.

² Ecuación (4-1)

³ Ecuación (4-6)

5.4 Aumento de rango climático

Con el objetivo de extender el rango de resultados y poder extraer conclusiones, se analizan las condiciones climáticas de 6 ciudades a mayores de las mencionadas en 3.3 Selección de climas. Siguiendo el criterio aportado por Christopher J. Smith et al [12] y con el objetivo de poder comparar resultados, se seleccionan las mismas ubicaciones que éste propone: Agua Caliente, Golmud, Charanka, Mesquite, Neuhardenberg y Nzema.

5.5 Efecto de la temperatura ambiente

En este estudio el efecto de la variación de temperatura ambiente a lo largo del año pasa un poco desapercibido debido a las hipótesis de partida de no considerar efectos adversos en la utilización del material PCM. Estos efectos pueden, sin embargo, observarse en las siguientes figuras.

Figura 5-13 Tp_roof media mensual. Nzema

Figura 5-14 Tp_roof media mensual. Atenas

En la Figura 5-13 se reflejan las condiciones climáticas de Ta en Nzema. Se puede observar como la variación máxima de temperatura nocturna, en media, no supera los 5°C, mientras que la variación de temperatura del panel diurna alcanza 10°C. Por otro lado, en la Figura 5-14 tenemos los datos de Atenas. En este caso la variación nocturna es cerca de 18°C y la diurna de 23°C. Ante esta situación, resulta sencillo elegir una única temperatura de cambio de fase para el caso de Nzema (T_k ~33°C) que funcionará considerablemente bien y en buenas condiciones durante todo el año mientras que en el caso de Atenas (T_k ~30°C) la elección se complica y gran parte del tiempo será demasiado alta (invierno) o demasiado baja (verano). Este efecto se ilustra en las Figura 5-15 yFigura 5-16.

Figura 5-15 Distribución mensual de tiempo por estado. Nzema

El tiempo en cada estado para la ciudad de Nzema, Figura 5-15, es relativamente constante a lo largo del año, indicador de que el comportamiento del PCM va a ser a su vez relativamente constante. Por el contrario, en el caso de Atenas existen fuertes variaciones en la época de invierno con respecto a la de verano, donde el material pasa gran parte de tiempo en Estado 1 (Tp>T_k≥Ta). Esto es un claro indicador de que el panel está funcionando en una situación muy desfavorable. En el invierno en cambio, la T_k es mayor que la Tp_roof media, por lo que la mayor parte del tiempo el PCM estará inactivo, Estado 3.

5.6 Efecto de la irradiancia

El efecto de la irradiancia se manifiesta en dos aspectos independientes: por un lado en el valor total de energía generada, a mayor irradiancia mayor cantidad de energía y por tanto mayores beneficios; por otro lado, el efecto de una alta irradiancia provoca un aumento en la temperatura del panel que el material PCM debe absorber. Esto último puede verse en las Figura 5-17 yFigura 5-18.

Figura 5-18 Irradiación acumulada por rango de Tp roof. Stockholm

En estas figuras se pone de manifiesto que una mayor irradiancia (Davos) provoca una temperatura del panel mayor, pese a ser la temperatura ambiente media en Davos inferior a la de Estocolmo (Figura 3-3). Este fenómeno indica que el aprovechamiento del material PCM en ubicaciones de alta irradiancia es mayor que en ubicaciones de baja irradiancia, dado que el potencial de refrigeración es mayor.

5.7 Dependencias funcionales

Con el objetivo de buscar una dependencia simplificada de los principales parámetros sobre las ganancias, se realiza una serie de comparativas tal y como se muestra en la Figura 5-19. En ella se comparan los principales parámetros de las 4 ciudades propuestas en 3.3 Selección de climas.

Figura 5-19 a) Temperatura ambiente b) Temperatura del panel c) Irradiación d) Temperatura ambiente diurna * Irradiación vs Ganancias en los 4 climas principales con T_k=30°C

Como se puede apreciar en la Figura 5-19 a) y c), el comportamiento de la temperatura ambiente y de la irradiación no parecen caracterizar fielmente las ganancias obtenidas. Por otro lado, la temperatura del panel sobre tejado parece tener un comportamiento más similar, como se refleja en b). Sabiendo que los principales parámetros son la Ta durante el día y la Irradiación, se ensaya una dependencia proporcional de los mismos, obteniéndose así la figura d) que parece ser una buena aproximación a la variación de ganancias entre ciudades.

