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RESUMEN DEL TRABAJO EN CASTELLANO 

 

Motivación y objetivos 

Este trabajo surge en el marco de una estancia en el Politécnico de Milán durante 
cuatro meses. Esta estancia se basa en el trabajo en el ámbito de la Industria 4.0 y la 
digitalización de la manufactura, y concretamente en el proyecto europeo MAYA. La 
posibilidad de realizar los experimentos con un equipo digitalizado, se da en el 
Industry  4.0 Lab del Politécnico de Milán, que ofrece un nivel puntero de desarrollo 
digital para el desarrollo del trabajo planteado. 

En el sector industrial a día de hoy, se está gestando una reestructuración a todos 
los niveles, motivada por la llegada de la digitalización. Esto implica nuevas 
necesidades, formación renovada para los profesionales, y sobre todo la 
concienciación sobre una nueva revolución industrial en ciernes. Mediante este 
proceso de cambio la fábrica se enfoca a una fábrica digitalizada, que puede 
satisfacer mejor las necesidades del cliente (menos espera, y más personalización), 
y hacer un mejor aprovechamiento de los recursos. 

Dentro de este ámbito, este trabajo se enfoca en el desarrollo de modelos digitales 
para el estudio de sistemas físicos, que permiten un control a tiempo real del 
funcionamiento de los activos y mediante esto asentar una mejor toma de decisiones 
de gestión y mantenimiento a tiempo real. 

En la realización de este trabajo se tiene en consideración que los modelos gemelos 
digitales (DT) se encuentran en la infancia de su desarrollo, y que están sujetos a 
diferentes interpretaciones. Pero siendo consciente de esto, se ha desarrollado el 
estudio con la vista puesta en la adaptación digital de la fábrica y la aplicación de 
procedimientos avanzados de gestión de activos a tiempo real de proceso. 

En consecuencia a todo lo mencionado anteriormente, en este trabajo se realiza una 
aproximación a los conceptos de Industria 4.0, Big Data, Internet of Things, y la 
digitalización. Una vez realizada una introducción al estado del arte y al proyecto 
MAYA, se presenta una búsqueda en literatura científica del concepto de gemelo 
digital (DT). 

El objetivo de este trabajo se basa en la implementación de modelos gemelos 
digitales de sistemas físicos, después una sincronización que permita monitorizar el 
trabajo a tiempo real. Llegados al punto de poder representar un activo físico de 
manera fiel a nivel digital, el objetivo evoluciona a la aplicación de modelos para el 
control de la salud del activo en estudio. Este ha sido el objetivo de este trabajo, 
ofrecer una metodología completa, que englobe todos los procesos de gestión, que 
aporte herramientas y modelos, que proporcionen un respaldo y un soporte objetivo 
a los protocolos de acción a la hora de la toma de decisiones. 
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Conceptos centrales y trasfondo tecnológico 

Industria 4.0: El concepto Industria 4.0 corresponde a una nueva manera de 
organizar los medios de producción. El objetivo que pretende alcanzarse es la 
puesta en marcha de un gran número de fábricas digitalizadas o “inteligentes” 
capaces de una mayor adaptabilidad a las necesidades y a los procesos de 
producción, así como a una asignación más eficiente de los recursos, abriendo así la 
vía a una nueva revolución industrial o cuarta revolución industrial. En esta nueva 
reorganización el software desplazará a la máquina en su importancia en el equipo 
productivo, el producto guardará memoria de su ciclo de vida, y los autómatas 
dejarán estar encerrados e interactuarán con los humanos. 
 

Este concepto de nueva estructuración industrial o Industria 4.0, fue manejado por 
primera vez en la Feria de Hanover (salón de la tecnología industrial) en el año 
2011. Y en la misma feria pero en el año 2013, un informe detallando este concepto 
y sus implicaciones, también fue presentado y defendido por un selecto grupo de 
trabajo e investigación. 

Proyecto MAYA: El proyecto europeo de investigación MAYA (MultidisciplinArY 
integrated simulAtion and forecasting tools, empowered by digital 
continuity and continuous real world synchronization, towards reduced 
time to production and optimization) es uno de los numerosos proyectos 
existentes para desarrollar el concepto de modelos CPS en el ámbito de la 
Industria 4.0, y financiado por algunas de las mayores empresas europeas, y 
punteras en la digitalización de la industria. 
 
Este proyecto tiene tres objetivos básicos: 
 

 Garantizar una transmisión de información relevante a lo largo del ciclo de 
vida de la fábrica. Para ello crear un loop a lo largo de todo el ciclo de vida 
para conseguir ventajas económicas, operacionales, y de conocimiento. 
 

 Empoderar la sincronización del mundo digital con la fábrica real que se 
encuentra en continuo cambio. El gemelo digital (DT) es capaz de reajustarse 
en tiempo real, y por lo tanto ser un espejo del mundo real. Esto tiene grandes 
ventajas en términos de monitorización, optimización, eficiencia y 
anticipación al fallo. 

 
 Crear un entorno en el cual diferentes herramientas de simulación pueden 

estar integradas e interactuar, para crear vínculos que faciliten la 
inicialización y sincronización. Esto permitirá correr simulaciones 
multidisciplinarias e interconectadas para un intercambio de datos más fácil 
y relevante. 

 
Sistemas Ciber-Fisicos (CPS): Denominamos sistemas ciberfísicos (o cyber physical 
systems - CPS) a sistemas basados en tecnologías software/hardware y de 
comunicaciones incorporadas en dispositivos donde se establece un lazo cerrado 
entre el proceso digital de datos y/o señales y el fenómeno físico bajo supervisión y 
actuación. Se trata de una evolución de los sistemas empotrados con conectividad 
local, y están llamados a revolucionar no solo procesos de manufactura, sino 

https://es.wikipedia.org/wiki/Medios_de_producci%C3%B3n
https://es.wikipedia.org/wiki/F%C3%A1brica
https://es.wikipedia.org/wiki/Revoluci%C3%B3n_industrial
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también los mismos productos gracias a su potencial de creación de nuevos modelos 
de negocio basados en la personalización extrema. Se acuña el término CPS para 
describir sistemas empotrados y redes dedicadas a la sensorización y actuación 
sobre procesos físicos, donde el proceso físico afecta a su vez al procesado digital de 
datos y señales en un lazo cerrado.  
  
Puede decirse que un sistema ciberfísico está compuesto de dos partes bien 
diferenciadas. En primer lugar el sistema físico real que realiza un determinado 
trabajo en el mundo real. En segundo la parte virtual, en la cual se encuentra el  
modelo gemelo digital (DT). Tiene una dimensión estática (“Data Model”) que 
representa el sistema. Existe otra segunda que contiene los modelos de simulación 
multidisciplinaria y amplia el foco a la interconexión de los CPS (tanto en protocolos 
de comunicación orientados a la internet de las cosas como a plataformas de 
servicios) y la distribución de procesado digital en la nube. 
 

El concepto Gemelo digital (Digital Twin, DT) 
 
Una vez contextualizado el trabajo, y desarrollado el marco que engloba los 
conceptos centrales; es importante centrar esta parte en indagar en el concepto del 
gemelo digital (DT). En primer lugar surge en 2003 por Michael Grieves en la 
Universidad de Michigan aunque en ese momento la representación digital era 
relativamente nueva e inmadura. El concepto toma importancia en 2011 en 
Hannover al ser uno de los principales términos de la Industria 4.0, aunque ya había 
sido utilizado por la NASA años antes. 
 
Una vez sabido su origen, el significado del concepto tiene muchas acepciones o 
interpretaciones pues no existe una oficial o formal. Por ello se proponen algunas 
que provienen de la literatura, y son las más representativas o las cuales pueden 
servir de confluencia para muchas. 
 

• Un Gemelo Digital (DT) es una simulación multidisciplinaria integrada que 
utiliza modelos creados a partir de sensores, indicadores e historial para 
crear un modelo que represente como un espejo la realidad en un entorno 
virtual. 
 

• Un Gemelo Digital (DT) es una representación del producto real con 
información desde el principio de la vida hasta su final. 

 
• Un Gemelo Digital (DT) es  un modelo con vida, de un sistema o activo, que 

continuamente se adapta a los cambios en el entorno o las operaciones, para 
ofrecer el mejor resultado favoreciendo la toma de decisiones. 

 
Partiendo de estas definiciones y de la contextualización, debe tenerse en cuenta la 
tecnología que permite la implementación de este tipo de modelos o sistemas. Las 
herramientas o tecnologías principales que permiten esto son el Internet de las 
cosas y la Big Data. Estas tecnologías están integradas en los modelos de simulación 
pues permiten la sincronización y la conexión física-virtual mediante sensores y 
PLCs en el sistema (ver Figura e.1).  
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Figura e.1. Integración de tecnologías en CPS 
 

Con esta conexión sincronizada el sistema físico envía la información de datos que 
será el input en el gemelo digital, después el modelo virtual monitoriza y trabaja de 
manera paralela y en las mismas condiciones. Una vez utilizado el modelo para la 
toma de decisiones y el estudio, existe el paso final de la realimentación que implica 
el envío de datos de control por parte del modelo virtual al real. Con lo cual el modelo 
virtual gemelo puede utilizarse como herramienta de monitorización, de toma de 
decisiones, o incluso como prototipo para posterior desarrollo de sistemas físicos. 
 
Para implementar el DT es necesario la tecnología que habilita a este: 
 

 Big Data: Existen múltiples definiciones del término Big Data, casi todas ellas 
coinciden en considerar Big Data como aquellas grandes cantidades de datos 
que no pueden ser procesadas de forma tradicional. Datos estructurados son 
aquellos que se gestionan en una base de datos relacional bajo un modelo de 
datos. Los datos no estructurados son aquellos que han de ser procesados 
para poder ser introducidos en una base de datos relacional, ejemplos de esto 
son imágenes, ficheros de texto, mails, vídeos, clips de audio, etc. En la cuarta 
revolución industrial esperamos grandes flujos de datos los tres pilares clave: 

 

• Sistemas Ciber-Físicos 
• Internet de las cosas 
• Internet de los Servicios. 

 

Big Data en términos de negocio significa nuevas oportunidades basadas en 
la toma de decisiones sobre grandes cantidades de datos heterogéneos, que 
van a permitir la optimización de los procesos, del servicio postventa y del 
mantenimiento. 

 
 Internet of Things (Internet de las cosas): Actualmente, el término Internet de 

las cosas se usa con una denotación de conexión avanzada de dispositivos, 
sistemas y servicios que va más allá del tradicional M2M (máquina a 
máquina) y cubre una amplia variedad de protocolos, dominios y 
aplicaciones. Es un concepto que se refiere a la interconexión digital 
existente a día de hoy, de objetos cotidianos con Internet. Alternativamente, 
Internet de las cosas es la conexión de Internet con más “cosas u objetos” que 
personas. También se suele conocer como Internet de todas las cosas o 
Internet en las cosas.  

 

 
Cyber World 
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Industria 4.0 Lab del Politécnico de Milán 

 
Realizar el modelo de simulación del DT no habría tenido sentido sin tener la opción 
de validar lo programado. En este punto entra el Laboratorio del Politécnico de 
Milán, que permite debido a sus avanzados dispositivos la opción de trabajar con el 
DT a tiempo real y de manera empírica comprobar la validez del modelado. 
 
El Laboratorio de Industria 4.0 está financiado y desarrollado por el departamento 
de Management and Industrial Engineering (Dipartimento di Ingegneria Gestionale) 
del Politécnico de Milán así como por FESTO y SIEMENS. Con el objetivo de crear un 
lugar de desarrollo e innovación en un entorno real. Puecden identificarse tres 
objetivos principales: Educación y entrenamiento, comunicación y consultoría, y 
proyectos de investigación. A nivel tecnológico está provisto de potentes 
herramientas para demostrar de manera académica: 
 

 CPS (Cyber-physical system): Permite una red de trabajo inteligente entre 
personas, productos, y recursos de producción. Es un enlace real entre 
el mundo real y el virtual. 

 RFID (Radio Frecuency Identification): Utiliza la transmisión por 
radiofrecuencia para leer o escribir datos entre dispositivos sin 
necesidad de contacto. 

 NFC (Near Field Communication): Permite la comunicación entre dos 
elementos situado cercanos. 

 Cloud Technology: Guarda sensores y datos en la nube, y analiza Big Data. 

 
Esta tecnología ha permitido construir una línea de ensamblaje y montaje de un 
teléfono móvil. Compuesta por siete estaciones cuyos componentes básicos son sus 
respectivos sensores, PLC, y su módulo propio de trabajo con una interfaz para su 
control. Las cintas transportan los pallets entres las estaciones, entre las cuales no 
existe buffer. Todo esto está conectado a dos ordenadores, de los cuales uno 
contiene el Manufacturing Execution System (MES) para generar y controlar 
la producción; y el otro un software de monitorización del consumo de 
energía. Todo esto a su vez está conectado a la red y cada dispositivo tiene 
asignada una dirección IP. Las estaciones del laboratorio son (Figura e.2): 
 

1- Manual Module: El producto acabado está listo para ser retirado, o se 
carga el pallet vacío 

2- Base Magazine Module: Se coloca una base en pallet vacío. 

3- Drilling Module: Se realiza el taladrado 

4- Robot Cell: E la única CP-Factory, una  PCB(Printed Circuit Board) se 
coloca en la base y los elementos internos del móvil sobre esta. 

5- Visual Inspection Module: Comprueba con un sensor óptico la correcta 
colocación de los elementos. 

6- Cover Magazine Module: Se coloca la tapa del móvil . 

7- Press Module: Se presiona la tapa para cerrar el móvil. 
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Figura e.2. Representación del Lab Industria 4.0 del PoliMi 

Técnicas y herramientas utilizadas para el desarrollo del trabajo 

Metodología IDEF: Para la representación del proceso del trabajo, se ha optado por 
un lenguaje intuitivo, claro y visual, que permite al usuario la comprensión del 
proceso con varios niveles de detalle. El lenguaje escogido es IDEF() (Integrated 
Definition for Function Modeling).  
 
Permite la representación multinivel del proceso. En este caso se ha escogido 
desarrollar los niveles IDEFØ, e IDEF 1. Representa cada función, con sus entradas y 
salidas, de manera que las conexiones quedan claras; además, añade los mecanismos 
y herramientas necesarios (entrando desde abajo); así como las restricciones y 
controles (entrando desde arriba) como observamos en la siguiente imagen. 
 
En el nivel IDEFØ se presenta la metodología global, con el máximo nivel de 
agregación (Figura e.3). En IDEF1 cada uno de los procesos se subdivide con mayor 
nivel de detalle y menor nivel de agregación. 
 

 

 

 

 
 
 
 
 

Figura e.3. Representación procesos con IDEF() 
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OPC UA Expert para la conexión con los PLC 

Para la adquisición de datos el laboratorio adopta OPC Unified Architecture (OPC 
UA), un protocolo de comunicación Machine to Machine (M2M) desarrollado por 
OPC Foundation. Es una herramienta importante para la conexión para la extracción 
de data y comunicación. Con este protocolo además, se habilita a herramientas como 
Matalb y Simulink a conectarse al servidor mediante la red y el propio puerto de 
cada máquina.  

Level 2 Matlab S-Function  

Una vez conocidas las funciones necesarias en Matlab, es necesario utilizar el 
progama UAExpert para conectar con el servidor de PLC deseado mediante la red. 
Una vez conectado nuestro modelo y conocidas las funciones, es necesario 
desarrollar una función de Matlab que permita extraer los outputs deseados del 
servidor OPC UA, y esta se llama Level 2 Matlab S-Function. 

Esta función define las características del output deseado del PLC, y hace que el 
método de callback se actualice en el tiempo para tener los datos a tiempo real. Esto 
se consigue mediante las funciones opcua() anteriormente mencionadas, y se refiere 
a un determinado puerto, con un determinado parámetro y estado; y el 
comportamiento de este. La correcta programación de esta función es crítica pues 
es tener los datos deseados a tiempo real es una de las bases sobre las que 
posteriormente se va a edificar el DT. 

Metodología AHI: Los indicadores de salud de activos, son una herramienta muy 
utilizada para el mantenimiento basado en la condición del activo. Este indicador 
suele ser un indicador anidado de varios diferentes y proporciona una 
monitorización de las capacidades del activo durante su funcionamiento. 
 
El indicador AHI determina la salud del active como una agregación de resultados 
del criterio que modela la condición y el peso de cada uno de estos. Para realizar un 
indicador eficiente se debe utilizar una unión de los diferentes tipos de datos 
disponibles para identificar cualquier evento que afecte a la condición del activo. 
 
 
ANN (Red Neuronal Artificial): Las redes neuronales son un modelo 
computacional basado en un gran conjunto de unidades neuronales simples 
(neuronas artificiales), de forma aproximadamente análoga al comportamiento 
observado en los axones de las neuronas en los cerebros biológicos. Cada unidad 
neuronal está conectada con muchas otras y los enlaces entre ellas pueden 
incrementar o inhibir el estado de activación de las neuronas adyacentes. 
 
Las redes neuronales suelen consistir en varias capas o un diseño de cubo, y la ruta 
de la señal atraviesa de adelante hacia atrás. Propagación hacia atrás 
(Backpropagation) es donde se utiliza la estimulación hacia adelante o en el "frente" 
para restablecer los pesos de las unidades neuronales y esto a veces se realiza en 
combinación con una formación en la que se conoce el resultado correcto. Modelos 
de redes neuronales en la inteligencia artificial se refieren generalmente a las redes 
neuronales artificiales (RNA); estos son modelos matemáticos esencialmente 
simples que definen una función o una distribución. Pero a veces los modelos 
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también están íntimamente asociadas con un algoritmo de aprendizaje en particular 
o regla de aprendizaje. Esto se va a utilizar para establecer un modelo de red 
neuronal en el DT que sea un método inequívoco de detección del fallo partiendo de 
ciertos outputs e inputs, y la correcta calibración de la red.  

Estructura del proceso de trabajo con IDEF 

Antes de explicar el desarrollo del trabajo, se ha realizado una contextualización y 
definición de los términos. Una vez acabado esto se procede a explicar el grueso del 
trabajo. Se realiza una explicación general y luego se procede a profundizar en cada 
una de las partes. El trabajo se ha centrado en el desarrollo de un modelo de DT en 
Matlab Simulink con simulaciones a tiempo real de un activo. Tal y como muestra la 
Figura e.4 con un modelo IDEFØ, el desarrollo de esta tesis utiliza diferentes 
enfoques de la utilización del DT. 
 

Figura e.4. Diagrama IDEFØ del proceso seguido en el trabajo 
 

En primer lugar, en la rama superior IDEFØ 1 box  se muestra la utilización del 
modelo DT del activo para convertir las señales del PLC en variables del modelo,  
monitorizar los estados por los que pasa la máquina, y generar posteriormente 
un histórico del tiempo que la máquina ha pasado en cada estado en el tiempo 
de la simulación (que es a tiempo real). Hasta este punto el DT solo funciona 
como un espejo digital que monitoriza y recoge datos a tiempo real (IDEF1 1.2 
box), y llegados a este punto se comienza el estudio y desarrollo de un modelo 
de simulación para obtener una medida de la condición o salud del activo, así 
como su probabilidad de fallo (IDEF1 1.3 box). Esta sección modelo se integra en 
el DT, para tener integrado en el mismo una simulación multidisciplinaria a 
tiempo real del activo (AHI), lo cual permite realizar una toma de decisiones 
mediante que la aplicación de un control del mantenimiento basado en la 
condición del activo. Toda esta parte del proceso queda plasmada a mayor nivel 
de detalle en el diagrama IDEF1 de la Figura e.5. 
 
Una vez explicado en profundidad el primer proceso del diagrama IDEFØ, 
procede desarrollar la aplicación del DT con ANN (Artificial Neural Network).  En 
este trabajo se desarrolla el concepto de red neuronal así como un modelo, pues 
la red neuronal nos permite realizar una técnica de vigilancia del proceso de 
aparición y propagación del fallo, que se basa en desviaciones observadas en el 
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comportamiento del activo, respecto a su modo de comportamiento normal 
para una determinada condición operativa. 

Figura e.5. Diagrama IDEF1 del proceso 1 del diagrama IDEFØ 
 
Para ello se convierten de la misma manera que en el primer proceso, las señales 
del PLC en variables del modelo mediante la función o proceso 2.1 del diagrama 
IDEF1 de la Figura e.6. Después se realiza el entrenamiento de la red mediante 
un modelo de Vensim, para obtener una calibración de las variables del modelo 
que permita su posterior funcionamiento (IDEF1 2.2). Finalmente se hace la 
exposición de como esta red neuronal trabajaría y cual sería su función, pero sin 
llegar a implementarse en el DT de Matlab simulink, pues no existen valores 
reales de degradación, son simulados. 
 

 
Figura e.6. Diagrama IDEF1 del proceso 2 del diagrama IDEFØ 

 
Tras la exposición general del trabajo a grandes rasgos, se procede a mostrar en 
primer lugar el entorno en el que se ha desarrollado la tesis, y posteriormente el 
contenido de los modelos. 
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Desarrollo de los modelos del trabajo 

Adquisición de Datos (IDEF1 1.1) 

Para la adquisición de datos el laboratorio adopta OPC Unified Architecture como se 
ha indicado anteriormente, Matlab/Simulink sería por lo tanto un OPC UA cliente, 
con acceso a la OPC ToolboxTM que permite el acceso al histórico de datos.  

Gracias a los PLC de las máquinas que funcionan como OPC UA servidor, seproduce 
la conexión a tiempo real de Matlab con el servidor que sería el PLC (Figura e.7).  
Para ello existe la función de Matlab/Simulink opcua() a partir de la cual se anidan 
sucesivas para acceder a la información deseada en un nodo específico. Junto a esto 
se utiliza Una función de MATLAB S nivel 2 que es la función que define las 
propiedades y comportamiento de una instancia de un bloque de Nivel-2 S-función 
de MATLAB que hace referencia a la función MATLAB en un modelo en Simulink 
MATLAB (Single Machine Model).  

La misma función MATLAB compone de un conjunto de métodos de devolución de 
llamada que el motor de Simulink invoca al actualizar o simular el modelo. Los 
métodos de devolución de llamada realizan el trabajo real de inicializar y 
computación las salidas del bloque definido por la función. 

 

 

 

 

 

 

 

Figura e.7. Estructura OPC UA Cliente - Servidor  

 
Single Machine Model/Machine state determination (IDEF1 1.2) 

 En este trabajo se ha realizado el modelado en base a una sola máquina, y la 
seleccionada es la Drilling Machine (Máquina taladradora). Este modelo se ha 
realizado en Matlab/Simulink utilizando la librería SimEvents, que se utiliza para la 
creación de modelos y bloques de simulación de eventos discretos. Para comenzar 
el modelado, el diseño del sistema en el Laboratorio, permite modelar cuatro 
estados:  

 Idle: Se mueve la cinta transportadora, pero no se realiza ninguna 
operación. 

 Working: La máquina realiza su operación y trabaja. 

 Energy-saving mode: La energía consumida es la cantidad necesaria solo 
para mantenerla encendida. 
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 Fault: La máquina está bloqueada por un comportamiento anormal y 
muestra mensaje de error en la interfaz human-machine (HMI). Solo 
cuando se corrige este error la máquina abandona este estado. 

