
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Trabajo Fin de Grado
Grado en Ingeniería Electrónica, Robótica y Meca-
trónica

Application of neural networks to the colli-
sion avoidance problem in 2D based on the
TensorFlow library

Autora: Rebeca Fernández Niederacher
Tutores: Jesús Iván Maza Alcañiz, Aníbal Ollero Baturone

Departamento de Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Seville, 2018

Trabajo Fin de Grado
Grado en Ingeniería Electrónica, Robótica y Mecatrónica

Application of neural networks to the collision
avoidance problem in 2D based on the

TensorFlow library

Autora:

Rebeca Fernández Niederacher

Tutores:

Jesús Iván Maza Alcañiz
Profesor Titular de Universidad

Aníbal Ollero Baturone
Catedrático de Universidad

Departamento de Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla
Sevilla, 2018

Trabajo Fin de Grado: Application of neural networks to the collision avoidance problem in 2D
based on the TensorFlow library

Autora: Rebeca Fernández Niederacher
Tutores: Jesús Iván Maza Alcañiz, Aníbal Ollero Baturone

El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes profesores:

Presidente:

Vocal/es:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

To my family,
my aunt Marlies,

my friends

Acknowledgements

Iwould like to acknowledge, firstly, my supervisor Jesús Iván Maza Alcañiz who gave me the opportunity
to start learning an unknowledge area for me, guiding throughout this project.

In addition, I would like to express my gratitude to Jose Andrés, member of the investigation group, who
give me his unconditional help. Thanks to teach me your knowledges and make me part of your research.

Thanks to my family for showing interest in everything I have done and giving me their support and
understanding. Specially, thanks to my father, he always wished me good luck before going to the ETSI, to
my mother who trusts blindly in me and to my aunt Marlies, for opening my eyes and teaching me that every
minute counts.

Lastly, I would like to thank also my classmates, they have been the best support in the worst and the best
participants in the good moments. Thanks also to my rugby team for giving me the strength to keep going,
specially to my best friend and mate Inés who always believed in me even when I did not.

Rebeca Fernández Niederacher
Student of Robotics, Electronics and Mechatronics engineering

Seville, 2018

III

Agradecimientos

Me gustaría, antes de todo, agradecer a mi tutor Jesús Iván Maza Alcañiz la oportunidad de adentrarme
en un área totalmente desconocida para mí, apoyandome en todos estos meses.

A su vez, agradecerle a Jose Andrés, miembro del grupo de investigación, su incondicional ayuda. Gracias
por enseñarme todos tus conomientos y hacerme participe de una parte de la investigación que llevas a cabo.

Gracias a mi familia por interesarse siempre por lo que hago y prestarme siempre su apoyo y comprensión.
En especial, a mi padre por desearme suerte todos los días antes de ir a la ETSI, a mi madre por confiar a
ciegas en mí y a mi tia Marlies, por abrirme los ojos y enseñarme que cada minuto cuenta.

Por último, agradecer, por un lado, a mis compañeros de clase por ser el mejor apoyo en los malos
momentos y grandes participes de los buenos. Por otro lado, a mi equipo de rugby por darme la fuerza
necesaria para seguir adelante, pero sobretodo, a mi gran amiga y compañera Inés que siempre ha confiado
en mí cuando ni yo misma lo hacía.

Rebeca Fernández Niederacher
Estudiante de Ingeniería Electrónica, Robótica y Mecatrónica

Sevilla, 2018

V

Abstract

The objective of this paper is the learning and initiation into the world of neural networks using the Google
tool, TensorFlow. In order to do this, we consider a series of algorithms whose purpose is the control of
a drone which can move in a specific environment, avoiding static and mobile obstacle while, at the same
time, guaranteeing a safe navigation. This tool is the main different with respect to older research in this
field. Furthermore, we look into the structure and the diverse tools that this platform offers with the intention
of discovering the areas in which TensorFlow can be useful. Therefore, the organization of this paper is
structured as follows:

In the first place, we offer an introduction that covers Neural Networks that are so important nowadays in
the wide range of application available. We also explain what they are based on and how the information is
used.

Next, TensorFlow structure is briefly introduced, explaining also how it works and some of the basics tools
provided by it.

After that, the setting in which we are currently working is illustrated in three different steps. First, a data
set is created, then the TensorFlow algorithms are implemented for the different scenarios and finally the
"learning" obtain by the neural networks are analysed.

Lastly in our conclusions we offer two significant points: first, we demonstrate the findings of the different
neural networks in the simulator provided and, second, the conclusions that we have reached in this paper
and the future line of researches that this study put forth.

VII

Abbreviated index

Abstract VII
Abbreviated index IX
Abbreviations 1

1 Introduction 3
1.1 Unmanned aerial vehicle (UAV) 3
1.2 Neural Networks for UAVs 5
1.3 Motivation 5
1.4 Objective 5
1.5 Structure of the project 6

2 Artificial Neural Networks 7
2.1 Introduction. Brain neuron 7
2.2 Artificial Neural Network 7
2.3 Basic parameters 10
2.4 Architectures 11
2.5 Overfitting 13

3 Tensorflow 15
3.1 Introduction 15
3.2 Structure 16
3.3 Visualization tool: TensorBoard 17
3.4 TensorFlow nowadays 19

4 Training of the scenarios 21
4.1 Dataset 21
4.2 Training 23

5 Simulation results 31
5.1 Scenario 1 UAV and 0 obstacle 32
5.2 Scenario 1 UAV and 1 obstacle 33
5.3 Scenario 2 UAV and 0 obstacle 34
5.4 Scenario 2 UAV and 0 obstacle without unsucceeded simulations filter 35

6 Conclusions and future investigations 37
Conclusions and future investigations 37

7 Codes 39

List of Figures 49
List of Codes 51
References 53

References 53

IX

Contents

Abstract VII
Abbreviated index IX
Abbreviations 1

1 Introduction 3
1.1 Unmanned aerial vehicle (UAV) 3
1.2 Neural Networks for UAVs 5
1.3 Motivation 5
1.4 Objective 5
1.5 Structure of the project 6

2 Artificial Neural Networks 7
2.1 Introduction. Brain neuron 7
2.2 Artificial Neural Network 7
2.3 Basic parameters 10
2.4 Architectures 11
2.5 Overfitting 13

3 Tensorflow 15
3.1 Introduction 15
3.2 Structure 16
3.3 Visualization tool: TensorBoard 17
3.4 TensorFlow nowadays 19

4 Training of the scenarios 21
4.1 Dataset 21
4.2 Training 23

4.2.1 First neural network. 1 UAV and 0 obstacle 23
4.2.2 1 UAV and 1 obstacle 26
4.2.3 2 UAV and 0 obstacle 29

5 Simulation results 31
5.1 Scenario 1 UAV and 0 obstacle 32
5.2 Scenario 1 UAV and 1 obstacle 33
5.3 Scenario 2 UAV and 0 obstacle 34
5.4 Scenario 2 UAV and 0 obstacle without unsucceeded simulations filter 35

6 Conclusions and future investigations 37
Conclusions and future investigations 37

7 Codes 39

List of Figures 49
List of Codes 51

XI

XII Contents

References 53

References 53

Abbreviations

UAV Unmanned aerial vehicle
NN Neural network
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
T F TensorFlow
CNN Convolutional neuronal network
ReLu Rectifier Unit Activation function
Tanh Hyperbolic Tangent function
RNN Recurrent Neural Network
FL Fully Connected architecture
WP Waypoint
UAL UAV Abstraction Layer

1

Introduction

"Drones overall will be more impactful than I think people rec-
ognize, in positive ways to help society".

Bill Gates

To begin with, it is important to know in which context the investigation is situated and how the idea
materialise.

Unmanned aerial vehicle (UAV)

Since its invention, UAVs or drones, how they are popularly called, have had an exponential rise and develop-
ment, becoming more importance day by day. Their functionality is astonishingly widespread as they can
be employed for many different tasks and applications, from the supervision of a geographical area to the
transport of a package.

There are several reasons why drones are so important and practical in so many circumstances. On one
hand, it is no longer necessary to use a human in order to pilot an zone with an air plane, and thus, avoiding
the danger that could arise in a military mission or in the search of people in areas of difficult access.

On the other hand, the cost of using an unmanned aircraft is much lower compared to using a commercial
aeroplane and therefore we can use drones in more applications.

Their small size and their manoeuvrability provide a lot of options and even more if a system with more
than one UAVs is implemented.

In order to have an idea of how useful they are, some of the tasks that are carried out with drones are
shown:

• the transport of a small package from one place to another without the need of a delivery person. This
task is used in parcel companies like DHL ;

3

4 Chapter 1. Introduction

Source:
https://science.howstuffworks.com/transport/flight/modern/10-non-murderous-drones.htm

Figure 1.1 A drone for package delivery.

• a system with a few drones synchronized together to transport a heavy load, making the process faster
and cheaper;

Source:
https://novologisticablog.blogspot.com/2015/07/

Figure 1.2 Quadrotor transporting a heavy load.

• the aforementioned synchronized drones are employed to supervise and monitor the state of an open
field or the location of endangered species whose position is relevant. Also, drones give firefighters an
accurate information regarding the behaviour of a fire in forests or they can even prevent them .

Source:
https://contactohoy.com.mx/disenan-un-sistema-de-deteccion-automatica-de-incendios-para-drones/

Figure 1.3 Quadrotor in a fire.

Hereafter, the terms drone, robot or UAV are going to be used indistinctly.

1.2 Neural Networks for UAVs 5

Neural Networks for UAVs

There are many researches about the usefulness of a neural network (NN) controlling an UAV. As known,
it is not easy to move an UAV from one position to another without collisions in specific environments.
Here is where NNs are getting good results and therefore can be a good option to control UAVs. The algo-
rithms have to satisfy the safety control of the UAVswhile, at the same time, trying to lower computational cost.

In a previous project, these algorithms were calculated using Matlab Toolbox for Neural Network and a
simulator provided from the Department. However, a new idea of implementation using TensorFlow instead
of it emerged. TensorFlow, which will be introduced in Section 3, is an open source software library for high
performance, numerical computation, and its main objective is to make work easier of the program engineer.
Therefore, the aim of this paper is to create algorithms with the help of TF, capable of "teaching" drones in
real time and in specific scenarios and then, analyse the different results using the same simulator. We can
consider this task as a new black box between inputs and outputs, due to these values are the same for both
algorithms. The difference here is how they compute the new outputs.

Motivation

This project has come into being through research into Deep Learning methods to create a software for
unmanned aircraft with the help of TensorFlow.

