Trabajo Fin de Grado Grado en Ingeniería Química

Ingeniería básica de una planta de producción de p-xileno por metilación de tolueno

Autor: Ana Lara Quijano Tutor: Manuel Campoy Naranjo

> Dpto. Ingeniería Química y Ambiental Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2018

Trabajo Fin de Grado Ingeniería Química

Ingeniería básica de una planta de producción de p-xileno por metilación de tolueno

Autor: Ana Lara Quijano

Tutor: Manuel Campoy Naranjo

Dpto. Ingeniería Química y Ambiental Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2018

Trabajo Fin de Grado: Ingeniería básica de una planta de producción de p-xileno por metilación de tolueno

A mi familia.

Me gustaría dedicar este trabajo a toda mi familia, en especial a mis padres y abuelos, por su dedicación y apoyo durante estos cuatro años.

También quisiera mostrar mi agradecimiento a todas aquellas personas que he conocido durante este tiempo, y que desde que se cruzaron en mi camino se hicieron indispensables en mi vida.

Por último, agradecer a mis profesores, por todo lo que he aprendido gracias ellos, especialmente a Manuel Campoy Naranjo, por haberme ofrecido la posibilidad de realizar este trabajo, y por su ayuda a lo largo de estos meses.

En este trabajo se ha elaborado la ingeniería básica de una planta de producción de p-xileno con una capacidad de 95.000 toneladas anuales.

En primer lugar, se realiza una introducción en la que se exponen las distintas tecnologías de producción, además de un breve análisis de mercado que servirá de ayuda para fijar la producción de la planta a diseñar.

A continuación, se describe el método de producción elegido y se explica el proceso justificando las condiciones de operación de los diferentes equipos. Se realiza un diagrama de flujo de toda la instalación, y se resuelven los balances de materia y energía de toda la planta. Además, se diseñan algunos de los equipos que aparecen en el diagrama de flujo.

Por último, se desarrolla un apartado de mediciones y presupuestos, en el que se estima, mediante correlaciones, la inversión inicial requerida por la instalación.

This project develops the basic engineering of a p-xylene production plant with a capacity of 95.000 tons per year.

First at all, an introduction, where the different technologies of production are exposed, is done, as well as a brief analysis of the market, which will help to choose the production of the plant.

After that, the process of the selected manufactured method is described and explained justifying the operating conditions of the different equipments. A flow diagram of the plant is done, so it is needed to solve the energy and mass balances. In addition, some of the equipments which appears in the diagram are designed.

Finally, the measuring and the budget are developed. The initial investment cost is estimated through cost's correlations.

Índice

Agradecimientos	v
Resumen	vi
Abstract	vii
Índice de tablas	х
Índice de Figuras	xii
1 ntroducción	11
1.1. Objetivos y alcance	11
1.2. El xileno y sus propiedades	11
1.3. Localización	12
1.4. Métodos de producción	12
1.4.1. Xileno a partir de aceite ligero [5]	13
1.4.2. Xileno a partir de naftas [6]	15
1.4.3. MSTDP (Mobil Selective Toluene Disproportionation)	17
1.4.4. Proceso Tatoray	18
1.5. Aplicaciones	19
1.6. Producción y Mercado	20
1.6.1. Mercado de BTX	20
1.6.2. Mercado de p-xileno	20
1.6.3. Producción	22
1.7. Cinética	23
2 Memoria descriptiva y justificativa	24
2.1. Preparación para la reacción	24
	27
2.2. Reactor	27
2.2.1. Refrigerante	27
2.2.2. Catalizador	28
2.3. Separación	29
3 Memoria de cálculo	36
3.1. Equipos de intercambio de energía mecánica	36
3.1.1. Bombas	36
3.1.2. Compresor	38
3.2. Equipos de intercambio de calor	39
3.2.1. Intercambiadores de calor	39
3.2.2. Horno	42
3.3 Tanques	46
3.4. Reactor	4/
3.4.1. Diseno del reactor	4/
3.4.2. Analisis de sensibilidad	52
3.5. Equipos de separación	54
3.5.1. Flash	54
3.5.2. Decantador	56
3.5.3. Columnas de destilación	56
4. Mediciones y presupuestos	58
4.1. Coste de equipos	58
4.1.1. Correlaciones de costes	58

4.1.2	2. Correlaciones de BOEHM	58
4.1.3	3. Parámetros característicos y resultados	59
4.2.	Coste total planta	62
5. Hoja	as de especificaciones	63
6. Res	umen y conclusiones	85
7. Ane	xos	86
7.1.	Anexo I. Intercambiadores carcasa y tubo.	86
7.2.	Anexo II. Catálogos de bombas	88
<i>7.3</i> .	Anexo III. Diagrama de flujo del proceso completo, PFD.	91
7.4.	Anexo IV. Balances de materia y energía	92
8 Bibl	iografía	97

ÍNDICE DE TABLAS

Tabla 1.1. Propiedades del los isómeros del xileno [1]	11
Tabla 1.2. Composición del aceite ligero de hornos de coque [5]	14
Tabla 1.3. Composición del aceite ligero de gas de agua carburado [5]	14
Tabla 1.4. Productos obtenidos en función de la alimentación [2]	18
Tabla 1.5. Factor de frecuencia y energía de activación de las reacciones [19]	23
Tabla 2.1. Condiciones alimentación de tolueno y metanol	25
Tabla 2.2.Temperaturas de operación E-101 A/B/C/D y H-101	26
Tabla 2.3. Características del catalizador de zeolita ZSM-5 modificado con magnesio [3, 20].	27
Tabla 2.5. Condiciones de operación de la torre T-101 [19].	32
Tabla 2.6. Condiciones de operación de la torre T-102 [19].	32
Tabla 2.7. Condiciones de operación de la torre T-103 [3].	33
Tabla 2.8. Condiciones de operación de las torres T-104 y T-105 [19].	35
Tabla 3.1. Modelo seleccionado para cada bomba	37
Tabla 3.2. Resultados del diseño de los intercambiadores carcasa y tubo	42
Tabla 3.3. Composición del gas natural [30].	42
Tabla 3.4. Punto de inflamabilidad de tolueno, p-xileno y metanol [32, 33, 34].	47
Tabla 3.5. Capacidad tanques de almacenamiento	47
Tabla 3.6. Factores de efectividad global [19]	49
Tabla 3.7. Condiciones de operación reactor [3, 19, 20]	50
Tabla 3.8. Dimensiones del reactor.	50
Tabla 3.9. Conversión y selectividad en el reactor.	52
Tabla 3.10. Dimensiones del flash V-101	55
Tabla 3.11. Dimensiones del decantador V-102	56
Tabla 3.12. Dimensiones columnas de destilación	57
Tabla 4.1. Capacidad o tamaño de cada equipo [37].	59
Tabla 4.2. Parámetros característicos de cada equipo, Ki [37].	59
Tabla 4.3. Parámetros característicos de cada equipo, <i>Ci</i> [37].	59
Tabla 4.4. Factor de corrección por presión en vasijas [37].	60
Tabla 4.5. Correlación de coste empleada para cada equipo [37].	60
Tabla 4.6. Parámetros característicos de cada equipo, <i>Bi</i> [37].	60
Tabla 4.7. Coste equipos	61
Tabla 4.8. Factores Método de Chilton [37].	62
Tabla 7.1. Balances de materia y energía corrientes 1-10	92
Tabla 7.2. Balances de materia y energía corrientes 11-20	93
Tabla 7.3. Balances de materia y energía corrientes 21-30	94

Tabla 7.4. Balances de materia y energía corrientes 31-40	95
Tabla 7.5. Balances de materia y energía corrientes 41-46	96