Una vez definidos los estados, se debe realizar la conexión con el equipo en el 
Laboratorio. La conexión Matlab/Simulink con PLC/Sensor se realiza con OPC UA 
como se ha explicado anteriormente. La función 2 Level S-Function de Matlab se 
utiliza junto a las funciones de OPC UA para seleccionar los sensores necesarios 
dentro de los más de 100 existentes en cada estación, que sirvan para modelar el 
estado de manera eficiente. Finalmente con tres sensores tras muchas pruebas se 
consigue identificar los estados (XQA A1, xBG1, iRedCode). Los valores de estos a la 
salida de la función de Matlab es 1 cuando están en valor TRUE y 0 en FALSE. El 
primero de los sensores XQA A1 representa la cinta de la cadena de montaje, el 
segundo xBG1 indica cuando el MES le indica a la máquina realizar su trabajo; por 
último iRedCode toma el valor 4 cuando existe un error. 
 
 

 

 

 

 

 

Tabla e.1. Relación de valores de entrada en sensores y estados de la máquina 

Estos valores de los sensores son tomados por la Level 2 S-Function, y después 
llegan cómo inputs a una función de Matlab que genera un valor de salida 
dependiendo del estado en el que se encuentra la máquina (Tabla e.1). Para tener 
un mayor nivel de precisión se ha seleccionado una medida de tiempo (simple time) 
en este caso de 0.4 segundos. 

SIGNAL → Matlab Function Variable (INPUT) 

Conveyor == belt 
xBG1 == xBG1 
iRedCode == error 

Matlab Function OUTPUT 

Y==1 → IDLE    
Y==2 → WORKING 
Y==3 → ENERGY SAVING 
Y==4 → ERROR 

xQA A1 xBG1 iRedCode State 

1 0 0 IDLE 

1 1 0 IDLE 

0 1 0 WORKING 

1 1 4 FAULT 

1 0 4 FAULT 

0 1 4 FAULT 

 Others  ENERGY SAVING 
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Figura e.8. Modelo Matlab Simulink para Drilling machine 

Lo explicado anteriormente recoge el cuadro de la esquina superior izquierda del 
modelo, que representa la obtención de los datos del sistema físico para desarrollar 
el digital (Figura e.8). Posteriormente se ha realizado la programación de los dos 
bloques inferiores que se encuentran en la zona central. El primero de estos se ha 
realizado para monitorizar el estado en el que se encuentra la máquina a tiempo 
real. Recibe como input el tiempo real por medio del bloque “digital clock” y el 
estado de la máquina que lo recibe de la función de Matlab anterior. Esta función en 
cuestión tiene como salida la generación de un fichero txt que escribe a tiempo real 
el tiempo y el estado en dos columnas paralelas. 

Con el fin de la función que genera el histórico de estados a tiempo real en el DT, se 
plantea la realización de un acumulador de tiempos en cada estado, pues hasta este 
punto el DT solo tiene una función de monitorizar a tiempo real. Para poder hacer 
un estudio profundo del rendimiento de la máquina, y para poder ser utilizado 
posteriormente como indicador en el modelo de salud del activo, se realiza el 
acumulador. La función del acumulador tiene los mismos inputs que la que 
monitoriza el histórico, con la diferencia de que esta función va generando un 
sumatorio del tiempo que pasa la máquina en cada estado. Finalmente se obtiene un 
txt en el cual en cada fila (simple time), se acumula el tiempo, y en la última se 
acumula por lo tanto el tiempo en cada estado en total en el tiempo que se haya 
realizado la simulación. 

Con lo cual, al final de esta parte, el DT ya realiza una función de monitorizado y 
acumulador como si fuera un espejo de la realidad, y nos ofrece una información 
muy importante de cara al estudio del ciclo de vida de la máquina o activo. A partir 
de este punto el DT va a evolucionar a estudiar en consumo de la máquina y 
posteriormente a implementarse un modelo para el estudio de la salud del activo. 

Drilling Machine Condition Modelling (IDEF1 1.3) 

Como se menciona en el párrafo anterior, y en el esquema IDEF0, en esta sección se 
desarrolla el modelo gemelo de manera que este pueda ser una herramienta útil y 
relevante para el estudio de la salud del activo y la condición de este. 
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Por las características de las máquinas del laboratorio (que es meramente 
académico), la máquina de taladrado “Drilling Machine” no realiza un trabajo real, 
pues simula el taladrado (Figura e.9). Por esto, la máquina no se degrada pues no 
realiza realmente el trabajo en cuestión. En base a esto, y con el fin de desarrollar el 
modelo que se presenta a continuación, se ha simulado la existencia de dos factores 
que definen las características del trabajo y suponen una degradación en el activo. 
Estos dos factores son “Hardness factor of the material” (Factor de dureza del 
material) y “Drill factor of the material” (Factor que define el número de agujeros 
que realiza el talado de la Drilling Machine). El primero de estos simula la dureza 
que tiene el material sobre el que se realiza el trabajo, y pondera la degradación que 
supone esta dureza en tres niveles de valor dependiendo de la dureza del material. 
El segundo factor mencionado simplemente define en una escala del 1 al 4, el 
número de agujeros que realiza el taladro. 

 

 

 

 

 

 

 

 

 

 

 

Figura e.9. Máquina de taladrado (Drilling Machine) del Laboratorio de Industria 4.0 

Cuando se definen los factores de degradación, estos junto al tiempo real de 
simulación y al estado en el que se encuentra la máquina son los inputs que permiten 
generar el modelo. La capacidad de monitorizar del modelo DT muestra una gran 
importancia llegados a este punto, pues para el estudio de la salud del activo y su 
condición, el modelo considera que el activo o máquina en cuestión sólo degrada su 
condición cuando se encuentra en el estado de trabajo. Esto se considera así, pues el 
propio talado solo puede degradarse cuando realiza un trabajo de taladrado, y tanto 
en el estado Idle, como en Energy Saving, el taladro no realiza una operación que 
implique un desgaste. 

El modelo de condición en cuestión, utiliza indicadores que van anidándose con el 
paso de profundidad de los mismos, para finalmente conseguir una variable o 
indicador que pueda monitorizar la condición de salud del activo. En primer lugar o 
nivel de indicador, se encuentran los dos factores simulados (“Hardness factor of the 
material” y “Drill factor of the material”) así como un acumulador de tiempo en cada 
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uno de los estados que ya se muestran en el Matlab Simulink DT. En este primer 
nivel se puede apreciar una unión de los factores reales junto a los dos simulados, y 
la monitorización de estos. 

En el segundo nivel, comienzan a anidarse los indicadores tal y como se menciona 
anteriormente. Está en primer lugar un indicador llamado “Equivalent operating 
time” (DH) que multiplica los valores del factor de dureza y el de taladrado, cuando 
el estado es de trabajo. Esto representa que la degradación del activo depende del 
trabajo que realiza la máquina y del tipo de trabajo en sí mismo que puede llegar a 
suponer un desgaste mayor que el estipulado en un determinado tiempo, 
dependiendo del estrés o intensidad que supone este en el activo en cuestión. A 
parte de este indicador que es el principal para el desarrollo del modelo, se incluyen 
en este segundo nivel otros relacionados con disponibilidad y utilización. 

En el tercer nivel se presenta un indicador importante “Accumulated Operational 
Time” (AOT) que realiza la acumulación del tiempo operativo de trabajo. Este 
indicador acumula en sumatorio del valor de DH, y toma el valor nulo cuando 
aparece un fallo, y esta variable solo va a sumar tiempo a la acumulación cuando se 
encuentre el activo en estado de trabajo. Además de este indicador existe otro para 
hacer un porcentaje de utilización de la máquina en el tiempo real de simulación. 
Entre este nivel, y el último del modelo, se desarrolla y define el indicador que va a 
monitorizar la condición del activo (Asset Health Index). 

En primer lugar se supone una tasa de deterioro que es única para cada activo y que 
viene determinada por la ecuación: 

𝑇𝑎𝑠𝑎 𝑑𝑒 𝑒𝑛𝑣𝑒𝑗𝑒𝑐𝑖𝑚𝑖𝑒𝑛𝑡𝑜(𝐴𝑅) =

ln
𝐻 𝑣𝑖𝑑𝑎 𝑒𝑠𝑝𝑒𝑟𝑎𝑑𝑎

𝐻 𝑛𝑢𝑒𝑣𝑜

𝑉𝑖𝑑𝑎 𝑒𝑠𝑝𝑒𝑟𝑎𝑑𝑎
 

Dónde: 

• H vida esperada = 5,5 . 
• H nuevo =0,5. 
• Vida esperada es la estimada para ese activo antes de su 

overhaul o remplazo=10. 

Este Ageing Rate (AR) o Tasa de envejecimiento, junto a el tiempo acumulado de 
operación (AOT), y la Hn (Horas nuevo que representan la condición inicial no ideal 
de la máquina o activo); sirven para modelar el Indicador de Salud del Activo (AHI). 

𝐴𝐻𝐼 𝑡= 𝐻𝑛 ∙ 𝑒𝐴𝑅×𝐴𝑂𝑇𝑡 

Hasta este punto del modelo, ya se puede realizar una monitorización de cómo 
cambia la condición del activo (Teniendo en consideración que los dos factores de 
degradación en este caso son simulados). Y una vez logrado esto, se finaliza el 
modelo con un nivel de indicadores que utiliza el indicador de salud AHI para 
estudiar la evolución de la probabilidad de fallo. 
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𝑃𝑜𝐹𝑡 : {

0.01                                                    𝐴𝐻𝐼𝑡 ≤ 5,5 

0.0000359381 × (𝑒1.02337×𝐴𝐻𝐼𝑡  )         5,5 < 𝐴𝐻𝐼𝑡 < 10
1                                                        𝐴𝐻𝐼𝑡 ≥ 10  

 

Por último el modelo presenta una doble visión a su fin. Por un lado se define una 
determinada política de fallo, que define un límite de Probabilidad de Fallo en el 
activo a partir del cual se realiza la parada para realizar preventivo (Con el objetivo 
cero-breakdown). Y por otro lado en un plano relacionado con la monitorización del 
fallo, se puede realizar una simulación Montecarlo con un número aleatorio y la 
variable Fail (fallo), lo que aludiría a un DT enfocado al prototipado o monitorización 
más que a la toma de decisiones, pues la toma de decisiones sestaría más presente 
en el primer enfoque. 

Machine artificial Neural Network (IDEF1 2.2) 

En primer lugar, se obvia en este resumen la explicación del proceso IDEF1 2.1, pues 
es análogo al explicado anteriormente.  Cómo se ha explicado de la red neuronal, es 
una técnica  de vigilancia, del proceso de aparición y propagación del fallo, que se 
basa en desviaciones observadas en el taladro, de lo que sería su modo de 
comportamiento normal para una determinada condición operativa. Por ejemplo 
sabemos que el consumo eléctrico del taladro, para una dureza de material y un 
número de taladros debería estar entorno a x (porque hemos entrenado una 
herramienta que nos lo sabe calcular), y sin embargo hemos anotado que está en 
x+incremento x, entonces podríamos concluir que el proceso de fallo se está 
desarrollando, y cuánto tiempo puede durar. 

Se diseña por lo tanto una red neuronal que como salida tenga el consumo eléctrico, 
y como entrada tenga el número de taladros, el material, el tiempo operativo de la 
máquina, y el AHÍ; y entrenarla para predecir bien el consumo. El diseño de esta 
herramienta, y su coordinación con la de AHI, permite tener un mejor modelo de 
salud de activos calibrando mejor nuestros multiplicadores de efecto de taladros o 
dureza de material, etc. Con la red neuronal podemos detectar con antelación los 
fallos antes de que físicamente se produzcan. 

Se utiliza el proceso de entrenamiento de backpropagation. El objetivo de este 
proceso es actualizar cada uno de los pesos y valores de la ANN, para que generen 
un output cada vez más cercano (menor error) al output ideal. Esto se logra 
minimizando la función del error para la neurona output. 

El esquema está constituido por neuronas interconectadas y arregladas en tres 
capas. Los datos ingresan por medio de la “capa de entrada”, pasan a través de la 
“capa oculta” y salen por la “capa de salida”. Cabe mencionar que la capa oculta 
puede estar constituida por varias capas a su vez. La neurona artificial pretende 
imitar las características más importantes de las neuronas biológicas. Cada neurona 
i-ésima está caracterizada en cualquier instante por un valor numérico denominado 
valor o estado de activación; asociado a cada unidad, existe una función de salida, 
que transforma el estado actual de activación en una señal de salida. Dicha señal es 
enviada a través de los canales de comunicación unidireccionales a otras unidades 
de la red; en estos canales la señal se modifica de acuerdo con la sinapsis (el peso, 
w) asociada a cada uno de ellos según determinada regla.  
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Para implementar este mecanismo de entrenamiento se ha utilizado un modelo 
dinámico de simulación en el programa Vensim. Para ello se realiza la 
implementación del modelo de ANN en un modelo dinámico de simulación, 
utilizando la nomenclatura y estructuración propias de este. 

Cómo se ha indicado anteriormente, debido al carácter simulado de los factores de 
trabajo y degradación de la máquina (En el lab 4.0 la máquina de taladrado solo 
simula el trabajo de perforación) la red neuronal y su modelo, no se han implantado 
en el DT pues los datos recogidos y de entrenamiento son simulados. Se ha realizado 
por lo tanto un planteamiento y ejemplificación de cómo el proceso debe realizarse 
hasta el punto de su implementación en un sistema gemelo virtual real de un sistema 
físico.  

Resultados del trabajo 

El resultado principal de este trabajo es la metodología que se ha mostrado 
representada tanto por procesos separados como integrado en un modelo digital, 
formando un DT con simulación multidisciplinaria; así como los propios resultados 
de cada uno de los modelos. 

En primer lugar, para realizar la conexión del Matlab con el PLC, el primer resultado 
efectivo o relevante del trabajo, es la conversión de las señales del PLC a variables 
del modelo mediante la función Matlab Level 2 S-Function y OPC UA expert. Tras la 
consecución de esto, se consigue modelar de manera efectiva los estados de la 
máquina, y a su vez monitorizar a tiempo real el estado de la máquina en cada 
instante del tiempo y representar todo esto mediante un archivo txt. A parte de esto, 
el siguiente resultado relevante es la acumulación del tiempo en cada estado y su 
representación igualmente en txt. A parte de estos archivos txt que representan la 
monitorización, el bloque scope de Matlab Simulink permite ver en los bloques del 
modelo a evolución de sus valores durante la simulación, al final de esta. 

Figura e.10. Histórico y acumulador de tiempo 

Además de la información sobre los estados de la máquina, este modelo también 
provee el valor del consumo energético de la máquina (Figura e.10). 
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Hasta este punto el DT tiene una función de monitorización, y a partir de aquí con el 
Drlling Machine Condition Model, se comienza el estudio y los resultados de la 
condición de salud del activo. En primer lugar, debe aclararse que para la 
implementación del modelo se ha simulado los factores mecánicos de operación 
(Hardness, Drill), y que debido al carácter simulado, la orden de parada de 
mantenimiento no se ha creado como señal que genera una acción de vuelta en el 
PLC, y no se ha definido el límite en el modelo como política de permisividad de fallo. 
Con lo cual este modelo, a falta de ciertos datos reales que el Laboratorio Industria 
4.0 no ofrece, calcula el valor del AHI, la probabilidad de fallo, el tiempo equivalente 
operativo acumulado; y a su vez el valor de ambos factores simulados. Estos outputs 
se representan de la misma manera que los presentados anteriormente mediante 
ficheros txt, y entidades del modelo. 

En términos de la ANN, se han realizado simulaciones en Vensim con datos 
independientes de este trabajo, para comprobar la validez del entrenamiento de la 
red con diferentes números de neuronas. De esta manera, se calibra el valor de los 
parámetros del modelo de la red neuronal, y se comprueba el funcionamiento de 
esta con el resto de datos existentes. Debido a la ausencia de datos reales de los 
factores de operación, esta ANN no se ha implementado en el modelo DT de Matlab, 
y solo se ha planteado cómo sería su estructura, inputs, y output. 

Conclusiones y futuros trabajos 

Este trabajo ha servido para llegar a varias conclusiones, y a su vez plantear un 
trabajo y desafío futuro de desarrollo de las herramientas planteadas. 

En primer lugar se llega a la conclusión de que existen tres planteamientos 
principales para la utilidad y uso del DT. El primero es la utilización del DT como un 
mero espejo virtual que es capaz de monitorizar todas las variables modeladas en 
torno al funcionamiento de la máquina. Tras esto podríamos definir una segunda 
función del DT como herramienta para la toma de decisiones de mantenimiento 
basadas en la condición del activo y su salud. Y finalmente existe un enfoque del DT 
como herramienta de prototipado virtual, que permite el desarrollo de prototipos 
virtuales que hacen la misma función que un sistema físico y permite el ahorro de 
dinero y mayor eficiencia a la hora de desarrollar nuevos productos. 

Tras esta definición, se puede observar que en este trabajo se ha logrado el 
desarrollo del DT como herramienta de monitorización del comportamiento de la 
máquina, a la vez que la condición del activo. Pero por falta de capacidades del activo 
en cuestión y datos reales, no se ha implementado en el modelo la herramienta que 
se utilice para realizar el envío de la señal de vuelta al sistema físico desde el DT para 
la ejecución de acciones de mantenimiento. 

Por último este trabajo propone el reto y futuro desarrollo de nuevas herramientas 
de vigilancia y toma de decisiones para el mantenimiento y la gestión de activos, 
mediante la aplicación de redes neuronales. Se puede apreciar la utilidad de esta 
herramienta y la factibilidad que tiene si se tienen los datos necesarios para ello. Y 
este ámbito de digitalización combinado con herramientas como la ANN propias del 
ámbito del Machine Learning, inspira un enfoque futuro a un mantenimiento 
inteligente en el cual exista una fluida conexión entre el mundo físico y el virtual que 
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permita que la máquina se auto entrene con sus propios datos, y pueda generar un 
mantenimiento mucho más eficiente en todos los aspectos y con zero-breakdown. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

 

1.1. Introduction 

In the most recent years, digital technologies have developed in such a high pace 

that push and challenge the traditional manufacturing industry to adapt to and 

adopt them in order to stay competitive in the market. In these terms, the 

manufacturing world is experiencing a new paradigm shift, known as the fourth 

industrial revolution: “Industry 4.0”. 

This new wave is based on the widespread adoption of information and 

communication technologies such as Internet of Thing (IoT), Big Data Analytics, 

Smart Sensors. Together with computer simulation, it will make the 

manufacturing environment extremely networked and interconnected, and able 

to make decentralized and automatic decisions with the guarantee of 

completeness of information and data reliability. To realize the data continuity 

through the production lifecycle, Cyber Physical System (CPS) has been 

deployed more and more as a strategic move by the company. It is a system 

which consists of a physical part associated with a cyber one, embedded with 

storage, computational capability. In CPS, information from all related 

perspectives along the lifecycle are closely monitored and continuously 

synchronized in real-time between the physical factory floor and the cyber 

computational space: the “Digital Twin (DT)”, the digital representation of the 

physical world inside the factory, it updates parallel to the physical one. With  

the use of these technologies,  Industry 4.0 opens the   way to real-time 

monitoring and synchronization  of  the  real  world  activities  to  the virtual 

space thanks to the physical-virtual connection and the networking of  CPS 

elements. 

Simulation modelling is the method of using models of a real or imagined 

system, to better understand or predict the behaviour of the modelled system 

or process. Today, the use of simulation modelling in science and engineering is 

well established, especially in manufacturing field. They are adopted widely in 

recent years thanks to its ability to solve the stochasticity in the manufacturing 

system and to predict and improve the business system behaviours. Discrete 

event simulation (DES) is one of the most commonly used simulation techniques 

for analysing and understanding the dynamics of manufacturing systems.  

However, with the increased integration of simulation modelling in the product 

life cycle management, the user requirements have changed considerably. 

Increasing product variants and customisable products require more flexible 
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production systems. The advent of the Industry 4.0 has brought changes to the 

simulation modelling paradigm as well. 

The DT means the virtual and computerized counterpart of a physical system 

that can be used to simulate for various purposes in different scenarios, 

exploiting a real-time synchronization of the sensed data coming from the field. 

With the creation of the DT, companies may realize significant value in 

different areas, such as reduce leadtime, improved quality etc. They may 

realize value and benefits iteratively and faster than ever before. But, before 

anything else, enterprises need to understand the definition and the 

approach to develop the DT in order to avoid being overwhelmed. 

Unfortunately, scientific literature that describes the contextualisation of the 

concept in the manufacturing domain is still at its infancy, there is still not a 

unique and shared definition of DT in both research and industrial field, let 

alone the standard method to implement the DT. For this reason, this work 

proposes to deal with a research activity about the clarification of the DT 

concept and to provide a step forward in the implementation of such DT 

model in a manufacturing context. 

1.2. Thesis Motivation 

Nowadays the world is being witness of an all level digitalization that guides 

the industry and business to a restructuration, in order to adaptate to the 

new requirements of the surrounding enviroment. That change also 

concerns to the labour of the technical professionals, and their formation. As 

a consecuence of this deep consciousness-raising, this thesis tries to 

investigate and develop simulation models based on the current 

digitalization. 

The process of turning a factory into a digital factory is also fostered by the 

client´s requirements that are basically less waiting time and more 

customization. And obviously, with a deeper control of the factory and the 

production at real time, we take the path to reach efficiency within a 

company, diagnosis and maintenance time minimization, and delays due to 

unavailability reduced. 

Motivated by all the reasons above, the aim of these thesis is the developement 

of “Digital Twin” models providing real time results, that could turn into 

basis for the industrial management decisions; and place them in the 

Industry 4.0 paradigm enviroment, as well as in the european research 

project MAYA, considered as one of the many research works aiming to 

promote the new simulation paradigm called “Digital Twin”. 
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1.3. Thesis Background 

This work is grounded on several key aspects: 

 The analysis of the state of the art of simulation technologies used in the 

manufacturing sector;  

 The DT initiative in the industry 4.0 context. DT is still at the infancy 

stage, even if the vision of the DT has evolved during the last decades, 

there is not a unique definition/interpretation of the DT concept both in 

research and industry, which results in no-common methodology or 

procedures to implement it; 

 The simulation aspect of the DT, which can be seen as the future 
technology in the field of simulation and plant status forecasting.  

 The explotation of real time data, gathered from the shop floor, into the 

simulation environment could lead to great advantages in decisions-

making. With regards to the DT, a real-time synchronization with the real 

system has not been achieved yet. Neither is the digital representation 

used to understand, in real-time, what is happening on the shop floor, nor 

is the real system updated with improvements that may have been 

achieved in the digital model. 

  The general objectives of the MAYA project, that will be later explained, 

and more specifically with the definition provided by some developments 

of MAYA project, trying to cover the gaps between the current state of the 

art and the future of simulation and forecasting technologies. 

1.4. Thesis Objetives 

This work proposes an innovative interpretation of the DT concept and the 

development of a possible DT simulation model that together with the 

reference framework, represents the key enablers to implement real multi-

disciplinary simulations to improve manufacturing aplications. 

In the first place and to understand the evolution of the DT concept, this 

work’s initial objective is to have a literature analysis on the topic and on 

similar concepts. 

With respect to the DT applied to simulation, this work benefits of the 

possibility to stay during four months at the  “Industry 4.0” Lab in Politecnico 

di Milano, offering me the chance to develop a simulation model which grabs 

production line real-time data and processes it, in parallel computing, for a 

better understanding of real-time equipment condition, reliability and risk. 