Some of my personal motivations during this project have been to understand, implement and be able to
explain what concepts such as Artificial Intelligence (AI) and neural networks (NN) are, and how to use
TensorFlow in many different applications. At present, these terms are used in a large number of areas,
receiving a lot of attention in a short period time. In addition, it has also been necessary to use ROS, Gazebo
and UAL in this research, which are also interesting and potential tools in this days. After finishing this
project, I will be able to use some of the NNs applied nowadays in AI and how they can be exploited to
implement the guiding of UAVs by using TensorFlow. Therefore and to conclude, this research gives me
the possibility to investigate areas which were unknown for me, becoming a good starting point for many
research fields.

Objective

The main objective of the project is to see if TensorFlow can be considered a practical tool to create neural
networks for different applications and, more specifically, to "teach" UAVs how to move in different scenarios.

Because of the complexity and extensive area of investigation research covered in this type of project,
it is necessary to review the basic concepts of it. After acquiring some important ideas, the software is
implemented, and the results are shown in a simulation.

The objectives that will be covered are the following:

• introduction to neural networks;

• TensorFlow and TensorBoard;

• dataset extraction;

• training of the scenarios;

• results tested in a Gazebo simulator;

• conclusions and future investigations.

6 Chapter 1. Introduction

Structure of the project

The structure of the project follows the aforementioned objectives explained previously. We start with an
introduction on the topic of neural networks and how it works for different Machine and Deep Learning tasks.
Once the main concepts are understood, a brief explanation about what TensorFlow and Tensorboard are and
how to work with them, providing examples. Then, the dataset extraction and the neural networks computed
with TensorFlow are explained for the different scenarios. At the end of this project, the algorithms will be
tested in an UAVs simulator and the results discussed, giving some conclusions about the performances.

Artificial Neural Networks

I think the brain is essentially a computer and consciousness is
like a computer program. It will cease to run when the computer
is turned off. Theoretically, it could be re-created on a neural
network, but that would be very difficult, as it would require all
one’s memories.

Stephen Hawking

To start with and to understand better what is an Artificial Neural Network, it is necessary to know what a
human neuron is and how it works.

Introduction. Brain neuron

A brain neuron is composed mainly by dendrites, soma or cell body and an axon. Dendrites are the input
channel and they pick up information from the neuron and send it to the soma. Then the soma processes this
information, by sending a new signal to the next neuron through an output channel called an axon. Brain
neurons are parallelly interconnected and their information is transferred by electrical impulses.

The following Figure 2.1 is an illustration of a human neuron with its different parts:

Source:
https://owlcation.com/stem/Structure-of-a-Neuron

Figure 2.1 Basic structure of a neuron.

Artificial Neural Network

Artificial Neural Network (ANN) is a type of algorithm which can model huge and complex problems, like
Machine (ML) and Deep Learning (DL) tasks, in an effective and efficient way. These are concepts, inside

7

8 Chapter 2. Artificial Neural Networks

Artificial Intelligence focused on the ability of machines to receive a set of data and learn and adapt it for
themselves. There are two types of ML tasks: supervised and unsupervised. In the first one, there are input
and output variables and we use an algorithm to learn a mapping function from the input to the output. In the
second one, there is only input data and the goal is to model the underlying structure or distribution of the
data to learn more about it. In this paper, we will focus in supervised tasks. DL goes one step further than
ML and tries to adapt computers with the ability to reason like humans. In this context, learning consists of
identifying complex patterns in a wide range of data.

An ANN operates similar to the human brain and is based on a collection of connected nodes with specific
weights and is typically organized in layers. Each layer can perform different kinds of transformations on
their inputs. Artificial Neural Networks with only one or two hidden layers, are less complex but require
more information regarding features. If there are more than one or two layers, as shown in the right picture of
Figure 2.2, it is called Deep Learning Neural Network. The more layers the model has, the deeper it is.

Source:
https://www.xenonstack.com/blog/log-analytics-with-deep-learning-and-machine-learning

Figure 2.2 Simple Neural Network compare to Deep Learning Neural Network.

When a node receives an input with a weight, it changes its internal state or its activation function according
to that input and produces an output. These values are modified by the learning process, which is governed
by a learning rule. Normally, a threshold or bias is implemented which provides every node with a trainable
constant value. The next image shows a single node with its inputs, outputs, weights, bias and activation
function.

Source:
https://blogs.mathworks.com/loren/2015/08/04/artificial-neural-networks-for-beginners/

Figure 2.3 Artificial Neural Network representation.

2.2 Artificial Neural Network 9

An example is demonstrated in order to explain how a supervised neural network works:

Imagine teaching a little child what a ball is. Firstly, a ball is showed to him, explaining to him that it is a
ball. Teaching him different kinds of balls, the child figures out that it is the shape of the ball that makes
it a ball and not the colour, size or texture. Then, if an apple is displayed and the child is asked about it,
answering that it is a ball, the teacher will say no, identifying it as an apple. Repeating this process, he will be
able to distinguish between a ball and an apple. Finally, if a ball is given to him, he will classify it properly.

A Supervised algorithm works in the same way. Several thousand samples of the classes are shown with
their labels, identifying the object. Therefore, to implement the algorithm, a set of data with a wide range of
images and their corresponding names is required. The more data there is, the better the model will be able
to learn and thus, function properly. After this information is recorded, the process can begin.

Initially, the set of data is split into training sets, one of which will be of the majority data for the model, and
the other one, will be the test set. The reason for this split is that the networks are in danger of memorizing
their inputs during the training. By keeping the test set separate, we can ensure that the model works with
data that it has never seen before, (Google, 2018). Giving an example, where for each input x there is an
output y:

x−→ y (2.1)

The predictor tries to create a model which gives the same values, trying to be as exact as possible.

h(x) = f (x) (2.2)

In the training step of a model, there are input training data x_train with their corresponding output y.
For each sample the discrepancy between the prediction h(x_train) and the real output y is computed. This
difference is a measure of the prediction accuracy and, with enough training data, the margin of error will
decrease progressively. The difference is named Cost Function and there are many different functions that
are able to calculate the error. However, the goal is always the same and the process is repeated until the
model has converged with the best values.

Source:
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e

Figure 2.4 Training step in a Supervised Machine Learning task.

After a predictor, the prediction model has been processed by using the training set and the model can
be proofed by making predictions against the test set. Because the data in the testing set already contains
known values for the attributes that you want to predict, it is easy to determine whether the model’s guesses
are correct or not, (Mircrosoft SQL Server, 2012). After these models are created, they have the ability to
recognize patterns in the data base and this is called pattern recognition.

10 Chapter 2. Artificial Neural Networks

Source:
https://commons.wikimedia.org/wiki/File:Supervised_machine_learning_in_a_nutshell.svg

Figure 2.5 Supervised Machine Learning structure.

Furthermore, some applications use an additional third set of data, which is called the validation set. This
set is a process that take place in between the training set and the test set and its goal is to provide a better
performance of the model. This set will be employed in the algorithms implemented in Section 4.2. In our
neural networks, the inputs are the relative positions and velocities of the UAVs at different simulation steps,
the distance to the obstacles and the distance to the goal position for the UAV that wants to be guided. The
output is the next velocity given to the drone in order to reach the goal position and avoid collisions with
other drones or obstacles.

Since its origin, the NNs have become an important tool and nowadays, there are thousands of applications
that use these algorithms to answer their tasks. Facebook uses it to automatically find and tag friends in
photos, Skype utilizes it to transmit spoken conversations in real time and even Google Translator applies it
to translate sentences from a language to another.

Basic parameters

Although, a NN can be really complex, the basic variables that are implemented in this paper are going to be
briefly explained. This will help us to find more optimal architectures.

• Number of instants: number of movements made by a drone in the different simulations. It can be also
explained as the number of rows in the input matrix of the algorithm. If the size is too big, the NN
could be overfitted, an idea that will be later explained.

• Training, validation and test size: lengths of the input data set that will be used to train, validate and
test the model respectively. If the training is too small, the NN will have not enough data to train.

• Batch size: number of training examples present in a single batch. This value depends on the training
size. If the training is big enough, the batch size can be also bigger.

• One Epoch: when a complete data set is passed forward and backward through the NN only once.
The number of epochs is directly proportional with the response time. It will be necessary to find the
optimal number of epochs.

• Iterations: the number of batches needed to complete one epoch.
• Learning rate: this parameter informs the optimizer how far to move the weights in the direction of the
gradient for a small batch. If it is too big, the algorithm will be never precise, causing the training to
not converge. However, if it is to small the optimization will take a lot of time, because steps towards
the minimum of the function loss are tiny.

• Standard deviation: it is a measure used to quantify the amount of variation or dispersion of a set
of data values. It will appear in the initialization of the weights and it is set by default to 1. A low
standard deviation indicates that the data points tend to the expected value. While a high value, means
the opposite.

• Training algorithm: it is the procedure used to carry out the learning process in a neural network.
• Activation function: function that introduces non-linearity into the output of each neuron. Otherwise,
the model will end up linear, which could cost a failure in the classification task. The most popular

2.4 Architectures 11

activation functions are Rectifier Unit (ReLu), which should be only applied in hidden layers, Sigmoid
Activation function (Sigmoid) and Hyperbolic Tangent function (Tanh).

Regarding the running time of a model, it depends on the time that the optimization process takes to "teach"
the NN. This is conditioned by the parameters of the model and also the hardware and software used for the
"learning". In our case, a MSI GL62M computer with an Intel(R) processor Core(TM) i7-7700HQ CPU 2.80
GHz, a RAM memory of 8,00 GB and a Solid state drive (SSD) of 256 GB was employed. The software used
is Ubuntu 16.04 LTS, installed in the SSD, and TensorFlow with Python3 on it. This information is important
in order to know how fast the computer works for the different neural networks implemented. Therefore, it
is a significant variable to consider when a model is being optimising and also when it is going to be simulated.

The model depends on the settings of these parameters as this will be shown in Section 4.2.

Architectures

There are several NN architectures that can be applied for different tasks. In this paper, a Fully Connected
architecture will give sufficient results according to the results in Section 4.2 and 5. Despite this, some of the
most common architectures are also commented on.

• Fully Connected layers is an architecture composed of different hidden layers between the input and
the output.

Source:
http://cs231n.github.io/convolutional-networks/

Figure 2.6 Fully Connected neural network.

• Recurrent Neural Network is a standard neural network extended across time by having edges which
feed into the next time step. This mean that RNN uses sequential information, performing the new
output according to the information that has been calculated so far. For example, RNN is implemented
to predict the next word in a sentence, based on the word before, (Recurrent Neural Networks Tutorial,
Part 1 – Introduction to RNNs – WildML, 2000). This method is really useful for machine translation
and speech recognition. This architecture is illustrated in Figure 2.7.

12 Chapter 2. Artificial Neural Networks

Source:
https://jasonroell.com/2017/06/26/understanding-recurrent-neural-networks-the-prefered-neural-network-

for-time-series-data/

Figure 2.7 Recurrent Neural Network architecture.

• Recursive Neural Network is structured like a hierarchical network, with no time aspect, such as in
Recurrent Neural Networks. Here, the input has to be processed hierarchically in a tree fashion. An
example of how it looks like is pictured in Figure 2.8.