ÍNDICE DE FIGURAS

Figura 1.1. Estructura molecular de los isómeros del xileno [2]	11
Figura 1.2. Polígono industrial de San Roque [4]	12
Figura 1.3. Proceso de extracción del aceite ligero [5]	13
Figura 1.4. Proceso de separación del aceite ligero [5]	14
Figura 1.5. Proceso de obtención de BTX a partir de nafta [6].	15
Figura 1.6. Proceso de sulfolane [6].	16
Figura 1.7. Unidad Parex-Sorbex	16
Figura 1.8. Unidad MSTDP-CX [6]	17
Figura 1.9. Reacción de desproporción de tolueno [2]	17
Figura 1.10. Reacción de transalquilación de tolueno [7]	18
Figura 1.11. Proceso Tatoray [8]	19
Figura 1.12. Producción de PET a partir de p-xileno [10]	20
Figura 1.13. Mercado mundial de p-xileno en el año 2014 [11]	21
Figura 1.14. Producción y capacidad de producción mundial de p-xileno 2005-2016 [13].	21
Figura 1.2. Demanda mundial de poliéster 2014-2020 [14]	22
Figura 1.3. Demanda mundial de PET 2010-2016 [15]	22
Figura 2.1. Diagrama de bloques	24
Figura 2.2. PFD: alimentación de tolueno y metanol	25
Figura 2.3. PFD: alimentación de hidrógeno.	25
Figura 2.4. PFD: zonas de preparación para la reacción y reacción.	27
Figura 2.6. PFD: zona de preparación para la separación.	30
Figura 2.7. PDF: tanque flash (V-101) y decantador (V-102).	31
Figura 2.8. PFD: columna de separación agua y metanol (T-101).	32
Figura 2.9. PFD: separación de hidrocarburos aromáticos (T-102 y T-103).	33
Figura 2.10. PFD purificación del p-xileno (T-104 y T-105).	34
Figura 3.1. Esquema proceso isentrópico y real [28].	38
Figura 3.2. Función objetivo (\$/año) frente a temperatura de entrada del aire en el horno (°C).	45
Figura 3.3. Dimensiones tanques	46
Figura 3.4. Evolución de la temperatura (°C) a lo largo del reactor.	50
Figura 3.5. Evolución de la pérdida de carga (Pa) a lo largo del reactor.	51
Figura 3.7. Caudal de p-xileno (kmol/h) a lo largo del reactor.	51
Figura 3.6. Caudal de m-xileno y o-xileno (kmol/h) a lo largo del reactor.	51
Figura 3.9. Evolución de la selectividad (%) a lo largo del reactor	52

Figura 3.8. Evolución de la conversión de tolueno (%) a lo largo del reactor.	52
Figura 3.11. Selectividad hacia p-xileno (%) frente a masa de catalizador (kg) en función de la temperat alimentación.	tura de 52
Figura 3.10. Conversión de tolueno (%) frente a masa de catalizador (kg) en función de la temperatualimentación.	tura de 52
Figura 3.8. Producción de p-xileno y benceno (kmol/h) frente a temperatura de alimentación (K).	53
Figura 3.13. Selectividad (%) frente a relación tolueno/metanol en la alimentación.	53
Figura 3.12. Conversión (%) frente a relación tolueno/metanol en la alimentación.	53
Figura 3.15. Conversión de tolueno (%) frente a masa de catalizador a lo largo del reactor (kg) en función ratio tolueno/inerte.	n de la 54
Figura 3.14. Selectividad hacia p-xileno (%) frente a masa de catalizador a lo largo del reactor (kg) en fu de la ratio tolueno/inerte.	ùnción 54
Figura 3.16. Esquema de las dimensiones de un separador flash [29].	55
Figura 7.1. Intercambiadores carcasa y tubo: características de los tubos [28]	86
Figura 7.2. Intercambiadores carcasa y tubo: diámetro de la carcasa y número de tubos en intercambiado placas tubulares fijas y de tubos en U [28].	ores de 87
Figura 7.3. Catálogo bombas. AGP bombas: serie SM.	88
Figura 7.4. Catálogo bombas. Saci pumps: Serie NKP-G.	88
Figura 7.5. Curvas características bomba HS 125-100-305.	89
Figura 7.6. Curvas características bomba HS 125-100-280.	90
Figura 7.7. Diagrama de flujo del proceso completo, PFD	91

1.1. Objetivos y alcance

El objetivo de este proyecto es la realización de la ingeniería básica de una planta industrial de producción de 95.000 toneladas anuales de p-xileno a partir de la metilación de tolueno.

El alcance del Proyecto comprende:

- La elaboración de un diagrama de flujo (PFD) que represente el proceso descrito, quedando fuera del alcance la realización del P&ID, y los conceptos relacionados con la instrumentación y el control de la planta.
- La resolución de los balances de materia y energía de las corrientes mencionadas en el PFD.
- El diseño de algunos de los equipos de la instalación. Quedando fuera del alcance el diseño de los equipos correspondientes a la separación de los productos.
- El análisis económico de la instalación.
- Las hojas de especificaciones de los equipos que forman parte del proceso.

1.2. El xileno y sus propiedades

El xileno o dimetilbenceno es un hidrcocarburo formado por un anillo aromático y dos grupos metilo, su fórmula molecular es C_8H_{10} . Existen tres xilenos isómeros: o-xileno, m-xileno y p-xileno. Estos difieren en las posiciones de los dos grupos metilo en el anillo de benceno. La estructura molecular de cada uno de los isómeros se muestra en la Figura 1.1.

Figura 1.1. Estructura molecular de los isómeros del xileno [2]

Las propiedades físicas de estos tres isómeros son muy parecidas. Son líquidos y volátiles en condiciones atmosféricas; son incoloros, al igual que el agua; y su olor es parecido al del benceno. En la Tabla 1.1 se muestran algunas propiedades tanto físicas como termodinámicas de los tres isómeros [1].

Propiedad	o-xileno	m-xileno	p-xileno
Punto de fusión (°C)	-25,2	-47,9	13,3
Punto de ebullición (°C)	144,4	139,1	136,2
Densidad a 20 °C (kg/m ³)	880,2	864,2	861,0
Punto de inflamación (°C)	34,4	30,6	30,0
Viscosidad a 20 °C (kg/m·s)	8,09·10 ⁻⁵	6,17·10 ⁻⁵	6,44.10-5

Tabla 1.1. Propiedades del los isómeros del xileno [1]

Una característica importante a destacar es la similitud en los puntos de ebullición de los tres compuestos. Esto es importante porque implica que llevar a cabo el proceso de separación del p-xileno es una tarea bastante complicada, ya que la separación por destilación requiere muchas etapas.

Lo más común en la práctica es recurrir a otras operaciones unitarias, como la adsorción o la cristalización, ya que los puntos de fusión de estos compuestos no son tan parecidos (Tabla 1.1).

1.3. Localización

Se ha decidido ubicar la planta en el polígono industrial de San Roque, provincia de Cádiz (Figura 1.2). Esta elección se debe, principalmente, a la facilidad de importación de la materia prima, ya que en este mismo polígono se encuentra la Refinería Gibraltar-San Roque de Cepsa (RGSR). De modo que la materia prima producida en la refinería puede llegar fácilmente a la planta de producción de p-xileno, ya sea por medio de tuberías o de camiones si fuera necesario.

Figura 1.2. Polígono industrial de San Roque [4]

1.4. Métodos de producción

Exiten varios métodos de producción de xileno, algunos consisten en la extracción del xileno de componentes en los que se encuentran, es decir, se llevan a cabo sólo por separación, sin necesidad de realizar transformaciones químicas. Las principales fuentes de xileno son el aceite ligero y la nafta del petróleo obtenida del destilado del reformado catalítico [1].

Por otro lado, hay otros métodos de producción de xileno que consisten en hacer reaccionar tolueno con otros compuestos orgánicos. Los procesos más empleados industrialmente son: el proceso Tatoray, la metilación de tolueno y el Mobil Selective Toluene Disproportionation (MSTDP) [2].

A continuación, se va a explicar de forma más detallada en que consisten cada uno de los procesos mencionados anteriormente.

1.4.1. Xileno a partir de aceite ligero [5]

El aceite ligero del gas de hornos de coque era la principal fuente de BTX en Estados Unidos durante los años 60. Sin embargo, es un proceso que actualmente casi no se lleva a cabo, debido que es más económico obtener los BTX a partir de la nafta de petróleo.

El aceite ligero se obtiene del gas de los hornos de coque lavando los gases con aceite pajizo (fracción de petróleo con puntos de ebullción entre 285 y 350°C). Este lavado se realiza en contracorriente, en dos o más columnas en serie, con el objetivo de alcanzar la máxima dilución del aceite ligero del gas de los hornos en el aceite pajizo.

El aceite pajizo con BTX que sale por la última torre se bombea y se calienta hasta llegar a una columna de destilación. Por la parte inferior de la columna de introduce vapor, que asciende realizando una destilación por arrastre que se lleva el aceite ligero con los aromáticos. Los vapores de aceite ligero se separan del agua, se condensan y se llevan a un tanque.

En la Figura 1.3 se muestra el proceso de extracción de aceite ligero descrito anteriormente

Figura 1.3. Proceso de extracción del aceite ligero [5]

Una vez se tiene el aceite ligero, es necesario realizar la separación de sus componentes (Figura 1.4). Esto se hace por destilación y con lavado con ácido sulfúrico.

El aceite liego se separa en tres fracciones: cabeza, benceno crudo y benceno-tolueno-xileno. Esta útima se lava con ácido y luego se vuelve a destilar para conseguir productos comerciales.