Thus, this work takes a step forward compared to the traditional simulation 
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models by adopting the real-time data instead of history data or statistical 

distributions. The idea is to build up the basis for creating a DT simulation 

model. Physical-virtual synchronization allows updating digital factory 

simulation which attempts to predict how the system should work into a 

digital factory replication, which shows how the system is actually working. 

And thank to the models built on Matlab´s Simulink with the SimEvents 

library, and the Industry 4.0 Lab in Politecnico di Milano a field validation of 

the DT model has been made possible. At the same time, this work’s objective 

is also to develope a simple simulation model that allows to study the further 

aplications of the DT to the manufacturing and smart maintenance area. 

1.5. Summary 

The thesis is structured as follows:  

In these first Sections a brief description of this project’s environment is 

offered; this easy the interpretation for the entire work, sets its purpose, the 

methods for tools representation and usage, and explains the meaning of 

numerous terms of which extensive use in the remaining work’s stages has 

been made.  

In chapter 2 the state of the art is presented, with all the concepts exploited 

to reach the main purpose of the thesis, in industry 4.0 area. Focused in the 

midst of a fourth wave of technological advancement, the rise of the 

integration of digital industrial technologies such as Internet of Things (IoT), 

and Big Data and Cloud Computing that leads to a smart and interconnected 

manufacturing paradigm shift. The legacy systems will be transformed to 

cyber physical system (CPS), a system which is intelligent, self-aware and 

able to support decision making. 

In chapter 3 all the acknowledgments exploited to reach the main purpose of the 

thesis are reported: a review of the literature contributions is offered and, in the 

detail, tools and methods that represent the basis of the work are briefly explained 

and contextualized to have a deeper understanding of the Digital Twin concept 

and the cyber physical systems. However, the scientific literature does not 

provide a unique and shared definition of this concept, let alone a standard 

method to implement this tool. 

Chapter 4 includes the different phases of the work development, starting from an 

aggregated level of detail, main decision phases have been acknowledged and 

reported through the IDEF0 representation methodology. Following, work basis and 

structure is justified providing an explication of the meaning and the different 

dimensions of the thesis models main objective.  
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Afterwards chapter 5, the field validation of the work is explained, by presenting 

the Politecnico´s Industry 4.0 Lab and all the supporting tools from digitalization 

that it provides, to develop the DT. In this way, the next to be explained is the DT 

model in Matlab Simulink, going deep into the model developing and the 

components from it. To en with the model, some of the functions and facilities that 

it provides are shown.  

Afterwards the thesis presents the development of the “Machine Condition Model”, 

which represents the health of the asset through the time by the Asset Health Index 

(AHI), and the probability of failure of the asset when the accumulated operation 

time increases. Thus the model mentioned before is implemented as part of the DT 

model in Matlab Simulink. With this model the tesis will reach to monitor the health 

of the asset by the AHI. 

Apart from that, we can also use other vigilance techniques focused on the process 

of appearance and propagation of the failure, based on deviations from the normal 

behaviour on a specific condition observed on the asset. In order to develop the idea, 

a solution made by an Artificial Neuronal Network model is suggested. 

In chapter 6 the results are presented and assessed arguing the contribution in 

different ways and providing the meaning and the value of the efforts. 

In chapter 7 a conclusion and a brief summary are offered to enclose the job in a 

few simple concepts and present possible future development of the efforts 

accomplished. 
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CHAPTER 2. TECHNOLOGICAL BACKGROUND 

2.1. Industry 4.0  

2.1.1. Introduction to the concept 

Ever since the beginning of industrialization, technological leaps have led to 

paradigm shifts which are addressed today as “industrial revolutions”, in the 

field of mechanization with the introduction of steam power in 18th century 

(so-called the 1st industrial revolution), of the intensive use of electrical 

energy and mass production in the final third of the 19th century and the 

beginning of the 20th (so-called the 2nd industrial revolution), and of the 

digitalization and automation at the end of 20th century (so-called the 3rd 

industrial revolution). Today, on the basis of an advanced digitalization 

within factories, the integration of internet technologies and future-oriented 

technologies seems to push a new fundamental paradigm shift in industrial 

production. Therefore, manufacturing world is experiencing the fourth 

industrial revolution, this revolution will profoundly change the dynamics of 

the industrial sector [1][2]. 

Industry 4.0 (so called the fourth industrial revolution) was stated for the 

first time during the Hannover Fair in 2011 [3]. It originates from a project 

within the German government’s high-tech strategy, which promotes the 

computerization of manufacturing. However, since its first announcement, 

Industry 4.0 has been one of the most discussed topics in both research and 

industry.   This conceptual idea    has brought new initiatives world-widely 

and been adopted also by other industrial nations within the European 

Union, for example, “Industria Conectada” in Spain, “Smart Industry” in 

Netherlands, and further “Chinese manufacturing 2025” in China,  India,  and 

other Asian countries. Even if it may be called in a different   way, they all refer 

to an innovation in the industry sector pushed by the emerging technology 

breakthroughs: such as Internet of Things (IoT), Cloud Computing, Big Data, 

Robotics etc [4]. The basic principle of Industry 4.0 lies on the core of IoT and 

smart manufacturing: “work in progress products, components and production 

machines will collect and share data in real time”. 

2.1.2. Pillars 

As anticipated before, the major technical background of Industry 4.0 is the 

introduction of internet technologies into industries: Internet of Things, Big 

data, Cloud computing. In combination with the simulation technologies, 

they form the building blocks of Industry 4.0. Many of these technologies 
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have already been used in manufacturing, but with Industry 4.0, they will be 

connect seamlessly and transform production. Currently isolated,  optimized 

cells will come together as  a fully integrated, automated and optimized 

production flow, leading to greater efficiencies and changing the traditional 

production relationships among suppliers, producers, and customers as well 

as between human and machines [5]. 

Big data is a loosely defined  term  to  describe  data  sets  that  are  so  large  

and complex which are difficult to be analysed using standard statistical 

software. This  big  amount  of  data  can  be  used  to  optimize  production  

quality,  save energy, and improve equipment service.  In Industry 4.0 

context, the collection and comprehensive evaluation of data from many 

different sources will become standard and key information to support real-

time decision making. 

Internet of Things (IoT), also known as the Industrial Internet of Things 

(IIoT) in manufacturing domain, is an “emerging global Internet-based 

information architecture facilitating the exchange of goods and services, 

with the function to overcome the gap between objects in the physical world 

and their representation      in information systems”[6]. This technology 

allows manufacturer’s sensors and machines being networked and making 

use of embedded computing. In Industry 4.0 context, more devices, including 

even unfinished products, will be enriched with embedded computing 

capacity and connected using standard technologies.  This allows field 

devices to communicate and interact both with each other and with more 

centralized controllers, as necessary. It also decentralizes analytics and 

decision making, enabling real-time responses. 

Cloud Computing is defined by the NIST (National Institute of Standards and 

Technology) as “a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly  

provisioned  and  released with minimal management effort or service 

provider interaction”. It builds the bridge of data sharing across sites and 

companies, even across countries. With Industry 4.0, machine data and 

functionality will increasingly be deployed to the cloud, enabling more data-

driven services for production systems.  Even systems that monitor and 

control processes may become cloud based [5]. 

 

 

 



Digital Twin Systems Modelling to Improve Real Time Assets Operation and Maintenance.  
 

36 

2.1.3. Industry 4.0 on simulation 

In manufacturing context, simulation modelling is defined as “the imitation 

of the operation of a real-world process or system over time. Simulation 

involves the generation of an artificial history of the system, and the 

observation of that artificial history to draw inferences concerning the 

operating characteristics of the real system that is represented”[7]. In the 

past few decades, it has already been widely used in the engineering phase: 

such as 3-D simulations of products, materials and production processes. It 

allows for the experimentation and validation of product, process and 

system design and configuration. However, increasing product variety and 

customizable products require more flexible production systems modelling. 

The advent of the Industry 4.0 paradigm has brought changes to the 

simulation modelling paradigm, simulations will be used more extensively 

in plant operations as well. These simulations will leverage real-time data to 

mirror the physical world in a virtual model, which can include machines, 

products, and humans, allowing operators to test and optimize the machine 

settings. 

The new simulation modelling paradigm triggered by Industry 4.0 is best 

embodied  by the  “Digital  Twin  (DT)”  concept,  which  represents  the  

virtual  and computerized counterpart of a physical system that can be used 

for various simulation purposes, exploiting real-time sensed data coming 

from the field. Every prospective of physical element, starting from a single 

machine up to a whole production facility level, will be accompanied by its 

virtual representations, which allow predicting its performance in  the  

physical  world.  The digital counterpart will represent at any time its current 

condition and information created along its   own value chain and will 

dynamically grow during its lifetime, made possible by the increasing 

digitalization in every stage of manufacturing. The DT concept extends the 

use of simulation modelling to all phases of the product life cycle. It contains 

all the information that is needed by various stakeholders and aligns it in a 

structured way, which means that all elements are semantically described 

and linked with relevant meta-information [8]. 

 

 

 

 

 



 
 
 

37  

2.2. The Framework. The MAYA Project in PoliMI 

 

 

 

 

European research project MAYA1 (MultidisciplinArY integrated simulAtion 

and forecasting tools, empowered by digital continuity and continuous real 

world synchronization, towards reduced time to production and 

optimization) is one of the many researches that aim to promote this new 

simulation paradigm – Digital Twin. This research work is developed under 

this project.   The project was born within   the HORIZON 2020 European 

Framework Programme for Research and Innovation in the trend of 

Industry 4.0. The participants of this project are listed in Table 1. There are 

eleven members which include research center, Small and Medium-sized 

Enterprises (SME) and industrial companies. Four of them are from Italy, the 

others are from other European countries: Germany, Finland, Romania and 

so on. 

N Participant organisation name Short Type Country 

1 Technology Transfer System s.r.l. TTS SME IT 

2 
SIEMENS Industry Software LTD SIEMENS 

PLM 
IND IL 

3 
SIEMENS AG Corporate Technology SIEMENS 

CT 
IND DE 

4 Synesis S.C. a r.l. SYNESIS SME IT 

5 
University of Applied Science of 

Southern Switzerland SUPSI RTD CH 

6 Politecnico di Milano PoliMI RTD IT 

7 Finn-Power OY FinnPower IND FI 

8 
Deutsches Forschungszentrum für 

Künstliche Intelligenz DFKI RTD DE 

9 Volkswagen AG Volkswagen RTD DE 

10 Ropardo srl Ropardo SME RO 

11 Consiglio Nazionale delle Ricerche ITIA-CNR RTD IT 

   Table 1: List of partners of the MAYA Project 

 
 



Digital Twin Systems Modelling to Improve Real Time Assets Operation and Maintenance.  
 

38 

MAYA addresses three high level objectives: 

 MAYA for Digital Continuity; 

 MAYA for the Synchronization of the Digital and Real Factory; 

 MAYA for Multidisciplinary integrated simulation and modelling. 

MAYA’s first objective is to guarantee that relevant digital information from 

the field is preserved all along the factory life-cycle despite changes that the 

equipment, methods and tools may undergo, allowing data to be enriched 

and used when needed for each phase, from the integrated design of the 

product production system, through the production operation, till the 

dismissal/reconfiguration phase.  By creating a full life-cycle data loop can 

bring economical, operational and knowledge advantages. 

The second objective of MAYA project is to empower the synchronization of 

the digital world, made of template or simulation models, with the real 

factory, that is continuously changing. DT is able to adjust itself in real-time 

to perfectly mirror the situation  in  the  real  world  thanks  to  the  data  

gathered  through  all  the production lifecycle, thus bring great advantages 

in terms of monitoring, optimization, efficiency and failure anticipation. And 

this work aims at giving a contribution regarding this objective to realize 

physical and virtual synchronization. 

The third objective is to create an environment in which other simulation 

tools are integrated, different simulation tools will run and interact, 

establishing agreements on them as for their initialization, synchronization, 

events dispatching and termination. Therefore, simulation models will be 

interconnected and synchronized among each other and enable the 

exchange of relevant data with other tools at runtime. 

2.2.1. Cyber-Phisical System 

To better understand how DT works in the Industry 4.0 paradigm, it is 

necessary to address the Cyber-Physical System (CPS) concept (Figure 2). A 

Cyber-Physical System is an automated system that enables connection of 

the operations of the physical reality with computing and communication 

infrastructures. CPS for manufacturing facilitates optimization of product 

development and total control of production system through real-time 

exchange of all information required for production enabled by Internet of 

Things (IoT). 
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Figure 2: CPS System representation 

Physical part: It is the physical part in the real world, which performs some 

tasks on workpieces in the real environment. 

Cyber part: It is the virtual part of the CPS which can be seen as the DT. It 

consists of a data model which includes and structures all the information of 

the CPS through the production lifecycle, allowing data to be enriched and 

used as needed for each phase. Both static (geometry, other physical 

characteristics) and behaviour information are included. The second half of 

cyber part is the simulation models which can deal with different kinds of 

analysis. It contains not only static models such as digital assembly, material 

movements, they represent the core characteristics/basic functions of the 

system, but also the behaviour models such as FEM( Finite element method), 

DES (discrete event simulation), kinematics, energy and others. Data 

analytics are embedded in the cyber level with which CPS can take 

decentralized decisions through autonomously exchange information and 

computation and trigger action. Within Industry 4.0, the future production 

system will be CPS-based. 

Communication network: Communication network includes the sensor 

network, the ubiquitous communication network and so on. It has the 

functions of data acquisition, transmission and communication in CPS. In 

particular, it allows CPS to communicate and exchange data with the Data 

Model. 

2.2.2. Synchronization of the digital and real Factory 

The project fosters the convergence of physical world and virtual world, where the 

latter must closely mirror the first and where the former generates an 

unprecedented volume of data to be handled by the digital representation of the 

Factory (Figure 3). 
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Figure 3: MAYA for synchronization of digital and real factory 

MAYA will (1) propose a hardware infrastructure of intelligent middleware to 

extend legacy systems into the digital world; (2) define application protocol 

interfaces for the implementation of cross-tool secured communication drivers 

capable to provide both raw data streaming and high-level aggregation functions 

and (3) develop the software architecture to process large data sets. 

These three sub-objectives will be framed within the context of the IEC-61499 

international standard for distributed automation, by developing a HW/SW “CPS-

izer”, based on the technologies of the standard, specifically conceived to upgrade 

existing legacy systems (based on classical IEC-61131 technologies), either as an 

after-market add-in or directly integrated in normal PLC, to become effectively part 

of network of CPS connected to their digital twins. 

2.2.3. Current simulation practice in manufacturing 

Looking at the state of art of simulation technologies adopted today in 

manufacturing, discrete event simulation (DES) is one of the most commonly 

used techniques for analysing and understanding the dynamics of 

manufacturing systems. This type of simulation allows to assess the system’s 

performance by statistically and probabilistically reproducing the 

interactions of all its components during a pre-defined time period and to 

support decision making, because it supports stochasticity modelling [9]. 

Applications of simulation in manufacturing system operation generally 

involve making shorter-term decisions when compared to the system design 

applications. In this phase, it deals with mainly operations planning and 

scheduling and real-time control [10]: 

 Operations planning and scheduling. Operations planning and scheduling 

has received a tremendous amount of attention in the literature in 
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recent years. Operations planning and scheduling systems concern 

with the volume and timing of outputs, the utilization of operations 

capacity at desired levels for competitive effectiveness. DES 

simulation can be an effective tool to integrate loading, routing and 

dispatching issues to find the desired performance indicator: such as 

throughput, system utilization and mean flow time. Like in [11], a 

hybrid discrete event simulation and system dynamics (SD) were 

proposed by Jamalnia and Feili to model and simulate the aggregate 

production planning problem (APP), where the DES was used to 

model operational and shop-floor activities that are incorporated into 

APP and the estimated values of crucial time-based control 

parameters are the outputs used in SD.  

While in most of the operations planning and scheduling studies, the 

literature assumed that machines were permanently available and 

reliable, in real life, machines can be unavailable for many reasons, 

including random breakdowns or scheduled maintenance operations, 

such disruptions during operations significantly affect the system’s 

utilization and productivity. Therefore availability of the machine 

need to be considered during scheduling [12]. 

 

 Real Time Control: Real-time control of manufacturing systems is a difficult 

problem due to the complexity and stochastic nature of these systems. 

Simulation has proved to be an effective tool for real-time system control 

since simulation model can be integrated into the enterprise information 

system and the communication network. It can be also combined with 

optimization tools for decision making and evaluation. However, the use of 

simulation as a basis for a real-time system controller is still challenging due 

to various reasons: such as response time, data collection and aggregation 

issues make it an emerging field of research within manufacturing systems.  

Metan et al. developed a new scheduling system for selecting dispatching 

rules in real time integrating simulation, data mining, and statistical process 

control charts [13]. The proposed system was implemented on a job shop 

problem, with the objective of minimizing average tardiness, to evaluate its 

performance. The results showed that the performance of the new system 

was considerably better than the traditional simulation-based single -pass or 

multi- pass scheduling algorithm in terms of minimizing average tardiness. 

 

 Energy consumption. In the manufacturing sector, energy consumption as 

one of the value-adding parameters in production has been given more and 

more attention. The principle drivers of this are: constantly increasing 

energy prices, the relate environmental impact such as CO2 emission and 
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new regulation policies. Therefore, in order to remain competitive in the 

market, companies need to adapt to these constraints and reduce production 

cost by increasing the energy consumption efficiency. But before optimizing 

it, there is a need to estimate it.  Simulation can be a good solution in 

achieving this objective since it can build virtual production systems which 

emulate the actual system in real time, perform different experiments on 

different scheduling and production conditions and observe different effects 

[14]. As depicted inFigure 2.1, behaviour simulation should be also 

integrated in the DT simulation paradigm in order to monitor the system 

performance. However, although DES of manufacturing systems integrated 

with the relevant energy flows was identified as a promising approach, 

Herrmann et al. [15] and Thiede et al. [16] reviewed the use of commercially 

available DES tools for modelling energy consumption in manufacturing 

facilities. Both identified that currently available DES software do not 

support energy flow simulation as a standard. But several studies on 

approaches to integrate the energy flow into the material flow in DES 

simulation have been found in industrial production, they are divided in two 

directions: product oriented and production-state oriented. 

 

A product-based simulation approach to estimate the energy consumption 

has been identified. Yingying Seow, et al, proposed a ESM (energy simulation 

model) to support energy consumption modelling within manufacturing 

system. 

 

Another approach to simulate energy flow is operation-based, which means 

based on the states of the production. In [17], Weinert proposed the 

EnergyBlocks methodology aiming at integrating energy-efficiency criteria 

with evaluation and decision-making processes during production system 

planning and scheduling. The methodology was operation-states based, 

these states constitute the EnergyBlocks. Each state associates with its 

specific energy consumption. The representation of the production is a 

sequence of EnergyBlocks in sequence, and the energy consumption can be 

calculated as the sum of each block. In their work, only electrical energy was 

considered. In [18], authors designed a new production-state based approach 

to integrate material flow and energy consumption in DES software. In their 

model, not only electrical energy, but also the periphery systems like TBS 

(technical building services) were considered in the simulation as energy 

requirements from the asset.   The model was validated in an automated line 

for the filling of sacks with powders by comparing simulation results on 

different parts sequencing. 
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2.2.4. Multidisciplinary integrated simulation and modelling 

The project MAYA empowers the effective virtual validation of manufacturing 

equipment and systems prior to actual manufacturing, thanks to integration of 

models and simulation results from different domains as represented in Figure 4. 

 

  Figure 4: MAYA for multidisciplinary integrated simulation 

The new envisioned meta-model, together with the reference framework, 

represents the key enablers to implement real multi-disciplinary simulations. MAYA 

will design and develop the software infrastructure for integrative interplay of 

models, so that each functional simulation model of the CPS will be able to publish 

and share relevant data, in a simulation as a service approach, feeding higher-level 

models and taking benefit from the results of lower-level ones. 

2.3. The Digital Twin Concept 

2.3.1. Introduction 

By comparing the DT  simulation  triggered  by the  Industry  4.0  paradigm  

and the current practices of simulation technologies in the  manufacturing  

sector,  one can identify that classical simulation is characterized with  

stochasticity  in  nature and usually use history data and probability 

distribution to predict the parameters  to  be  used  in  the  simulation,  then  

by   carrying  out  multiple  runs   to evaluate the average performance so 

that to assess different scenarios or alternatives. On the other hand, DT 

simulation take a step forward by using the  actual real-time data gathered 

from the shop - floor, for example, the machine reliability and availability is 

no more represented by percentage obtained from vendor and maintenance 

experience but will be acquired directly from the real system.  In this way, it 

is possible to monitor simultaneously what is happening in the real 

manufacturing system and realize real-time synchronization of the system. 
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On the base of the classical DES of a manufacturing system, this work aims 

at giving a contribution as a first step to bring the DT concept into the 

simulation, in which machine states are synchronized with the real-time 

data coming from the shop-floor by smart sensors instead of percentage 

representation for simulative purposes. In this case, the simulation model is 

no more embedded inside the software system and controlled by a plant 

agent but it communicates directly with the real system thanks to the CPS 

initiative. 

2.3.2. Literature Review 

In this chapter, it has been done a literature review, to have a deeper 

understand of the Digital Twin concept. In this literature review, the 

following questions have been identified. 

Main points: 

 IP1 - When was the concept of “Digital Twin” brought up?  

 IP2 - What is “Digital Twin”? 

 IP3 - Are there any synonyms of “Digital Twin”? 

 IP4 - What are the key enabling technologies of creating “Digital Twin”? 

Regarding IP1, it concerns the starting date of the research.  The term DT is 

one of the main concepts relates to Industry 4.0 wave which has been 

brought up in 2011 and it draws great attention in both the research and 

industrial world recently.  Thus, this review aims to firstly figure out when 

did the new perception    of DT was established. In this regard, the searching 

timespan has been limited   from 2010 up to 2017. With respect to IP2, it is 

considered as the core of this review, to figure out what this concept 

represents and what can be benefited from this concept. Regarding IP3, since 

DToli is not a formal and shared concept in the research world, possible 

synonyms could be identified and some of them were discussed for the aim 

of comparison. With respect to IP4, the focus was laid on the manufacturing 

sector, papers belonging to other non-related sectors have been eliminated 

from the analysis and the main enabling technologies were extracted and 

summarized. Once the potentially relevant primary sources have been 

identified, they need to be assessed for their actual relevance, by going 

through all the titles and abstracts to extract the articles related only to 

manufactured products and production manufacturing system. In these 

papers, there were many which deal with aerospace industry, and in 

particular they focus on the DT for the material structure, which are not the 

focus here, so they have been excluded. 
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In this section, answers to the predefined points are discussed. 

2.3.3. When was the concept of “Digital Twin” brought up? 

The concept of DT is rather old. In 2003, the concept of a virtual, digital 

equivalent to a physical product or the DT concept was introduced during 

PLM (Product Life Management) course by Professor Michael Grieves at 

University of Michigan [19]. At that time, a digital representation was 

relatively new and immature. Not many studies have been conducted related 

to this concept.  