Source:
https://nlp.stanford.edu/blog/hybrid-tree-sequence-neural-networks-with-spinn/

Figure 2.8 Recursive Neuronal Network example.

• Convolutional Neural Network (CNN) is based on a feedforward artificial neural network system, which
means that the information moves only forward in the graph. It has several layers which are grouped
into five different blocks: Input layer, Convolutional layers, Rectified Linear Unit as an activation
function, Pooling layers and Fully Connected layers. The Figure bellow 2.9 shows the architecture
commented on previously.

Source:
https://www.kdnuggets.com/2017/11/understanding-deep-convolutional-neural-networks-tensorflow-

keras.html

Figure 2.9 Convolutional Neural Network architecture.

2.5 Overfitting 13

Overfitting

Overfitting is a neural network error that occurs when a model fits in too much seen data and does not
generalize well. This can be observed when the performance on test sets is much lower than the performance
on training sets. Another sign of overfitting is that the test error, at one point, increases while the training error
continuously decreases. In Figure 2.10, we can observe the difference between a model which is learning
correctly and another that is overfitted.

Source:
https://www.quora.com/Whats-the-difference-between-overfitting-and-underfitting

Figure 2.10 Overfitting.

Some of the techniques employed to avoid overfitting in a neural network are, for example, Early Stopping
or Regularization. The first one refers to stopping the training process before the model passes the point in
which the model’s ability to generalize can weaken as it begins to overfit the training data. An example of
this, can be seen in Figure 2.11. The second one, Regularization, adds a penalty to the different parameters
of the model to reduce the freedom of it. This model will be less likely to fit the noise of the training data
and will improve the generalization abilities of the model. In this paper and depending on the model into
study, it will be used regularization as technique to avoid overfitting.

Source:
https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0

Figure 2.11 Early Stopping technique.

Tensorflow

TensorFlow is faster, smarter, and more flexible than our old
system (DistBelief), so it can be adapted much more easily to
new products and research.

Google

Introduction

TensorFlow is an open-source software library for numerical computation using data flow graphs. It was de-
veloped by Google Brain after DistBelief in November 2015. DistBelief comes from Large Scale Distributed
Deep Networks and was the first machine learning system based on Deep Learning Neural Networks built by
Google Brain in 2011. This framework was simplified into a faster and more robust application-grade library,
which now is TensorFlow.

The TensorFlow library was created for the purposes of conducting machine learning and deep neural
networks research by Google Brain, but nowadays it is also useful to compute a highly complex number of
operations, (Dean et al., 2000).

Figure 3.1 Logo Tensorflow.

The name TensorFlow comes from tensor, which is a generalization of vectors and matrices to compute
potentially higher dimensions. It is defined with a shape, which consists of the number of elements in each
dimensions of the tensor and a data type. Accordingly, each element in it has the same properties, (Tensors |
TensorFlow, 2000).

TensorFlow corrects the shortcomings of DistBelief by making a general, flexible, portable, easy-to-use,
fast and completely open source.

15

16 Chapter 3. Tensorflow

TensorFlow can run on one or more CPUs or GPUs in a desktop, server and mobile computing platforms
like Android and iOS, due to the flexible architecture on which it was built. Its portability enables researchers
to move an idea from training in a GPU or CPU to running on a mobile phone. Moreover, TensorFlow has
APIs (Application Programming Interface) available in several languages like Java, C++, which has a low
overhead, or Python. Currently, Python API is the most complete and the easiest to use, (Tensorflow, 2017).

Tensorflow is not only a deep learning library, it is also a number-crunching framework. The different
between TensorFlow and other libraries like Theano, is that TensorFlow allows us to perform specific machine
learning number-crunching operations like derivation on huge matrices with large efficiency. For this reason,
although TensorFlow is mainly used with machine learning right now, it could be used in other areas, since it
is really a massive array manipulation library, (Python Programming Tutorials, 2000). TensorFlow can be
used for any computation that could be expressed as a computational flow graph.

There are other frameworks that can be used to build deep learning solutions, some of which are quite
complex, such as Keras or PyTorch. The first one can also be configured to work on top of TensorFlow,
which is written in Python and is easy and straightforward to learn. PyTorch, on the other hand, is a Python
package for building deep neural networks and performing complex tensor computations. Its modelling
process is easy and transparent. However, TensorFlow has some advantages better than other frameworks,
giving reasons to why this is implemented instead of others.

Structure

TensorFlow consists on a number of ordered operations using a dataflow graph to represent the dependencies
between individual operations. In general, a dataflow graph is defined with nodes, where each node has
input/output data ports and edges which are the connections between these ports. In TF, the nodes represent
various operations, including mathematical functions such as addition and multiplication, variable operations
for storing model parameters and initialising the tensor values. The graph edges have three different aims.
The data dependency edges which are represented as tensors or multidimensional arrays, that are input and
output data of the operations. It is important to know that tensors don’t have value and they are just handles
to elements in the computation graph. Another type of edge are the reference edges, which represent pointers
to the variables instead of its value. The third type are the control dependency edges that indicate their source
operations must execute before their tail operations can start, (Wongsuphasawat et al., 2000).

These graphs have multiple pros that TensorFlow utilizes when executing the programmes.

• Parallelism: explicit edges represent the dependency between different operations, making the identifi-
cation of the system easier regarding which operations can be executed in parallel or not.

• Distributed execution: this property helps TensorFlow to run onmultiple devices, inserting the necessary
communication and coordination between them.

• Compilation: TensorFlow compiler generates faster codes by using the information in the dataflow
graph, fusing them together, for example, adjacent operations.

• Portability: The representation does not depend on the programming language used.

These advantages allow TensorFlow an easy computation and analysis of the models.

An illustration of a TensorFlow graph can be as follow in Figure 3.2:

3.3 Visualization tool: TensorBoard 17

Source:
https://clindatsci.com/blog/2017/5/31/distributed-tensorflow

Figure 3.2 Dataflow graph in TensorFlow using TensorBoard visualization tool.

In addition, TensorFlow provides the class Session to represent a connection between the client program,
typically a Python program, and the C++ runtime. A session evaluates tensors while it encapsulates the
state of the TensorFlow runtime and runs TensorFlow operations. This supplies access to devices in the
local machine and remote devices using the distributions of TensorFlow runtime, (Google LLC, 2018).
Moreover, sessions are useful since their cache information about the graph, so that it is possible to effi-
ciently run the same computation several times. Therefore, a session gives us the possibility of training
a neural network only once and then be able to save, import and restore the graphs simply by adding a
few code lines. There are two different files to store the data of the graph, depending on what we want
to save, Checkpoint file and Meta graph. The first one is a binary file which contains all the variables
saved, like gradients or weights, while Meta graph saves the complete TensorFlow graphs. The second one
mentioned will be the one used in our models. We will create the models and then, after they are optimised,
import and restore them to test their performance in the Gazebo simulator which will be described in Section 5.

Visualization tool: TensorBoard

Sometimes a neural network could be defined as a black block, and here is where TensorBoard appears. It is
a TensorFlow tool to visualize dataflow graphs, show additional data that pass through it and plot quantitative
metrics about the execution of the graph. It can be considered as a "flash light" into this black block, giving
the possibility to dive in the program.

Figure 3.3 Neural network like a black box.

In Figure 4.1, the image of a cat is the input and after the neural network box, the output with the prediction
is read. Tensorboard would be like a magnifying glass of the box.

18 Chapter 3. Tensorflow

TensorBoard operates by reading TensorFlow events files, which contain summary data which can be
generated when running TensorFlow (TensorFlow, 2017). Depending on how the data lifecycle of the model
wants to be showed, a different type of summary will be used. It supports five visualizations: scalars, audio,
histograms, images, and graphs. For example, to record how the learning rate varies over time and how the
objective function is changing tf.summary.scalar could be useful. If it is wanted to visualize the distributions
of gradients or weights in the model, tf.summary.histogram is a good option. Normally the computations can
be complex and difficult to understand but with TensorBoard’s help, it is easier and more intuitive.

To make the visualization even more simple and organized, variable names can be scoped and then this
information is used to define a hierarchy between nodes in the graph. Only the top of this hierarchy is shown
by default. To scope the variable, t f .name_scope() is used, encapsulating all variables that are defined inside.
The next Code is an example of addition using the scope named block.

Code 3.1 Addition example with TensorBoard.

with tf.name_scope(’block’) as scope:
a = tf.placeholder(tf.int8, name="a")
b = tf.placeholder(tf.int8, name="b")
addition = tf.add(a, b, name="addition")

sess.run(addition, feed_dict={a: 2.0, b:3.0})

After that, it is possible to visualize it in a TensorFlow graph with TensorBoard by adding a few more code
lines. This could help if the results of the model are not the appropriated ones to know where the error is.

A class, whose name is FileWriter, allows to write data from TensorFlow to disk so that it is possible to
read it. In other words, it enables to write any information that is going to be shown in TensorBoard. The
next lines are written to create the TensorFlow graph where the collected summary data are going to be taken.
The constructor in t f .summary.FileWriter() is the direction where all of the events are going to be saved:

writer = tf.summary.FileWriter("path/to/log-directory")

When the training has already finished, we need to write the next line in the Terminal of the computer, in
order to call TensorBoard with the path to the directory where the data are saved:

tensorboard --logdir /path/to/log-directory

To finish, and without closing the Terminal, we need to search for it in a web browser:

localhost:6006

What comes now in the browser is TensorBoard with the different visualization types that were computed,
in this case, only the Graph part:

Figure 3.4 Example of name scopings and nodes.

To see how TensorBoard can help the computations, the neural networks trained in Section 4.2 are going
to be illustrated in the browser with this tool.

3.4 TensorFlow nowadays 19

TensorFlow nowadays

Currently, TensorFlow is the number one repository in GitHub with around 5500 GitHub repositories with
"TensorFlow" in the title and has about 475 non-Google contributors. This indicates how well TensorFlow
has been received since it was created. Now, there are also universities which start using TensorFlow as the
basis of important machine learning classes.

TensorFlow can be applied in different areas as a powerful calculation framework, but in this paper it is
essentially used in Deep Learning algorithms.

TensorFlow is mainly used for: classification, perception, understanding, discovering, prediction and
creation. There are some different applications such as:

• voice/sound recognition such as Apple’s Siri or Google Now for Android;

• text based applications to detect languages like in Google Translate;

• image recognition targets to recognize and identify people and objects in images as well as understanding
the content and context;

• TensorFlow Time Series algorithm are used for analysing time series data in order to extract meaningful
statistics;

• video detection like in Motion detection, Real-Time Thread Detection in Gaming and security, (Top
Five Use Cases of TensorFlow, 2000).

There are a lot of common applications using Machine Learning and TensorFlow, like spam detection in
Gmail and signal understanding in Street View. Companies such as Airbnb, Airbus, Twitter or Dropbox are
using TensorFlow to solve their own necessities.