Al usar solo los cuatro valores proporcionados por los cuatro climas caracterizados en 3.3 Selección de climas, no se pueden extraer conclusiones fehacientes, por lo que se aumenta el número de ciudades estudiadas en concordancia con lo dispuesto en 5.4 Aumento de rango climático. Los valores obtenidos se representan en la Figura 5-20.

Figura 5-20 a) Temperatura ambiente b) Temperatura del panel c) Irradiación d) Temperatura ambiente diurna * Irradiación vs Ganancias en los 10 climas estudiados con T_k=30°C

La Figura 5-20 refleja los mismos parámetros que la Figura 5-19, pero con un número mayor de ciudades. Ante el aumento de datos se puede identificar un patrón que, aunque no exacto, refleja el comportamiento de las ganancias del sistema usando únicamente parámetros climáticos fácilmente medibles. Este patrón se obtiene de multiplicar los parámetros de Temperatura ambiente diurna e Irradiación, y está reflejado en la subfigura d). Se amplía esta subfigura para su mejor observación en la siguiente figura.

Figura 5-21 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. Tk=30°C

Con el objetivo de analizar el efecto que produce la temperatura de cambio de fase en las conclusiones extraídas de la Figura 5-21 se introducen la Figura 5-22 y la Figura 5-23. En ellas se ha modificado la temperatura de cambio de fase del material a 15 y 45 °C respectivamente para comprobar cómo evoluciona el parámetro Ta diurna * Irradiación con respecto a las ganancias bajo distintas temperaturas de cambio de fase.

Figura 5-22 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. Tk=15°C

Figura 5-23 Temperatura ambiente diurna multiplicada por la Irradiación vs Ganancias. Tk=45°C

Se puede observar en las figuras Figura 5-22 Figura 5-23 como, pese a que el parámetro elegido sigue representando adecuadamente la evolución de las ganancias, para bajos T_k el seguimiento empeora considerablemente.

Un análisis mes a mes de lo expuesto anteriormente y para la ciudad de Atenas se muestra en la Figura 5-24. En ella se puede comprobar como el parámetro elegido funciona adecuadamente en el ámbito mensual. En la Figura 5-25 se extiende este análisis para $T_k=15^{\circ}$ C y $T_k=45^{\circ}$ C respectivamente.

Figura 5-24 Temperatura ambiente diurna multiplicada por la Irradiación v
s Ganancias en periodo mensual. $T_k=30^{\circ}C$. Atenas

Figura 5-25 Temperatura ambiente diurna multiplicada por la Irradiación v
s Ganancias. a) T_k=15°C b) $T_k=45°C.$ Atenas

5.8 Análisis de sensibilidad

Un análisis sobre el efecto de los parámetros utilizados permite estimar las variaciones de comportamiento del modelo en diversas situaciones. Se consideran en este estudio la variación de dos parámetros principales: el coeficiente de montaje arbitrariamente definido como 1.8 y la velocidad del viento del lugar de estudio. Así mismo se analiza el efecto que tienen sobre el modelo el uso de la ecuación (4-6) completa o simplificada, el descarte de los valores de irradiación menores a 50Wh/m² y el efecto de la selección del punto de fusión del material PCM.

5.8.1 Efecto del viento

El viento proporciona una refrigeración natural que reduce el efecto beneficioso del PCM, pues reduce la temperatura del panel de referencia. Este efecto se observa en la Figura 5-26 donde se han superpuesto las soluciones con el viento obtenido de la base de datos climática, sin viento, y con el doble del viento de la base de datos.

Figura 5-26 Efectos del viento sobre las ganancias

Se observa como los efectos del viento sobre las ganancias no son lineales, reduciendo su peso a medida que aumenta su intensidad. En la situación real, de ser la intensidad del viento suficientemente alta como para refrigerar completamente el panel y ponerlo a la temperatura ambiente, el sistema panel + PCM no supondría ninguna mejora. En este análisis, sin embargo, el PCM seguiría aportando ganancias dado que a bajas temperaturas de cambio de fase, nos encontraríamos en el estado 1 (Tp>Ta≥Tk (4.2.2)), para el cual se ha considerado que la temperatura del panel+PCM sería la temperatura de cambio de fase, en lugar de la temperatura ambiente.