Figura 1.4. Proceso de separación del aceite ligero [5]

La composición del aceite ligero depende de la calidad de la hulla y de la temperatura de coquificación, cuando esta temperatura es elevada (es lo más común), el aceite ligero contiene poca o ninguna parafina, de lo contrario, el aceite podría contener hasta un 7% en volumen de parafinas.

Si se usa aceite ligero de hornos de coque, la composición típica es la mostrada en la Tabla 1.2:

Fracción	% Volumen
Productos de cabeza	3
Benceno	65
Tolueno	14
Xileno y cumeno	12
Compuestos pesados	6

Tabla 1.2. Composición del aceite ligero de hornos de coque [5]

El principal inconveniente de este proceso es que no tiene un rendimiento muy elevado, ya que se necesitan 80 kg de hulla para obtener un litro de aceite ligero. Además, el aceite es bastante pobre en xileno. El componente principal que se produce es el benceno y, aun así, el rendimiento obtenido es de 8,125 litros de benceno por tonelada de hulla.

Si, por el contrario, se usara aceite ligero de gas de agua carburado, la composición sería algo diferente (Tabla 1.3).

 Tabla 1.3. Composición del aceite ligero de gas de agua carburado [5]

Fracción	% Volumen
Compuestos ligeros	1,5
Benceno	32
Tolueno	25
Xileno y cumeno	21
Compuestos pesados	20,5

1.4.2. Xileno a partir de naftas [6]

Es un método muy empleado actualmente en las refinerías. Las naftas obtenidas en la columna de destilación de crudo se desulfuran y se alimentan a la unidad de sulfolane, donde se separan los compuestos aromáticos de los no aromáticos. Posteriormente, tiene lugar la separación de los BTX.

Figura 1.5. Proceso de obtención de BTX a partir de nafta [6].

La extracción de aromáticos es un proceso algo complejo, se lleva a cabo en la unidad de sulfolane (Figura 1.6), que recibe este nombre debido a que el sulfolane es disolvente que se utiliza en el extractor. En este equipo, el sulfolane capta los aromáticos y los no aromáticos más ligeros.

A continuación, se encuentran dos torres, en la primera (stripper) se eliminan los no aromáticos ligeros, que se vuelven a introducir en el extractor para evitar que los no aromáricos pesados pasen al stripper. En la segunda torre (recovery) se recupera el sulfone para volver a utilizarlo en el extractor.

Después, los aromáticos se tratan en una torre de arcilla para eliminar las olefinas mediante un lavado ácido. Estas reaccionan con la arcilla en fase líquida formando compuestos pesados que se eliminarán en el posterior fraccionamiento.

Figura 1.6. Proceso de sulfolane [6].

La parte más complicada del proceso es el fraccionamiento de los distintos isómeros del xileno, esto se debe a su similitud en los puntos de ebullición. La dificultad de separar los xilenos por destilación idea nuevos procesos para la obtención de p-xileno:

- Uso de adsorbentes (Parex y similares)
- Uso del punto de congelación (cristalización)
- Uso de catalizadores con porosidad molecular (STDP)

Debido a la elevada demanda actual de p-xileno, el proceso Parex-Sorbex (Figura 1.7) es el método más utilizado, ya que permite operar en continuo y logra conseguir una pureza superior al 99,5%. En estos procesos se emplea un lecho sólido basado en zeolitas. El adsorbente deja pasar únicamente el p-xileno, mientras que el desorbente es un compuesto capaz de lavar el lecho y extraer el p-xileno.

Figura 1.7. Unidad Parex-Sorbex

1.4.3. MSTDP (Mobil Selective Toluene Disproportionation)

En el proceso descrito anteriormente se obtiene el p-xileno por separación de una fracción de crudo, no tiene lugar ninguna reacción química. Pero si la producción de p-xileno no es lo suficientemente elevada como para cubrir la demanda es necesario llevar acabo otros procesos, como por ejemplo la desproporción de tolueno.

La primera parte del proceso, correspondiente al tratamiento de la nafta y la extracción de aromáticos, sigue siendo la mostrada en la Figura 1.5. Una vez pasada la torre de fraccionamiento de sulfolane, se alimenta el tolueno a la unidad MSTDP-CX (Figura 1.8) [6].

Figura 1.8. Unidad MSTDP-CX [6]

Este proceso tiene como objetivo convertir el tolueno (poco demandado en el mercado) en p-xileno y benceno (muy demandados). Para ello, se da la reacción mostrada en la Figura 1.9. En esta reacción se puede producir cualquiera de los tres isómeros del xileno. Por tanto, es necesario introducir un catalizador de zeolita ZSM-5 con estructura molecular de microporos, que provoca una mayor selectividad hacia el p-xileno.

Figura 1.9. Reacción de desproporción de tolueno [2]

Posteriormente, se separan el p-xileno y el benceno por fraccionamiento. Con esto se obtiene una pureza de pxileno del 80%, bastante inferior a la demandada en el mercado (99,5%). Para solucionar este problema es necesario instalar una planta de cristalización, en la que es posible conseguir la pureza requerida gracias a que los puntos de cristalización de los distintos isómeros son más dispares que los de ebullición [6].

Como se muestra en la Tabla 1.1, el p-xileno tiene un punto de congelación más alto que el resto de los isómeros. Por tanto, al enfriar una mezcla que contiene los tres isómeros cristaliza una fase sólida pura de p-xileno, esto ocurre a -4°C. Si se continúa enfriando la mezcla hasta -68°C, el m-xileno también comienza a cristalizar, a esto se le denomina punto eutéctico [2].

En la práctica comercial, la cristalización se lleva a cabo a una temperatura justo por encima del punto eutéctico, donde el p-xileno aún es soluble en el resto de arómaticos C8 de la solución líquida. Posteriormente, es necesario separar los cristales de p-xileno de esta solución, esto se realizar mediante operaciones de filtración o centrifugación. Una buena separación sólido-líquido es muy importante para obtener una elevada pureza [2].

Actualmente, existen numerosas tecnologías de cristalización, las más desarrolladas son los procesos: Chevron, Krupp, Amoco y ARCO [2].

1.4.4. Proceso Tatoray

El proceso Tatoray fue desarrollado por Toray, y actualmente se encuentra licenciado por la UOP. Al igual que en el caso anterior, se trata de obtener xileno y benceno a partir de tolueno y otros compuestos aromáticos.

En este caso, se producen reacciones de transalquilación, un grupo metilo de los aromáticos se une a una molécula de tolueno (Figura 1.10). Hay que tener en cuenta que también se dan reacciones laterales, como la desproporción de tolueno mencionada anteriormente [2].

Figura 1.10. Reacción de transalquilación de tolueno [7]

En la Figura 1.11 se muestra un diagrama del proceso completo. Una mezcla de tolueno y aromáticos C_{9+} se calienta en un intercambiador y un horno, para posteriormente ser alimentada a un reactor adiabático de lecho fijo, donde tendrán lugar las reacciones de transalquilación y desproporción.

La relación obtenida en los productos entre el xileno y el benceno se puede ajustar variando la ratio tolueno/ C_{9+} en la alimentación, tal y como se muestra en la Tabla 1.4.

Alimentación		Productos		
Tolueno	Aromáticos C9	Xileno	Benceno	Otros
1000	0	450	425	125
500	500	675	200	125

Tabla 1.4. Productos obtenidos en función de la alimentación [2]

El catalizador que se utiliza actualente en este proceso recibe el nombre de TA-4, y proporciona buena estabilidad y una conversión por paso de tolueno elevada (40-50%). Además, la selectividad hacia el xileno se encuentra en torno al 97%.

Las condiciones en las que opera el reactor son las siguientes [2]:

- Temperatura: 350-530 °C.
- Presión: 5-10 atm.
- Relación H₂/HC=5-12:1

La conversión por paso podría aumentarse incrementando la presión o la temperatura de operación, aunque esto implicaría una disminución de la selectividad.

Tras pasar el reactor, los productos se enfrían para comenzar la etapa de separación. Esta etapa consta de cuatro columnas de fraccionamiento: una para separar los compuestos más ligeros formados en el reactor, y las otras tres para separar el benceno, tolueno y xileno respectivamente.

Figura 1.11. Proceso Tatoray [8]

1.5. Aplicaciones

La mayoría de las aplicaciones requiere la separación previa de cada uno de los isómeros. Estos se suelen emplear como productos intermedios en la industria petroquímica: textil, pinturas, plásticos, productos farmacéuticos, explosivos... [6]

El m-xileno se utiliza como materia prima para obtener ácido isoftálico (base de resinas poliésteres insaturadas) e isoftalonitrilo (fabricación de fungicidas) [1,9].