Training of the scenarios

More data beats clever algorithms, but better data beats more
data.

Peter Norvig

Dataset

In order for neural networks to work, the data need to be trained. This information has been created by a
simulator provided and implemented by a member of the investigation group of the department. With the help
of UAV Abstraction Layer of GRVC, the student designed his own simulator with Gazebo and ROS. UAL is
a tool implemented in ROS to interact with the autonomous pilot of the UAV and Gazebo in an easy and
intuitive way. This simulator computes and simulates scenarios with information from the algorithm ORCA,
an algortihm used to avoid obstacles. This algorithm is also from another project done at the University of
Seville and is not part of this study here. The results of the simulations made with ORCA are the dataset
used in this research in order to be able to train the neural networks. As commented on, in the Section 1.2,
the objective of this paper is to examinate if we can use neural networks created with TF to guide drones
in an easy and efficient way. Therefore after the algorithms are computed, as we can see in Section 5, this
simulator is again employed to check the performance of the UAV in the world.

Once we are informed of the origin of the dataset, it is necessary to learn its structure, organization
and extraction process in order to know how it is employed. Each ORCA simulation is done with a spe-
cific scenario and when the simulation has finished, this information is stored and saved in a file called
world_definition.csv. The information needed to be extracted from this file are the number of obstacles
with their coordinates positions and the number of UAVs. This knowledge is essential to get the size of the
neural network that is implemented. The size corresponds to the number of input and output features of
the algorithm. There will be as many NNs trained as there are different scenarios to be simulated with Gazebo.

At the same time for each simulation, files are created with the positions and velocities of the different
drones, the goal position, and the next velocity applied to the reference UAV. The name of these files follows
the structure uav_x.csv where x in the number of the UAV that is trained according to the position and velocity
of the others. For example, a simulation with three UAVs will have three files, one for each of the UAVs in
the simulation. Thereafter, the reference UAV will be also called UAV_1.

The dataset of each y simulation is contained in different folders named Simulation_y. Inside these folders,
the file world_definition.csv and the file or files uav_x.csv are stored. The next Figure illustrate how these
files are stored for an easier understanding.

21

22 Chapter 4. Training of the scenarios

Figure 4.1 Data set files for simulations with 3 UAVs.

The data set of a specific NN will be all the information stored in simulations of the same type of world.
Therefore a huge data set is created by using different situations for the same scenario. Although, the positions
and velocities are stored in 3D values, the inputs and outputs are reduced to 2D, x and y values, in order to
make the problem less complex. The code where the information is extracted and then structured to compute
the inputs and outputs of the algorithm is in Code 7.1 and 7.2, respectively.

It is important to note, that every simulation employed to "teach" a neural network can not have any
errors, which means without any collisions. If the algorithm understands as correct a simulation where
there are collisions, it will not learn what we wanted it to and the drone could drive directly into an obstacle.
Therefore, before using the data provided by ORCA, we have to check the file performance_set.csv where
each simulation is associated with a true or false variable, depending on its correct or incorrect performance.
Here, correct means without collisions and incorrect the contrary. The reason for this process of filtration
will be demonstrated in Section 5.4 where we will show the different results between using this filter and not.
The filter is implemented in Code 7.3. These errors in the data set come from the algorithm ORCA, which is
not part of this study.

Once the data set is understood and filtrated, the next step is to shuffle the information, in order to make
the learning more efficient. Then, it is divided in a training, validation and test set. Normally, this separation
follows the rule of 70% - 15% - 15% for training, validation and test set, respectively. This will be the division
employed in every algorithm used.

In general, the inputs of the NNs are the relative position of each UAV, their velocities and the distance to
the goal position and to each obstacle for the reference UAV. The outputs are the new velocities applied to the
UAV 1, also called UAV of reference. Depending on the scenario where the NN is employed, it will have
more or fewer inputs, while the outputs will always be of the same size, in this case, 2.

4.2 Training 23

Training

In this Section, we will compute algorithms for the different scenarios, trying to find the most optimal network
for each one. In order to trust the results, all the neural networks implemented are checked at least five times
with the same configuration to avoid random results and verify the algorithm. An accuracy of 100% means
that there is no error in the test set and the drone will move to the goal position without collisions. While an
accuracy smaller than 60% means that the NN is not learning at all.

In all the models, Backpropagation algorithm is employed to better the performances. Backpropagation
means that after the error between predictions and outputs is calculated, this information goes back into the
network. Depending on the contribution of each neuron to the output, each one will take a part of the total
error modifying their values. This algorithm helps training algorithms, like Gradient Descent, to obtain a
lower error along the process. In addition, the collision filter will always be employed except in Section 5.4
where we will inspect to see if the filter is actually relevant or not.

To start with, a simple neural network for a scenario with one drone and no static obstacles is implemented.
This will give us a good understanding of how the different parameters change the results. These variables
were explained in Section 2.3. After this model, it will be easier to implement more complex neural networks.

First neural network. 1 UAV and 0 obstacle

This algorithm will have four inputs in 2D, the distance to the goal position and the velocity of the UAV;
while the output is the velocity in x and y axis. Here, the data set has already passed the filter commented on
before and therefore the network will only "learn" correct data. This information is illustrated in Figure 4.2.

Figure 4.2 Architecture of the neural network (1 UAV and no obstacles).

At first, the main idea was to find the lowest number of instances needed to compute the algorithm with the
best performance. After several tests, the lowest number was approximately 800 instances. Working around
this configuration and trying to find the best parameters, we end up with the model shown in Figure 4.2.
The batch size and the number of epoch sets was 3 and 200, respectively. The training algorithm that was
used was a Gradient Descent with a learning rate of 0.001. Also, the standard deviation (stddev) was fixed
to 0.3 and the activation function implemented was a hyperbolic tangent. This model was able to finish its
optimization process in 11 seconds, with an error between 0 and 2% . These values are considered optimal
and, therefore, the basis of our study.

24 Chapter 4. Training of the scenarios

After this model was computed, we end up with some ideas about how some parameters affect the accuracy
of the model.

• A small number of instances will cause that the model to not learn enough while a large number may
cause overfitting.

• After the optimal point, a bigger number of epochs will only cause that the optimization process to
need more time.

• A high stddev value causes a lot of dispersion in the distribution of the weights or, in other words, poor
values of the initial weights causing a unsuccessful training.

• A low learning rate will cause a longer optimization process time. This happens because steps toward
the minimum of the loss functions are tiny. On the contrary, a value that is too large will cause the
training to not converge or even to diverge.

• If the data set is big enough, we can use a bigger batch size in order to avoid generalization.

Now, the algorithm is modified to illustrate its structure using TensorBoard. This will give us a better
understanding of how it works and how the different parameters are interconnected. The next Figure 4.3
shows its main graph composed only of an activation function. This layer is fed into the weights and the bias,
returning a function loss between the prediction and the known output.

Figure 4.3 Tensorboard data flow main graph (1 UAV and no obstacles).

4.2 Training 25

In addition, in Figure 4.4, we can see its auxiliary graph where the validation and test set is predicted.
Inside every node, there are different operations and connections. This is why TensorBoard is considered a
"flashlight" in the algorithm and a very interesting tool.

Figure 4.4 Tensorboard data flow auxiliary graph (1 UAV and no obstacles).

It is also possible to see how scalar parameters change along the optimization process, like for example the
accuracy and the total loss of the model. While the function loss should decrease, trying to converge to zero,
the percent accuracy gets better the bigger the values are. Below, it is shown how the accuracy is converging
to 100%.

Figure 4.5 Accuracy (1 UAV and no obsta-
cles).

Figure 4.6 Function loss (1 UAV and no ob-
stacles).

Later, in Section 5, we will run this algorithm in order to see how this NN guides the drone in the simulator.
Although there is no obstacle to collide with in this scenario, it is a good starting point in the research of
more difficult and complex algorithms. After this neural network model is looked into, we are able to go one
step forward, implementing a model with one UAV and one obstacle.

26 Chapter 4. Training of the scenarios

1 UAV and 1 obstacle

In this case, there are six inputs in the NN due to the position of the obstacle. The idea was to start with the
previous model and gradually increase its depth.

First, choosing a good data set length, is necessary for the base of the model that is going to be optimised.
We try to use as much data as the model can handle and learn without becoming overfitted. Several training
sessions were done and the length of the data set employed was changed each time. At the end, the number
of moments of the data set was set up to around 16,000, which were stored in 118 different simulations. This
size was chosen because the corresponding accuracy of the model was good enough to simulate with a small
error. However, it will also work with fewer steps. This will be the starting point of the optimization process.

After that, the next step is to define the rest of the parameters following the configurations with better
results. Nevertheless, we soon realised that the previous architecture is, for this case, too simple. Therefore
and due to the complexity of this task, it is necessary to go "deeper" into the architecture, creating hidden
layers. This type of model corresponds to a Fully Connected layers architecture which was introduced in
Section 2.4.

The model that it was chosen to be implemented as the best one has three hidden layers with 30 neurons
in each one. Nevertheless, more layers mean more depth and therefore more precision; it also makes the
optimization process longer and at a higher computation cost. The upcoming Figure 4.7 shows the optimal
architecture selected:

Figure 4.7 Architecture of three Fully Connected layers(1 UAV and 1 obstacle).

Once the architecture has been chosen, we can set up the remaining parameters in order to have the best
performance. The optimal configuration that was found is the following:

• data set of 16,000 instants;
• three hidden layers with 30 neurons each one;
• number of epochs 800 and batch size 20;
• learning rate of 0.006;

4.2 Training 27

• standard deviation for the first layer of 0.7. The sttdev for the rest of layers is normally set with the
equation

√
2

num_neurons ;

• Tanh Activation functions for every layer. The rest of functions decrease the accuracy;

• Gradient Descent algorithm.

This configuration gives us an accuracy around 97%, which could be sufficient for the simulation. This
range was determined by carrying out ten different simulations. The neural network implemented for this
scenario is computed in Code 7.4.

The next Figure 4.8 illustrates its dataflow main nodes with the different hidden layers and the function
loss. Now, the architecture is deeper and, therefore, its graph is more complex than in the previous scenario.

Figure 4.8 Tensorboard data flow main graph (1 UAV and 1 obstacle).

28 Chapter 4. Training of the scenarios

Now, in the auxiliary nodes of Figure 4.9, we can see how the Gradient Descent is implemented and how
the validation and test set is predicted for this scenario.

Figure 4.9 Tensorboard data flow auxiliary graph (1 UAV and 1 obstacle).

In this case, the accuracy and function loss graphs are as follows, converging the accuracy to 97% as
was previously mentioned. The optimization time is around 3 minutes, but the final accuracy is achieved in
approximately 2 minutes.

Figure 4.10 Accuracy (1 UAV and 1 obsta-
cle).