5.8.2

Al igual que en el caso anterior, el coeficiente ω determina la facilidad de refrigeración del panel en función de su montaje, siendo el valor de 1 el equivalente a un panel sin ningún tipo de impedimento constructivo que dificulte su refrigeración y un valor de 2.8 un máximo aportado por E. Skoplaki et al. [17] en casos de alta integración en edificios.

Figura 5-27 Análisis de sensibilidad 3D del parámetro ω

En la Figura 5-27 se observa como el parámetro ω es más influyente para bajas temperaturas de cambio de fase, mitigándose su efecto según este valor aumenta. Proyectando la figura sobre el plano ganancias Tk, se obtiene la Figura 5-28. Se puede establecer ante estas figuras que el uso de PCM en situaciones con muy mala refrigeración natural podría ser interesante, siempre y cuando las temperaturas nocturnas permitan la regeneración del mismo durante la noche.

Figura 5-28 Análisis de sensibilidad 2D del parámetro ω

5.8.3 Efecto de la componente logarítmica en la ecuación (4-6)

Como se comentó en el apartado 4.2.1 Modelo del panel, existe cierta discrepancia en la diversa documentación científica sobre el uso de la componente logarítmica en la ecuación (4-6).

$$\eta_p = \eta_{ref} * \left[1 + \beta_{ref} * \left(T_p - T_{ref}\right) + \gamma * \log_{10} \frac{G_k}{1000}\right]$$
(5-1)

La discrepancia se centra fundamentalmente en la componente logarítmica, eliminándola directamente en muchos de los casos para evitar estas discordancias. En la Figura 5-29 se puede observar que la diferencia entre el uso de la ecuación completa frente a la simplificada, ecuación (5-2), se traduce en una ligera variación de la pendiente en el tramo lineal, siendo sus efectos muy reducidos, lo que justificaría la simplificación de dicha ecuación.

$$\eta_p = \eta_{ref} * [1 + \beta_{ref} * (T_p - T_{ref})]$$
(5-2)

Figura 5-29 Efectos de la componente logarítmica en la ecuación (4-6)

5.8.4 Efecto de la restricción de irradiación mínima de 50 Wh/m²

Se considera en este estudio datos no válidos de irradiación todos aquellos por debajo de 50Wh/m². Esta segregación de datos se realiza con el objetivo de reducir el ruido estadístico de los mismos, así como posibles imprecisiones en amaneceres y anocheceres.

Un estudio simplificado sobre el impacto que esta medida implica es expuesto a continuación. En la Figura 5-30 se observa que, pese a que el número total de horas excluidas es elevado (en torno a 700 horas) la irradiación total en este tramo es muy baja (del orden de 10 kWh/m²). Para el caso en estudio, el rendimiento medio de conversión de energía solar en potencia eléctrica (caso PCM) es del orden del 14%, por lo que esos 10 kWh/m² supondrían unos 1.4 kWh/m² de energía eléctrica. La energía total anual generada por el sistema PV+PCM para Atenas ronda los 280 kWh/m², por lo que estamos hablando de un error de alrededor del 0.5%.

Figura 5-30 Irradiación y número de horas por tramo de irradiancia

La situación límite se daría si durante las 700 horas se tuviese una irradiancia de 50W/m². En ese caso estaríamos hablando de una energía no considerada de 35 kWh/m². El error por tanto se elevaría a 1.74%.

5.8.5 Efecto de la selección de T_k

La elección de la temperatura de cambio de fase del material PCM juega un papel crítico en su rendimiento. Un valor demasiado bajo ocasiona que el material se funda por efecto de la temperatura ambiente exterior en lugar de por efecto de la energía solar no transformada en electricidad, volviéndolo innecesario e incluso contraproducente. Un valor excesivamente alto provoca que el material actúe menos horas de las posibles proporcionando así menores ganancias. Para esbozar este efecto se presentan las figurasFigura 5-31 Figura 5-32.