En cuanto al o-xileno, lo más común es oxidarlo catalíticamente para producir anhídrido ftálico, que se emplea en la fabricación de PVC, fenolftaleína, resinas alquídicas... [1,9]

Por último, el p-xileno se usa como materia prima para la producción tereftalato de dimetilo (DMT) [9] y ácido tereftálico (PTA), que a su vez se utilizan en la producción de plásticos industriales y poliésteres.

Concretamente, el ácido tereftálico se emplea como materia prima para obtener tereftalato de polietileno (PET), un material utilizado para la producción del plástico de las botellas [3,10]. Esta es, sin duda, la aplicación más importante del xileno, por eso la producción de p-xileno es bastante más interesante que la de sus otros isómeros.

Figura 1.12. Producción de PET a partir de p-xileno [10]

1.6. Producción y Mercado

1.6.1. Mercado de BTX

Actualmente, el mercado global de BTX muestra que el tolueno se está produciendo en exceso. Esto hace que resulten muy interesantes procesos como la desproporción de tolueno para obtener benceno y p-xileno, o la metilación de tolueno para producir p-xileno. Ya que permiten equilibrar la balanza de oferta y demanda de aromáticos [10].

De los tres isómeros del xileno, el p-xileno es, con diferencia, el más demandado en la industria debido a la gran demanda en el mercado de PET y DMT [3,10]. Desafortunadamente, el m-xileno es el isómero menos demandao en la industria, pero también es el más favorecido termodinámicamente, es decir, el más producido por medio del reformado catalítico de las naftas [10].

De modo que resulta bastante acertado llevar a cabo un proceso catalítico con elevada selectivadad hacia el pxileno, ya que se aumentará la producción de p-xileno y disminuirá la de los otros dos isómeros. Además, también dará salida en el mercado al tolueno, cuya capacidad de producción excede la demanda en la industria.

1.6.2. Mercado de p-xileno

La producción mundial de p-xileno, en el año 2014, se estimó en 39,62 millones de toneladas, y el consumo en 39,4 millones de toneladas [11,13]. Estas cifras han ido aumentando en un 7% anual hasta la actualidad, y se prevee que esta tendencia continue durante los próximos años, hasta alcanzar una producción de 66,93 mil milones de dólares para el año 2022 [12].

Tal y como se muestra en la Figura 1.13, los países asiáticos son los mayores consumidores de p-xileno, de modo que este crecimiento del mercado dependerá de ellos en gran medida, especialmente de China, que representa el 47% del consumo global [11].

Figura 1.13. Mercado mundial de p-xileno en el año 2014 [11]

En la Figura 1.14 se muestra como el mercado mundial de p-xileno se encuentra en crecimiento, ya que el pxileno producido en 2016 en prácticamente el doble que en 2005. Este crecimiento se debe al aumento en la demanda de poliésteres (Figura 1.15) y PET (Figura 1.16), ya que el DMT y el PTA se emplean en la fabricación de éstos.

Para los próximos años, se espera que las crecientes aplicaciones del p-xileno continuen impulsando el crecimiento del mercado. Se estima que los beneficios monetarios ofrecidos por los países asiáticos en desarrollo tendrán un crecimiento positivo en la industria [13].

Figura 1.14. Producción y capacidad de producción mundial de p-xileno 2005-2016 [13].

Figura 1.2. Demanda mundial de poliéster 2014-2020 [14]

Figura 1.3. Demanda mundial de PET 2010-2016 [15]

En lo referido al mercado europeo, el p-xileno tuvo alrededor de un 3,4% del valor de la cuota de mercado en 2013, con previsión de alcanzar el 4,8% en 2018. El mercado europeo de p-xileno ha ido creciendo considerablemente durante los últimos años, con una tasa annual del 6,8% [16].

Alemania es el mayor consumidor de p-xileno en Europa, seguido por España e Italia. Alemania representó el 20,7% del consumo total en Europa y casi el 0,7% de la demanda mundial total en 2013 [16].

1.6.3. Producción

Una vez realizado este análisis de mercado, ya es posible estimar la producción de la planta. Para ello, se han tenido en cuenta dos factores.

El primero es que en Europa se consumen 2.550 mil toneladas al año de p-xileno, y que España forma parte de los mayores consumidores de Europa.

El segundo factor es la producción anual de plantas ya existentes, tanto fuera como dentro de España. La nueva planta de CEPSA que se va a construir cerca de la refinería la Rábida, ha fijado una producción de 95.000 toneladas al año [17]. Sin embargo, la planta de REPSOL ubicada en Tarragona tiene una producción menor (38.000 toneladas/año) [18]. Por otro lado, en América, existen plantas con una capacidad instalada de hasta 280.000 toneladas al año [13].

Considerando todos estos datos, se ha decidido establecer una producción similar a la de la planta de CEPSA de Huelva, 95.000 toneladas anuales de p-xileno, lo que supone casi un 4% del consumo europeo.

1.7. Cinética

En el reactor del proceso a estudiar (metilación de tolueno para obtener p-xileno) tienen lugar varias reacciones químicas.

Aunque no se ha realizado el análisis de equilibrio del sistema, se puede asumir que todas las reacciones son irreversibles, ya que no existe limitación en el crecimiento de los productos. Esta simplificación ha sido utilizada por otros autores que trabajaron a bajos valores de conversión [9].

A continuación, se van a exponer todas las reacciones con sus ecuaciones cinéticas correspondientes.

La alquilación de tolueno con metanol (1.1) es la reacción principal [19]:

$$C_7 H_8 + C H_3 O H \to p - C_8 H_{10} + H_2 O$$
 $r_1 = k_1 \cdot P_T \cdot P_M$ (1.1)

El resto son reacciones secundarias no deseadas [19]:

- Deshidratación de metanol (1.2).
- Desproporción de tolueno (1.3).
- Desalquilación (1.4).
- Isomerización a m-xileno y o-xileno (1.5).

$$2CH_3OH \to C_2H_4 + 2H_2O$$
 $r_2 = k_2 \cdot P_M^2$ (1.2)

$$2C_7 H_8 \to p - C_8 H_{10} + C_6 H_6 \qquad r_3 = k_3 \cdot P_T \tag{1.3}$$

$$p - C_8 H_{10} \rightarrow C_7 H_8 + GP \qquad \qquad r_4 = k_4 \cdot P_{PX} \tag{1.4}$$

$$p - C_8 H_{10} \rightarrow \frac{1}{2} \cdot (m - C_8 H_{10} + o - C_8 H_{10})$$
 $r_5 = k_5 \cdot P_{PX}$ (1.5)

Las constantes cinéticas se van a calcular mediante la ecuación de Arrhenius (ecuación 1.6)

$$k = A \cdot \exp\left(-\frac{E}{R \cdot T(K)}\right) \tag{1.6}$$

Donde A y E son el factor de frecuencia y la energía de activación, respectivamente. Los valores de estos parámetros se muestran en la Tabla 1.5.

Tabla 1.5. Factor de frecuencia y energía de activación de las reacciones [19]

Reacción	Factor de frecuencia (mol/g·h·atm ²) ó (mol/g·h·atm)	Energía de activación (kJ/mol)
1	403	45,7
2	1346	50,6
3	96,2	59,0
4	0,3815	19,6
5	46,94	48,9

2 MEMORIA DESCRIPTIVA Y JUSTIFICATIVA

En este apartado se va a detallar el proceso de obtención de p-xileno por metilación de tolueno, explicando cada uno de los equipos que forman parte del mismo.

En la Figura 2.1 se muestra el diagrama de bloques de la instalación, en él se presenta de forma muy simplificada en qué consiste el proceso.

Figura 2.1. Diagrama de bloques

En el Anexo III se puede observar el diagrama de flujo (PFD) de la planta, donde se muestra el proceso completo de forma más detallada. A continuación, se van a explicar cada una de las etapas del proceso.

2.1. Preparación para la reacción

La alimentación a la planta contiene tolueno y metanol, que son los reactivos de la reacción principal. Además, también se introduce un inerte con el objetivo de controlar el tiempo de contacto de los reactivos con el catalizador en el interior del reactor. De este modo se consigue aumentar la selectividad hacia el p-xileno con respecto a los isómeros meta y orto (se inhiben las reacciones de isomerización hacia los isómeros meta y orto) [3].

Tanto el nitrógeno como el hidrógeno pueden emplearse como inerte para diluir la alimentación. El nitrógeno es el mejor candidato desde el punto de vista de la seguridad, ya que al ser menos inflamble que el hidrógeno habrá menor riesgo de explosión al operar a alta temperaturas [3]. Sin embargo, en este caso se ha decidido utilizar hidrógeno [20], ya que tiene la gran ventaja de reducir la desactivación del catalizador por deposición de coque.