It was then firstly used during the Apollo program, where two identical 

space vehicles were built. The first one was sent to the space, while the other 

one, the twin, was built and used on the Earth for training and for simulation 

before and during the space mission. As it is evident, the main scope of the 

original definition of the DT was to assist the astronauts in critical situations 

and to mirror the real space vehicles by considering stochasticity, historical 

data and sensor data, including interactions of the vehicle with the real 

world. In September, 2010, the concept of DT was addressed by NASA’s 

integrated technology roadmap under the technology area 11: Modeling, 

Simulation, Information Technology & Processing, it states DT as “an 

integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or 

system that uses the best available physical models, sensor updates, fleet 

history, etc., to mirror the life of its flying twin. It is ultra-realistic and may 

consider one or more important and interdependent vehicle systems.” From 

that moment on, DT has been progressively used in mostly aircraft field but 

also more and more in other areas. Especially in 2013, the research of DT for 

the first time in manufacturing sector appeared.  Jay Lee and his colleagues 

designed a DT model that operates in the cloud platform in the context of 

predictive manufacturing to simulate the health condition with an 

integrated knowledge from both data driven analytical algorithms as well as 

other available physical knowledge. 

2.3.4. What is “Digital Twin”? 

In spite of its simple formulation, the term DT opens up different 

interpretations between researchers because there is not a formal and 

shared definition in the research world. To have a complete view of the 

definitions of DT in the reviewed papers some different definitions of the 

terms are given: 

 A digital representation of a real-world object with focus on the object 

itself [20]. 
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 Ultra-high fidelity simulations to better understand both constraints 

in system design and possible consequences of external influences 

during the system’s operation [21]. 

 A virtual representation of the real product, it has product’s 

information since the beginning of the life until the disposal of the 

product [22]. 

 A Digital Twin is an integrated multi-physics, multiscale simulation of 

a vehicle or system that uses the best available physical models, 

sensor updates, fleet history, etc., to mirror the life of its 

corresponding flying twin [23]. 

 Model that operates in the cloud platform and simulates the health 

condition with an integrated knowledge from both data driven 

analytical algorithms as well as other available physical knowledge 

[24]. 

 A comprehensive physical and functional description of a component, 

product or system, which includes more or less all the information 

which could be useful in all the current and subsequent lifecycle 

phases [25]. 

 A living model of the physical asset or system, which will continually 

adapt to changes in the environment or operations and deliver the 

best business outcome [26]. 

 Digital representation of the physical environment [27]. 
 
From all these definitions, although they have different interpretations, it is 

clear that DT in general refers to a digital copy of a real object, resource or 

system. With the advent of the CPS, the DT appears as a virtual 

representation of the physical product which has all its information and 

knowledge, and connected with the physical part, allowing data transfer 

from the physical layer to cyber layer along the production lifecycle. Virtual 

simulated machine could receive data from the physical machine and send 

feedback after data processing to the physical machine during the 

manufacturing process [28]. 

From a future simulation point of view, DT concept can be seen as one of the 

next big advances in modelling, simulation and optimization technology, as 

illustrated [23]. 
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Figure 5: Digital simulation concept evolution 

Every prospective of physical element, starting from a single machine to the 

whole production system, will be accompanied by virtual representations, 

which allow monitoring and predicting its performance in the physical 

world. The digital avatar will show at any time its current condition and 

information created by the real system along its own value chain and this 

information will dynamically grow during its lifetime, made possible by the 

increasing digitalization enabled by IoT and Big Data technologies in every 

stage of manufacturing. With the industry 4.0 initiatives, a real-time 

synchronization of the sensed data coming from the field to feed the DT 

should be made possible, which makes the simulation technology undergo a 

substantial change, the evolution of the concept is repesentes in Figure 5. 

For most of the authors, DT is a model that represents the system on which 

different types of simulations can be based Meanwhile, in Robotics field, 

simulations are mainly performed for the Virtual Commissioning to optimize    

the control algorithms of robots during development phase, while in 

manufacturing, the main objective of simulations is to represent the complex 

behaviour of the system, also considering the possible consequences of 

external factors, human interactions and design constraints. 

2.3.5. Are there any synonyms of “Digital Twin”? 

Several synonyms have been identified in the scientific literatures: Digital 

Thread, Digital Counterpart, Virtual Twin, Product Avatar (PA), and Virtual 

Factory (VF). The term “Digital Thread” is usually addressed  together  with  

“Digital  Twin”, since the focus is not only a single phase such as engineering 

phase in  general , but its whole product lifecycle from design, operation, 

usage to the final dismissal,  this  thread  is  connected.  All these terms 

represent a virtual version of the physical one even if it is called in a different 

way. In this paragraph, the similarities and differences between these 
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keywords are specified. In addition, a few of them have been chosen to 

conduct the review together with “Digital Twin” and the results will be 

compared. 

In terms of similarities, they are all representations of the physical product  

or system that include design specifications and engineering models 

describing  its geometry, materials, components and behaviour, which 

enable us to better understand and design the real-world entity aiming to 

improve efficiency and reduce costs [29]. 

In terms of differences, DT is specific as it includes the as-built and 

operational data unique to the specific physical asset that it represents, it 

enables a real-time synchronization with the real system through the whole 

product lifecycle and it is under the industry 4.0 context. While the other 

terms do not necessarily   have the same seamless real-time characteristic. 

PA describes a distributed and decentralized approach to share and manage 

the relevant, item-level information throughout a product‘s lifecycle 

(Beginning of Life (BOL) - Middle of life (MOL)- End of life (EOL)) among 

different shareholders [30]. By considering data from different life phase 

altogether will improve future product generations. It is very similar to DT, 

but it refers to only product level and it is mostly addressed in product 

lifecycle management (PLM) studies. Digital Thread is a continuous, 

seamless strand of data that connects each stage of the product life cycle 

from design, to build, to in field usage. It provides a formal framework for 

data with the ability to store, access, integrate, transform, and analyse from 

disparate systems throughout the product lifecycle into actionable 

information and drives efficient supply chain communications. DT is a 

“living” model with the purpose to monitor and optimize the physical 

performance. The Digital Thread enables the DT to fulfill this purpose by 

providing the kinds of data that the twin needs to perform its analyses. It 

coexists with the DT. Virtual Factory instead refers to an integrated model 

that involves a variety of software, tools, and methodologies in order to solve 

any real-time problem of manufacturing systems. It is more like a virtual 

commissioning tool and it performs virtual simulation exercises that helps 

in replicating the real-life scenario and helps in designing and 

implementation in a efficient and effective way. It does not depend on the 

pilot plants or production runs and does not need to connect with the real 

physical system. Everything is done on software. 

Three similar terms have been chosen to be searched following the same 

search steps as the ones performed for the “Digital Twin” in the same three 

databases: Digital Counterpart, Product Avatar and Digital Thread. Since 
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these keywords might be more familiar in the research world and have been 

brought up earlier, the searching span has been put from year 2005. 

2.3.6. What are the key enabling technologies for the “Digital Twin”? 

As previously mentioned, this review focuses on the manufacturing domain, 

from product to production system level. All papers not related to this area 

were eliminated from the review. The key enabling technologies were 

extracted and summarized from the review papers, as shown in Figure 6.  

 

 

 

 

 

 

Figure 6: Driving technologies of the DT 

As illustrated in the Figure 6, among these articles twelve of them are under 

context “Industry 4.0”. The “Industry 4.0” paradigm was proposed for the 

first time at the Hannover Fair in 2011 [31], it stands for the fourth industrial 

revolution. It is known that after the 3rd industrial revolution, digitalization 

and computerization have been achieved and widespread. On the basis of an 

advanced digitalization within factories, the combination of internet 

technologies and future-oriented technologies in the field of “smart” objects 

(machines and products) seems to result in a new fundamental paradigm 

shift in industrial production. “Industry 4.0” represents the current trend of 

automation and data exchange. 

“Industry 4.0” describes an exceptional technology-push paradigm in 

industrial practice, and it is mainly driven by Cyber Physical System, Internet 

of Things and Big Data. These technologies are integrated with the 

simulation model along the lifecycle to achieve increased competitiveness 

(energy and resource efficiency, shorter time to market, enhanced 

flexibility). With the use of these technologies, Industry 4.0 opens the way to 

real-time monitoring and synchronization of the real world activities to the 

virtual space thanks to the physical-virtual connection and the networking 

of CPS elements. 
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Cyber Physical Systems(CPS) are defined by the US National Science 

Foundation as “engineered  systems  that  are  built  from,  and  depend  upon,  

the seamless integration of computational algorithms and physical 

components. Advances in CPS will enable capability, adaptability, scalability, 

resiliency, safety, security, and usability that will far exceed the simple 

embedded systems”. To put it in a simple way, CPS indicates a smart and self-

aware machine where the physical and the digital level merge through a 

common communication layer. It has not only static information such as 

geometry, 3D model and bill of materials but also dynamic behaviour 

information which updates through the lifecycle. 

The papers in the manufacturing field that have mentioned the use of the DT 

to simulate a CPS system or product are [32, 23, 21, 22]. Nowadays, CPS is 

still in the initial stage of development, it is essential to clearly define the 

structure and methodology of CPS as guidelines for its implementation in 

industry. In general, a CPS consists of two main fundamental functionalities: 

data acquisition and data management.  

In 2015, a CPS 5C (Connection-Conversion-Cyber-Cognition-Configuration) 

level architecture was proposed in [33], to reach the goal of resilient, 

intelligent, and self-adaptable machines: 

 Connection: data gathering from sensors and production control systems; 

 Conversion: translation of relevant data acquired into consistent 
information; 

 Cyber: modelling of physical elements; 

 Cognition: simulation, interaction with humans and diagnostic; 

 Configuration: active intervention in the real environment. 

Internet of Things (IoT), also known as Internet of Objects, is an “emerging 

global Internet-based information architecture facilitating the exchange of 

goods and services, with the function to overcome the gap between objects 

in the physical world and their representation in information systems”. In 

the CPS manufacturing context, all CPS units are interconnected and 

integration of sensors and actuators is more and more common, which leads 

to a highly distributed network of devices communicating with human 

beings as well as other devices. RFID (Radio-Frequency Identification) is one 

of the dispensable technologies for IoT, in which objects are tagged for their 

identification. Besides, sensors or other technologies that control remotely 

across existing network infrastructure can realize IoT. Digital exchange of 

data and information is made possible even without human intervention and 

it is not limited geographically. Thus, enormous amounts of data are 
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collected and gathered through sensors spread all over the factory, and need 

to be elaborated and transformed into actionable information through 

proper means. In the performed analysis, 14 papers talked about IoT in 

relation to DT. Canedo Strongly emphasized the importance of IoT and of DT 

as a new mechanism to manage IoT devices and IoT systems-of-systems 

throughout their lifecycle.  

Big data is a loosely defined term to describe “data sets so large and complex 

that they become awkward to work with using standard statistical 

software”. Eighteen papers among the analysed ones have mentioned in a 

implicit and explicit manner this technology. It is characterized with 3Vs: 

volume, velocity, variety. IoT makes the world more connected and 

networked, leading to a further large scale of data sets. In this information 

era, the way how useful information can be extracted and used for decision 

making is extremely crucial. As stated before, CPS utilize a huge amount of 

sensors and physical systems to collect sensory information from the real 

world and send them to the DT computation modules through 

communication technologies (e.g. wireless) and DT computation modules 

process these data and feedback to the physical systems about the findings, 

sometimes even send control commands to make necessary changes in the 

physical world   or reconfigure system parameters if required. Big data and 

the IoT usually work in conjunction, data extracted from IoT device provides 

a mapping of device interconnectivity. Such mappings have been used 

widely by the media industry, companies and governments. But, it is also 

increasingly adopted in manufacturing contexts to gain better performance.   

Even though the Big Data topic is    not strongly recognized by the authors as 

a key aspect in the DT modelling, as sensors are being progressively used in 

production system, it is impossible not to deal with a huge amount of data.  

All the facilities in the physical world are interconnected through IoT, smart 

components with sensors gather real time data to enable seamless 

integration with the physical asset (Figure 7). The sensed data are send to 

the cyber twins of the physical assets, these cyber twins are also networked 

and interconnected such Big Data analytics are embedded in the cyper level  

and will process and transform the raw operation data into actionable 

insights then feed back to the physical machine through actuator or other 

control devices. All these integration of technologies are under the Industry 

4.0 initiative. This is the journey of interactivity between the physical and 

digital worlds. Such a journey underscores the profound potential of the DT: 

thousands of sensors taking continuous, nontrivial measurements that are 

streamed to a digital platform, which, in turn, performs near-real-time 

analysis to optimize a business process in a transparent manner. 
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Figure 7: Integration of enabling technologies 

2.3.7. Benefits of the Digital Twin 
 
Thanks to Industry 4.0, IoT and Big Data, CPS are gradually replacing the 

traditional machines, DT is now becoming a reality. It will be definitely seen 

as the game changer in the future manufacturing. The information provided 

to these DTs by the physical product is providing manufacturers with more 

insight into their products and making it possible for them to predict more 

than they ever could before. Several benefits can be concluded in this 

literature review. 

The main benefit of the DT is to provide an integrated outlook of any project,   to 

any shareholders, at any point of the product lifecycle. Moreover, 

1. As mentioned before, the concept of DT is not limited to a single product, but 

can be extended to complex system level. 

2. The DT has the potential to radically change the design, manufacturing, 

sales, and maintenance of complex products in multiple industries. It 

makes the manufacturing system become more autonomous and self-

aware and deliver the best business outcome in terms of time and cost 

[23]. 

3. With real-time mirroring, DT is not limited in the design engineering 

phase,    but also play an important role along the whole lifecycle of a 

product or process. Information created in each stage of the product 

lifecycle is seamlessly made available thanks to DT, which makes it an 

important tool in PLM [23]. 

4. DT enables the interoperability of different systems and applications 

from different disciplines, engineers can simulate the behaviour of 

complex systems in order to predict and prevent mechanical breakdowns 

[26]. 
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2.4. Industry 4.0 Lab at PoliMI 

2.4.1. Lab capabilities 

The developed DT simulation model was built to be validated at the Industry 4.0 

Lab, as it was a laboratory with all the necessary features that were needed to test 

the developed model (i.e. connection with the field, detailed energy sensors, 

machine states reporting. . .). In this section the Industry 4.0 Lab ((I4.0 Lab) will be 

presented (Figure 8). 

Industry 4.0 Lab is promoted by the Manufacturing Group of the Department of 

Economics, Management and Industrial Engineering (Dipartimento di Ingegneria 

Gestionale) of Politecnico di Milano and developed by FESTO1 and SIEMENS2. It 

aims to create a physical entity where the research activity in the innovative 

manufacturing management and planning approaches can be carried out in 

conjunction with a practical implementation in a “real-like” environment. 

For the exploitation perspective, it is expected that I4.0 Lab could address 3 main 

purposes:   

 Education and Training 

 Communication and consulting 

 Research Projects and related Activities 

The manufacturing ecosystem includes 3 major components to consider: the human 

factor, the product and the process. These three factors need to be considered in a 

holistic way, in order to adequately build engineering and management 

competences. Industry 4.0 Lab has been built to address these three aspects in a 

flexible environment, to academically demonstrate the “Industry 4.0” vision. The 

covered technologies in this lab includes: 

 CPS (Cyber-pysical system): Permits the intelligent networking of 
people, products, and production resources. 

 RFID (Radio Frecuency Identification): Uses radio transmission to write 
or read data from labels without contact.  

 NFC (Near Field Communication): Enables communication between two 
elements located close to each other. 

 Cloud Technology: Stores sensors or data in cloud, and analyses Big –Data 

 
To this end, an automated assembly line with a proper tracking and tracing 

solution,  integrated  with  a  storage  area  has  been  installed  in  the  lab. 

This production system has been designed for an assembly of a Mobile 

phone. It consists of seven workstations, six CP Labs and one CP factory (CP 

Labs are: 1, 2,  3,  5,  6,  7;  the  CP Factory is: 4 (Figure 8)), CP stands for cyber 

file:///C:/Users/adolf/Documents/Ingeniería%20Industrial/TFG/A%20Digital%20Twin%20Simulation%20Model%20for%20Machine%20State%20-%20Based%20Energy%20Consump....docx%23_bookmark133
file:///C:/Users/adolf/Documents/Ingeniería%20Industrial/TFG/A%20Digital%20Twin%20Simulation%20Model%20for%20Machine%20State%20-%20Based%20Energy%20Consump....docx%23_bookmark134
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physical, they form the research platform for Industry 4.0. The difference 

between CP lab and CP factory is that CP lab has only one application module, 

and the size of the module is relatively limited while CP factory can contain 

multiple modules. The basic elements of these CPS are: Band, PLC, 

Application module and HMI (Human Machine Interface). CP-Bridge is used 

to combine CP-Factory and CP-Lab. No inter-operational buffer is presented 

and motorized conveyors serve as the handling system. 

Two computers are equipped in the lab, one contains the Manufacturing 

Execution System (MES) for the generation and control of production orders    

and the other one has applications such as simulators and energy 

consumption monitoring software. Both computers use Windows Access as 

database, it is possible to configure the database to store the sensor values. 

All the facilities in the lab are connected to a network and each is assigned 

with an IP address. 

 
 

Figure 8: Industry 4.0 Lab Layout 
 

1-Manual Module: Finished product is available to be unloaded from line,  
    or an empty pallet is uploaded. 

2-Base Magazine Module: A base is placed on an empty pallet. 

3-Drilling Module: Drilling is executed 

4-Robot Cell: It’s the only CP-Factory, a PCB (Printed Circuit Board) is  
    placed in the base and fuses are assembled on the PCB. 

5-Visual Inspection Module: Visual inspection is carried out to check the 
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    presence of proper fuse number. 

6-Cover Magazine Module: A cover is placed on top. 

7-Press Module: Cover is pressed onto the Base to close it. 

2.4.2. The Product 

As mentioned, this production system has been designed for an assembly of 

a Mobile pone. In this system, carrier and pallet are used as the support of 

the part. There are two types of sensors embedded in the carrier: screw 

sensor and RFID. These sensors communicate with the MES in order to 

proceed with the production. The system is completely controlled by the 

MES except the manual station where it requires one operator to unload the 

finish part. When a new production order is launched, it executes 

automatically following the steps to finish the assembly: 2 – 3 – 4 – 5 – 6 – 7 

– 1(Figure 8). The product contains four elements, one front cover, one PCB, 

fuses and one back cover, the components are respectively labelled as 1, 2, 3, 

4 (Figure10). This is the basic product that can be produced by the system 

(Figure9). Since this is a flexible and smart production system, the user can 

configure whatever desired product based on the available elements in the 

MES. 

 

 
 

 
 

 
 
 
 

            Figure 9:  Final Product                                                 Figure 10: Product Elements 

2.4.3. OPC Unified Architecture 

Industry 4.0 Lab adopts  OPC  Unified  Architecture  (OPC  UA),  a  Machine  to 

Machine (M2M) communication protocol  for  industrial  automation  developed 

by the OPC Foundation, as its standard communication protocol. It plays an 

important role in the Industry 4.0 initiative as it helps getting one step closer to 

establishing a robust model based communication protocol between machines. 

It is also the key element to realize the IoT. The communication protocol 

complies with the IEC 62541 standard. Distinguishing characteristics are: Focus 

on communicating with industrial equipment and systems for data collection and 

control. 
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Using a common communication channel to access different powerful software 

tools will further extend the progress of establishing a unified architecture 

where different fields can be connected. This protocol focuses on 

communicating with industrial equipment and systems for data collection and 

control. Moreover, having widely used numerical computing environments and 

engineering tools like MATLAB and Simulink connected to the communication 

layer using client/server communications infrastructure, will expand the 

possibilities of merging different applications in Industry 4.0. 

There are several open source implementations of OPC UA in different 

languages and with different licenses, such as open62541 based on C language. 

OpenOpcUa based on C++. These implementations support both server/client 

creation. While there are implementations that only support a client instance, 

like C# based opc-ua-client, the one used in Matlab and C++/Python based uaf. 

OPC UA supports two different protocols: The binary protocol is 

opc.tcp://Server and http://Server is for Web Service. 

A meta model is defined to provide the infrastructure of OPC UA. This meta 

model presents nodes and references as its fundamental elements. A node class 

comprises other nodes. Depending on the node class, different attributes are 

defined in which some of them are mandatory and some are optional. 

References realize the relationships between the different nodes. Each OPC UA 

server has an address space where all the nodes are created. Each node has 

different attributes and each attribute has a value entry. Furthermore, an 

attribute could be a structure that has more attributes linked to it. OPC UA 

supports 26 built in data types. On top of that, what characterizes OPC UA is that 

it has its own defined security mechanism, thus an extra encryption layer 

implementation is not needed. 

 

http://server/
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CHAPTER 3. TECHNIQUES, TOOLS AND METHODS 

BACKGROUND 

3.1. IDEF() For representation for flow charts and process 

In this thesis it has been decided to exploit a particular tool to represent the flow 

charts and the complex process of the thesis: IDEF. IDEF acronym stands for 

Integrated DEFintition: it is a method designed to model the decisions, actions, and 

activities of an organization or system. This methodology’s peculiarity is that the 

process flows are representable in a multi-echelon structure. Starting from a broad 

process vision, according to the flow chart detail degree, this method allows to 

conduct the analysis deeply through the steps that compose the process. The two 

primary modeling components are: functions (represented on a diagram by boxes), 

and data and objects that interrelate those functions (represented by arrows). 

Starting from the very first level of aggregation, in which only one box is presented 

(IDEFØ), it is possible to appreciate its composition: the boxes that compose IDEFØ 

(Idef 1 level). In the detail is even possible to go more in the deep with the analysis, 

exploding the Idef1 level, comprehending its composition through the lower level 

Idef2, and so on according to the process detail. 

Therefore, IDEF methodology exposes the process levels and compositions but also 

the interdependence between the sub-processes. Besides, one of the most important 

contribution of this method exploitation is the opportunity of both realizing the 

structure of a process and observing the Input, Output, Resources and Constrains 

involved in a particular process. The "box and arrow" graphics of an IDEFØ diagram 

show the function as a box and the interfaces to or from the function as arrows 

entering or leaving the box. The basic syntax for an IDEFØ model is shown in the 

Figure 11. IDEFØ is useful in establishing the scope of an analysis, 

Figure 11: Idef0 representation conceptualization 
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especially for a functional analysis. As an analysis tool, IDEFØ assists the modeler in 

identifying what functions are performed, what is needed to perform those 

functions, what the current system does right, and what the current system does 

wrong. Thus, IDEFØ models are often created as one of the first tasks of a system 

development effort. Input: information that the process need in order to elaborate 

an output. It can be composed by whether information or materials that have been 

originated by a sub-process within the whole process or from an external source. 

 Input: the information needed to deal with the elaboration process, available 

whether from the external environment or from the internal facilities or from 

both the sources (i.e. parts list or parts forecasting demand); 

 constrains: as in every business field, there are features of the system that 

must be respected, whose limitations involve the exploitation of the optimal 

resource utilization method (as instance: engineering information and 

business restrictions); 

 resources & tools: instruments through which the input can be modified and 

managed, according to the constraints procured from scarce resources, in 

order to obtain the output; 

 output: final result, what the process reached after the input managing 

through the process constrains and the resources availability and 

administration. 

Figure 12: General Idef0 representation with number of level used in the framework.  

In order to allow a clear and, as much as possible, easy interpretation of the 

connections that characterize the framework, a reading methodology is developed. 

How is showed in the figure below, each arrow is named accounting their box and 
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the side of the boxes from which they start and arrive. The boxes are identified by a 

number which characterized the position whether in the whole framework or in the 

exact process step. Besides, the boxes are also identified by a letter; the letter is 

useful in order to express the cause-effect connection through the boxes (Figure 12).  

According to IDEFØ rules, the position at which the arrow attaches to a box conveys 

the specific role of the interface. 