Figura 5-31 Porcentaje de tiempo por estados T_k=25

Figura 5-32 Porcentaje de tiempo por estados $T_k=35$

En la Figura 5-31 se observa como el material pasa gran parte del tiempo en el Estado 1, es decir, Ta>T_k, haciendo el material inservible en ese periodo. En la Figura 5-32 por otro lado, pese a parecer que el material funciona correctamente en su estado 2, el rendimiento final es inferior que para el caso estudiado de T_k=30°C (Ganancias de 7.69% frente a 9.9%). Esto se corresponde con lo esperado según la Figura 5-1.

Se puede afirmar que el uso de PCM como sistema de refrigeración en paneles fotovoltaicos es efectivo y conduce a una mejora global del sistema, pero también introduce unos costes que han de ser tenidos en cuenta. A lo largo de este proyecto se ha determinado los valores máximos obtenibles en función del clima, estimando unas ganancias que han de ser consideradas como valores límite.

La elección de la temperatura de cambio de fase es un paso crítico que condiciona altamente las prestaciones del sistema refrigerado mediante PCM. Un valor excesivamente alto producirá pocos beneficios, mientras que un valor excesivamente bajo provocará que el sistema esté inutilizable gran parte del tiempo.

Para asegurar una buena elección de T_k es conveniente que la temperatura ambiente local no tenga fuertes variaciones a lo largo del año. Así mismo, para maximizar el uso del material y obtener las máximas ganancias, un alto nivel de irradiancia es necesario. Por ello, las ubicaciones óptimas donde implementar los sistemas de refrigeración basados en la tecnología PCM son aquellas con pocas variaciones de temperatura ambiente y altas irradiancias.

Ante situaciones de muy mala refrigeración natural, como en integraciones arquitectónicas extremas, el uso de PCM como sistema de refrigeración podría ser interesante, siempre y cuando las temperaturas nocturnas permitan la regeneración del mismo.

Un estudio en profundidad sobre la cantidad de material PCM que ha de incorporarse en cada placa fotovoltaica es necesario para su óptimo funcionamiento, pues un exceso de material incurre en gastos innecesarios y dificultades de regeneración nocturna mientras que una cantidad insuficiente implica la completa licuefacción de éste antes de que cumpla completamente su objetivo.

La hibridación del sistema PCM permitiendo recuperar el calor almacenado para usos secundarios (ACS, precalentamientos térmicos u otros) puede suponer una mejora considerable en cuanto al rendimiento del sistema, teniendo en cuenta siempre que las temperaturas máximas alcanzables con este sistema son del orden de la temperatura de fusión del material.

El uso de PCM como sistema de refrigeración de paneles fotovoltaicos tiene el efecto favorable de mantener la temperatura del panel constante, aumentando su inercia térmica y reduciendo la aparición de "puntos calientes", lo que aumenta su esperanza de vida.

6.1 Líneas de trabajo futuro

Teniendo en cuenta lo citado anteriormente, se estima que, en sistemas donde la refrigeración es crítica, el PCM puede ser un buen candidato. Por lo tanto, en sistemas de concentración solar fotovoltaica, en donde la temperatura de funcionamiento está limitada por cuestiones de durabilidad de los materiales, un estudio en profundidad del efecto de la refrigeración mediante PCM puede proporcionar buenos resultados.

Un análisis más detallado sobre el parámetro Ta_d*Irradiación puede ser conveniente a la hora de definir un valor único que permita una fácil aproximación a las máximas ganancias posibles en distintas ubicaciones partiendo de datos climáticos fácilmente obtenibles.