La materia prima (metanol, tolueno e hidrógeno) es proporcionada por empresas externas. El metanol y el tolueno son almacenados en los tanques TK-101 y TK-102 a temperatura ambiente y presión atmosférica. Ambos compuestos son impulsados por bombas centrífugas y mezclados con la corriente de recirculación (corriente 35). Posteriormente se hacen pasar por un tren de intercambiadores de calor (E-101 A/B/C/D) y un horno H-101 para alcanzar la temperatura óptima de alimentación al reactor.

Figura 2.2. PFD: alimentación de tolueno y metanol

En la Tabla 2.1 se muestran las condiciones de presión y temperatura a la que se encuentran las corrientes que aparecen en la Figura 2.2.

Corrientes	Presión (bar)	Temperatura (°C)
1 y 2	1,0	25,0
3, 4 y 5	3,1	25,0
6	3,1	79,0
35	3,1	91,4

Tabla 2.1. Condiciones alimentación de tolueno y metanol

El hidrógeno se almacena a alta presión (300 bar) en el tanque TK-103. Este tanque posee un revestimiento interior hecho de un polímero como una malla de polietileno o nylon, cubierta con una fibra de grafito y una capa de reforzamineto hecha con resina epoxy [21].

El hidrógeno (corriente 8) será mezclado con la corriente de recirculación (corriente 45) se alimentará al horno H-101, donde se alcanzará la temperatura de alimentación al reactor.

En este caso no es necesario llevar a cabo un precalentamiento previo de la corriente. A direfencia de en las bombas, en el compresor encargado de impulsar la corritente de reciclo (C-101 A/B/C) se produce un aumento considerable de la temperatura. De modo que la corriente 9 conseguirá alcanzar una temperatura de 265 °C.

Figura 2.3. PFD: alimentación de hidrógeno.

Cabe destacar que la instalación cuenta con bombas y compresores redundantes, con el objetivo de evitar realizar una parada en caso de fallo de estos equipos.

Los reactivos (metanol y tolueno) y el inerte (hidrógeno) deberán alcanzar una temperatura de 400 °C [20] antes de ser alimentados al reactor. Para ello se utilizan los intercambiadores E-101 A/B/C/D y el horno H-101.

La corriente 6, que contiene principalemte metanol y tolueno, se encuentra a 79 °C, y se calienta en el tren de intercambiadores hasta 230 °C, siendo la corriente 12 (salida del reactor) la que se encarga de aportar el calor. De este modo, también se consigue enfriar los productos que abandonan el reactor, algo que será necesario para que la separación tenga lugar de forma más eficiente.

Posteriormente, el hidrógeno y el tolueno y el metanol precalentados se mezclan (corriente 10) y se introducen en el horno H-101, donde se aporta el calor necesario para alcanzar la temperatura de entrada al reactor. Este equipo cuenta con un intercambiador se flujo cruzado en la chimenea. El intercambiador permite aprovechar el calor sensible que contienen los gases de combustión para calentar el aire que se introduce en el horno como comburente. De este modo, se consiguen reducir los costes de operación, puesto que la cantidad de combustible aportada al horno será menor.

Este horno no solo será necesario para terminar de calentar la alimentación al reactor, sino que será imprescindible a la hora de llevar a cabo la puesta en marcha de la instalación, ya que será el único medio disponible para calentar la alimentación al empezar a operar la planta, puesto que los intercambiadores E-101 A/B/C/D emplean como fluido caliente la corriente de salida del reactor.

En la Tabla 2.2 se muestran las temperaturas de operación de los equipos que se encargan de aumentar la temperatura de los reactivos (intercambiadores E-101 A/B y horno H-101).

Corriente	Temperatura (°C)	
6	79,0	
7	230,0	
10	233,3	
11	400,0	
12	425,6	
13	188,0	

Tabla 2.2. Temperaturas de operación E-101 A/B/C/D y H-101

En la Figura 2.4 se puede apreciar el apartado del diagrama de proceso correspondiente a las etapas de preparación para la reacción y de reacción. Es decir, desde que la materia prima se alimenta a la planta hasta que se obtienen los productos de las reacciones.

2.2. Reactor

La planta cuenta con un reactor multitubular de lecho fijo en el que se llevarán a cabo las reacciones mencionadas en el apartado 1.7. Estas reacciones tienen lugar a una presión media de 2 bar, mientras que la temperatura oscila entre los 400 y 440 °C a lo largo del reactor. Aunque el reactor puede operar a presión atmosférica, en este caso la presión de trabajo será algo mayor, con el objetivo de conseguir vencer la pérdida de carga de los intercambiadores que se encuentra a continuación del reactor [3].

El reactor está diseñado para alcanzar una selectividad mínima del 96% del p-xileno con respecto sus otros isómeros, con el propósito de facilitar el proceso de separación del p-xileno. Para ello, se va a emplear un catalizador de zeolita ZSM-5 modificado con magnesio. En la Tabla 2.3 se muestran las principales características de este catalizador.

Tabla 2.3. Características del catalizador de zeolita ZSM-5 modificado con magnesio [3, 20].

Parámetro	Valor
Densidad (kg/m ³)	1780
Porosidad	0,6
Superficie específica (m ² /g)	550
Tamaño de partícula (mm)	8

Figura 2.4. PFD: zonas de preparación para la reacción y reacción.

La alimentación al reactor consiste, principalmente, en tolueno, metanol e hidrógeno. El tolueno es introducido en exceso, con una relación molar 3:1 de tolueno y metanol, mientras que el hidrógeno se añade con una relación molar 2:1 de hidrógeno y tolueno. De este modo, en el reactor se consigue una conversión del 10% aproximadamente.

El reactor se ha diseñado de manera que sus dimensiones se puedan ajustar a las de un modelo de flujo en pistón, para ello la relación L/D deberá ser mayor o igual a 10. Para facilitar el control de la temperatura, el reactor contará con múltiples tubos, ya que de este modo se consigue aumentar el área de transferencia.

Este tipo de reactores suele tener una longitud máxima de 5 o 6 metros, con el objetivo de facilitar su montaje. En este caso, se ha fijado una longitud de los tubos de 5 metros, y un diámetro de dos pulgadas, lo que implica que en el interior del reactor habrá 1732 tubos.

Por el interior de estos tubos tendrán lugar las reacciones, mientras que por el exterior circulará un refrigenrante, que ese encargará de mantener la temperatura lo más constante posible a lo largo del reactor.

A continuación, se va a explicar con más detalle la importancia del refrigerante y el catalizador en el reactor.

2.2.1. Refrigerante

El control de la temperatura del reactor es muy importante, ya que un aumento de esta variable provoca un aumento en la conversión de tolueno, pero también ocasiona una gran disminución en la selectividad hacia el pxileno. En el siguiente apartado se explicará con más detalle el comportamiento del reactor.

Para que no se alcancen temperaturas demasiado altas en el reactor se va a emplear un refrigerante, con el objetivo de extraer el calor producido por las reacciones exotérmicas. Tras estudiar varias posibilidades, se ha decidido usar como refrigerante una sal fundida en cambio de fase, con el propósito de aprovechar su calor latente.

La sal elegida consiste en una mezcla formada por tres sales: LiF, Na₂CO₃ y K₂CO₃. En la Tabla 2.4 se exponen algunas características de esta sal [22].

Parámetro	Valor
Punto de fusión (°C)	421,4
Entalpía de fusión (kJ/kg)	227,3
Calor específico (kJ/kg·K)	1,90
Densidad (kg/m ³)	1980

Tabla 2.4. Características de la sal fundida empleada como refrigerante [22].

2.2.2. Catalizador

Con la finalidad de aumentar la selectividad hacia el p-xileno se va a emplear un catalizador de zeolita ZSM-5 modificado con magnesio.

La zeolita ZSM-5 es un aluminosilicato sintético, cuya unidad estructural contiene doce unidades fundamentales $(SiO_4 \circ AIO_4)$ enlazadas por medio de los oxígenos. Estas unidades se unen por las aristas formando cadenas, y posteriormente planos estructurales, que a su vez se unen para formar la estructura tridimensional definitiva. En la Figura 2.5 se muestra un esquema de la estructura descrita [9].

Figura 2.5. Estructura del catalizador de zeolita ZSM-5 [9]

El motivo principal por el que se emplea este catalizador es que permite obtener una elevada selectividad del pxileno con respecto a sus otros isómeros. Esto se consigue debido a que el diámetro molecular efectivo del pxileno es menor que el de los isómeros meta y orto [9].