Figure 4.11 Total function loss (1 UAV and
1 obstacle).

4.2 Training 29

2 UAV and 0 obstacle

Although, the 2 UAVs and the obstacle both contribute to the input matrix with their relative positions, the
UAVs also affect the matrix with their velocities. Therefore, in this scenario we will have 8 inputs for the
network trained.

Here, the model achieved, which gives a relatively good learning percent, is an algorithm trained with
around 5,600 instants and with an architecture of three hidden layers (40 neurons in each one)as it can be
seen in Figure 4.12.

Figure 4.12 Architecture of three Fully Connected layers (2 UAVs and no obstacles).

Furthermore, we have also changed the number of epochs to 1,200 and the batch size to 40 in order to
avoid overfitting. Nevertheless this problem is not eliminated with this model and, therefore, it is necessary
to compute a technique to specifically avoid it. As previously mentioned, we have employed Regularization,
which normally gives good results. After that, the learning accuracy approximates 97%. This can be
demonstrated by illustrating the accuracy of the model with TensorBoard.

Figure 4.13 Accuracy (2 UAVs and no obstacles).

30 Chapter 4. Training of the scenarios

In the next figures, the function loss of this neural network is shown. Figure 4.14 is the function loss
between the predicted and the known output, Figure 4.15 is the regularization loss to avoid overfitting and
Figure 4.16 demonstrates the total loss. The last one is the sum up of the previous two.

Figure 4.14 Function loss (2 UAVs and no
obstacles).

Figure 4.15 Regularization function loss (2
UAVs and no obstacles).

Figure 4.16 Total function loss (2 UAVs and
no obstacles).

These are the scenarios researched in this paper and, while, we do not increase the complexity of the
scenario, its research starts by employing a bigger and better data set with a deeper training.

In this section, a part of the optimization process, one of the most relevant pieces of information given is
the velocity of the neural networks’ training. If we compare the execution time of the learning between using
the Matlab Neural Network Toolbox and TF, the balance falls in favour of TF, providing a faster computation.
This is the advantage of using TensorFlow.

Simulation results

Once the optimal cases has been implemented giving a good learning percent, it is time to simulate them.
As commented in Section 4.1, these tests will be run in the Gazebo and ROS simulator. Before that it is
necessary to install Gazebo, ROS and UAL on the computer to simulate the different neural networks and see
their performances. When a simulation in ROS finishes, the software saves a file named performance_set,
where we can find the simulations that have finished and if the UAV has succeeded achieving goal position or,
in contrast, it has collided. This file will be the tool to check how good the NN for the specific scenario is.

Before testing a model and during its training, we have to save its graph. Therefore, we will create a folder
where the saved models are stored to use them necessary. There will be as many subfolders as different
worlds are trained. In the next lines of Code 5.1, we explain the saving process for the NN for the scenario
with one UAV and no obstacles, which is the first scenario that is going to be simulated. In a general case,
the path to the saved model will depend on the trained scenario.

Code 5.1 Saving a graph.

saver = tf.train.Saver(save_relative_paths = True)
saver.save(session, "~/world_1_0/world_1_0")

After that, it is possible to import the complete graph with all the variables updated and restore the
operations needed. In these models, the main operation is the multilayer_model function which returns the
predicted outputs. Therefore, the next Code 5.2 is introduced in the simulator code to do this task. As we
can see in Code 5.2,the multilayer_model function is fed with the variable inputs. It is the vector of inputs
for each instant of the simulation. This operation returns the next output labels or, in other words, the next
velocities for the reference UAV. Each iteration, a new input vector will feed multilayer_model function into
getting new velocities. This gives us the possibility of guide an UAV in real time. The path gave to the
tf.train.import_meta_graph class is the directory where the different trained and saved algorithms are stored
to import, restore and simulate them. In the next Code 5.2, we create a session in order to evaluate the tensors
of the imported graph which was previously saved.

Code 5.2 Importing and restoring a trained NN.

with tf.Session() as sess:
new_saver = tf.train.import_meta_graph(’~/world_1_0/world_1_0.meta’)
new_saver.restore(sess, tf.train.latest_checkpoint(’~/world_1_0’))
model_multilayer =tf.get_default_graph().get_operation_by_name(’

multilayer_model’).outputs[
new_velocity_twist = sees.run(model_multilayer, feed_dict{inputs})

Although we feed the model at each instant, it is important to mention, that we import and restore the NNs
only once. This will produce a lower computation cost.

31

32 Chapter 5. Simulation results

After this is computed, the inputs variable and the trained model employed will depend on the scenario
that wants to be simulated. Hereafter, we will go through the different architectures created, checking and
analysing their performances. It is important to know that every world is going to be simulated 100 times
with their respective neural network. After that and looking into their performance_set.csv file, we are able
to see the number of successful simulations. This give us a percent of how good is our algorithm for each
world. In the simulations, the UAV will start on the floor. Then after everything is set up, it goes up starting
the relevant part of the simulation. It will go through four different goal positions avoiding obstacles and
then landing. Every simulation will have a randomly component, which will cause some variance in the
performances. Hereafter, the term goal position and waypoint (WP), is going to be used indistinctly.

Scenario 1 UAV and 0 obstacle

To start with, we simulate the easiest scenario in the Gazebo simulator. This task allows us to check if the
import and restore process was well done and if the UAV is working as it is wanted.

Once the 100 simulations are made and looking into the performance_set.csv file, we get the result of a
100% of favourable simulations. This means that the UAV goes from the initial point to the different WPs
satisfactorily.

The next Figures are the different stretches made by a UAV through theWPs of a specific scenario. Although
the movement are not perfectly optimized, the drone follows correctly its goal positions.

Figure 5.1 First stretch (1 UAV and no ob-
stacles).

Figure 5.2 Second stretch (1 UAV and no
obstacles).

Figure 5.3 Third stretch (1 UAV and no ob-
stacles).

These results give us the confirmation that the graph of the NN is good reused and we can go one step
further introducing an obstacle.

One issue to see before starting more complex simulations, is that the time at which a new velocity is given,
is around 0.2 - 0.3 seconds, staying fix independently of using ORCA or TF. This is important, in order to see
if we have to train the models with TF at a different computation velocity as ORCA has provided.

5.2 Scenario 1 UAV and 1 obstacle 33

Scenario 1 UAV and 1 obstacle

Now, we increase the complexity of the scenario, adding an obstacle. In the figures below, we can see how
the drone goes from one point to another one avoiding colliding with the obstacle in an efficient way. The
error percent of the algorithm implemented in this scenario is of 1%. This means that in 100 simulations
the UAV collides only once with the obstacle. This is approximate the same result as with Matlab Toolbox
instead of TF. Another relevant value of the simulations is the execution time. Here, the simulation takes
around 73 seconds before it finishes. This time starts when ROS is called and finishes when the UAV landed.

Following are illustrated four different simulations of this scenario. The red circle indicates the obstacle,
the blue line is the trajectory followed by the drone and the small circles, the WPs. The green, cyan, blue and
purple circles are the different WPs in increasing order.

Figure 5.4 First simulation (1 UAV and 1 obstacle). Figure 5.5 Second simulation (1 UAV and 1 obstacle).

Figure 5.6 Third simulation (1 UAV and 1 obstacle). Figure 5.7 Fourth simulation (1 UAV and 1 obstacle).

In the simulations, the UAV is correctly guided in the scenario, avoiding the obstacle. Sometimes, the
drone does not perceive that it has reached the WP and therefore, it flies over. This problem comes from the
UAL controller which is not part of our study. In general and from the learning part, the movement of the
drone could be more softly and effective. On the one hand, we could get better result with a deeper learning
process, trying to avoid errors in the accuracy learning. On the other hand, the dataset employed, due to the
algorithm ORCA, does not always give the best performance and makes that the neural network does not
learn efficiently enough from the scenario.

34 Chapter 5. Simulation results

Scenario 2 UAV and 0 obstacle

In this case, the scenario is a bit different and we will have two UAVs and therefore, two drones to guide.
The neural networks employed to control each drone will have the same architecture, but their inputs will be
different, due to that the positions are relative.

Although this scenario can be considered more difficult, the suitable results of the learning process allows
to guide correctly the two UAVs with a good percent of favourable simulations. The error here based in 100
simulations is of the 27%. Although, this model can not be employed in a real system, it gives us the certain
that it is possible to control UAVs in more difficult scenarios with neural networks. The time of execution of
a simulation here is around 82 seconds.

The next Figures illustrate four stretches in one simulation to see how each drone try to avoid colliding
with the other. It is important to mention, that the drones do not know where the other ones are. This can be
a future research. In Figure 5.8, the green circle indicates the starting point of each drone and the blue one,
their next WP, while the lines are the different trajectories. One stretch after, the drones try to achieve the
navy blue and then, in Figure 5.10, they try to go to the red circles. The full simulation is shown in Figure
5.11.

Figure 5.8 First stretch (2 UAVs and no obstacles). Figure 5.9 Second stretch (2 UAVs and no obstacles).

Figure 5.10 Third stretch (2 UAVs and no obstacles).Figure 5.11 Fourth stretch (2 UAVs and no obstacles).

Now in Figure 5.12, we will show how a wrong simulation of this scenario looks. They start again in a
green point and while the red trajectory follows red points, the blue one follows blue circles. Although, the
drones do not directly collide trying to achieve the third WP, they pass really near and therefore the simulation
is considered as unsucceeded.

5.4 Scenario 2 UAV and 0 obstacle without unsucceeded simulations filter 35

Figure 5.12 Wrong simulation (2 UAVs and no obstacles).

This type of error comes from a bad or poor training and must be eliminated in order to employ this
algorithm in real systems. Some of the ways to teach better the network are:

• using a deeper and more efficiency architecture;
• using a better and bigger dataset provided by ORCA;
• employing GPUs to simulate, in order to have a faster computation.

Scenario 2 UAV and 0 obstacle without unsucceeded simulations filter

In this case, we will implement a neural network without the simulations filter, in order to check the difference
between using an algorithm with and without it. This means that the neural network will also learn from
simulations of the dataset where the drones have collided at some points. Although the number of simulations
employed is the same, 34 simulations, the filter eliminates the wrong simulations, ending up with a dataset of
26 simulations, around 5,600 instants. In this case, we will learn from the full dataset, around 7,400 instants,
in which 8 simulations are unsucceeded. The aim of this section is to compare the performances of both
algorithms in order to see how affect the wrong simulations the learning process.

Therefore, the architecture implemented will be the same, with the only change of the dataset. Now, the
learning accuracy is again around the 97% but the error percent in the 100 simulations decreased to the 17%.
This can be a bit unintelligible, but it can be possible as going to be explained.