7 ANEXOS

A. Atenas

Figura 7-1 Irradiación acumulada frente a temperatura del panel. Atenas

Figura 7-2 Temperatura media nocturna y diurna del panel sobre tejado. Atenas

Figura 7-3 Distribución mensual de tiempo por estados. Atenas

Figura 7-4 Irradiación y ganancias mensuales. Atenas

Figura 7-5 Energía eléctrica mensual generada. Atenas

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	114919	15880	16438	558	3,51%
Febrero	114188	15787	16440	653	4,14%
Marzo	171293	22813	24582	1769	7,75%
Abril	184619	24345	26496	2151	8,83%
Мауо	197567	25520	28241	2720	10,66%
Junio	201068	25401	28744	3343	13,16%
Julio	214592	26940	30712	3772	14,00%
Agosto	214947	26752	30845	4093	15,30%
Septiembre	182238	23055	26083	3028	13,13%
Octubre	146232	19202	20802	1600	8,33%
Noviembre	126708	17005	18047	1043	6,13%
Diciembre	97949	13347	13956	609	4,56%
Total general	1966320	256049	281386	25337	9,90%

Tabla 7-1 Irradiación, energía y ganancias. Atenas

B. Davos

Figura 7-6 Irradiación acumulada frente a temperatura del panel. Davos

Figura 7-7 Temperatura media nocturna y diurna del panel sobre tejado. Davos

Figura 7-8 Distribución mensual de tiempo por estados. Davos

Figura 7-9 Irradiación y ganancias mensuales. Davos

Figura 7-10 Energía eléctrica mensual generada. Davos

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	125928	17728	18445	716	4,04%
Febrero	146942	21013	21710	698	3,32%
Marzo	186145	25975	27278	1303	5,02%
Abril	177659	24830	25869	1039	4,18%
Мауо	175256	24019	25213	1194	4,97%
Junio	164468	22126	23488	1362	6,16%
Julio	172593	23221	24657	1436	6,18%
Agosto	160770	21442	22939	1498	6,99%
Septiembre	149217	20290	21462	1173	5,78%
Octubre	138078	18932	19956	1024	5,41%
Noviembre	101200	14294	14724	430	3,01%
Diciembre	101627	14667	14911	244	1,66%
Total general	1799883	248535	260652	12117	4,88%

Tabla 7-2 Irradiación, energía y ganancias. Davos

C. Stockholm

Figura 7-11 Irradiación acumulada frente a temperatura del panel. Stockholm

Figura 7-12 Temperatura media nocturna y diurna del panel sobre tejado. Stockholm

47

Figura 7-13 Distribución mensual de tiempo por estados. Stockholm

Figura 7-14 Irradiación y ganancias mensuales. Stockholm

Figura 7-15 Energía eléctrica mensual generada. Stockholm

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	4738	32310	4740	2	0,04%
Febrero	8231	55721	8262	31	0,38%
Marzo	15735	108789	15885	150	0,95%
Abril	20078	144294	20845	767	3,82%
Мауо	21768	158716	22674	906	4,16%
Junio	20554	152796	21672	1118	5,44%
Julio	20846	158652	22481	1635	7,84%
Agosto	18949	142154	20096	1147	6,05%
Septiembre	15594	113882	16193	599	3,84%
Octubre	9058	64468	9213	155	1,72%
Noviembre	4134	28733	4143	9	0,22%
Diciembre	2692	18411	2692	0	0,00%
Total general	162377	1178926	168895	6519	4,01%

Tabla 7-3 Irradiación, energía y ganancias. Stockholm

D. Wurzburgo

Figura 7-16 Irradiación acumulada frente a temperatura del panel. Wurzburgo

Figura 7-17 Temperatura media nocturna y diurna del panel sobre tejado. Wurzburgo

Figura 7-18 Distribución mensual de tiempo por estados. Wurzburgo

Figura 7-19 Irradiación y ganancias mensuales. Wurzburgo

Figura 7-20 Energía eléctrica mensual generada. Wurzburgo

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	51207	7602	7614	12	0,16%
Febrero	69579	10232	10264	32	0,32%
Marzo	111328	15979	16165	186	1,16%
Abril	142604	19821	20601	780	3,94%
Мауо	150921	20826	21506	680	3,26%
Junio	152543	20691	21629	938	4,53%
Julio	155566	20999	22042	1043	4,97%
Agosto	151229	20298	21441	1143	5,63%
Septiembre	122769	16498	17516	1017	6,17%
Octubre	92040	12953	13238	285	2,20%
Noviembre	43462	6248	6296	48	0,78%
Diciembre	41489	6022	6050	28	0,46%
Total general	1284737	178168	184362	6194	3,48%