Si no se usara catalizador, se obtendría una selectividad muy baja hacia el p-xileno en los productos de la reacción. Puesto que los productos tendrían la composición correspondiente al equilibrio termodinámico entre los tres isómeros.

- 26% de o-xileno.
- 51% de m-xileno.
- 23% de p-xileno.

A diferencia de otros tipos de zeolita, en la zeolita ZSM-5 la concentración de átomos de aluminio es muy baja, lo que permite modificar el catalizador sin necesidad de recurrir a técnicas complejas de desaluminización. Desde mediados de la década de los 70, se han desarrollado numerosas técnicas de modificación de este catalizador que permiten aumentar la selectividad hacia el p-xileno en la reacción de metilación de tolueno. En este caso, se va emplear la zeolita ZSM-5 modicada por impregnación con magnesio [9].

El incremento de la selectividad que se consigue al modificar la zeolita ZSM-5 se debe principalmente a dos fenómenos.

El primero es el aumento de la resistencia a la difusión interna de los xilenos gracias a la disminución del tamaño efectivo de los poros de la zeolita. Con esto se consigue que la velocidad de difusión del p-xileno en el interior del catalizador sea muy superior a la de los otros dos isómeros, ya que el diámetro del p-xileno es menor. De modo que el desplazamiento del p-xileno por el interior de la estructura del catalizador se ve facilitado [2,9].

Aunque si el tamaño de los poros disminuye demasiado la velocidad de difusión del tolueno también disminuiría, hasta tal punto que podría controlar la velocidad global del proceso, lo que afectaría negativamente a la selectividad [9].

El segundo fenómeno por el que aumenta la selectividad es la desactivación de los centros ácidos superficiales del catalizador. Esto provoca que la reacción principal tenga lugar en el interior de los poros, evitando así la isomerización que se produce en los centros ácidos hacia los isómeros meta y orto (tiende a la composición del equilibrio) [2,9].

En lo referido a la estabilidad, es importante tener en cuenta que el catalizador se desactiva con el tiempo. De modo que será necesario cambiarlo cada seis meses [3].

2.3. Separación

Los productos obtenidos por medio de las reacciones abandonan el reactor a 425,6 °C, y es necesario enfriarlos hasta 50 °C para llevar a cabo la separación de forma eficiente [19]. Para ello, se utilizan los intercambiadores E-101A/B/C/D, donde se transmite el calor de los productos a la corriente de alimentación al reactor. Además, también será necesario el intercambiador E-102 A/B para terminar de enfriar la corriente, en él se usa como fluido frío una corriente auxiliar de agua de refrigeración que se encuentra a 20 °C.

En la Figura 2.6 se puede observar la parte del diagrama de flujo correspondiente a la zona de preparación para la separación, es decir, la zona en la que los productos del reactor alcanzan las condiciones óptimas para llevar a cabo la separación.

Figura 2.6. PFD: zona de preparación para la separación.

La corriente de salida del rector (número 12) contiene los siguientes productos:

- Hidrógeno, que es el inerte empleado.
- Hidrocarburos ligeros que se forman en una de las reacciones laterales.
- Agua producida por la deshidratación del metanol (reacción lateral no deseada).
- Metanol y tolueno que no hayan reacionado.
- Benceno obenido por la desproporción de tolueno (reacción lateral no deseada).
- O-xileno y m-xileno debido a las reacciones de isomerización del p-xileno.
- P-xileno, que es el producto buscado.

Todos estos compuestos se pueden clasificar, según sus propiedades, en tres fases:

- Fase gaseosa, formada por los compuestos más ligeros: hidrocarburos ligeros e hidrógeno.
- Fase acuosa, compuesta por agua y metanol, debido a que el metanol es muy soluble en agua.
- Fase orgánica, constituda por los productos orgánicos: tolueno, benceno y xileno.

El objetivo de la etapa de separación es obtener cada uno de los compuestos mencionados anteriormente por separado. Para ello, se va a comenzar realizando la separación de cada fase utilizando dos equipos, un tanque flash (V-101) y un decantador (V-102).

El tanque flash es el primer equipo de separación al que se alimentan los productos del reactor. Consiste en un botellón vertical que, en unas condiciones determinadas de presión y temperatura, consigue separar la fase gaseosa por cabeza (corriente 42), mientras que el resto de compuestos salen por el fondo en fase líquida (corriente 16). En este caso, el flash operará a 1,25 bar y 50 °C, y será necasairo retirar un calor de 27 MW. Estas condiciones de operación permitirán eliminar el 85% de los hidrocarburos ligeros que se alimentan a este equipo [19].

La fase gaseosa separada por cabeza está compuesta, en su mayoría, por hidrógeno, a pesar de contener pequeñas cantidades de hidrocarburos ligeros. Debido a la pequeña fracción de hidrocarburos, los gases se van a recircular directamente al reactor, sin llevar a cabo la separación del hidrógeno y los hidrocarburos. Esto se debe a que los hidrocarburos no afectan de forma negativa al comportamiento del reactor, ya que actúan como inertes.

Por tanto, la corriente 44 será impulsada por el compresor C-101 A/B/C para alcanzar la presión requerida (3 bar), y posteriormente se mezclará con la alimentación de hidrógeno, para ser calentada y alimentada al reactor.

Sin embargo, será necesario instalar un sistema de purga antes de llevar a cabo dicha recirculación, con el objetivo de evitar la acumulación de los hidrocarburos ligeros en el proceso se va a purgar el 10% de la corriente 40.

Por otro lado, la corriente retirada del flash por cola (número 16) se introduce en el decantador, donde se separa la fase acuosa de la fase orgánica. Este equipo es un recipiente horizontal que aprovecha la diferencia entre las densidades de ambas fases para lograr la separación de líquidos inmicibles.

De modo que, introduciendo la mezcla en su interior, y dándole el tiempo de residencia necesario, se consigue separar la fase órganica por la parte superior del equipo (menor densidad) y la fase acuosa por la parte inferior (mayor densidad).

Este equipo es capaz de alcanzar rendimientos bastante elevados (95-99%) si se diseña con las dimensiones adecuadas, es decir, la longitud del recipiente debe ser al menos tres veces mayor que el diámetro. Además, es necesario que el decantador opere a presión atmosférica, sin ser de gran importancia la temperatura, que en este caso será la misma que la del tanque flash [19,23].

En la Figura 2.4 se muestra la parte del PDF correspondiente al tanque flash y al decantador explicados antriormente.

Figura 2.7. PDF: tanque flash (V-101) y decantador (V-102).

Una vez separadas las fases acuosa y orgánica en el decantador, se va llevar a cabo la separación por fraccionamiento de cada uno de los componentes de cada fase. Para ello, será necesario utilizar varias columnas de destilación.

La destilación es una de las operaciones unitarias más utilizadas en la industria petroquímica, ya que se consiguen obtener buenos rendimientos si la volatilidad relativa de los compuestos que se desea separar es elevada. Además, no es necesaria la adición de otro componente para llevar a cabo la separación, como por ejemplo en el caso de la absorción o el stripping.

En la torre T-101 se va a separar la fase acuosa, es decir, se van a separar el metanol y el agua. Esta operación resultará bastante sencilla, ya que el punto de ebullición del agua es de 143 °C, mientras que el del metanol es solo 104 °C (a la presión de operación de la torre). Esta disparidad en los puntos de ebullición provoca que la volatidad relativa de estos dos compuestos se bastante alta, y su separación relativamente sencilla.

En la Tabla 2.5 Se pueden observar las condiciones de operación de la torre T-101.

Corriente	Temperatura (°C)	Presión (bar)
37 (Alimentación)	49,0	10,5
38 y 39 (Cabeza)	70,9	4,0
40 (Fondo)	145,1	4,2

Tabla 2.5. Condiciones de operación de la torre T-101 [19].

Es necesario enfriar el agua que abandona la columna por el fondo hasta temperatura ambiente (25 °C) antes de almacenarlo en el tanque TK-105. Para ello, se va a usar el intercambiador E-104, que utiliza como fluido frío un refrigerante llamado R134a, dicho fluido se encontrará en cambio de fase, en unas condiciones de -40 °C y 0,52 bar [24].

En la Figura 2.5 se muestra de forma esquemática la columna de separación de metanol y agua, además del resto de equipos auxiliares que se encuentran a su alrededor.

Figura 2.8. PFD: columna de separación agua y metanol (T-101).

Cabe destacar que, debido a que la eficiencia del flash no es del 100%, será necesario que las torres T-101 y T-102 dispongan de condensadores parciales, en los que se eliminarán los gases incondensables disueltos en las fases orgánicas y acuosas.