3.2. Matlab/Simulink OPC Toolbox for Data Acquisition  

3.2.1. Communicating with PLCs. 

Matlab/Simulink is one of the OPC UA client implementations using 

opc.ua.client. It is integrated in the OPC ToolboxTM. This ToolboxTM provides 

access to live and historical OPC data directly from MATLAB and Simulink. It 

allows reading, writing, and logging OPC data from devices, such as distributed 

control systems, supervisory control and data acquisition systems, and 

programmable logic controllers (PLC). OPC Toolbox lets the user work with data 

from live servers and data historians that conform to the OPC Unified 

Architecture (UA) standard. Since all the modules in the I4.0 Lab are equipped 

with PLC and these PLCs are activated as OPC UA servers (Figure 13). Thus, by 

using the toolbox, it is possible to communicate in real time with the facilities. 

In the OPC UA client/server connection scheme, multiple clients can be created 

at the same time to query the servers.  

Figure 13: Connection by OPC UA between PLC and computer 

In Matlab/Simulink, OPC UA client can be created to connect to OPC UA servers 

using the opcua( ) function. After the client has been constructed, using the 
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connect() to connect the OPC UA server, it is based on the binary protocol thus 

the IP address of the server needs to be entered. From then on, it is possible to 

read whatever value available in the server using the function readvalue( ), the 

input argument of this function is the node of the desired data, an OPC UA Node 

variable describes the node on the server, and contains other subnodes in the 

‘Children’ property. Nodes have a NodeType which can be ‘Object’ or ‘Variable’. 

Object nodes have no value associated with them, and are used purely for 

organizing the namespace of the server. Variable nodes store current values, 

representing a sensor or actuator value associated with the server. But 

unfortunately, in Simulink workspace, the OPC toolbox library does not support 

the OPC UA server connection as it is a new protocol, a new way to implement 

the connection in Matlab need to be found. One way to do that is by using an 

classical Matlab Function block in simulink clarifying the OPC UA functions 

descried above as intrinsic functions, but the logic of this Matlab function turns 

out to be that the function will be called multiple times during the simulation 

and every time the connection process will be replicate, a certain delay would 

present or loss of data in a more accurate sense. In order to increase the 

accuracy of the data acquisition, a new way to connect only once the server and 

then looping just the function readvalue( ) during the simulation run has to be 

found. In this way, a real time synchronization can be achieved. In this regard, 

another way is to implement real time data acquisition in Simulink with level 2 

S function. This function permits the connection in setup function and saves the 

client nodes in memory, then the memory will be retrieved in the output 

function to get the value.  During the simulation, only the output function is 

executed. 

3.2.2. Matlab level 2 S-Function for Data Adquisition 

Apart from the connection OPC UA servers by the program UAExpert, there is 

an important MATLAB Simulink tool that has a relevant role on the modelling: 

the Level 2 MATLAB S-Function. The Level-2 MATLAB S-function allows to use 

the MATLAB language to create custom blocks with multiple input and output 

ports and capable of handling any type of signal produced by a Simulink model, 

including matrix and frame signals of any data type. The Level-2 MATLAB S-

function corresponds closely for creating C MEX S-functions. To avoid 

duplication, this section focuses on providing information that is specific to 

writing Level-2 MATLAB S-functions. A Level-2 MATLAB S-function is MATLAB 

function that defines the properties and behavior of an instance of a Level-2 

MATLAB S-Function block that references the MATLAB function in a Simulink 

model. The MATLAB function itself comprises a set of callback methods that the 

Simulink engine invokes when updating or simulating the model. The callback 
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methods perform the actual work of initializing and computing the outputs of 

the block defined by the S-function. 

To facilitate these tasks, the engine passes a run-time object to the callback 

methods as an argument. The run-time object effectively serves as a MATLAB 

proxy for the S-Function block, allowing the callback methods to set and access 

the block properties during simulation or model updating. 

The Level-2 MATLAB S-function defines the signatures and general purposes of 

the callback methods that constitute a Level-2 MATLAB S-function. The S-

function itself provides the implementations of these callback methods. The 

implementations in turn determine the block attributes (e.g., ports, parameters, 

and states) and behavior (e.g., the block outputs as a function of time and the 

block inputs, states, and parameters). By creating an S-function with an 

appropriate set of callback methods, it can be defined a block type that meets 

the specific requirements of the application requested. 

A Level-2 MATLAB S-function must include the following callback methods: 

 A setup function to initialize the basic S-function characteristics 

 An Outputs function to calculate the S-function outputs 

The S-function can contain other methods, depending on the requirements of 

the block that the S-function defines. The methods defined by the Level-2 

MATLAB S-function generally correspond to similarly named methods defined 

by the C MEX S-function. 

3.3. Asset Health Index basis for Machine Condition Assessment 

Asset Health Indicators or Indices (AHI) are widely used in supporting maintenance 

and replacement strategies based on asset condition and performance. This 

indicator is normally a composite metric intended to provide information of asset 

capability over time. The Asset Health Index indicates the health of an asset and is 

an aggregation of the measurement results of the condition criteria of an asset and 

a weighting factor for each of those measurements. . For a successful AHI we need 

to link the available raw data– whether condition monitoring or asset history or 

maintenance and operational data - through to likely failure modes, or issues which 

will affect asset performance [34].  

When appropriately developed, health indices provide an accurate indication of the 

probability of asset failures and associated risks. Having established the asset health 

index under current conditions, health index values in future can be predicted by 

taking into account the impact of environmental and operating conditions along 

with the preventative maintenance practices. 



Digital Twin Systems Modelling to Improve Real Time Assets Operation and Maintenance.  
 

62 

Health indexing quantifies equipment condition based on numerous condition 

criteria that are related to the long-term degradation factors that cumulatively lead 

to an asset’ end-of-life. Health indexing results differ from maintenance testing, 

which emphasizes finding defects and deficiencies that need correction or 

remediation to keep the asset operating during some time period [35].  

3.3.1. Background and basic definitions. 

The method to be used in this work takes into account several features of well 

known assets health Indexing models with the intention to reach a practical 

procedure that can be applicable to any complex asset, regardless its technology, 

industrial sector, or location where it is used.  

This procedure takes as a basic reference for its elaboration the model presented 

within a so-called framework of common reference presenting the principles and 

calculation methodology adopted by all British power network operators for the 

regulatory assessment, prediction and report of the risk of assets.  This framework 

main figures considered in this work are:  

 The asset health index (AHI) is considered as a dimensionless number 

between 0.5 (which corresponds to its status or condition as new equipment) 

and the value of 10 (corresponding to the condition of the equipment at the 

end of its useful life). The behavior pattern of the AHI, is supposed to be 

exponential along the age of the asset. The following figure shows the 

different 5 sections into which the health index of the asset is divided (Figure 

14). 

 

 

Figure 14: AHI Intervals. 

The HI1 range comprised 0.5≤AHI≤4 values; for which the behavior of the 

equipment is assumed to resemble as new equipment. The HI2 range 
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considers AHI values within the interval 4<AHI≤6 and corresponds to the 

period of time when the first signs of deterioration begin to appear in the 

equipment. In this range, the value corresponding to AHI=5.5, is assumed to 

be the health index value equivalent to the normal life expected for the 

equipment category. From this point, three intervals are considered in the 

methodology: HI3, HI4 and HI5 as the AHI exceeds the values of 6, 7 and 8 

respectively. The methodology assumes that exceeded the value of AHI=8, 

the equipment is at the end of its useful life. 

 The asset location factor. This is a factor is considered to be inherent to the 

functional location of the equipment, in the facility and the geographical area 

where it is located. Exposure to environmental agents, whether or not they 

are protected from the outside, distance from the coast or working at a 

certain altitude will have a different effect on the health of the equipment. In 

this work the asset location factor does not have special impact on health. 

 The asset load factor. The load factor of each equipment is defined by the 

relationship between the real load of the equipment at its expected operating 

point or schedule, and the maximum admissible load that the equipment 

could support. The load factor is therefore a consequence of the operating 

conditions for which the installation has been designed. 

 Health and reliability modifiers. Health modifiers are parameters that contain 

additional information about current health of the asset. The health modifiers 

are related to current load, condition of the asset (result of inspections and 

checks performed on it), and operation (result of captures made of 

operational variables of the asset, for example those existing in the plant 

information systems). Reliability modifiers apply to assets for which 

reliability can significantly differ within the same category. In our model, 

these modifiers will have no relevant impact at this stage of the modeling 

process. The different reliability modifiers can be associated with: 

o The manufacturer brand and the type or model of asset. 

o The construction and integrity of the asset, the material, etc. 

o Surface applied treatments. 

o Number of overhauls and large maintenance performed on the 

equipment. 

o Hours of inactivity of the equipment. 

o The use of original spare parts 

o Etc. 

 



Digital Twin Systems Modelling to Improve Real Time Assets Operation and Maintenance.  
 

64 

3.3.2. Data requirements. 

Data requirements for the procedure to be implemented will be as follows: 

 The identification of the asset. The category of the asset, the current age, the 
expected lifetime, name of the manufacturer, the model and functional 
location in the company. 

 Operation & Maintenance data. Recorded during a certain period of time, 
added conveniently to know the time in which the equipment has been 
subjected to stress, number of starts and stops, energy consumption, number 
of overhauls, etc. 

 The condition of the equipment. The results of the analyzes performed on the 
equipment in situ, results of readings of physical variables such as 
temperature and vibrations, results of visual inspections, insulation, 
thermography, etc. 

 

3.3.3. Procedure. 

The methodology in this paper is based on a procedure consisting in 5 consecutive 

steps. Starting from an estimated normal life associated with a category of 

equipment, the current health index of an asset is reached. This procedure is 

presented in Figure 15. 

 

Figure 15: Procedure to calculate the AHI 

Step 1. Asset selection and category definition. Capture of functional location data, 

physical asset data and obtaining the estimated normal life of the asset. 

In this first step, the identification of the asset and all the information regarding 

its functional location is addressed. Regarding the definition of the category of 
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asset, this procedure should make clear the category/subcategory of the assets 

involved. For instance: Drilling machine/electrical. 

Once the assets conveniently identified and classified, the following is to obtain 

all data required to characterize the functional location where the equipment is 

located. Regarding the physical asset data, equipment information like 

manufacturer, model and technical design specifications will be required. 

The estimated normal life of the asset is a data that is generally provided taking 

into account the experience accumulated so far and the information provided by 

the different manufacturers. For many equipment, the concept of estimated 

normal life is replaced by a succession of time periods that run until the overhaul 

of the equipment (this happens for instance in equipment like turbochargers) or 

until the realization of the so-called major maintenance operations (like in big 

pumps and compressors). After the realization of each overhaul and major 

maintenance, the equipment is considered many times as new, in practice this 

means placing the value of the health index back to 0.5. 

The value of the estimated normal life is used as a starting point for the realization 

of all the calculations that will be seen below. Keep in mind that its value is and 

approximated value and only depends on the asset category. As we will see below, 

it will be modified by asset functional location and loading. 

Step 2. Evaluation of the impact of location and load factors by type of asset, 

technical location and estimated life expectancy 

Once all the information in the previous point has been compiled, the location and 

loading factors are evaluated (unambiguously associated with the asset's 

technical location, as previously mentioned) and impact on health estimated (in 

this work in equivalent hours) the estimated life of the asset (or the time to the 

noverhaul) must be defined. 

Step 3. Calculation of the aging rate 

A fundamental hypothesis of the chosen methodology is that the aging of an asset 

has an exponential behavior with respect to its age. The aging rate is the 

parameter of the model that allows us to express mathematically this mode of 

behavior, and that incorporates the different phenomena that the asset can suffer 

throughout its useful life, such as corrosive phenomena, wear, oxidation of oils, 

breakage of insulation, etc. The aging rate (β) it is determined by the relationship 

between the natural logarithm of the quotient between the health corresponding 

to the new asset and the health the asset will have when reaching the estimated 

life, and the calculated estimated life (See Equation 5).   
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   𝛽 =
ln

𝐻𝐼 𝑛𝑒𝑤
𝐻𝐼 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑓𝑒

Estimated Life
                                                                             (5)      

      Where: 

Β :          Aging rate. 

HI new =0.5              Health index corresponding to a new asset; 

HI estimated life =5.5  Health index corresponding to an asset arriving to its 

  estimated life; 

Step 4. Obtaining the Health Index at the age t  

The health index, as mentioned before is a dimensionless number between 0.5 and 

10, with an exponential behavior with respect to the age of the asset (t), which is 

characterized by the aging rate of the equipment. For the calculation of the health 

index (HI) of an asset,  Equation 5 is used, where t is the current age of the asset (in 

units of time) and the aging rate β is calculated in step Equation 6. 

  𝐻𝐼(𝑡) = 𝐻𝐼𝑛𝑒𝑤  𝑒𝛽 𝑡                                                                                         (6)  

Figure 16 represents the evolution of the initial health index of an asset with an 

estimated normal life of 50 months, with a factor of location and load inherent to a 

particular technical location. 

 

Figure 16: Graph of the health index of an asset (HI). 

Step 5. Evaluation of the probability of failure  

The methdology adopted assumes the probability of failure is a polinimial (normaly 

3rd order) or exponential function of the asset´s health index. Once the HI increases 

over 4, the probability of failure will increase from normal failure rate to a maximum 

of 10 times this failure rate in case HI may reach 10.  

3.4. Artificial Neural Networks (ANN) to Model Complex Behavior 

In the development of the final step of the thesis it is used an artificial neural 

network, in order to have a deeper analysis of the fail in the machine based on the 

asset´s condition and health. An artificial neural network (ANN) is a computational 
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model based on the structure and functions of biological neural networks. It is like 

an artificial human nervous system for receiving, processing, and transmitting 

information in terms of Computer Science. Basically, there are 3 different layers in a 

neural network (Figure 17): 

 Input Layer (All the inputs are fed in the model through this layer) 
 Hidden Layers (There can be more than one hidden layers which are used for 

processing the inputs received from the input layers) 
 Output Layer (The data after processing is available at the output layer) 

 
 

 

 

 

 

 

 

 

 

 

Figure 17:  Different layers of a neural network 

The Input layer communicates with the external environment that presents a 

pattern to the neural network. Its job is to deal with all the inputs only. This input 

gets transferred to the hidden layers which are explained below. The input layer 

should represent the condition for which we are training the neural network. Every 

input neuron should represent some independent variable that has an influence 

over the output of the neural network. 

The hidden layer is the collection of neurons which has activation function applied 

on it and it is an intermediate layer found between the input layer and the output 

layer. Its job is to process the inputs obtained by its previous layer. So it is the layer 

which is responsible of extracting the required features from the input data. 

Research has been made in evaluating the number hidden layers (deep of the 

network) and the number of neurons in these layers. In case of problems dealing 

with complex decisions, up to 5 hidden layers, and up to 10 neurons are normally 

used based on the degree of complexity of the problem, or the degree of accuracy 

required. That certainly does not mean that increasing the number of layers or 

neurons will always give higher accuracy.  



Digital Twin Systems Modelling to Improve Real Time Assets Operation and Maintenance.  
 

68 

The output layer of the neural network collects, process and transmits the 

information in a way it has been designed. The pattern presented by the output layer 

can be directly traced back to the input layer. The number of neurons in output layer 

should be directly related to the type of work for which the neural network was 

designed, therefore, to determine the number of neurons in the output layer, first 

the intended use of the neural network must be considered. 

 

The procedure used to carry out the learning process in a neural network is called 

the training algorithm. There are many different training algorithms, with different 

characteristics and performance. The learning problem in neural networks is 

formulated in terms of the minimization of a loss function, f. This function is in 

general, composed of an error and a regularization terms. The error term evaluates 

how a neural network fits the data set. On the other hand, the regularization term is 

used to prevent overfitting, by controlling the effective complexity of the neural 

network.  

The loss function depends on the adaptative parameters (biases and synaptic 

weights) in the neural network. We can conveniently group them together into a 

single n-dimensional weight vector w.  

 

Figure 18: The representation of the loss function f(w) and the weights of the network  

As we can see in Figure 18, the point w* is minima of the loss function. At any point 

A, we can calculate the first and second derivatives of the loss function. The first 

derivatives are grouped in the gradient vector, whose elements can be written as 

∇𝑖𝑓(𝑤) =
𝑑𝑓

𝑑𝑤𝑖 
,   with i=1…n  

The problem of minimizing continuous and differentiable functions of many 

variables has been widely studied. Many of the conventional approaches to this 

problem are directly applicable to that of training neural networks. 
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The learning problem for neural networks is formulated as searching of a parameter 

vector w* at which the loss function f takes a minimum value. The necessary 

condition states that if the neural network is at a minimum of the loss function, then 

the gradient is the zero vector. The loss function is, in general, a non-linear function 

of the parameters. As a consequence, it is not possible to find closed training 

algorithms for the minima. Instead, we consider a search through the parameter 

space consisting of a succession of steps. At each step, the loss will decrease by 

adjusting the neural network parameters. 

In this way, to train a neural network we start with some parameter vector (often 

chosen at random). Then, we generate a sequence of parameters, so that the loss 

function is reduced at each iteration of the algorithm. The change of loss between 

two steps is called the loss decrement. The training algorithm stops when a specified 

condition, or stopping criterion, is satisfied. 

The most popular training algorithms for neural networks are: Gradient descent, 

Newton´s method, Conjugate gradient, Quasi newton and Levenberg Marquardt . 

Gradient descent, also known as steepest descent, is the simplest training algorithm. 

It requires information from the gradient vector, and hence it is a first order method. 

This method will be used in this chapter to follow what is named a backpropagation 

process to train the network, optimizing the weights so that the ANN can learn how 

to correctly map or link arbitrary inputs to outputs [36][37][38]. 

3.4.1 The forwards pass 

The ANN makes a prediction given certain weights and biases and certain inputs. 

Once these values are known, the total net input to each hidden layer neuron can be 

figured out, and then, using an activation function, the output of each neuron is 

computed. The process is repeated with the output layer neurons (Figure 19).  

 

Figure 19: Simplified selected representation of variables in the neural network 

For the purpose of this work, we will consider j=1…m number of neurons in only one 

single hidden layer, and i=1…n number of inputs.  
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Total net input for a hidden layer is defined as follows: 

𝑁𝑒𝑡𝐻(𝑗)𝑡 = ∑ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡 ∙ 𝑤1(𝑖, 𝑗)𝑡 + 𝐵𝑖𝑎𝑠1𝑖=𝑛
𝑖=1          (1) 

The output of neuron j in the hidden layer will be: 

𝑂𝑢𝑡𝐻(𝑗)𝑡 =
1

1+𝑒−𝑁𝑒𝑡𝐻(𝑗)𝑡
        (2) 

 

The function in Equation 2 is known as the activation function of the network, and 

the a bias value (Bias1) in Equation 1, allows us to shift the activation function to the 

left or right, which may be critical later for successful learning. 

Once all hidden layer inputs are calculated the same process is repeated for the 

output layer neuron (assumed there is only one output in this example).  

𝑁𝑒𝑡𝑂𝑡 = ∑ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ 𝑤2(𝑗)𝑡 + 𝐵𝑖𝑎𝑠2
𝑗=𝑚
𝑗=1       (3) 

Notice that, in this process, we use the outputs of the hidden layer neuros as inputs 

of the output layer neuron. 

𝑂𝑢𝑡𝑂𝑡 =
1

1+𝑒−𝑁𝑒𝑡𝑂𝑡
         (4) 

3.4.2 Calculating the Total Error 

The error of an output neuron, loss function to which we referred above, can be 

calculated using the square error function as follows: 

𝐸𝑟𝑟𝑜𝑟𝑡 = ∑
1

2
∙ (𝑇𝑎𝑟𝑔𝑒𝑡(𝑘)𝑡 − 𝑂𝑢𝑡𝑂(𝑘)𝑡)2𝑘=𝐾

𝑘=1        (5) 

In this case with k=1, the equation can be presented as follows: 

𝐸𝑟𝑟𝑜𝑟𝑡 =
1

2
∙ (𝑇𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑂𝑢𝑡𝑂𝑡)2       (6) 

Where Target is the ideal output given the current inputs, and the ½ is included so 

that the exponent is cancelled when the equation is, later on, differentiated. 

3.4.3 The Backwards Pass 

The back propagation process goal is to update each of the weights in the ANN so 

that they cause the actual output to be closer to the target ideal output, thereby 

minimizing the error function for the output neuron. 

The Output Layer: the back propagation process requires to know how much a 

change in w2(j) will affect the total error, for that purpose we can estimate the 

partial derivative  
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𝑑𝐸𝑡

𝑑𝑤2(𝑗)𝑡
          (7) 

Once this is estimated the process will calculate the new weights as follows: 

𝑤2(𝑗)𝑡 = 𝑤2(𝑗)𝑡−1 − 𝜂 ∙
𝑑𝐸𝑡

𝑑𝑤2(𝑗)𝑡
        (8) 

Where 𝜂 is considered learning rate. This parameter scales the magnitude of our 

weight updates in order to minimize the network's error function. If the learning 

rate is set too low, training will progress very slowly as you are making very tiny 

updates to the weights in the network. However, if the learning rate is set too high, 

it can cause undesirable divergent behavior in the loss function. We will see later in 

this Chapter how we can optimize values for learning rate and biases on a 

comprehensive manner. 

Let’s now obtain the previously referred partial derivative, in Equation 7, by 

applying the chain rule: 

𝑑𝐸𝑡

𝑑𝑤2(𝑗)𝑡
=

𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝑂𝑡
∙

𝑑𝑂𝑢𝑡𝑂𝑡

𝑑𝑁𝑒𝑡𝑂𝑡
∙

𝑑𝑁𝑒𝑡𝑂𝑡

𝑑𝑤2(𝑗)𝑡
     (9) 

Now each piece of this Equation 9 will be figured out: 

𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝑂𝑡
= 2 ∙

1

2
∙ (𝑇𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑂𝑢𝑡𝑂)2−1 ∙ (−1) = 𝑂𝑢𝑡𝑂𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡   (10) 

Then, applying the corresponding derivatives, it can be demonstrated that: 

𝑑𝑂𝑢𝑡𝑂𝑡

𝑑𝑁𝑒𝑡𝑂𝑡
= 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡)        (11) 

Finally: 

𝑑𝑁𝑒𝑡𝑂𝑡

𝑑𝑤2(𝑗)𝑡
=

𝑑(∑ 𝑂𝑢𝑡𝐻(𝑗)𝑡∙𝑤2(𝑗)𝑡+𝑏𝑖𝑎𝑠2)
𝑗=𝑚
𝑗=1

𝑑𝑤2(𝑗)𝑡
= 𝑂𝑢𝑡𝐻(𝑗)𝑡     (12) 

Therefore, it can be notice that Equation 9, can be rewritten as follows: 

𝑑𝐸𝑡

𝑑𝑤2(𝑗)𝑡
= (𝑂𝑢𝑡𝑂𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑡) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡) ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡 = 𝛿𝑜𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡      (13) 

This in known as the Delta Rule, with  

𝛿𝑜𝑡 = (𝑂𝑢𝑡𝑂𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑡) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡)        (14) 

Thus, Equation 8 can be expressed as 

𝑤2(𝑗)𝑡 = 𝑤2(𝑗)𝑡−1 − 𝜂 ∙ 𝛿𝑜𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)
𝑡
       (15) 
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By doing so the actual updates in the neural network can be performed, after the 

new weights leading into the hidden layers neurons are found (i.e. the original 

weights, not the updated weights, will be used when continuing with the back 

propagation algorithm as described below. 

The Hidden Layer: the backwards pass must continue by updating the values for 

w1(i,j)t . In order to do so, the method requires to know how much a change in w1(I,j) 

will affect the total error, for that purpose we can estimate the partial derivative in 

Equation 16. 