Tabla 7-4 Irradiación, energía y ganancias. Wurzburgo

E. Agua Caliente

Figura 7-21 Irradiación acumulada frente a temperatura del panel. Agua Caliente

Figura 7-22 Temperatura media nocturna y diurna del panel sobre tejado. Agua Caliente

Figura 7-23 Distribución mensual de tiempo por estados. Agua Caliente

Figura 7-24 Irradiación y ganancias mensuales. Agua Caliente

Figura 7-25 Energía eléctrica mensual generada. Agua Caliente

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	158900	21165	22808	1643	7,76%
Febrero	158065	20993	22719	1726	8,22%
Marzo	211109	27334	30426	3092	11,31%
Abril	218590	28190	31494	3305	11,72%
Мауо	224407	27942	32234	4292	15,36%
Junio	211685	25896	30321	4425	17,09%
Julio	202563	24693	28934	4241	17,18%
Agosto	197603	23959	28254	4295	17,92%
Septiembre	192481	23343	27620	4276	18,32%
Octubre	191813	24206	27559	3353	13,85%
Noviembre	163395	21355	23443	2088	9,78%
Diciembre	147540	19908	21141	1233	6,20%
Total general	2278151	288985	326954	37969	13,14%

Tabla 7-5 Irradiación, energía y ganancias. Agua Caliente

F. Charanka

Figura 7-26 Irradiación acumulada frente a temperatura del panel. Charanka

Figura 7-27 Temperatura media nocturna y diurna del panel sobre tejado. Charanka

Figura 7-28 Distribución mensual de tiempo por estados. Charanka

Figura 7-29 Irradiación y ganancias mensuales. Charanka

Figura 7-30 Energía eléctrica mensual generada. Charanka

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	198257	25136	28566	3430	13,64%
Febrero	190927	23777	27566	3789	15,94%
Marzo	219956	26779	31742	4964	18,54%
Abril	209575	25895	30126	4231	16,34%
Мауо	201827	25337	28877	3540	13,97%
Junio	176645	22577	25135	2558	11,33%
Julio	142514	18474	20069	1596	8,64%
Agosto	137056	17702	19296	1595	9,01%
Septiembre	171583	21528	24482	2954	13,72%
Octubre	199332	24040	28619	4579	19,05%
Noviembre	184122	22519	26479	3960	17,59%
Diciembre	179803	22611	25821	3210	14,20%
Total general	2211597	276374	316780	40406	14,62%

Tabla 7-6 Irradiación, energía y ganancias. Charanka

G. Golmud

Figura 7-31 Irradiación acumulada frente a temperatura del panel. Golmud

Figura 7-32 Temperatura media nocturna y diurna del panel sobre tejado. Golmud

Figura 7-33 Distribución mensual de tiempo por estados. Golmud

Figura 7-34 Irradiación y ganancias mensuales. Golmud

Figura 7-35 Energía eléctrica mensual generada. Golmud

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	171227	24419	25331	912	0,04
Febrero	175764	24839	25857	1018	4,10%
Marzo	200597	27444	29260	1816	6,62%
Abril	211998	28587	30757	2171	7,59%
Мауо	206345	27471	29694	2223	8,09%
Junio	191778	25037	27473	2436	9,73%
Julio	192383	25034	27466	2432	9,71%
Agosto	203739	26040	29245	3206	12,31%
Septiembre	201975	26185	29111	2927	11,18%
Octubre	203530	27165	29567	2402	8,84%
Noviembre	179778	24921	26272	1351	5,42%
Diciembre	167567	23826	24698	871	3,66%
Total general	2306681	310967	334731	23764	7,64%