The filter avoids that the optimization process learns from simulations where the drones have flown to close
to each other or even, have collided. This can be seen from two different point of views. On the one hand, if
we use the filter, the dataset employed in the learning will always be correct, avoiding that the optimization
process takes as a correct movement, something incorrect. On the other hand, in the wrong simulations,
there are many instants in which the movements of the drones are correct and are important to find out due to
its complexity. Normally, the unsucceeded simulations are the ones which are more difficult. Although, all
simulation is considered as wrong, there is a lot of relevant information that should not be disqualify. The
main problem here is that when the filter is employed, the dataset used to train the model is too poor and
small, while without it, the data set is bigger. In this case, we can see that sometimes the learning of a few
wrong movements are not catastrophe for the learning, but it should be avoided.

After these results, we decide to train the model again with more dataset in both cases, with and without
the filter, and with the same architecture. Now the result using the filter is unconditionally better, due to the
number of collided simulations is bigger and the NN without the filter learns from more wrong movements.
This indicates the importance of a good dataset and a good training, avoiding generalization and a poor
optimization process.

The idea in this investigation as for future researches is to create a dataset with ORCA without any
collisions, independently of the randomness of the scenario. After that, the neural networks will be able to
guide efficiently the drones in different scenarios.

Conclusions and future investigations

To conclude, it has been once again demonstrated how useful and interesting can be the implementation of a
neural network to compute the guiding of an UAV. After several configurations, we have ended up with NNs
with good "learning" percent. Then and, according to the simulations tested, we can have the certain that
the drones are able to move with such as small error that they will not crash in an environment with certain
complexity. Nevertheless, there are many tasks that still have to be solved in order to be able to implement
this type of algorithm in real systems.

After many simulations, one of the most important reached conclusion is the importance of employing a
HW and SW with a high computation power. It was relevant to carry out the simulations using the computer
only for this issue. Otherwise the simulations may not work as expected. This demonstrates how much
potential is necessary by the computer to simulate, with ROS and Gazebo, neural networks created by TF.
Therefore, if this will be implemented in real systems with this type of algorithm, we would recommend
using GPUs instead of CPUs.

In addition, it has been demonstrated how TensorFlow is a powerful tool to create neural networks, giving
good results to compute deep learning algorithms. It has the needed flexibility to allow the programmer to
try different configurations, reaching better performances. Nevertheless, it can also make the optimization
process longer due to too many parameters to change and each modification affects a lot the result. In gen-
eral, we have demonstrated how TF works and how it can be helpful in the computation of several applications.

To finish with, this paper was only an introducing to what TensorFlow and neural networks are able to do
in different deep learning algorithms tasks and, in concrete, in the guiding of drones in specific environments.
If we are focused in the control of an UAV with TensorFlow, there are many possibilities to explore in future
researches. Following we will mention only a few of them:

• more complexity of the scenarios, adding more UAVs and obstacles;

• scenarios in 3D, increasing the number of inputs and outputs;

• implementation of deeper algorithms;

• creation of new network architectures;

• implementation of faster and more powerful software by using GPUs;

• better dataset without collisions;

• introduction to the UAV dynamics

37

Codes

Code 7.1 Extraction of the dataset in the simulation.

"""
@author: rebeca fernandez niederacher
"""

def find_pos(uav, first, last):
try:

start = uav.index(first) + len(first)
end = uav.index(last, start)
return uav[start:end]

except ValueError:
return ""

def find_orient(uav, first, last):
try:

start = uav.rindex(first) + len(first)
end = uav.rindex(last,start)
return uav[start:end]

except ValueError:
return ""

def pos_orien_vel(input_data, n_uav, UAV,lin_uav_x, lin_uav_y, goal_pos_x, goal
_pos_y, new_lin_x, new_lin_y,pos_uav_x,pos_uav_y, position_x,position_y,lin
_x, lin_y):
for uav in range (1, n_uav+1):

uav_pos = []
uav_vel = []
new_vel = []
goal_position = []
goal = False
if uav == UAV:

goal = True
else :

goal = False
position_x.append([])
position_y.append([])
lin_x.append([])
lin_y.append([])

for j in range (0, len(input_data[’actual_UAV_%s_pose’ % uav])):

39

40 Codes

uav_pos.append(input_data[’actual_UAV_%s_pose’ % uav][j])
uav_vel.append(input_data[’actual_UAV_%s_vel’ % uav][j])

position_x[uav-1].append(find_pos(uav_pos[j], ’x:’,’\n’))
position_y[uav-1].append(find_pos(uav_pos[j], ’y:’, ’\n’))
lin_x[uav-1].append(find_pos(uav_vel[j], ’x:’ , ’\n’))
lin_y[uav-1].append(find_pos(uav_vel[j], ’y:’ , ’\n’))

if goal == True:
pos_uav_x.append(find_pos(uav_pos[j], ’x:’,’\n’))
pos_uav_y.append(find_pos(uav_pos[j], ’y:’, ’\n’))
lin_uav_x.append(find_pos(uav_vel[j], ’x:’ , ’\n’))
lin_uav_y.append(find_pos(uav_vel[j], ’y:’ , ’\n’))

goal_position.append(input_data[’goal_UAV_%s_pose’ % uav][j])
new_vel.append(input_data[’UAV_%s_new_velocity_twist’ % uav][j])

goal_pos_x.append(find_pos(goal_position[j], ’x:’,’\n’))
goal_pos_y.append(find_pos(goal_position[j], ’y:’, ’\n’))
new_lin_x.append(find_pos(new_vel[j], ’x:’ , ’\n’))
new_lin_y.append(find_pos(new_vel[j], ’y:’ , ’\n’))

Codes 41

Code 7.2 Creation of the input and output data of a neural network.

"""
@author: rebeca fernandez niederacher
"""
import datos
import w_definition
import pandas as pd

input_matrix = []
label = []
position_x = []
position_y = []
lin_x = []
lin_y = []
pos_uav_x = []
pos_uav_y= []
new_lin_x = []
new_lin_y = []
goal_pos_x = []
goal_pos_y = []
lin_uav_x = []
lin_uav_y = []

obs_x = w_definition.position_obs_x
obs_y = w_definition.position_obs_y
obstacle_x = []
obstacle_y = []

n_uav = w_definition.uav
n_obs = w_definition.obs
dir_input = w_definition.dir_data
num_sim = w_definition.num_sim
valid_simulation = w_definition.valid_simulation

for sim in range (0, num_sim):
for UAV in range (1, n_uav+1):

input_data = []
input_data = pd.read_csv(dir_input + "/simulation_%s" % valid_

simulation[sim] + "/uav_%s.csv" % UAV, sep=’,’)
datos.pos_orien_vel(input_data, n_uav, UAV,lin_uav_x, lin_uav_y, goal_

pos_x, goal_pos_y,new_lin_x, new_lin_y,pos_uav_x,pos_uav_y, position
_x, position_y, lin_x, lin_y)

for n_obstacle in range (0, n_obs):
obstacle_x.append([])
obstacle_y.append([])
for len_obs in range (0, len(input_data[’actual_UAV_%s_pose’ % UAV])

):
obstacle_x[n_obstacle].append(obs_x[sim][n_obstacle])
obstacle_y[n_obstacle].append(obs_y[sim][n_obstacle])

for j in range(0, len(pos_uav_x)):
input_matrix.append([])
label.append([])
input_matrix[j].append(float(lin_uav_x[j]))
input_matrix[j].append(float(lin_uav_y[j]))
for i in range (0, n_uav):

42 Codes

if(float(pos_uav_x[j]) != float(position_x[i][j])):
input_matrix[j].append(float(position_x[i][j]) -float(pos_uav_x[j]))
input_matrix[j].append(float(position_y[i][j]) -float(pos_uav_y[j]))

if(float(lin_uav_x[j]) != float(lin_x[i][j])):
input_matrix[j].append(float(lin_x[i][j]))
input_matrix[j].append(float(lin_y[i][j]))

if (n_obs > 0):
for num_obstacle in range (0,n_obs):

input_matrix[j].append(float(obstacle_x[num_obstacle][j]) - float(
pos_uav_x[j]))

input_matrix[j].append(float(obstacle_y[num_obstacle][j]) - float(
pos_uav_y[j]))

input_matrix[j].append(float(goal_pos_x[j]) - float(pos_uav_x[j]))
input_matrix[j].append(float(goal_pos_y[j]) - float(pos_uav_y[j]))

label[j].append(float(new_lin_x[j]))
label[j].append(float(new_lin_y[j]))

features_len = len(input_matrix[0])
simulation_len = len(input_matrix)
label_len = len(label[0])

Codes 43

Code 7.3 Filtration of the dataset and extraction of the obstacles position.

"""
@author: rebeca fernandez niederacher
"""
import os
import pandas as pd
import numpy as np
import csv

dir = os.getcwd()
pos_obs = []
type_world = []
archivo = []
num_sim=0

sim_num = []
error = []
valid_simulation = []
sim = []

position_obs_x = []
position_obs_y = []

pos_obs_x = []
pos_obs_y = []

uav = # Depending on the neural network to train
obs = # Depending on the neural network to train

dir_data = dir+ "/type1_Nuav%s" % uav + "_Nobs%s" % obs + "/dataset_1"
data_set = pd.read_csv(dir_data + "/performance_info.csv", sep=’,’)
total_sim = len(data_set[’simulation_n’])

for i in range (0,total_sim):
sim_num.append(data_set[’simulation_n’][i])
error.append(data_set[’succeed’][i])

for j in range (0,total_sim):
if(error[j] == True):

valid_simulation.append(data_set[’simulation_n’][j])

num_sim = len(valid_simulation)

for sim in range (0, num_sim):
dir_world = dir_data + "/simulation_%s" % valid_simulation[sim]
for archivo in os.listdir(dir_world):

input_world=[]
if archivo.startswith("world"):

input_world = pd.read_csv(dir_world+ "/world_definition.csv", sep
=’,’)

if (obs > 0):
pos_obs= np.matrix(input_world[’obs_pose_list_simple’][0])

if (obs > 0):
for obstacle in range (0,obs):

offset = 3*obstacle
pos_obs_x.append(float(pos_obs.T[0+offset]))

44 Codes

pos_obs_y.append(float(pos_obs.T[1+offset]))

if (obs > 0):
position_obs_x = np.reshape(pos_obs_x, (num_sim,obs))
position_obs_y = np.reshape(pos_obs_y, (num_sim,obs))

Codes 45

Code 7.4 Neural network trained for scenario with 1 UAV and 1 obstacle.