𝑑𝐸𝑡

𝑑𝑤1(𝑖,𝑗)𝑡
          (16) 

Once this is estimated the process will calculate the new weights as follows: 

𝑤1(𝑖, 𝑗)𝑡 = 𝑤1(𝑖, 𝑗)𝑡−1 − 𝜂 ∙
𝑑𝐸𝑡

𝑑𝑤1(𝑖,𝑗)𝑡
      (17) 

By applying again the chain rule 

𝑑𝐸𝑡

𝑑𝑤1(𝑖,𝑗)𝑡
=

𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡
∙

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡

𝑑𝑁𝑒𝑡𝐻(𝑗)𝑡
∙

𝑑𝑁𝑒𝑡𝐻(𝑗)𝑡

𝑑𝑤1(𝑖,𝑗) 𝑡
    (18) 

Again, each piece of this equation must be figured out. 

 

𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡
=

𝑑𝐸𝑡

𝑑𝑁𝑒𝑡𝑂(𝑗)𝑡
∙

𝑑𝑁𝑒𝑡𝑂𝑡

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡
     (19) 

With  

𝑑𝐸𝑡

𝑑𝑁𝑒𝑡𝑂𝑡
=

𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝑂𝑡
∙

𝑑𝑂𝑢𝑡𝑂𝑡

𝑑𝑁𝑒𝑡𝑂 𝑡
= (𝑂𝑢𝑡𝑂

𝑡
− 𝑇𝑎𝑟𝑔𝑒𝑡

𝑡
) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡) (20) 

And with 

 
𝑑𝑁𝑒𝑡𝑂𝑡

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡
= 𝑤2(𝑗)𝑡        (21) 

Therefore 

 
𝑑𝐸𝑡

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡
= (𝑂𝑢𝑡𝑂

𝑡
− 𝑇𝑎𝑟𝑔𝑒𝑡

𝑡
) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡) ∙ 𝑤2(𝑗)

𝑡
    (22) 

If we continue calculating the second product of Equation (18) 

𝑑𝑂𝑢𝑡𝐻(𝑗)𝑡

𝑑𝑁𝑒𝑡𝐻(𝑗) 𝑡
= 𝑂𝑢𝑡𝐻(𝑗)

𝑡
∙ (1 − 𝑂𝑢𝑡𝐻(𝑗)

𝑡
)     (23) 

If the third piece of Equation (18) 
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𝑑𝑁𝑒𝑡𝐻(𝑗)𝑡

𝑑𝑤1(𝑖,𝑗) 𝑡
= 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡         (24) 

Therefore Equation (18) can be written as follows 

𝑑𝐸𝑡

𝑑𝑤1(𝑖,𝑗)𝑡
= (𝑂𝑢𝑡𝑂𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑡) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡) ∙ 𝑤2(𝑗)𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ (1 − 𝑂𝑢𝑡𝐻(𝑗)𝑡) ∙

∙ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡 = 𝛿𝑜𝑡 ∙ 𝑤2(𝑗)𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ (1 − 𝑂𝑢𝑡𝐻(𝑗)𝑡) ∙ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡            (25) 

 

And then Equation (25) can be expressed, using the Delta Rule, as follows: 

 
𝑑𝐸𝑡

𝑑𝑤1(𝑖,𝑗)𝑡
= 𝛿𝐻(𝑗)𝑡 ∙ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡       (26) 

With 

 𝛿𝐻(𝑗)𝑡 = 𝛿𝑜𝑡 ∙ 𝑤2(𝑗)𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ (1 − 𝑂𝑢𝑡𝐻(𝑗)𝑡)     (27) 

Finally we can update the weights as follows: 

𝑤1(𝑖, 𝑗)𝑡 = 𝑤1(𝑖, 𝑗)𝑡−1 − 𝜂 ∙  𝛿𝐻(𝑗)𝑡 ∙ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡      (28) 

And by doing so we finish the backwards pass and the backpropagation algorithm. 

In this work a continuous simulation model of ANN with backpropagation will be 

later presented 

3.5. Introduction to Continuous Time Dynamic Simulation 

Dynamic mathematical models used in computer simulation are typically 

represented with differential equations (the relationship involving the rates of 

change of continuously changing quantities modelled by functions) or difference 

equations (relating a term in a sequence to one or more of its predecessors in the 

sequence). There is a clear reason for this that is related to the nature of the system 

being modelled. Some industrial systems or processes, like many process plant 

processes, occur continuously in time. Others, such as certain manufacturing 

processes, occur more discretely in time. Even though data collected from 

continuous processes are by necessity taken at discrete time intervals, model 

predictions based on these data assume temporal continuity and are commonly 

written in the form of differential equations. By contrast, discrete-time processes 

are modelled using difference equations, equations that take into account the 

discontinuous nature of these processes.  

Difference equations are used in systems where change occurs at discrete points in 

time. Difference equations suppose that future values of variables of a system are a 

function of the current and possibly past values. For instance, a first-order difference 
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equation, given below, supposes that the next period value is only a function of the 

current period value: 

xt+1 =f(xt) 

where f(xt) may be either a linear or nonlinear function, and the starting value x0 is  

needed for the equation to be solved. A general k-order difference equation takes 

the form  

xt+k=f(t, xt, xt+1, … , xt+k-1) 

Obviously, for a k-order equation we need k-1 starting values – x0, x1, …, xk-1 – to 

determine xk. Again, f(t, xt, xt+1, … , xt+k-1) may be either a linear or nonlinear function. 

3.5.1. Stock and flow diagram 

Stock and flow diagrams (SFD) — or level and rate diagrams (LRD) — are ways of 

representing the structure of a system and the typology of the variables selected for 

its representation.  

Stocks (or levels) are fundamental to generating behavior in a system; flows (or 

rates) cause stocks to change. Stock and flow diagrams contain specific symbols and 

components representing the structure of a system. Stocks are things that can 

accumulate — such as inventory — and are represented with boxes.  

Flows represent rates of change and they are expressed by decision functions — 

such as reductions in inventory through sales — and they are represented or drawn 

as valves. These diagrams also contain “clouds” (which represent the boundaries of 

the problem or system in question), auxiliary variables, etc.  

Our models are composed of interconnected networks of stocks and flows, including 

many information channels, which connect the levels to the decision functions. Stock 

and flow diagrams are the most common first step in writing the executable code of 

a simulation System Dynamics model because they help to define types of the 

variables that are important in causing behavior. Therefore we can say that stock 

and flow diagrams provide a bridge from conceptual modelling to assigning 

equations to the relationships between variables.  
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Figure 20:Sample Stock and Flow Diagram (SFD) 

Figure 20 depicts a very simple structure of a reservoir or level, with an inflow and 

an outflow. To specify the dynamic behavior, a system of equations is defined. It 

consists of two types of equations, which correspond to levels and decision functions 

(rates). Equations control the changing interactions of a set of variables, as time 

advances. The continuous advance of time is broken into small intervals of equal 

length dt. For example the equations describing the state of the levels in Figure 4 is 

 𝐿𝑒𝑣𝑒𝑙(𝑡) = 𝐿𝑒𝑣𝑒𝑙(𝑡 − 𝑑𝑡) + 𝑑𝑡 ∙ [𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑙𝑜𝑤 1(𝑡) − 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑙𝑜𝑤 2(𝑡)]  

 𝐿𝑒𝑣𝑒𝑙(𝑡𝑜) = 𝐿𝑒𝑣𝑒𝑙𝑜  

 

Levels in Figure 20 at time t depend on its value at time t-dt and the value going in 

from decision function 1 minus the value going out to decision function 2. Notice 

that it is necessary to give the initial value of it to solve this equation.  

There will be as many equations as variables. To determine the variables’ behavior, 

the differential equations system is integrated. This can be easily done with Vensim. 
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CHAPTER 4. WORK PROCESS DESIGN USING IDEF() 

4.1 The IDEFØ Diagram of the process 

 

 Figure 21: IDEFØ representation of the whole tesis work 
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In this chapter, once the state of the art is defined and a deep review of the DT 

concept is exposed, the central work of the thesis is developed. It is used 

IDEF()to represent the process that it is followed. The representation shows two 

levels of detail in order to present the work of the thesis as clear and 

estructurated as possible. 

Firstly, the IDEFØ model (Figure 21) presents the cyber architecture part in two 

different dimensions. The first one represents the DT model creation and 

application to control and monitor the health and probability of failure of the asset. 

The box number 2, represents the further application and development of the ANN 

to have a powerful tool, which will have a wide range of purposes in Condition Based 

and Smart Maintenance. An intelligent maintenance system is a system that utilizes 

the collected data from the machinery in order to predict and prevent the potential 

failures in them. The goal of intelligent maintenance systems is to achieve and 

sustain near-zero breakdown. Such goal can be achieved by the transformation of 

raw data to valuable information regarding the current and future condition of the 

asset or process being monitored [39]. 

4.2 IDEF1 Diagram 

The IDEF1 represents each of the two boxes in a deeper level of detail. In the box 1 

(Figure 22), the Plant control outputs are the signals given by the PLC, which are the 

inputs for the monitoring at real time. Up to this point, the DT is the main tool to 

monitor the physical system state (Machine from the Industry 4.0 Lab), and make 

an historical time monitoring of the state. 

The DT modelling has been developed in Matlab Simulink, with the SimEvents 

library and the Level-2 S- functions that will be explained below in the thesis. Thus, 

a simulation model focused on the machine degradation is developed. It is based on 

simulated degradation factors and the condition of the machine depending on the 

stress of the work in progress. Actually, the model will provide an “Asset Health 

Index” indicator, which allowes to monitor the machine condition and the 

probability of failure from the asset while working, as well as a preventive 

maintenance action when the probability of failure is bigger than the policy of failure 

defined. 

To continue with the IDEF1 representation level, the second box of the IDEFØ 

diagram, which refers to the ANN is developed (Figure 23). It shows the three 

different phases that the process goes through to finally reach a fully trained and 

aviable ANN. The first step is the election the inputs and outputs that are going to 

form the ANN. Then it will be necessary to use the OPA UA to extract the value of the 

signals, and the Matlab Level-2 S-functions in order to convert the signals into 

training model variables. Once the data to feed the ANN is obtained, the second step 
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of the process begins. The ANN training is made using Vensim model, that allowes 

to implement Backpropagation algorithm. So after the training with the inputs and 

outputs carefully chosen, the parameters that conform the ANN get calibrated. When 

that happens the ANN is aviable to give an output at real time from the inputs that it 

gets by the PLC. 
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Figure 22: IDEF1 repesentation from the IDEFØ´s box 1 
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Figure 23: IDEF1 repesentation from the IDEFØ´s box 2 
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The last part of the IDEFØ box 2 (Figure 23), will be the implementation of the ANN in 

Matlab Simulink DT. And then make it work as another part of the multidisciplinary 

simulation model. Once the DT is completed with the ANN, the output that it could 

give is divided in two. The first one is the deviation in energy consumption of the 

ANN and the real values that will help to detect any anomaly in the asset. When 

detected that, a maintenance action will be executed. 

It has to be said that the ANN hasn´t been implemented in Matlab, because the 

Hardness and Drilling factor of the machine are simulated, and the machine don´t 

actually degradates. 
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CHAPTER 5. MODELS DEVELOPMENT 

5.1 Convert plant PLC signals into model variables 

The chapter 4.4 refers to the IDEF1, 1.1 box (Figure 22). In the following chapter 

it is deeply explained how the conversion from a PLC signal to the Matlab 

variables (Belt, XBG1,Error) that are used to model the machine state. 

The communication between Matlab/Simulink with PLC/sensors of the 

physical machine is realized with the OPC UA standard.  

A level 2 Matlab S function and a simple logic Matlab function have been used 

to generate and transfer the input state signal. Since there is not a single 

sensor value that indicates the state of the machine, it is necessary first of all 

to find the sensors that could represent the states. There are more than 100 

sensors of different types embedded in each CP module, unfortunately how 

the sensors are structured in the PLCs of the plant is unknown. The only way 

to find them was through trial with the help of UAexpert software.   

5.2 Single Machine Model (Machine state determination) 

Up to this point, the extraction of the signals from the PLC is being made. Then 

the IDEF1 1.2 box is developed (Figure 22). In the 4.5 section, the states of the 

machine are modelled, monitored at real time, and recorded in an historical 

state base.  

The model has a virtual part and a corresponding machine-states subsystem 

which communicates with the real system in the Lab instead of by user-

interface. Here this section only highlights the main difference between the 

model created with respect to industrial case and I4.0 Lab. According to the 

design of the system in I4.0 Lab, the module has four states that can be 

modelled: 

 Idle: the conveyor in the module is moving, but no operation is 
performed. 

 Working: the machine is performing operation. 

 Energy-saving mode: the consumed energy is the amount needed only for 
keeping the module on. 

 Fault: the machine is blocked due to abnormal behaviour and shows error 
message in the human-machine interface (HMI). 
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In this regard, the machine-states have been modelled as shown in Figure 24, 

they are labelled as 1, 2, 3, 4 respectively. 

Figure 24: Subsystem mask that defines the state value. 

A mask of the subsystem can allow the user to define the service time of the 

module. After the machine states have been identified and modelled, the 

connection to the real equipment needs to be implemented. Thus, as opposed 

to be controlled by the user-interface, this model communicates directly 

with the real system in the I4.0 Lab. At the end of the day, it turned out that 

three sensor values can be combined together to represent the machine states. 

They refer to the logical signal of the conveyor (xQA A1), the logical signal when 

the RFID is read (xBG1) and the integer signal of the fault (iRedCode). 

The outputs of the logical variables of the level 2 S functions are 0 when the 

value is false and 1 when the value is true. When the part enters the drilling 

module, the signal xQA A1 becomes true (1), while all the other signals are 

0, the machine is in idle state. When the part arrives to the stopper where 

the RFID on the carrier is read, signal xBG1 becomes true (1) and MES will 

tell the machine to perform the operation. When the machine starts working, 

the conveyor stops. When the work is done, the conveyor restarts, xBG1 

turns to 0 and the part leaves the system, the machine is again in idle state. 

When the part leaves completely the module, the machine goes to energy 

saving mode. Regarding the fault state, the part will be blocked at the 

stopper, thus xBG1 and xQA A1 are both true, but iRedCode will return 4 as 

predefined through HMI (Table 2). 
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Table 2: Signal combinations of Drilling Module 

SIGNAL → Matlab Function Variable (INPUT) 

Conveyor == belt 

xBG1 == xBG1 

iRedCode == error 

 

These values are firstly read using the level 2 S function, and then a Matlab 

function is created to group the signals according to the combination shown in 

the Table 2 to output the machine state to be used by the virtual simulation 

model. The sampling time of the level 2 S function needs to be regulated   in 

order to increase the simulation precision, in this case, 0.4 s has been chosen as 

the best one after performing several trials. And the simulation pace is set to be 

as close as the real clock time. 

Figure 25: Matlab function for Drilling Module 

Matlab Function OUTPUTS 

Y==1 → IDLE    

Y==2 → WORKING 

Y==3 → ENERGY SAVING 

Y==4 → ERROR 

Conveyor (xQA A1) xBG1 iRedCode State 

1 0 0 IDLE 

1 1 0 IDLE 

0 1 0 WORKING 

1 1 4 FAULT 

1 0 4 FAULT 

0 1 4 FAULT 
 

Others 
 

ENERGY SAVING 
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Up to this point, the machine states in real time can be monitered. Firstly the signals 

needed are taken from the PLC as outputs with the Matlab Level-2-S-Function. Then 

the states can be modelled by these signals, and finally, the actual machine state in 

real time is known by using the Drilling Machine states block in the model as shown 

in Figure 25. Once this function of the DT is reached with success, the next objetive, 

was creating a data base that stored the machine states value through the simulation 

at real time. And the first step was making a new block in the model, which stored a 

function which receives the machine state value, and the real simulation time as 

inputs. 

 

 

 

 

 

 

 

 

                      

 

 

 

Figure 26:  Matlab Historical state function 

With the end of the block shown in Figure 26 , the single machine DT model that can 

monitor values at real time, and actually can also store the data from the simulation 

in real time in a txt file. Once that block model is is finished, it can be easily seen that 

a monitoring of the machine states evolution through real time simulation is 

reached, but then, the interesting point is knowing the real time that the machine 

has been in each state. In order to solve that question, it can be created a new block 

in the Matlab Simulink model that acts as an accumulator of the time in each state. 
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Figure 27: Matlab states time accumulation blocks 

 As the Figure 27 shows, the inputs are exactly the same, as the ones needed for the 

last function block above. But in this script, the accumulation of time is done and it 

is also printed in a txt, that shows four columns with the total amount of time in each 

state at each moment; and the total amount of time in each state throught the total 

simulation time will be shown in the last txt row as Figure 28 shows. 

 

 

 

 

 

 

 

 

 

Figure 28: Time accumulator on each state 

To sum up, at this point of the thesis, the DT has allowed to get and monitor the 

information from the machine that encompasses some of the most important 

aspects of the machine evolution through the time. In fact, these data and 

information will be a very useful allied to have a deeper understanding and 

knowledge of the machine lifecycle. 

5.2.1 Single Machine model on Energy consumption 

CPS has not only static information but also dynamic information, then the 

behaviour of the machine should be also integrated in the DT. With the increasing 
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emphasis on sustainability and environmental impact, industry production plant on 

one hand requires a big amount of energy, on the other hand it needs to conform 

with the regulations, thus energy consumption behaviour of the plant is essential to 

be monitored and then optimized [40] . To simulate and monitor the energy 

consumption in a production system, there is not a standard approach to implement 

the energy flow into the material flow simulation. Therefore, this work adopted the 

method proposed by Weinert [41]: EnergyBlocks methodology. The core of this 

methodology is based on the machine operation states. Each type of equipment has 

various operating states that exhibit different energy consumption patterns than 

can be identified in its power profile, and each operating state is defined as an 

EnergyBlock. 

This method considers only the electrical energy. Machine energy consumption is 

physically continuous and hence the power profile of a machine is mathematically 

continuous. Continuous curves can be approximated as polynomials, each 

EnergyBlock represents a specific energy consumption behaviour. To formulate 

mathematically the energy consumption behaviour, two variables are considered. 

The required power P for one operation state within energy block m, and the 

duration of the corresponding operation state T. P can be approximated as the 

measured average value of the power profile within a specific state or adopted 

values from expert’s experience and vendor specifications. 

Regarding the energy consumption during the operation, in this work, only electrical 

energy is considered: that is the energy needed for the control devices (PLCs, Energy 

Boxes), for the conveyor transportation systems. The energy consumed by 

operations through the compressed air is not included.  These energy consumption 

data with respect to each state should be obtained through the historical data of the 

energy database. The energy box displays only the instant value of the power 

consumption value. 

5.3 Drilling Machine Condition Modelling 

Regarding to the IDEF1 skim (Figure 22), the development of the Drilling 

Machine Condition Modelling belongs to the 1.3 box in the diagram. The machines 

in the Industry 4.0 Lab (Figure 31), don´t actually degradate so it is needed to 

recreate and simulate some factors that represent how the condition evolves 

through time. 
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Figure 29: Matlab Simulink model for Drilling Machine Condition 
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In order to reach that, a simple simulation model (Figure 29) has been developed 

considering two simulated factors which are considered as the asset degradation 

factors, that are the Hardness factor of the material (Hardness of the material that 

the machine is drilling) and the Drill factor of the material (Numbrer of holes that 

the asset drills). The model takes as inputs these factors, as the real simulation time, 

and as a connection with the DT, the state of the machine at real time. Having the 

state of the machine is essential because the model considers that the asset only 

degradates when it is in working state. Both Idle and Energy Saving don´t degradate 

the asset condition. 

At first is should be said that the model uses indicators from different levels 

depending on the deepness. To begin, the first level indicators have the same 

function as the time accumulator function from the Matlab Simulink DT model. It is 

done an accumulation of the asset´s time on each state, and actually on the same 

level, there is an indicator for the hardness factor and the drilling one. Until this 

point, the model has only done a monitoring of the real and simulated factors. From 

this monitoring comes the main model´s function. The second level of indicators is 

composed by three. There are two indicators that are more relationed to the 

monitoring aspect (Avaiability, Utilization), and another that could be more related 

with the asset working time (DH Equivalent Operating Time). The last one considers 

a value that comes frome the multiplication of both Drilling and Hardness factor. 

That equivalent time represents that the asset working time has to be modelled 

considering the caracteristics of the manufacture work, which means that the 

equivalent time is used to simulate the “real” degradation of the machine depending 

on the stress of the work done. In the same way, the equivalent operating time can 

be different to the time that the asset has been on the working state, just because 

the analisys takes in consideration how the condition of the asset changes from the 

maintenance view. 

Once understood the DH Equivalent operating time, the next step is get in contact 

with the Accumulated Equivalent Operating Time. It has been mentioned in the 

previous page that the model considerates the “Working” state as the only one that 

affects the machine condition, and so on, the DH Eq OP time condition to be different 

from cero is the asset being working. Then the next level indicator, accumulates this 

equivalent time until a failure happends or a replacement of the asset is done 

(maintenance). So to sum up, this level three indicator accumulates the equivalent 

operating time while the asset is working and is not suffering a replacement of 

failure that will turn the indicator value cero (Figure 30). 
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  Figure 30: The Acc Equ Op Time over the simulation time 

After the levels mentioned, the model goes deeper and gets to a fourth level. In this 

level an Ageing Rate of the asset is defined as a tool to modelate the Asset Health 

Index. The Ageing Rate is a constant built from the health index when the asset is 

new, at the end of the asset’s useful life, and expected life. From the Ageing Rate and 

the Acc Equ Operating Time the model gets the value of the Asset Health Index (AHI), 

which is represented by an exponential function. The AHI represents how the health 

condition of the asset is evolving in time. It is also a representation of the 

degradation at real time, which is the main variable used to modelate the Probability 

of Failure variable (PoF). The PoF is a variable that represents the probability of 

failure that the asset has in each moment of time depending on the condition of the 

machine (AHI) [42][43][44]. 

 

Figure 31: Industry 4.0 Lab´s Drilling Machine 

At this point of developing of the model, it can be focused or finished in two different 

ways. At first it can be done a Montecarlo simulation with a random number and a 

variable call Fail. And this first function can be developed just as a monitoring of the 

fail and the failure state. Then in the second path, there is an application which is 



 
 
 

91  

more connected with the DT model because it is more related with a preventive and 

predictive policy. By the way, it can be defined a variable called Failure probability 

threshold (FPT) that is a policy defined as a constant at the start of the model, 

representing the probability of failure that is accepted as a risk on the asset, before 

making the stop for maintenance. As a consecuence, the model needs a Boolean 

variable called Preventive in order to represent when the preventive maintenance 

stop happens. It can be easily understood that the Preventive value will be 1, when 

Pof is bigger than FPT, because it will mean that the probability of failure of the asset 

is bigger than the value considered as the asset´s limit failure risk. All mentioned 

above will mean that the model focused in this second waty does not consider the 

fail as something that will happend with a high probability. Just because there is 

defined a failure probability threshold, which will not let it happen if it is well 

defined depending on the asset and it´s operating time. 