Tabla 7-7 Irradiación, energía y ganancias. Golmud

H. Mesquite

Figura 7-36 Irradiación acumulada frente a temperatura del panel. Mesquite

Figura 7-37 Temperatura media nocturna y diurna del panel sobre tejado. Mesquite

Figura 7-38 Distribución mensual de tiempo por estados. Mesquite

Figura 7-39 Irradiación y ganancias mensuales. Mesquite

Figura 7-40 Energía eléctrica mensual generada. Mesquite

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	164883	21892	23712	1820	8,31%
Febrero	165469	21986	23844	1858	8,45%
Marzo	204717	26491	29489	2998	11,32%
Abril	221334	28396	31923	3527	12,42%
Мауо	220414	27400	31653	4254	15,52%
Junio	211967	25811	30376	4565	17,69%
Julio	206113	25072	29457	4384	17,49%
Agosto	208233	25194	29848	4654	18,47%
Septiembre	207541	25113	29868	4756	18,94%
Octubre	197979	24948	28480	3532	14,16%
Noviembre	175719	22877	25279	2402	10,50%
Diciembre	158804	21305	22804	1499	7,04%
Total general	2343173	296483	336733	40250	13,58%

Tabla 7-8 Irradiación, energía y ganancias. Mesquite

I. Neuhardenberg

Figura 7-41 Irradiación acumulada frente a temperatura del panel. Neuhardenberg

Figura 7-42 Temperatura media nocturna y diurna del panel sobre tejado. Neuhardenberg

Figura 7-43 Distribución mensual de tiempo por estados. Neuhardenberg

Figura 7-44 Irradiación y ganancias mensuales. Neuhardenberg

Figura 7-45 Energía eléctrica mensual generada. Neuhardenberg

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	42503	6096	6156	59	0,97%
Febrero	62016	8898	9072	175	1,96%
Marzo	100251	14187	14448	260	1,83%
Abril	146177	19749	20922	1174	5,94%
Мауо	150917	20213	21402	1189	5,88%
Junio	148433	19610	20981	1372	7,00%
Julio	146774	19067	20709	1642	8,61%
Agosto	139012	17948	19646	1698	9,46%
Septiembre	114703	15156	16233	1077	7,11%
Octubre	86151	11896	12245	348	2,93%
Noviembre	45701	6475	6549	75	1,16%
Diciembre	32365	4697	4714	18	0,38%
Total general	1215003	163991	173079	9087	5,54%

Tabla 7-9 Irradiación, energía y ganancias. Neuhardenberg

J. Nzema

Figura 7-46 Irradiación acumulada frente a temperatura del panel. Nzema

Figura 7-47 Temperatura media nocturna y diurna del panel sobre tejado. Nzema

Figura 7-48 Distribución mensual de tiempo por estados. Nzema

Figura 7-49 Irradiación y ganancias mensuales. Nzema

Figura 7-50 Energía mensual generada. Nzema

	Irradiación [Wh/m2]	Energía roof [Wh/m2]	Energía PCM [Wh/m2]	Ganancias [Wh/m2]	Ganancias porcentuales
Enero	136975	17224	19337	2113	12,27%
Febrero	138240	17611	19591	1981	11,25%
Marzo	165841	20891	23595	2704	12,94%
Abril	161916	20436	23070	2633	12,88%
Мауо	159352	20038	22595	2557	12,76%
Junio	135809	17384	19178	1794	10,32%
Julio	117744	15352	16449	1097	7,14%
Agosto	107742	14047	15088	1041	7,41%
Septiembre	117843	15210	16592	1383	9,09%
Octubre	145013	18406	20540	2134	11,59%
Noviembre	153949	19264	21890	2626	13,63%
Diciembre	129492	16298	18252	1954	11,99%
Total general	1669916	212161	236177	24016	11,32%