"""
@author: rebeca fernandez niederacher
"""
import os
import tensorflow as tf
import w_definition
import datos_entrada
import numpy as np
from sklearn.metrics import accuracy_score

n_csv = w_definition.uav
n_obs = w_definition.obs
num_label = datos_entrada.label_len
input_len = int(1*datos_entrada.simulation_len)
num_features = datos_entrada.features_len

batch_data =[]
batch_labels = []

train_size = int(0.7*input_len)
valid_size = int(0.15*input_len)

tf.app.flags.DEFINE_integer(’num_epochs’, 800,
’Number of examples to separate from the training ’
’data for the validation set.’)

tf.app.flags.DEFINE_float(’learning_rate’, 0.006, ’Initial learning rate.’)

tf.app.flags.DEFINE_integer(’train_size’, train_size, ’set of training data’)

tf.app.flags.DEFINE_integer(’valid_size’, valid_size, ’set of validation data’)

tf.app.flags.DEFINE_integer(’BATCH_SIZE’, 20, ’Must divide evenly into the
dataset sizes.’) #ntes 6

tf.app.flags.DEFINE_integer(’n_hidden_1’, 30, ’Number of neuron in layer 1’)

tf.app.flags.DEFINE_integer(’n_hidden_2’, 30, ’Number of neuron in layer 2’)

tf.app.flags.DEFINE_integer(’n_hidden_3’, 30, ’Number of neuron in layer 3’)

FLAGS = tf.app.flags.FLAGS

def randomize(dataset, labels):
permutation = np.random.permutation(len(labels))
shuffled_dataset = dataset[permutation, :]
shuffled_labels = labels[permutation, :]
return shuffled_dataset, shuffled_labels

data_input = datos_entrada.input_matrix
labels_input = datos_entrada.label

data_input = np.matrix(data_input, np.float32)
labels_input = np.matrix(labels_input, np.float32)

46 Codes

error = False
num_epochs = FLAGS.num_epochs
learning_rate = FLAGS.learning_rate
BATCH_SIZE = FLAGS.BATCH_SIZE
train_size = FLAGS.train_size
valid_size = FLAGS.valid_size
n_hidden_1 =FLAGS.n_hidden_1
n_hidden_2 =FLAGS.n_hidden_2
n_hidden_3 =FLAGS.n_hidden_3

if (train_size>input_len):
error = True
print ("ERROR!")
print ()
print ("TRAINING SIZE BIGGER THAN THE COMPLETE SIMULATION SET. YOU SHOULD

MAKE IT SMALLER")
print ()
print ("training size:")
print (train_size)

dataset, labels = randomize(data_input,labels_input)
train_data = dataset[0:train_size, :]
train_labels = labels[0:train_size, :]
valid_data = dataset[train_size: valid_size+train_size, :]
valid_labels = labels[train_size: valid_size+train_size, :]
test_data= dataset[valid_size+train_size : input_len, :]
test_labels= labels[valid_size+train_size : input_len, :]

beta1=0.005
beta2 = 0.001

graph = tf.Graph()
with graph.as_default():

tf_train_dataset = tf.placeholder(tf.float32, shape=(None, num_features),
name=’input_matrix’)

tf_train_labels = tf.placeholder(tf.float32, shape=(None, num_label))
tf_valid_dataset = tf.constant(valid_data)
tf_test_dataset = tf.constant(test_data)

dev_1 = 0.7
dev_2 = np.sqrt(2/n_hidden_1)
dev_3 = np.sqrt(2/n_hidden_2)
dev_out = np.sqrt(2/n_hidden_3)

weights = {
’h1’: tf.Variable(tf.random_normal([num_features, n_hidden_1], stddev =

dev_1, dtype= np.float32)),
’h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev =

dev_2, dtype= np.float32)),
’h3’: tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], stddev =

dev_3, dtype= np.float32)),
’out’: tf.Variable(tf.random_normal([n_hidden_3, num_label], stddev =

dev_out, dtype= np.float32))
}

biases = {

Codes 47

’b1’: tf.Variable(tf.zeros([n_hidden_1], dtype= np.float32)),
’b2’: tf.Variable(tf.zeros([n_hidden_2],dtype= np.float32)),
’b3’: tf.Variable(tf.zeros([n_hidden_3],dtype= np.float32)),
’out’: tf.Variable(tf.zeros([num_label],dtype= np.float32))

}

def multilayer_perceptron(x):
Hidden fully connected layer with n_hidden_1 neurons
layer_1 = tf.nn.tanh(tf.add(tf.matmul(x, weights[’h1’]), biases[’b1’]))
Hidden fully connected layer with n_hidden_2 neurons
layer_2 = tf.nn.tanh(tf.add(tf.matmul(layer_1, weights[’h2’]), biases[’

b2’]))
Hidden fully connected layer with n_hidden_3 neurons
layer_3 = tf.nn.tanh(tf.add(tf.matmul(layer_2, weights[’h3’]), biases[’

b3’]))
Output fully connected layer with a neuron for each class
out_layer = tf.nn.tanh(tf.matmul(layer_3, weights[’out’]) + biases[’out

’])

return (out_layer)

logits = multilayer_perceptron(tf_train_dataset)
loss = tf.losses.mean_squared_error(labels=tf_train_labels, predictions =

logits)

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
train_prediction = logits

valid_prediction = multilayer_perceptron(tf_valid_dataset)
test_prediction = multilayer_perceptron(tf_test_dataset)

def accuracy(predictions, labels):
percent = accuracy_score(np.argmax(labels,1), np.argmax(predictions,1))*100
return percent

with tf.Session(graph=graph) as session:

tf.global_variables_initializer().run()
print("Initialized")
for step in range((num_epochs * train_size // BATCH_SIZE)):

offset = (step * BATCH_SIZE) % (train_size-BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), :]
batch_labels = train_labels[offset:(offset + BATCH_SIZE), :]
feed_dict = {tf_train_dataset: batch_data, tf_train_labels: batch_

labels}
_, l, l_regu, predictions = session.run([optimizer, loss, loss_regu,

train_prediction], feed_dict=feed_dict)
if (step % 2000 == 0):

print("Minibatch loss at step %d: %f" % (step, l))
print ("loss regularization at step %d: %f" % (step, l_regu))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_

labels))
print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval

(), valid_labels))

48 Codes

print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_
labels))

List of Figures

1.1 A drone for package delivery 4
1.2 Quadrotor transporting a heavy load 4
1.3 Quadrotor in a fire 4

2.1 Basic structure of a neuron 7
2.2 Simple Neural Network compare to Deep Learning Neural Network 8
2.3 Artificial Neural Network representation 8
2.4 Training step in a Supervised Machine Learning task 9
2.5 Supervised Machine Learning structure 10
2.6 Fully Connected neural network 11
2.7 Recurrent Neural Network architecture 12
2.8 Recursive Neuronal Network example 12
2.9 Convolutional Neural Network architecture 12
2.10 Overfitting 13
2.11 Early Stopping technique 13

3.1 Logo Tensorflow 15
3.2 Dataflow graph in TensorFlow using TensorBoard visualization tool 17
3.3 Neural network like a black box 17
3.4 Example of name scopings and nodes 18

4.1 Data set files for simulations with 3 UAVs 22
4.2 Architecture of the neural network (1 UAV and no obstacles) 23
4.3 Tensorboard data flow main graph (1 UAV and no obstacles) 24
4.4 Tensorboard data flow auxiliary graph (1 UAV and no obstacles) 25
4.5 Accuracy (1 UAV and no obstacles) 25
4.6 Function loss (1 UAV and no obstacles) 25
4.7 Architecture of three Fully Connected layers(1 UAV and 1 obstacle) 26
4.8 Tensorboard data flow main graph (1 UAV and 1 obstacle) 27
4.9 Tensorboard data flow auxiliary graph (1 UAV and 1 obstacle) 28
4.10 Accuracy (1 UAV and 1 obstacle) 28
4.11 Total function loss (1 UAV and 1 obstacle) 28
4.12 Architecture of three Fully Connected layers (2 UAVs and no obstacles) 29
4.13 Accuracy (2 UAVs and no obstacles) 29
4.14 Function loss (2 UAVs and no obstacles) 30
4.15 Regularization function loss (2 UAVs and no obstacles) 30
4.16 Total function loss (2 UAVs and no obstacles) 30

5.1 First stretch (1 UAV and no obstacles) 32
5.2 Second stretch (1 UAV and no obstacles) 32
5.3 Third stretch (1 UAV and no obstacles) 32
5.4 First simulation (1 UAV and 1 obstacle) 33

49

50 List of Figures

5.5 Second simulation (1 UAV and 1 obstacle) 33
5.6 Third simulation (1 UAV and 1 obstacle) 33
5.7 Fourth simulation (1 UAV and 1 obstacle) 33
5.8 First stretch (2 UAVs and no obstacles) 34
5.9 Second stretch (2 UAVs and no obstacles) 34
5.10 Third stretch (2 UAVs and no obstacles) 34
5.11 Fourth stretch (2 UAVs and no obstacles) 34
5.12 Wrong simulation (2 UAVs and no obstacles) 35

List of Codes

3.1 Addition example with TensorBoard 18

5.1 Saving a graph 31
5.2 Importing and restoring a trained NN 31

7.1 Extraction of the dataset in the simulation 39
7.2 Creation of the input and output data of a neural network 41
7.3 Filtration of the dataset and extraction of the obstacles position 43
7.4 Neural network trained for scenario with 1 UAV and 1 obstacle 45

51

References

Analytics, P., Networks, N., & Buduma, B. N. (2000). Data Science 101 : Preventing Overfitting in
Neural Networks. , 3–5. Retrieved from https://www.kdnuggets.com/2015/04/preventing
-overfitting-neural-networks.html/2

Besbes, A. (2017). Understanding deep Convolutional Neural Networks with a practical use-
case in Tensorflow and Keras. Retrieved 2017-12-04, from https://ahmedbesbes.com/
understanding-deep-convolutional-neural-networks-with-a-practical-use-case
-in-tensorflow-and-keras.html

Brownlee, J. (2016). Supervised and Unsupervised Machine Learning Algorithms - Machine Learning
Mastery. Retrieved 2017-11-27, from http://machinelearningmastery.com/supervised-and
-unsupervised-machine-learning-algorithms/

Davis, A. L., & Keller, R. M. (1982). Data-flow graphs. Computer, 26–41. Retrieved from http://
bears.ece.ucsb.edu/research-info/DP/dfg.html

Dean, J., & Monga, R. (2015). TensorFlow - Google’s latest machine learning system, open sourced for every-
one. Retrieved 2017-11-26, from https://research.googleblog.com/2015/11/tensorflow
-googles-latest-machine{_}9.html

Dean, J., Monga, R., Mital, P. K., TensorFlow, Davis, A. L., Keller, R. M., . . . Louradour,
J. (2000, sep). TensorFlow (Vol. 1). IEEE Comput. Soc. Retrieved 2017-11-26,
from http://ieeexplore.ieee.org/document/6981034/https://www.jetbrains
.com/pycharm/https://www.tensorflow.org/http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/http://
www.lavanguardia.com/tecnologia/20170716/42411 doi: 10.1109/ICDAR.2003.1227801

Dean James. (2014). What’s the Difference Between AI and Machine Learning? Retrieved 2017-11-
29, from http://www.machinedesign.com/industrial-automation/what-s-difference
-between-ai-and-machine-learning