5.3.1. Model Notation and Equations 

The notation us in the model is as follows: 

 Monitoring variables (inputs) 

𝐼𝑇𝑖𝑚𝑒 𝑡: Boolean variable with value 1 if machine is in Idle state at time t 

𝑊𝑇𝑖𝑚𝑒 𝑡: Boolean variable with value 1 if machine is in Working state at time t 

𝐸𝑆𝑇𝑖𝑚𝑒 𝑡: Boolean variable with value 1 if machine is in Energy Saving state at time t  

𝐹𝑇𝑖𝑚𝑒 𝑡: Boolean variable with value 1 if machine is in Fault state at time t 

𝐻𝐹𝑡: Hardness factor of the material at time t 

𝐷𝐹𝑡: Drill factor of the material, number of holes to drill at time t 

 Constants 

AR: Ageing Rate of the asset 

LE: Life Expectancy of the system before the overhaul or replacement 

Hel: Healh index at expected life 

Hn: Health index when the asset is new 

Hel: Health index at the end of the asset’s useful life 

 Dependent Variables 

𝑆𝑡: Machine State through the simulation real time 

𝑃𝑜𝐹𝑡: Probability of failure at time t 
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𝐹𝑡 : Boolean variable to represent (value 1) a failure at time t  

𝑅𝑁 𝑡: Pseudo Random Number from a Uniform distribution between 0 and 1 at time t 

𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒𝑡: Boolean variable to represent (value 1) when the machine has to stop, to 

                           make the preventive maintenance. 

𝐹𝑃𝑇: Failure probability threshold 

 Level 1 indicator variables 

𝐴𝐼𝑇𝑡: Accumulated Idle time at time t 

𝐴𝑊𝑇𝑡: Accumulated Working time at time t 

𝐴𝐸𝑆𝑇𝑡: Accumulated Energy Saving time at time t 

𝐴𝐹𝑇𝑡: Accumulated Failure time at time t 

 Level 2 indicator variables 

𝐷𝐻𝑡: Equivalent operating (considering Drilling and Hardness) time at time t 

𝐴𝑉𝑡: Machine availability at time t 

UT 𝑡: Asset Utilization at time t 

 Level 3 indicator variables 

AOT 𝑡: Accumulated asset operational time, at time t 

𝐴𝑈𝑇 𝑡: Asset Utilization average through simulation real time  

 Level 4 indicator variables 

𝐴𝐻𝐼𝑡: Asset Health Index at time t 

With the above declared notation,  the equations of the model can now be writen, 

and are as follows: 

 Input  variables 

𝐻𝐹𝑡 =  { 

1.5 − 𝐻𝑖𝑔ℎ ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
1.2 − 𝑀𝑒𝑑𝑖𝑢𝑚 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

1.0 − 𝐿𝑜𝑤 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
           (Input) 

𝐷𝐹𝑡   =  {
1 − 𝑇𝑤𝑜 ℎ𝑜𝑙𝑒𝑠 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
2 − 𝐹𝑜𝑢𝑟 ℎ𝑜𝑙𝑒𝑠 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

            (Input) 

𝐼𝑇𝑖𝑚𝑒𝑡 = {
1         𝐼𝑑𝑙𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

  0            𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
      (1) 
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𝑊𝑇𝑖𝑚𝑒𝑡 = {
1        𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

  0          𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒       
     (2) 

𝐸𝑆𝑇𝑖𝑚𝑒𝑡 = {
1       𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

  0                             𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
    (3) 

𝐹𝑇𝑖𝑚𝑒𝑡 = {
1           𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

  0          𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒       
     (4) 

𝑆𝑡 = {

1,   𝑖𝑓 𝐼𝑇𝑖𝑚𝑒𝑡 = 1

2,   𝑖𝑓 𝑊𝑇𝑖𝑚𝑒𝑡 = 1

3,   𝑖𝑓 𝐸𝑆𝑇𝑖𝑚𝑒𝑡 = 1

4,   𝑖𝑓 𝐹𝑇𝑖𝑚𝑒𝑡 = 1

        (5) 

 1st Level indicators  

AIT 𝑡 = ∑ 𝐼𝑇𝑖𝑚𝑒𝑖
𝑖=𝑡
𝑖=0         (6) 

AWT 𝑡= ∑ 𝑊𝑇𝑖𝑚𝑒𝑖
𝑖=𝑡
𝑖=0         (7) 

AEST 𝑡= ∑ 𝐸𝑆𝑇𝑖𝑚𝑒𝑖
𝑖=𝑡
𝑖=0         (8) 

AFT 𝑡= ∑ 𝐹𝑇𝑖𝑚𝑒𝑖
𝑖=𝑡
𝑖=0         (9) 

 2nd Level indicators 

𝐷𝐻 𝑡 = {
𝐻𝐹𝑡 × 𝐷𝐹𝑡                                   𝑆𝑡 = 2
0                                                  𝑒. 𝑜. 𝑐  

     (10) 

𝐴𝑉 𝑡= (AIT t + AWT t + AEST t) / (AIT t + AWT t + AEST t + AFT t)  (11) 

UT 𝑡= (AWT t) / (AIT t+ AWT t + AEST t)     (12) 

 3rd Level Indicators 

AOT 𝑡= (𝐴𝑂𝑇 𝑡−1  + 𝐷𝐻 𝑡  ) × (1 − 𝐹𝑇𝑖𝑚𝑒 𝑡)     (14) 

AOT 0 = 0          (15) 

𝐴𝑈𝑇 𝑡= (∑ 𝑈𝑇 𝑡
𝑡
0 ) /𝑡        (16) 

 AHI (Asset Health Index)  

AR= 
ln

𝐻𝑒𝑙

𝐻𝑛

𝐿𝐸
          (17) 

Hel= 5,5           (18) 

Hn=0,5          (19) 
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LE = 10           (20) 

𝐴𝐻𝐼 𝑡= Hn× 𝑒𝐴𝑅×𝐴𝑂𝑇𝑡          (21) 

 

 PoF Estimation 

𝑃𝑜𝐹𝑡  : {

0.01                                                    𝐴𝐻𝐼𝑡 ≤ 5,5 

0.0000359381 × (𝑒1.02337×𝐴𝐻𝐼𝑡  )         5,5 < 𝐴𝐻𝐼𝑡 < 10
1                                                        𝐴𝐻𝐼𝑡 ≥ 10  

  (22) 

 

𝐹𝑡 :   {
1                                       𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟𝑡 < 𝑃𝑜𝐹𝑡

0                                                                                𝑎. 𝑜. 𝑐
   (23) 

𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒𝑡: {
1                                                                  𝑃𝑜𝐹𝑡 ≥  𝐹𝑃𝑇
0                                                                                𝑎. 𝑜. 𝑐

  (24) 

5.3.2. Model Adaptation to Matlab Simulink 

The model is developed above to have a better understand of the way it works, by 

the equations. Then it has to be adaptated to Matlab Simulink, in order to implement 

it in the DT model as another of the multidisciplinary simulations.  

Firstly it has to bre created a function that generates a value for the simulated 

operational factors (Hardness and Drilling) when the state is working state. It is 

reached by creating a random uniform distributed number between 1 and 0. And 

depending on the number of values that the factor can get (3 for the hardness and 4 

for the drilling one), create as many divisions on the distributions as values the 

factor can get (Figure 32). 

 

  

 

 

 

 

Figure 32: Simulation of the values of the factors depending on a random distribution 
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If the values can be used as real inputs, because the simulation has been made, the 

model has all it needs to work. So the implementation is made as a new model block 

and to a large extent the AHI can be modelled and monitored for decision making.   

5.4 Machine Artificial Neural Network (ANN) 

Up to now, the equivalent operating hours are calculated to predict the moment 

from the risk of suffering a failure starts to increase. Basically the Drilling Machine 

Condition model provides a monitoring of the health of the asset by the AHI. It is 

made base to our information about the operating variables of the process.   

Apart from that, we can also use other vigilance techniques focused on the process 

of appearance and propagation of the failure, based on deviations from the normal 

behaviour on a specific condition observed on the asset. For example, we know that 

the electrical consumption of the asset for a determined hardness, number of holes, 

and accumulated operating time is X (the machine has been trained and can 

calculate it), however it gives the value X + increase of X, then we can conclude that 

the failure process is developing itself, and how much time it will take. 

This last idea could be reached by a Neural Network that is coordinated with the AHI 

(Asset health index). Writing down the times between failures, and by this way have 

a better model of the asset health, which can measure better the factors of the 

machine degradation. With the Neuronal Network, the failures can be detected 

before they physically happen. The inputs that can be used are the Drilling Factor, 

Hardness Factor, Accumulated Asset Operation Time, and the Asset Health Index for 

example. And as an output the Energy Consumption. These variables are provided 

to the ANN training model in the same way that they are given to the DT developed 

in the IDEFØ box 1. So the process of converting the PLC signals into model variables 

is totally the same. So the IDEF1 2.1 box (Figure 23), is considered to be developed 

in the same way. Then the IDEF1 2.2 box (Figure 23), gets the model converted 

variables, as well as the AHI and the other machine condition variables from the 

Drilling Machine Condition Modelling (IDEF1 1.3 box, Figure 22). 

Once the ANN has been presented and explained, the work is going deeper on the 

equations and implementation. 

5.4.1 A Continuous Time Dynamic Simulation Model for the ANN 

The dynamic simulation model below, is the tool chosen to make the ANN training. 

It represents the IDEF1 2.2 box (Figure 23). Firstly the kind of simulation chosen is 

explained, and then the model and equations are shown. The model for training is 

been tested with simulated data, to prove it´s efficiency. But the model has not been 

tested with real data because the operational factors are not real, and due to that 

fact, the model has only been shown and tested with random simulated data. 
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 5.4.2  The ANN Dynamic Simulation Model 

In this Section a continuous simulation model of the previous ANN with 

backpropagation is presented. The dynamic simulation model that will be presented 

in this work can be characterised as follows: 

 It is a non linear models because of the nature of the ANN. 

 Difference equations will be used to formalise the models, i.e. future values 

of variables will be expressed as a function of the current and possibly past 

values. 

 The time advance method will be time-stepped, i.e. time will be advanced in 

fixed time increments and the system state will be recalculated at each 

increment. 

 The time that the physical system is modelled – physical time of the 

simulation – will depend on the purpose of the specific analysis to carry out. 

For instance of the specific prediction to be done in a machine, for a certain 

operating mode of the machine, etc.  

 The modelling methodology to follow will be the one presented for System 

Dynamics. In this case special attention is paid to the use of the different 

models as decision support systems. The use of system dynamic tools such 

as the Stock and Flow diagram (SFD) is selected for this specific model.  

 The simulation software tool used to build the models in this book is Vensim. 

Vensim® (Vensim is a registered trademark of Ventana Systems Inc.) 

provides high rigour for writing model equations. It adds features for tracing 

feedback loops. In addition “Causes Tree” and “Uses Tree” features help in 

debugging the model. Vensim also provides very powerful tools for 

multiparametric simulation results optimisation which allows the analyst to 

validate results and model structure as well as to determine most convenient 

policy options by parametrising these policies. This work benefits, on several 

occasions, from the advantage of Vensim given by the incorporation of a 

powerful optimiser based on a modified Powell method algorithm. This 

feature produces very fast convergence of the direct search technique when 

optimising solutions and without the requirement of gradient assessment in 

the different iterations. Having said this, it is important to remember that the 

mathematical formulation of the models in this Chapter does not take into 

consideration the software used, i.e. Vensim code is only included in an 

Annex, so any can build the model regardless of the software tool preferred. 

 Regarding model validation, the model will follow serious reality checks and 

validation procedures.   

 

In the following Sections, first the the Stock and Flow Diagram (SFD) will be shown, 

and then the notation of the variables included in the model will be presented. Then 
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the simulation model formal equations will be listed. Finally some results and 

graphs of the model will be plotted and also the Vensim simulation model equations 

will be listed, in an Annex.  

 

Figure 33: Stock and flow diagram of the ANN simulation model for backpropagation 

Our example ANN dynamic simulation model SFD is presented in Figure 33. In this 

Figure the boxes, stock variables, are the weights in each layer (w1t and w2t), and 

the accumulated square error during training (Acc Square Errort). This last stock 
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variable has been added to compare simulation and measure the performance of the 

network under diverse scenarios. The weights may change according to the value 

that rates variable take over time. Rates of adjustments of the weights are Adj1t and 

Adj2t , and they include the variation of the weights in each iteration that is defined 

by the Delta Rule in each layer. 

The weights will be changing over time when the network is learning, and will 

remain constant once the network training ends. So Figure 33 represents the ANN 

simulation model for the process of backpropagation. Some of the Figure 5 variables 

are “shadow” variables, in order to avoid the influence arrows crossing or 

overlapping in the diagram. Table, constants or parameters are normally underline 

in this type of diagrams. Some of the auxiliary variables are placed inside a circle to 

represent the neurons (this would be no formal requirement in the SFD). 

5.4.4 Notation of the variables 

The notation that we will use together with the indication of the typology of the 

variable used, in Figure 5, are as follows: 

 Tables, Constants & Parameters 

𝐵𝑖𝑎𝑠1 = 𝐵𝑖𝑎𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

𝐵𝑖𝑎𝑠2 = 𝐵𝑖𝑎𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

𝐼𝑛𝑝𝑢𝑡 (𝑖) 𝑑𝑎𝑡𝑎 = 𝐿𝑜𝑜𝑘𝑢𝑝 𝑇𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑝𝑢𝑡 𝑖 𝑑𝑎𝑡𝑎 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 = 𝐿𝑜𝑜𝑘𝑢𝑝 𝑇𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 

𝐸𝑡𝑎 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

 Auxiliary variables 

𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑝𝑢𝑡 𝑖 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑁 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

𝑇𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑑𝑒𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑁 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

𝑁𝑒𝑡𝐻(𝑗)𝑡 = 𝑁𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

𝑂𝑢𝑡𝐻(𝑗)𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  

𝑁𝑒𝑡𝑂𝑡 = 𝑁𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

𝑂𝑢𝑡𝑂𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  
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𝐷𝑒𝑙𝑡𝑎 𝑂𝑡 = Delta function (𝛿𝑜𝑡) of the output 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

𝐷𝑒𝑙𝑡𝑎 𝐻(𝑗)𝑡 = 𝐷𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 ℎ 𝑙𝑎𝑦𝑒𝑟 (𝛿𝐻1(𝑗)𝑡) 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  

 Stock variables 

𝑤1(𝑖, 𝑗)𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

𝑤2(𝑗)𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

𝐴𝑐𝑐 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑡 = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

 Flow Variables: 

𝐴𝑑𝑗1(𝑖, 𝑗)𝑡 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤1(𝑖, 𝑗) 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  

𝐴𝑑𝑗2(𝑗)𝑡 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤2(𝑗) 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑄 𝐸𝑟𝑟𝑜𝑟𝑡 = 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡  

5.4.5 Equations 

The equation for each one of the above declared variables are now presented:: 

 Tables, Constants & Parameters 

𝐵𝑖𝑎𝑠1 = 𝐵1,         𝑑𝑎𝑡𝑎         (1) 

𝐵𝑖𝑎𝑠2 = 𝐵2,         𝑑𝑎𝑡𝑎        (2) 

𝐼𝑛𝑝𝑢𝑡 (𝑖) 𝑑𝑎𝑡𝑎 = 𝑓𝑖𝑛𝑝𝑢𝑡(𝑥)            𝑑𝑎𝑡𝑎 𝑡𝑎𝑏𝑙𝑒    (3) 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑦)             𝑑𝑎𝑡𝑎 𝑡𝑎𝑏𝑙𝑒                (4) 

 = 𝑜,                  𝑑𝑎𝑡𝑎         (5) 

 Auxiliary variables 

𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡 = 𝑓𝑖𝑛𝑝𝑢𝑡(𝑡)         (6) 

𝑇𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)         (7) 

𝑁𝑒𝑡𝐻(𝑗)𝑡 = ∑ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡 ∙ 𝑤1(𝑖, 𝑗)𝑡 + 𝐵𝑖𝑎𝑠1𝑖=𝑛
𝑖=1          (8) 

𝑂𝑢𝑡𝐻(𝑗)𝑡 =
1

1+𝑒−𝑁𝑒𝑡𝐻(𝑗)𝑡
        (9) 

𝑁𝑒𝑡𝑂𝑡 = ∑ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ 𝑤2(𝑗)𝑡 + 𝐵𝑖𝑎𝑠2
𝑗=𝑚
𝑗=1       (10) 
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𝑂𝑢𝑡𝑂𝑡 =
1

1+𝑒−𝑁𝑒𝑡𝑂𝑡
         (11) 

𝐷𝑒𝑙𝑡𝑎 𝑂𝑡 = (𝑂𝑢𝑡𝑂𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑡) ∙ 𝑂𝑢𝑡𝑂𝑡 ∙ (1 − 𝑂𝑢𝑡𝑂𝑡)       (12) 

𝐷𝑒𝑙𝑡𝑎 𝐻(𝑗)𝑡 = 𝐷𝑒𝑙𝑡𝑎 𝑂𝑡 ∙ 𝑤2(𝑗)𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡 ∙ (1 − 𝑂𝑢𝑡𝐻(𝑗)𝑡)   (13) 

 Stock variables 

𝑤1(𝑖, 𝑗)𝑡 = 𝑤1(𝑖, 𝑗)𝑡−1 − 𝐴𝑑𝑗1(𝑖, 𝑗)𝑡      (14) 

𝑤1(𝑖, 𝑗)𝑡𝑜 = 𝑤1𝑜(𝑖, 𝑗),           𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛     (15) 

𝑤2(𝑗)𝑡 = 𝑤2(𝑗)𝑡−1 − 𝐴𝑑𝑗2(𝑗)𝑡       (16) 

𝑤2(𝑗)𝑡𝑜 = 𝑤2𝑜(𝑗),           𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛     (17) 

𝐴𝑐𝑐 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑡 = 𝐴𝑐𝑐 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑡−1 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑄 𝐸𝑟𝑟𝑜𝑟𝑡  (18) 

𝐴𝑐𝑐 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑡𝑜 = 0, Initial condition    (19) 

 Flow Variables: 

𝐴𝑑𝑗1(𝑖, 𝑗)𝑡 = −𝐸𝑡𝑎 ∙  𝐷𝑒𝑙𝑡𝑎 𝐻(𝑗)𝑡 ∙ 𝐼𝑛𝑝𝑢𝑡(𝑖)𝑡      (20) 

𝐴𝑑𝑗2(𝑗)𝑡 = −𝐸𝑡𝑎 ∙ 𝐷𝑒𝑙𝑡𝑎 𝑂𝑡 ∙ 𝑂𝑢𝑡𝐻(𝑗)𝑡      (21) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑄 𝐸𝑟𝑟𝑜𝑟𝑡 =
1

2
∙ (𝑇𝑎𝑟𝑔𝑒𝑡𝑡 − 𝑂𝑢𝑡𝑂𝑡)2     (22) 

5.5. ANN Training 

5.5.1. Calibration of the model parameters for ANN Training 

Understanding ANN Training process dynamics is important. When the number of 

hidden layers grow, or the number of neurons per layer increases, the training 

process can be long and the opportunity to use the network appropriately could be 

jeopardized.  

 

The training process implies feedback mechanisms that get activated to diminish 

the error. These mechanisms are robust, involving different goal seeking feedback 

loops with non-lineal behavior. However, non-linearities may result in a very slow 

movement towards the optimum when training the network, and the initial value 

for the set of parameters to be determined could result of vital importance to train 

properly the network with a reasonable amount of data. 

 

In the following paragraphs and figures, as an example, existing feedback loops in 

the system dynamics model developed are presented, with the idea to identify 

completely those mechanisms generating training dynamics. 
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 In Figure 34 the first more direct negative feedback loops are identified. The red 

loop (named 1) adjust the weights w2(j) to diminish the error 𝐷𝑒𝑙𝑡𝑎 𝑂𝑡, notice how 

the gain of the loop is conditioned by the value of Eta. The closer the value to 1 of 

Eta, i.e. the higher the learning coefficient, the larger the feedback effect to correct 

the error. This could be counterproductive when reaching points closer to the 

optimum. Bias 2 is also important in the sense that, Bias 2 may provide a fast initial 

approximation to the expected range of better w2(j) values, however it seems that 

final approximation mechanism to the optimum w2(j) values will be controlled by 

Eta. The slower Eta the lesser oscillation around the optimum, but the slower speed 

of approximation too. 

 

The blue loop (named 2) adjust the weights w1(i,j) to diminish the error 𝐷𝑒𝑙𝑡𝑎 𝐻𝑡, 

notice how again the gain of the loop is conditioned by the value of Eta, but  𝐷𝑒𝑙𝑡𝑎 𝑂𝑡, 

and w2(j) may also impact on the loop gain. When the red loop is closer to the 

desired value of w2(j), then the error will be smaller and the gain of the blue loop 

feedback loop will also be lower. Bias 1 has in the blue loop a similar effect that Bias 

2 has in the red loop. 

 
 

Figure 34. Negative feedback loops 1 (Red) and 2 (Blue) 

Red loop dynamics impact on the blue loop ones. In Figure 35 a third negative 

balancing feedback loop is identified. This loop shows how we adjust w1(i,j) 

depending on the error of the output of the ANN. It is interesting to see how the 

weights adjustment, in the two levels, are interrelated.   
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Figure 35. Negative feedback loop 3 (Red and Blue thick line) 

 

 
 

Figure 36. Positive reinforcing feedback loops 4, 5  and 6 (Red and Blue thick lines) 
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Figure 36 shows the three reinforcing loops existing in the ANN training model. 

These loops force the training model to replicate the effect of increasing or 

decreasing the adjustment of one set of weights Adj1t  in the second set Adj2t , and 

vice versa. 

 

 
 

Figure 37. Effect of changes in Bias 1 parameter during ANN fitting 
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Some final learnings of this feedback loops analysis could be stated as follows: 

 Selecting initial values for Bias 1 and Bias 2 parameters seems to be crucial 

to save time, to avoid training time in less precise, gross initial fitting, 

specially when eta is selected low. In Figure 37 and 38, some examples 

illustrating the effects of Bias selection considering the same initial weights 

values departing points are presented. By playing with Synthesim using 

Vensim software we could appreciate that it is important both values to be 

compensated for a reasonable fit. So these would be parameters whose 

values are very important to optimize for a fast convergence to the ANN 

weights to the proper target fit.     

 

 
 

Figure 38. Effect of changes in Bias 2 parameter during ANN fitting 

 Selecting initial values for Bias 1 and Bias 2 parameters seems to be also 

crucial to reach a better fit. Once Bias 1 and 2 are fixed the best possible fit 

is conditioned. 

 Selecting proper Eta values depend on the right choice of weight initial 

values. When initial w1(i,j) and w2(j) values are randomly selected, Eta 

value becomes critical. When initial search points for this weights can be 

optimized, Eta impact on training time will be much less important. See 

Figure 39 with far from optimum initial values of both w1(i,j) and w2(j). 

 Of course, we may expect that all previous problems related to training 

mechanism and dynamics are amplified when the number of neurons or 

layers of the ANN increase. 
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To overcome all these training dynamic issues we can rely on tools provided by 

Vensim for optimization and calibration of model parameters. 

Vensim uses the direct-search method that does not evaluate the gradient (Powell 

Modified Method), to calibrate model parameters. In our case it is important to 

calibrate Bias 1, Bias 2 and Eta (learning coefficient) parameters in order that the 

ANN offers its best possible fit as soon as possible.  