Tabla 7-10 Irradiación, energía y ganancias. Nzema

REFERENCIAS

- [1] P. Biwole, P. Eclache y F. Kuznik, «Improving the performance of solar panels by the use of phase-change materials,» de *World Renewable Energy Congress*, Sweden, 2011.
- [2] S. Dubey, J. N. Sarvaiya y B. Seshadri, «Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review,» *Energy Procedia*, vol. 33, pp. 311-321, 2013.
- [3] B. Hammad, M. Al–Abed, A. Al–Ghandoor, A. Al–Sardeahe y A. Al–Bashirc, «Modeling and analysis of dust and temperature effects on photovoltaic systems' performance and optimal cleaning frequency: Jordan case study,» *Renewable and Sustainable Energy Reviews*, vol. 82, pp. 2218-2234, 2018.
- [4] B. J. Brinkworth, B. M. Cross, R. H. Marshall y H. Yang, «Thermal Regulation of Photovoltaic Cladding,» Solar Energy, vol. 61, pp. 169-178, 1997.
- [5] F. Hachem, B. Abdulhay, M. Ramadan, H. E. Hage, M. G. E. Rab y M. Khaled, «Improving the performance of photovoltaic cells using pure and combined phase change materials e Experiments and transient energy balance,» *Renewable Energy*, vol. 107, pp. 567-575, 2017.
- [6] S. Krauter, R. G. Araujo, S. Schroer, R. Hanitsch, M. J. Salhi, C. Triebel y R. Lemoine, «Combined Photovoltaic and Solar Thermal Systems for Facade Integration and Building Insulation,» *Solar energy*, vol. 67, pp. 239-248, 1999.
- [7] R. F. M, «The Advantages & Challenges of Phase Change Materials (PCMs) In Thermal Packaging».
- [8] A. Hasan, J. Sarwar, H. Alnoman y S. Abdelbaqi, «Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate,» *Solar Energy*, vol. 146, pp. 417-429, 2017.
- [9] T. Ma, H. Yang, Y. Zhang, L. Lu y X. Wang, «Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook».
- [10] UNE-EN 12976-2 Sistemas solares térmicos y componentes. Sistemas prefabricados. Parte 2: Métodos de ensayo, 2006.
- [11] J. H. C. Hendricks y W. G. J. H. M. van Sark, «Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials,» *Prog. Photovolt: Res. Appl.*, vol. 21, pp. 620-630, 2013.
- [12] C. J. Smith, P. M. Forster y R. Crook, «Global analysis of photovoltaic energy output enhanced by phase change material cooling,» *Applied Energy*, vol. 126, p. 21–28, 2014.
- [13] S. Chandel y T. Agarwal, «Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems,» *Renewable and Sustainable Energy Reviews*, vol. 73, pp. 1342-1351, 2017.

- [14] P. Junsangsri y F. Lombardi., «Time/Temperature Degradation of Solar Cells under the Single Diode Model,» de IEEE 25th International Symposium on Defect and Fault Tolerance in VLSI Systems, Kyoto, 2010.
- [15] E. L. Meyer y E. E. v. Dyk, «Assessing the reliability and degradation of photovoltaic module performance parameters,» *IEEE Transactions on Reliability*, vol. 53, nº 1, pp. 83-92, 2004.
- [16] C. Ji, Z. Qin, Z. Low, S. Dubey, F. H. Choo y F. Duan, «Non-uniform heat transfer suppression to enhance PCM melting by angled fins,» *Applied Thermal Engineering*, vol. 129, pp. 269-279, 2018.
- [17] E. Skoplaki y J. Palyvos, «A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,» Solar Energy Materials & Solar Cells, vol. 92, pp. 1393-1402, 2008.
- [18] A. Machniewicza, D. Knera y D. Heim, «Effect of transition temperature on efficiency of PV/PCM panels,» *Energy Procedia*, vol. 78, p. 1684 – 1689, 2015.
- [19] F. Jaime Germán Guerrero, *Enfriamiento de paneles fotovoltaicos mediante aprovechamiento de energía geotérmica de superficie*, Universidad Autónoma de Occidente, 2013.
- [20] P. G. Gavarrell, *Thermal Energy Storage for High Temperature Applications*, Universidad de Sevilla, 2017.
- [21] J. Siecker, K. Kusakana y B. Numbi, «A review of solar photovoltaic systems cooling technologies,» *Renewable and Sustainable Energy Reviews*, vol. 79, p. 192–203, 2017.
- [22] M. Akhsassi, A. E. Fathi, N. Erraissi, N. Aarich, A. Bennouna, M. Raoufi y A. Outzourhit, «Experimental investigation and modeling of the thermal behavior of a solar PV module,» *Solar Energy Materials and Solar Cells*, vol. DOI, 2017.
- [23] D. L. Evan, «Simplified Method for Predicting Photovoltaic Array Output,» Solar Energy, vol. 27, nº 6, pp. 555-560, 1981.
- [24] E. Skoplaki y J. Palyvos, «On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,» *Solar Energy*, vol. 89, pp. 614-624, 2009.