Las columnas T-102 y T-103 son las que se van a encargar de separar la fase orgánica. La corriente 18 contiene principalmente benceno, tolueno y xileno, además del metanol que no se ha conseguido separar en el decantador. Hay que tener en cuenta que el componente más ligero de los tres es el benceno, y el más pesado el xileno (Tabla 1.1).

De modo que en la primera columna se van a separar el benceno y el metanol por cabeza, mientras que el tolueno y el xileno van a abandonar la torre por el fondo. En la Tabla 2.6 aparecen las condiciones de operación de la columna T-102.

Corriente	Temperatura (°C)	Presión (bar)
18 (Alimentación)	45,0	8,5
19 y 20 (Cabeza)	74,3	8,0
21 (Fondo)	212,8	8,2

Tabla 2.6. Condiciones de operación de la torre T-102 [19].

Por otro lado, el fondo de la columna T-102 deberá ser enfriado hasta 93,4 °C en un intercambiador con agua de refrigeración, y se laminará en una válvula (V-101) para disminuir su presión hasta 1,39 bares antes de ser alimentada a la torre T-103. En este equipo se separará el tolueno por cabeza y el xileno por cola [3].
Tabla 2.7.	. Condiciones	s de opei	ación de	la torre	T-103	[3].
------------	---------------	-----------	----------	----------	-------	------

Corriente	Temperatura (°C)	Presión (bar)
23 (Alimentación)	93,4	1,4
33 (Cabeza)	93,3	1,3
24 (Fondo)	164,5	2,0

El tolueno (corriente 33) será impulsado por la bomba P-106 A/B y recirculado para mezclarse con la corriente de alimentación al reactor (corriente 6) [3].

Por otro lado, el xileno que se obtiene por el fondo de la torre T-103 se encontrará a 164,5 °C y 2 bares [3]. En esta corriente, la pureza del p-xileno es del 96,3%, ya que se encuentra mezclado con o-xileno y m-xileno. Típicamente, la pureza mínima de p-xileno requerida en el mercado es del 99,5%, mientras que 99,8% se considera ultrapuro. Por lo tanto, será necesario reducir la concentración de o-xileno y m-xileno en la corriente 24 [19].

En la Figura 2.6 se pueden observar detalladamente las columnas encargadas de separar los hidrcarburos aromáticos.

Figura 2.9. PFD: separación de hidrocarburos aromáticos (T-102 y T-103).

Es un gran desafío separar el p-xileno de sus isómeros debido a la cercanía de sus puntos de ebullición. Las técnicas empleadas habitualmente son la adsorción y la cristalización, aunque tienen algunos inconvenientes.

En el caso de la adsorción, el p-xileno es el isómero que quedaría retenido en los poros del adsorbente debido a su menor tamaño. Teniendo en cuenta que la corriente a purificar contiene una elevada concentración de p-xileno, sería necesario emplear un sistema de adsorción demasiado caro. Algo similar ocurre con la cristalización, ya que no es factible cristalizar el 96% de una corriente.

Otra opción para llevar a cabo la separación es la destilación. Los isómeros orto y para se pueden separar en una columna con gran número de etapas, ya que su volatilidad relativa es 1,17. Aunque es prácticamente imposible separar el m-xileno del p-xileno, puesto que tienen una volatilidad realativa de 1,02 [19].

Sin embargo, es viable la separación por destilación reactiva. El m-xileno reacciona con el di-terc-butil-benceno (DTBB) y el terc-butilo (TBB) para formar terc-butilo-m-xileno (TBMX) y benceno (B). En las ecuciones 2.1 y 2.2 se muestan estas reacciones [25].

$$DTBB + MX \to TBMX + TBB \tag{2.1}$$

$$TBB + MX \to TBMX + B \tag{2.2}$$

Antes de introducir el xileno la torre T-104 es necesario que el fluido se encuentre en las condiciones óptimas de presión y temperatura. Para ello, se utilizan la bomba P-107 A/B y el interambiador E-105, en el cual se empleará Dowtherm G a 300 °C como fluido calefactor [26].

Después de esto, la corriente 26 se alimenta a la destilación reactiva (torre T-104) por el último plato (fondo de la torre), mientras que el solvente, que contiene DTBB y TBB, se introduce en el primer plato (cabeza de la torre) [25].

Con un elevado número de etapas y una relación de reflujo lo suficientemente alta, se consigue separar el 85% del o-xileno por el fondo de la columna. Por otro lado, el solvente reacciona con el m-xileno, formando TBMX y benceno [19,25].

En consecuencia, la corriente que abandona la torre por la parte superior (corriente 29) estará compuesta, en su mayoría, por p-xileno. Aunque también tendrá algo de o-xileno y benceno. Mientras que el fondo de la torre (corriente 28) estará formado por TBB, DTBB, TBMX, o-xileno y algo de p-xileno.

Para terminar de purificar el p-xileno, la corriente 29 se introduce en otra columna de destilación (T-105). En este equipo se separará el benceno formado en la reacción 2.2 por cabeza (corriente 30), y el p-xileno purificado por fondo (corriente 31).

Finalmente, es necesario enfriar el p-xileno hasta los 25°C antes de ser almacenado en el tanque TK-104 para su posterior venta. Esta operación unitaria se realiza en el interambiador E-106, que utiliza R134a a -40 °C como refrigerante.

En la Figura 2.7 se puede observar la parte final del proceso, en la que se obtiene el p-xileno purificado, con una concentración del 99,63%.

Figura 2.10. PFD purificación del p-xileno (T-104 y T-105).

Corriente	Temperatura (°C)	Presión (bar)
26	187,3	3,2
28	156,6	1,1
29	137,0	1,0
30	78,1	0,4
31	113,9	0,5

En la Tabla 2.8 aparecen las condiciones de operación de las dos torres explicadas anteriormente. Tabla 2.8. Condiciones de operación de las torres T-104 y T-105 [19].

La memoria de cálculo incluye la realización de los balances de materia y energía de toda la instalación. De modo que se van a especificar cada una de las corrientes que aparecen en el diagrama del proceso (Anexo III). Para ello, hay que tener en cuenta que la instalación tendrá una producción de 95.000 toneladas al año, o lo que es lo mismo 11.875 kg/h, considerando que la planta opera 8000 horas al año.

En la tabla que se aparece en el Anexo IV se pueden observar los resultados obtenidos tras la realización de los balances de materia y energía. En ella se muestran caudal, composión, presión y temperatura de cada corriente del PDF.

Cabe destacar que todos los cálculos que se explican a continuación han sido realizados con el programa "Engineering Equation Solver, EES".

3.1. Equipos de intercambio de energía mecánica

La planta cuenta con varias bombas y compresores para llevar a cabo la impulsion de líquidos y gases. Debido a que no se ha realizado la implantación de la instalación se desconocen las longitudes de las tuberías y las diferencias de cotas entre los tramos de impulsión y aspiranción de las bombas. Teniendo en cuenta que se trata de un trabajo académico, se va aconsiderar que el valor de estos dos parámetros es nulo, aunque esto no sea cierto en la realidad.

De modo que las bombas y los compresores sólo deberán vencer las pérdidas de carga calculadas en cada uno de los equipos del proceso.

3.1.1. Bombas

Las bombas son equipos que vienen definidos por cinco parámetros fundamentales, que además están relacionados entre sí. Estos son: el caudal a impulsar, la altura que son capaces de dar, la potencia consumida, el rendimiento y el NPSH. A continuación, se va a explicar como se obtiene cada uno de estos parámetros.

En primer lugar, es necesario conocer el caudal volumétrico que deberá impulsar la bomba, esto se hace con la ecuación 3.1:

$$Q = \frac{\dot{m}}{\rho} \tag{3.1}$$

Siendo \dot{m} el caudal másico (kg/s) y ρ la densidad del fluido (kg/m³).

Para calcular la altura desarrollada por la bomba se va a emplear la ecuación de Bernouilli (ecuación 3.2).

$$H_b = \frac{P_{out} - P_{in}}{\rho} + \frac{v_{out}^2 - v_{in}^2}{2}$$
(3.2)

Donde:

- H_b es la altura que da la bomba (m²/s²). Es necesario dividirla entre g (9,8 m/s²) para obtener su valor en metros.
- *P_{in}* es la presión del fluido en la zona de aspiración (Pa).
- *P_{out}* es la presión del fluido en la zona de impulsión (Pa), su valor se determinará a partir de la pérdida de carga calculada en cada equipo.
- v_{in} es la velocidad del fluido en la zona de aspiración (m/s). Si la bomba aspira el fluido de un tanque

 v_{in} se puede considerar despreciable, en caso contrario, se supondrá una velocidad típica del fluido de 1 m/s [27].

v_{out} es la velocidad del fluido en la zona de impulsión (m/s). En este caso, se supondrá una velocidad típica del fluido de 2 m/s [27].