Estimators | TensorFlow. (2000). Retrieved 2017-11-26, from https://www.tensorflow.org/
programmers_guide/estimators

Google. (2018). Simple Audio Recognition | TensorFlow. Retrieved 2017-11-28, from https://www
.tensorflow.org/versions/master/tutorials/audio{_}recognition

Google LLC. (2018). Graphs and Sessions. Retrieved 2017-11-27, from https://www.tensorflow.org/
programmers{_}guide/graphs

Installing TensorFlow on Mac OS X. (2000). Retrieved 2017-12-05, from https://www.tensorflow.org/
install/

Karn, U. (2016). A Quick Introduction to Neural Networks. The Data Science Blog. Retrieved from
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

Machine Learning y Deep Learning: cómo entender las claves del presente y futuro de la inteligencia
artificial. (2000). Retrieved 2017-11-29, from https://www.xataka.com/robotica-e-ia/
machine-learning-y-deep-learning-como-entender-las-claves-del-presente-y
-futuro-de-la-inteligencia-artificial

Mccrea, N. (2013). A Machine Learning Introductory Tutorial with Examples | Toptal. Re-
trieved from https://www.toptal.com/machine-learning/machine-learning-theory-an
-introductory-primer

53

https://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html/2
https://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html/2
https://ahmedbesbes.com/understanding-deep-convolutional-neural-networks-with-a-practical-use-case-in-tensorflow-and-keras.html
https://ahmedbesbes.com/understanding-deep-convolutional-neural-networks-with-a-practical-use-case-in-tensorflow-and-keras.html
https://ahmedbesbes.com/understanding-deep-convolutional-neural-networks-with-a-practical-use-case-in-tensorflow-and-keras.html
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://bears.ece.ucsb.edu/research-info/DP/dfg.html
http://bears.ece.ucsb.edu/research-info/DP/dfg.html
https://research.googleblog.com/2015/11/tensorflow-googles-latest-machine{_}9.html
https://research.googleblog.com/2015/11/tensorflow-googles-latest-machine{_}9.html
http://ieeexplore.ieee.org/document/6981034/https://www.jetbrains.com/pycharm/https://www.tensorflow.org/http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/http://www.lavanguardia.com/tecnologia/20170716/42411
http://ieeexplore.ieee.org/document/6981034/https://www.jetbrains.com/pycharm/https://www.tensorflow.org/http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/http://www.lavanguardia.com/tecnologia/20170716/42411
http://ieeexplore.ieee.org/document/6981034/https://www.jetbrains.com/pycharm/https://www.tensorflow.org/http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/http://www.lavanguardia.com/tecnologia/20170716/42411
http://ieeexplore.ieee.org/document/6981034/https://www.jetbrains.com/pycharm/https://www.tensorflow.org/http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/http://www.lavanguardia.com/tecnologia/20170716/42411
http://www.machinedesign.com/industrial-automation/what-s-difference-between-ai-and-machine-learning
http://www.machinedesign.com/industrial-automation/what-s-difference-between-ai-and-machine-learning
https://www.tensorflow.org/programmers_guide/estimators
https://www.tensorflow.org/programmers_guide/estimators
https://www.tensorflow.org/versions/master/tutorials/audio{_}recognition
https://www.tensorflow.org/versions/master/tutorials/audio{_}recognition
https://www.tensorflow.org/programmers{_}guide/graphs
https://www.tensorflow.org/programmers{_}guide/graphs
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://www.xataka.com/robotica-e-ia/machine-learning-y-deep-learning-como-entender-las-claves-del-presente-y-futuro-de-la-inteligencia-artificial
https://www.xataka.com/robotica-e-ia/machine-learning-y-deep-learning-como-entender-las-claves-del-presente-y-futuro-de-la-inteligencia-artificial
https://www.xataka.com/robotica-e-ia/machine-learning-y-deep-learning-como-entender-las-claves-del-presente-y-futuro-de-la-inteligencia-artificial
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

54 References

Mircrosoft SQL Server. (2012). Training and Testing Data Sets. MSDN library, 2014–2016. Retrieved from
https://technet.microsoft.com/en-us/library/bb895173(v=sql.110).aspx

Mital, P. K. (2016). Session 1 - Introduction to Tensorflow. , 2–5. Retrieved from https://www.tensorflow
.org/mobile/mobile{_}intro

Ongsulee, P. (2017). Artificial Intelligence, Machine Learning and Deep Learning. , 1–11. Retrieved from
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

Parzych, D. (2017). Artificial Intelligence vs. Machine Learning vs. Deep Learning - DZone AI. Retrieved
2017-11-29, from https://dzone.com/articles/the-differences-between-ai-and-ml

Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014, sep). Dropout Improves Recurrent Neural
Networks for Handwriting Recognition. In 2014 14th international conference on frontiers in handwrit-
ing recognition (pp. 285–290). IEEE. Retrieved from http://ieeexplore.ieee.org/document/
6981034/ doi: 10.1109/ICFHR.2014.55

¿Por qué regala Google el ‘software’ del que depende su futuro? (2000). Retrieved 2017-
12-22, from http://www.lavanguardia.com/tecnologia/20170716/424112953155/google
-alphabet-aprendizaje-automatico-tensorflow.html

PyCharm: Python IDE for Professional Developers by JetBrains. (2000). Retrieved 2018-03-13, from
https://www.jetbrains.com/pycharm/

Python. (2014). Download Python | Python.org. Retrieved from https://www.python.org/download/
Python, C. (2017). Image Recognition and Object Detection _ Part 1 _ Learn OpenCV.pdf. , 1–18. Re-

trieved from https://www.learnopencv.com/image-recognition-and-object-detection
-part1/

Python Programming Tutorials. (2000). Retrieved 2017-11-26, from https://pythonprogramming.net/
tensorflow-introduction-machine-learning-tutorial/

Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs – WildML. (2000). Retrieved 2018-03-
12, from http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part
-1-introduction-to-rnns/

Simard, P., Steinkraus, D., & Platt, J. (2000). Best practices for convolutional neural networks applied to
visual document analysis. In Seventh international conference on document analysis and recognition,
2003. proceedings. (Vol. 1, pp. 958–963). IEEE Comput. Soc. Retrieved from http://ieeexplore
.ieee.org/document/1227801/ doi: 10.1109/ICDAR.2003.1227801

Started, G., & To, H. (2016). MNIST ForML Beginners. , 1–11. Retrieved from https://www.tensorflow
.org/get{_}started/mnist/beginners

Techopedia. (2015). What is the Internet of Things (IoT) - Definition from Techopedia. Retrieved 2017-12-13,
from https://www.techopedia.com/definition/28247/internet-of-things-iot

TensorFlow. (2015). TensorFlow Architecture. Retrieved from https://www.tensorflow.org/extend/
architecture

Tensorflow. (2017). API Documentation. Retrieved 2017-11-26, from https://www.tensorflow.org/
api{_}docs/

TensorFlow. (2017). TensorBoard: Visualizing Learning. Retrieved 2017-12-05, from https://www
.tensorflow.org/get{_}started/summaries{_}and{_}tensorboard

TensorRec: A Recommendation Engine Framework in TensorFlow. (2000). Retrieved 2017-11-
27, from https://hackernoon.com/tensorrec-a-recommendation-engine-framework-in
-tensorflow-d85e4f0874e8

Tensors | TensorFlow. (2000). Retrieved 2017-11-28, from https://www.tensorflow.org/
programmers{_}guide/tensors

Top Five Use Cases of TensorFlow. (2000). Retrieved 2017-11-27, from https://www.exastax.com/
deep-learning/top-five-use-cases-of-tensorflow/

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Fritz, D., Krishnan, D., . . . Wattenberg, M.
(2000). Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. Retrieved from
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf

https://technet.microsoft.com/en-us/library/bb895173(v=sql.110).aspx
https://www.tensorflow.org/mobile/mobile{_}intro
https://www.tensorflow.org/mobile/mobile{_}intro
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
https://dzone.com/articles/the-differences-between-ai-and-ml
http://ieeexplore.ieee.org/document/6981034/
http://ieeexplore.ieee.org/document/6981034/
http://www.lavanguardia.com/tecnologia/20170716/424112953155/google-alphabet-aprendizaje-automatico-tensorflow.html
http://www.lavanguardia.com/tecnologia/20170716/424112953155/google-alphabet-aprendizaje-automatico-tensorflow.html
https://www.jetbrains.com/pycharm/
https://www.python.org/download/
https://www.learnopencv.com/image-recognition-and-object-detection-part1/
https://www.learnopencv.com/image-recognition-and-object-detection-part1/
https://pythonprogramming.net/tensorflow-introduction-machine-learning-tutorial/
https://pythonprogramming.net/tensorflow-introduction-machine-learning-tutorial/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://ieeexplore.ieee.org/document/1227801/
http://ieeexplore.ieee.org/document/1227801/
https://www.tensorflow.org/get{_}started/mnist/beginners
https://www.tensorflow.org/get{_}started/mnist/beginners
https://www.techopedia.com/definition/28247/internet-of-things-iot
https://www.tensorflow.org/extend/architecture
https://www.tensorflow.org/extend/architecture
https://www.tensorflow.org/api{_}docs/
https://www.tensorflow.org/api{_}docs/
https://www.tensorflow.org/get{_}started/summaries{_}and{_}tensorboard
https://www.tensorflow.org/get{_}started/summaries{_}and{_}tensorboard
https://hackernoon.com/tensorrec-a-recommendation-engine-framework-in-tensorflow-d85e4f0874e8
https://hackernoon.com/tensorrec-a-recommendation-engine-framework-in-tensorflow-d85e4f0874e8
https://www.tensorflow.org/programmers{_}guide/tensors
https://www.tensorflow.org/programmers{_}guide/tensors
https://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/
https://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf

	Abstract
	Abbreviated indeex
	Abbreviations
	Introduction
	Unmanned aerial vehicle (UAV)
	Neural Networks for UAVs
	Motivation
	Objective
	Structure of the project

	Artificial Neural Networks
	Introduction. Brain neuron
	Artificial Neural Network
	Basic parameters
	Architectures
	Overfitting

	Tensorflow
	Introduction
	Structure
	Visualization tool: TensorBoard
	TensorFlow nowadays

	Training of the scenarios
	Dataset
	Training
	First neural network. 1 UAV and 0 obstacle
	1 UAV and 1 obstacle
	2 UAV and 0 obstacle

	Simulation results
	Scenario 1 UAV and 0 obstacle
	Scenario 1 UAV and 1 obstacle
	Scenario 2 UAV and 0 obstacle
	Scenario 2 UAV and 0 obstacle without unsucceeded simulations filter

	Conclusions and future investigations
	Conclusions and future investigations
	Codes
	List of Figures
	List of Codes
	References
	References
	Index
	End/Last page
	First page