 

 

Figure 39. Effect of changes in Eta parameter during ANN fitting 

The Powell method has been found to be very suitable for the analysis of dynamics 

of complex nonlinear control systems. The Powell method (Powell, 1964), is well 

known to have an ultimate fast convergence among direct-search methods. The 

basic idea behind Powell's method is to break the N dimensional minimization down 

into N separate one-dimensional (1D) minimization problems. Then, for each 1D 

problem a binary search is implemented to find the local minimum within a given 

range. Furthermore, on subsequent iterations, an estimate is made of the best 

directions to use for the 1D searches (In the Powell method, at most m iterations, 
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where m is the number of parameters to be estimated, yields the optimal solution to 

the problem with cost function of quadratic form, if the directions of m-dimensional 

vectors are linearly independent at every iteration step). Some problems, however, 

are not always assured of optimal solutions because the direction vectors are not 

always linearly independent. To overcome this difficulty, the method was revised 

(Powell,1968) by introducing new criteria for the formation of linearly independent 

direction vectors.  This revised method, is called “The Modified Powell Method”, 

which is the one used in this work. At present, there is a wide applicability of this 

method (see for instance the optimization module of VENSIM 5.1), and at the same 

time it is used in some new developments of hybrid numerical optimization 

techniques incorporating genetic algorithm into that method (Okamotoa et al. 

1998).   

For example, in our example with 8 neurons, if we introduce the initial point of 

search: 

  Bias 1 = 0 
  Bias 2 = 1 
  Eta = 1 

An the result of the Power optimizer is: Payoff (-31.6176) realized at multiple 

parameter values after Simulations = 876, Optimizations = 36, Pass = 3.  Select for 

instance: 

  Bias 1 = 1 

  Bias 2 = 0.416667 

  Eta = 1 

Then we can select these values as the model parameters. Calibration can be done 

for each network configuration selection (i.e. number of HL neurons), and each time 

the target functions and inputs change. 

5.5.2. Models Results and Validation 

As sample model results we do present, in Figure 40, the evolution of the current 

and accumulated error over time when using 5 to 8 neurons in the hidden layer. This 

is a three inputs and the reader can appreciate a fast convergence to acceptable 

prediction of the ANN5 but then less precision than the ANN8, which tales longer 

time to adapt and therefore more accumulated error, but then seems to be more 

precise over time.    
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Figure 40. Current and Accumulated Error over time when using 5 to 8 neurons in the HL 

In Figure 41, the evolution of the ideal versus current prediction when the network 

is trained is presented, when using 5 to 8 neurons in the hidden layer. The reader 

can appreciate the convergence to acceptable predictions when departing from 

W1(i,j)t0 = 0,5 and  W2(j)t0 = 0,5. 

 

Figure 41. Target and Prediction  of the ANN with 5 to 8 neurons in the hidden layer 
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CHAPTER 6. RESULTS DISCUSSION  

As shown in the previous chapters, multidisciplinary models have been developed 

to have a complete vision work of the full concept of the DT. Once shown the 

methodology and implementation, it is interesting to have a discussion on the 

results of each part of the work development. In this chapter, the results of each 

model on chapter 5, are shown and explained. 

At first, in order to perform the simulation, it is obliged to connect to the access 

point   or the wireless of I4.0 Lab. This network grants access to all the facilities 

in the system: application modules, PLCs, energy boxes and so no and it is the 

basis of the OPC UA server/client connection, the signals from the PLC are taken 

and converted successfully by the Matlab Level 2 S-function. This can be considered 

the first result. The simulation on the Matlab Simulink DT gives at first the value of 

the state through a txt file in real simulation time (Figure 44). As well, the model 

provides an historical accumulator of the time in each asset state (Figure 44). These 

are the most important results, and apart from that, the modules as the state 

variable or the entity terminator (pieces ended in the simulation) provide a graphic 

that represents the values of the module variables in simulation, at the end of it 

(Figures 42, 43). 

All mentioned above can be easily seen in an example run. To start the user defines 

and launches the production order in the MES. For example, which product do you 

want to process? How many pieces do you want to produce? And when do you want 

to start the production? All these questions can be clarified in the MES. In order to 

create a new product, two steps are needed: 

1. Create new work plan: it is necessary to define first of all the work 
plan that is the process sequence to realize the product. Since in this 

case, there is only one machine, a single drilling operation is needed 
to be defined. 

2. Create new production part: After the work plan has been created, 

production part needs to be added inserting the created work plan. 

On this example run it can be seen that, as the work and production plan define, 

the entities entered the system one after another, the module did not have time 

to turn to energy saving state. Therefore, the states graph shows a clear and 

smooth pattern of “idle-working-idle” (Figure 42). No energy consumption data 

for the fault state is expected. By comparing with other runs it can be identified 

that with a tight scheduling, the idle time of the machine can be reduced and 

results in a lower consumption of energy. 
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Figure 42: Machine states on an example run 

 

Figure 43: Entity Terminator of an example run 

 

Figure 44: Real time state monitoring, and real time on state accumulator druing the simulation. 
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Regarding the energy consumption during the simulation, only electrical energy is 

considered: that is the energy needed for the control devices (PLCs, Energy Boxes), 

for the conveyor transportation systems. In this end, in an energy point of view, the 

fault state is the same as idle state and the working state is the same as energy saving 

state since the conveyor stops when the module is doing operation (Table 3). These 

energy consumption data with respect to each state should be obtained through the 

historical data of the energy database. The energy box displays only the instant value 

of the power consumption value. Thus, by tracking by eyes the values on the display 

of the energy boxes during the production cycle, the following power consumption 

data are obtained. Then an accumulation of the energy consumption in each state 

depending on the real simulation time can be also done. 

State Power (w) 

Idle 58 

Working 43 

Fault 58 

Energy Saving 43 
 

Table 3: Power consumption profile on each state on sample time 

 

Once finished the monitoring aspect of the DT, and after the implementation of the 

AHI model on the DT; the new results that can also be provided by the model are the 

ones that we use as inputs for the ANN model, knowing of course that the 

operational factors are simulated. Up to this point, the Drilling and Hardness factors, 

the AHI, the accumulated operational, and the probability of failure are given by the 

model at real time by a txt file or could be implemented a mask that show all the 

information. In the same run done before, the values of al the variables above 

explained in the Drilling Machine Condition Model are provided as shown in Figure 

45. 

In the Drilling Machine Condition Model, it is not defined a value for the Failure 

Policy, and the maintenance action is also not implemented. These variables and 

actions are not implemented because the machine factors are simulated. If there 

were real, in a further work it should be developed a connexion back with the PLC 

to stop the machine for the maintenance action. 
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Figure 45: AHI monitoring and Pof representation 

 

The results of the ANN, have already been exposed before in the thesis. It has been 

made the validation of the training with different number of neurons; and with Data 

that is not related to the work but has been useful to validate the work of the ANN. 

So the training and results of the ANN are validated with a very small error, but the 

absence of the real data of the operational factors, made it impossible to implement 

the ANN on the Matlab Simulink DT model. So the ANN model is proposed, with it´s 

structure, inputs, and outputs; and it will only need aviable and real training data to 

be implemented in the DT. 
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CHAPTER 7 CONCLUSIONS 

The focus of this thesis lies on the DT concept and the application of the 

condition based maintenance and neural networks to the digital field. It is a 

highly relevant concept in the recent industrial and research initiatives level. 

The research started from the current classic simulation practise in the 

manufacturing world to what enterprises may benefit from the adoption of 

DT in their business, shaping the new role of DT in the Industry 4.0 

paradigm. 

Although it draws big attentions in the research field, many studies and 

works did not necessarily share and reflect the same definition of DT. In this 

end, this work first of all proposes a literature analysis about the concept of 

DT by offering a systematic review of what has been written on this topic in 

the manufacturing domain. This step is necessary and important because it 

sets the starting point and the basis of the following research works in this 

elaboration. After the work three clear interpretations of the DT function are 

concluded: 

 DT as a virtual monitoring of the physical variables. 

 DT as a decision taking tool, based on the condition of the machine given by 
the variables of the digital model. 

 As a virtual commissioning tool, that can allow to make a digital prototype 
that does the same functions as a physical  

After having these uses of the DT defined, it could be easily seen that this work 

focuses on the monitoring and decision taking aspects. The monitoring objective is 

reached by the connection of the computer tools with the PLC, and the decision 

taking aspect has been developed and proposed but not validated because of need 

of a tool to send the control actions from the computer back to the PLC, and the 

complexity of this need. 

So it can be concluded that, if the PLC and the MES provide the signals and the 

production plan with the operation mechanical factors; the states of the machine, 

the condition of the asset health, and the probability of failure can be provided by 

the DT in real time and it allows a huge world of decision taking possibilities to 

control the performance of the machine studied. It is only needed to develop a way 

or tool to send the control decisions back to the PLC in order to make them effective 

on the field. 

Apart from that, this work also gives an interesting conclusion about the new tools 

that are born in the recent days, and are focused to vigilance and machine learning. 
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The methods related to the AHI and condition based maintenance are applied to 

reach a model that controls the health of the asset and the probability of afailure, 

but with the application of the ANN there is a different point of view. 

The ANN applied to the DT, can allow to have a tool that will detect any variation on 

the asset performance, but it is not based on probability and can appreciate any 

anomaly considering a much deeper level. So to conclude, in a further work, it could 

be reached to make a DT model of a system that analyses and trains itself, that will 

allow to have a total control of the asset performance which could be more 

energetically efficient and also a lot cheaper to maintain from the bussines point of 

view. 
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APPENDIX (MATBLAB/OPC UA/VENSIM CODES)   

 

Matlab Simulink variables in real time 
 

On Matlab Simulink progamation of a DT model functions that work in real time, all the variables 

whose values change meanwhile the simulation is running should be declared in the model code 

as “persistent” 

 

 

 

This way, the variable persists during the simulation time (Which is real time) and actualizes 

it´s value. 

 

Level 2 S-Function of Drilling Module 
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Level 2 S-Function “DataTypeID” 
 

Information on the DatatypeIDs associated with Level 2 MATLAB file S-functions is 

missing from the Simulink documentation. DatatypeID of an input port 
must be one of the following: 

 
-1 for ‘inherited’ 
0 for ‘double’ 
1 for ‘single’ 
2 for ‘int8’ 
3 for ‘uint8’ 
4 for ‘int16’ 
5 for ‘uint16’ 
6 for ‘int32’ 
7 for ‘uint32’ 
8 for ‘boolean’ 
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Time Accumulator Matlab Function 
 

function  Accumulator(y,Time) 
%Variables that acumulate the times in each state 

  
persistent IdleTime 
if isempty(IdleTime) 
IdleTime=0; 
end 
persistent IdleTimeAccum 
if isempty(IdleTimeAccum) 
IdleTimeAccum=0; 
end 
persistent WorkingTime 
if isempty(WorkingTime) 
WorkingTime=0; 
end 
persistent WorkingTimeAccum 
if isempty(WorkingTimeAccum) 
WorkingTimeAccum=0; 
end 
persistent EnergySavingTime 
if isempty(EnergySavingTime) 
EnergySavingTime=0; 
end 
persistent EnergySavingTimeAccum 
if isempty(EnergySavingTimeAccum) 
EnergySavingTimeAccum=0; 
end 
persistent FailureTime 
if isempty(FailureTime) 
FailureTime=0; 
end 
persistent FailureTimeAccum 
if isempty(FailureTimeAccum) 
FailureTimeAccum=0; 
end 

   
%(Loop condition that keeps it working during the simulation time) 

  
switch y 
    case 1 
        IdleTime=IdleTime+1; 
        IdleTimeAccum=IdleTime*0.4; 
    case 2 
        WorkingTime=WorkingTime+1; 
        WorkingTimeAccum=WorkingTime*0.4; 
    case 3 
        EnergySavingTime=EnergySavingTime+1; 
        EnergySavingTimeAccum=0.4*EnergySavingTime; 
    otherwise 
        FailureTime=FailureTime+1; 
        FailureTimeAccum=0.4*FailureTime; 
end 
persistent fileID 
if isempty(fileID)  
fileID = fopen('Accumulation.txt','w'); 
fprintf(fileID,'%16s %16s %16s %16s\r 

','IdleTime','WorkingTime','EnergySavingTime','FailureTime'); 
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end  
fprintf(fileID,'\r\n%12.8f %12.8f %12.8f 

%12.8f\n\r',IdleTimeAccum,WorkingTimeAccum,EnergySavingTimeAccum,Failu

reTimeAccum); 
end 

 

Drilling Machine Condition Model Matlab Implementation 
 
function  MachineCondition(Time,state,hardness,drill) 

  
persistent IdleTime 
if isempty(IdleTime) 
IdleTime=0; 
end 
persistent IdleTimeAccum 
if isempty(IdleTimeAccum) 
IdleTimeAccum=0; 
end 
persistent WorkingTime 
if isempty(WorkingTime) 
WorkingTime=0; 
end 
persistent WorkingTimeAccum 
if isempty(WorkingTimeAccum) 
WorkingTimeAccum=0; 
end 
persistent EnergySavingTime 
if isempty(EnergySavingTime) 
EnergySavingTime=0; 
end 
persistent EnergySavingTimeAccum 
if isempty(EnergySavingTimeAccum) 
EnergySavingTimeAccum=0; 
end 
persistent FailureTime 
if isempty(FailureTime) 
FailureTime=0; 
end 
persistent FailureTimeAccum 
if isempty(FailureTimeAccum) 
FailureTimeAccum=0; 
end 
persistent AOT 
if isempty(AOT) 
AOT=0; 
end 
persistent AHI 
if isempty(AHI) 
AHI=0; 
end 
persistent PoF 
if isempty(PoF) 
PoF=0; 
end 
% persistent Preventive 
% if isempty(Preventive) 
% Preventive=0; 
% end 
randomnumber=rand; 
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persistent fileID 
if isempty(fileID)  
fileID = fopen('MachineCondition.txt','w'); 
fprintf(fileID,'%6s %12s\n\r','Time','AssetHealth'); 
end 

   
switch state 
    case 1 
        IdleTime=IdleTime+1; 
        IdleTimeAccum=IdleTime*0.4; 
        DH=0; 
        AV=(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum)/(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum + FailureTimeAccum);  
        UT= WorkingTimeAccum / (IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum); 
        AR=(log(5.5/0.5))/10; 
        AOT= AOT+DH; 
        AHI=0.5*exp(AR*AOT); 
         if AHI <=5.5 
            PoF=0.01; 
         else if AHI<10 
                PoF=0.0000359381*exp(1.02337*AHI); 
             else 
                PoF=1; 
            end 
         end 
       fprintf(fileID,'\r\n%6.2f %12.8f\n\r',Time,AHI); 
        if randomnumber>PoF 
            Fail=1; 
%             state=4; 
        else 
            Fail=0; 
        end 
%         FailurePolicy=; 
%          
%         if PoF>FailurePolicy 
%              
%             Preventive=1; 
%         else 
%             Preventive=0; 
%         end 
%          
    case 2 
        WorkingTime=WorkingTime+1; 
        WorkingTimeAccum=WorkingTime*0.4; 
        DH=hardness*drill; 
        AV=(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum)/(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum + FailureTimeAccum);  
        UT= WorkingTimeAccum / (IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum); 
        AOT= AOT+DH; 
        AR=(log(5.5/0.5))/10; 
        AHI=0.5*exp(AR*AOT); 
        if AHI <=5.5 

             
            PoF=0.01; 
        else if AHI<10 
                PoF=0.0000359381*exp(1.02337*AHI); 
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            else 
                PoF=1; 
            end 
        end 
        fprintf(fileID,'\r\n%6.2f %12.8f\n\r',Time,AHI); 
        if randomnumber>PoF 
            Fail=1; 
%             state=4; 
        else 
            Fail=0; 
        end 
%         FailurePolicy=; 
%          
%         if PoF>FailurePolicy 
%              
%             Preventive=1; 
%         else 
%             Preventive=0; 
%         end 

         
    case 3 

        
        EnergySavingTime=EnergySavingTime+1; 
        EnergySavingTimeAccum=0.4*EnergySavingTime; 
        DH=0; 
        AV=(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum)/(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum + FailureTimeAccum);  
        UT= WorkingTimeAccum / (IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum); 
        AR=(log(5.5/0.5))/10; 
        AOT= AOT+DH; 
        AHI=0.5*exp(AR*AOT); 
         if AHI <=5.5 

             
            PoF=0.01; 

             
        else if AHI<10 

                 
                PoF=0.0000359381*exp(1.02337*AHI); 
            else 
                PoF=1; 
            end 
         end 

         
        fprintf(fileID,'\r\n%6.2f %12.8f\n\r',Time,AHI); 

         
        if randomnumber>PoF 

             
            Fail=1; 
%             state=4; 
        else 
            Fail=0; 
        end 

         
%         FailurePolicy=0.7; 
%          
%         if PoF>FailurePolicy 
%              
%             Preventive=1; 
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%         else 
%             Preventive=0; 
%         end 
%          
    otherwise 

         
        FailureTime=FailureTime+1; 

         
        FailureTimeAccum=0.4*FailureTime; 

         
        DH=0; 
        AV=(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum)/(IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum + FailureTimeAccum);  
        UT= WorkingTimeAccum / (IdleTimeAccum + WorkingTimeAccum + 

EnergySavingTimeAccum); 
        AOT=0; 
        AR=(log(5.5/0.5))/10; 
        AHI=0.5*exp(AR*AOT); 
        fprintf(fileID,'\r\n%6.2f %12.8f\n\r',Time,AHI); 

        
%         FailurePolicy=0.7; 
%          
%         if PoF>FailurePolicy 
%              
%             Preventive=1; 
%         else 
%             Preventive=0; 
%         end 

         
end 
end 
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Matlab OPC UA Toolbox Functions 
 

• opcuaserverinfo (‘HostName’): queries the host named HostName 
for its installed OPC UA servers. HostName can be a host name, or IP 

address, specified as a character vector or string. It returned an OPC 
UA ServerInfo object, or an array of these objects, containing the 
read-only properties Description, Hostname, and Port. 

 
• opcua(ServerInfoObj/ServerUrl/Hostname,Portnum):  constructs an 

OPC UA client object with the server referenced by 
ServerInfoObj/ServerUrl/Portnum,Hostname. 

 
• connect(UaClient): connects the OPC UA client UaClient to its 

referenced server using anonymous user authentication. 

 
• disconnect(UaClient): disconnects the OPC UA client UaClient from 

its server. 

• getNamespace(UaClient): retrieves one layer of the namespace of 
the server associated with client object  UaClient.  The  namespace  is  
stored  in the Namespace property of uaClient as a hierarchical tree 
of nodes. 

• browseNamespace (opcua): opens the Browse Name Space dialog 
box for OPC UA client object UaClient.  Using this browser, you can 
construct a list   of nodes, and return an array of those nodes in 
NodeList. 
ftndNodeByName(NodeList,NodeName) 

ftndNodeByName(NodeList,NodeName,’-once’) : searches the 

descendants of NodeList for all nodes whose Name property matches 
NodeName. The search among all nodes, including NodeList, is not 
case sensitive. findNodeByName(NodeList,NodeName,’-once’) stops 

searching when one node has been found. 

• readValue(UaClient,NodeList): reads the value, quality, and 
timestamp from the nodes identified by NodeList, on the server 
associated with the connected client UaClient.NodeList can be a 
single OPC UA node object or   an array of nodes. 

• writeValue(UaClient,NodeList,Values): writes  content  of  Values,  to 

the nodes identified by NodeList. You can browse for node objects using 
browseNamespace.  You can  also  create  nodes  using  opcuanode.   If  
NodeList is  a  single  node,  then  Values  is  the  value   written  to  the  

node.   If  NodeList is an array of nodes, Values must  be a  cell  array  the  
same  size  as  NodeList, and each element of the cell array is written to 
the corresponding element of NodeList. 
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Vensim Simulation Model Code 
 
******************************************************** 

 .Subscript 

********************************************************~| 

Input Signal: Input a, Input b, Input c  ~~| 

Neurons in the Hyden Layer:  First, Second, Third, Forth, Fifth, Sixth  ~~| 

******************************************************** 

 .Auxiliary 

********************************************************~| 

Delta H1[Neurons in the Hyden Layer]= Delta O*W2[Neurons in the Hyden Layer]*OutH[Neurons in the 

Hyden Layer]*(1-OutH[Neurons in the Hyden Layer])  ~~| 

Delta O=-(Target-OutO)*OutO*(1-OutO) ~~| 

Input[Input Signal]=Inputs Data[Input Signal](Time) ~~| 

NetH[Neurons in the Hyden Layer]= SUM(Input[Input Signal!]*W1[Input Signal!,Neurons in the Hyden 

Layer])+Bias 1  ~~| 

NetO=SUM(OutH[Neurons in the Hyden Layer!]*W2[Neurons in the Hyden Layer!])+Bias 2  ~~| 

OutH[Neurons in the Hyden Layer]= 1/(1+EXP(-NetH[Neurons in the Hyden Layer])) ~~| 

OutO= 1/(1+EXP(-NetO)) ~~| 

Target=Target Data(Time)  ~~| 

******************************************************** 

 .Constant 

********************************************************~| 

Eta= 0.934  ~~| 

Bias 1= 0  ~~| 

Bias 2= 0.0659 ~~| 

******************************************************** 

 .Level 

********************************************************~| 

W2[Neurons in the Hyden Layer]= INTEG (-Adj2[Neurons in the Hyden Layer], 1)  ~~| 

W1[Input Signal,Neurons in the Hyden Layer]=  

 INTEG (-Adj1[Input Signal,Neurons in the Hyden Layer], 0.5)  ~~| 

Acc Square Error= INTEG (Current SQ Error,0)  ~~| 

******************************************************** 

 .Flow 

********************************************************~| 

Current SQ Error=(1/2)*((Target-OutO)^2) ~~| 

Adj1[Input Signal,Neurons in the Hyden Layer]= 

 Delta H1[Neurons in the Hyden Layer]*Input[Input Signal]*Eta  ~~| 
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Adj2[Neurons in the Hyden Layer]= 

 Delta O*OutH[Neurons in the Hyden Layer]*Eta  ~~| 

******************************************************** 

 .Data 

********************************************************~| 

Inputs Data[Input a]( [(0,0)(200,1)], (0,0.5),(49.2872,0.757143), (74.5417,0.390476), (100,0.5), (129.939, 

0.642857), (150.305, 0.247619), (200, 0.5)) ~~| 

Inputs Data[Input b]( [(0,0)-(200,1)], (0,0.5), (21.1813,0.395238), (70.4684,0.352381), (100,0.5), (122.2, 

0.614286), (173.116, 0.633333), (200,0.5)) ~~| 

Inputs Data[Input c]( [(0,0)-(200,1)], (0,0), (17.1079,0.347619), (74.5417,0.347619), (100,0.5), (124.644, 

0.357143), (167.413, 0.319048), (200, 0.5)) ~~| 

Target Data( [(0,0)-(200,1)], (0,0.5), (12.0163, 0.357143), (25.2546, 0.252381), (37.4745, 0.37619), 

(49.8982 ,0.371429), (60.2851, 0.369668), (74.9491, 0.490476), (88.7984, 0.350711), (100, 0.5), 

(115.275, 0.628571), (135.642, 0.671429), (152.749, 0.528571), (175.153, 0.566667), (200,0.8)) 

 ~~| 

******************************************************** 

 .Control 

********************************************************~ 

Simulation Control Parameters | 

FINAL TIME  = 200  ~Unit time ~The final time for the simulation. | 

INITIAL TIME  = 0  ~Unit Time~The initial time for the simulation. | 

SAVEPER  =   TIME STEP     ~Unit Time ~The frequency with which output is stored| 

TIME STEP  = 1   ~Unit Time ~The time step for the simulation.| 
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