Una vez calculados el caudal y la altura, ya es possible determinar la potencia suministrada por la bomba al fluido, W (W) (ecuación 3.3).

$$W = \rho \cdot g \cdot Q \cdot H_b \tag{3.3}$$

Sin embargo, como el rendimiento de las bombas no es del 100%, para calcular la potencia real de la bomba es necesario utilizar la ecuación 3.4:

$$W_{real} = \frac{W}{\eta} \tag{3.4}$$

Donde el valor de η (rendimiento de la bomba) es un parámetro que viene dado por el fabricante. En algunos casos, el fabricante proporciona directamente la potencia real.

El último parámetro interesante en el diseño de las bombas es el NPSH, ya que ayuda a conocer lo cerca que se encuentra una bomba de la cavitación.

El NPSH disponible (ecuación 3.5) es la altura mínima que requiere la succión de una bomba para que no haya cavitación. Si la presión en algún punto del circuito es menor que la presión de vapor del líquido tendrá lugar la cavitación (la bomba aspira vapor en vez de líquido), lo que puede causar grandes daños en el equipo.

$$NPSH_d = \frac{P_{in} - P_v}{\rho} \tag{3.5}$$

Siendo P_{ν} la presión de vapor del fluido en pascales.

El NPSH disponible se calcula antes de llevar a cabo el diseño de la bomba. Posteriormente, se busca en catálogos una bomba cuyas características concuerden con las requeridas por las condiciones del proceso. En este catálogo, el fabricante proporciona como dato el NPSH requerido de la bomba. Como criterio, se elige una bomba cuyo NPSH requerido cumpla la condición mostrada en la ecuación 3.6:

$$NPSH_r \ge \frac{NPSH_d}{1,2} \tag{3.6}$$

En la Tabla 3.1 se muestra el modelo elegido para cada una de las bombas y sus características correspondientes [Anexo II].

Bomba	Caudal (m ³ /h)	Altura (m)	Potencia consumida (kW)	Modelo
P-101 A/B	18	26,5	3	NKP-G 32-125-142-3AA
P-102 A/B	12	33	3	NKP-G 32-160.1-166-3AA
P-103 A/B/C	185	17	3	HS 125-100-305/177.8
P-104 A/B	12	146,5	15	MSVB-4/15
P-105 A/B	115	22,5	10	HS 125-100-280/165.1
P-106 A/B	135	88,5	40,5	HS 125-100-280/279.4
P-107 A/B	18	21,8	2,2	NKP-G 32-125-130-2.2AA

Tabla 3.1. Modelo seleccionado para cada bomba

3.1.2. Compresor

Para calcular la potencia consumida por el compresor se va a utilizar la ecuación 3.7:

$$W = F \cdot (H_{out} - H_{in}) \tag{3.7}$$

Donde:

- W es la potencia consumida por el compresor (kW).
- F es el caudal másico impulsado por el compresor (kg/s).
- *H_{in}* y *H_{out}* son las entalpías de las corrientes de entrada y salida del compresor (kJ/kg), y han sido determinadas con el programa *EES*.

Para obtener la entalpía de una corriente es necesario que esta se encuentre completamente especificada, es decir, se deben conocer dos propiedades de la corriente (por ejemplo: presión y temperatura) además de los caudales másicos o molares de cada componente.

En el caso de la corriente de entrada al compresor, el cálculo de la entalpía resulta bastante sencillo, ya que se conocen la presión y la temperatura de dicha corriente. Sin embargo, es algo más complejo determinar la entalpía de la corriente de salida, ya que se conoce su presión, pero no su temperatura.

Para obtener el valor de esta entalpía es necesaria la aplicación del concepto de eficiencia isentrópica (ecuación 3.8).

$$\eta_{\rm is} = \frac{His_{out} - H_{in}}{H_{out} - H_{in}} \tag{3.8}$$

Donde

- η_{is} es la eficiencia isentrópica del compresor. En este caso, se ha tomado un valor típico de este parámetro de 0,8.
- His_{out} es la entalpía que tendría la corriente de salida si el compresor fuese isentrópico.

En la Figura 3.1 se muestra la diferencia entre un proceso isentrópico y un proceso real.

Figura 3.1. Esquema proceso isentrópico y real [28].

En el diagram de Mollier (h-s) de la Figura 3.1 se pueden observar tres puntos diferentes:

- El punto 1 hace referencia a las condiciones del fluido a la entrada el compresor.
- El punto 2 se corresponde con las condiciones de salida reales del compresor.
- El punto 2s indica las condiciones de salida que tendría el fluido si la entropía se mantuviera constante en el compresor.

Lo ideal sería que el compresor operase de forma isentrópica, ya que cuanto menor sea la variación de entropía, menor será la potencia consumida (Figura 3.1). Pero esto no ocurre en la realidad, y la potencia consumida por el compresor es más elevada.

Para calcular la entalpía real a la salida del compresor (punto 2 Figura 3.1) se sigue el procedimiento explicado a continuación:

- Primero se calcula la entropía de la corriente de entrada, que está completamente especificada.
- Luego se calcula la entalpía isentrópica a la salida, empleando como condiciones la entropía de la corriente de entrada y la presión de salida (punto 2s en la Figura 3.1).
- Finalmente, se obtiene la entalpía de la corriente de salida por medio de la ecuación 3.8. La temperatura de salida se puede determinar a partir de la presión y la entalpía calculada.

Para calcular entalpías y entropías de corrientes que contienen más de un componente, se ha considerado que el comportamiento de los gases es el correspondiente a una mezcla ideal de gases reales. Por lo que se han empleado las ecuaciones 3.9 y 3.10:

$$H_{mezcla} = \sum x_i \cdot H_i(T, P) \tag{3.9}$$

$$S_{mezcla} = \sum x_i \cdot S_i(T, P) - R \cdot \sum x_i \cdot Ln(x_i)$$
(3.10)

Donde x_i es la fracción másica de cada componente y R es la constante de los gases ideales. Además, H_i y S_i se calculan con las funciones del *EES* para cada componente de la mezcla.

3.2. Equipos de intercambio de calor

3.2.1. Intercambiadores de calor

Aunque la planta cuenta con varios intercambiadores de calor, todos ellos son carcasa y tubo, y se pueden resolver por medio de las mismas ecuaciones.

Al igual que en las bombas y compresores, el balance de materia en estos equipos es muy sencillo, ya que la corriente de entrada tiene el mismo caudal y composición que la de salida. Por otro lado, para realizar el balance de energía se van a usar las ecuaciones 3.11 y 3.12.

$$Q = \dot{m}_c \cdot Cp_c \cdot (Tec - Tsc) \tag{3.11}$$

$$Q = \dot{m}_f \cdot Cp_f \cdot (Tsf - Tef) \tag{3.12}$$

Donde:

- Q es el calor intercambiado entre el fluido frío y el fluido caliente (kW).
- *m* es el caudal másico alimentado al intercambiador (kg/s).
- Cp es el calor específico del fluido (kJ/kg·K).
- *Tec y Tsc* son las temperaturas de entrada y salida del fluido caliente, respectivamente (°C).

• *Tse y Tsf* son las temperaturas de entrada y salida del fluido frío, respectivamente (°C).

Para calcular la pérdida de carga de estos equipos se ha utilizado la ecuación de Darcy (ecuación 3.13)

$$\Delta PP = f + \frac{L}{D} \cdot \rho \cdot \frac{v^2}{2} \tag{3.13}$$

Siendo f el factor de fricción, que se calcula mediante la ecuación 3.14

$$\frac{1}{f^{0,5}} = -0,86 \cdot Ln\left(\frac{2,51}{Re \cdot f^{0,5}}\right) \tag{3.14}$$

En lo referido al diseño de los intercambiadores, el área de transferencia se puede obtener por medio de la ecuación 3.15:

$$Q = A \cdot U \cdot F \cdot DTLM_{ce} \tag{3.15}$$

Donde:

- U es el coeficiente glogal de transfencia (kW/m²·K), que depende de los coeficientes de película de ambos fluidos, y se calcula mediante correlaciones.
- F es un factor corrector que se calcula por correlaciones con el *EES*.
- *DTLM_{ce}* es la diferencia de temperatura logarítmica media de ambos fluidos en un intercambiador contracorriente equivalente (°C), su valor se determina con la ecuación 3.16.

$$DTLM_{ce} = \frac{(Tec - Tsf) - (Tsc - Tef)}{\ln\left(\frac{Tec - Tsf}{Tsc - Tef}\right)}$$
(3.16)

A continuación, se va explicar detalladamente el cálculo del coeficiente global de transferencia, U. Este parámetro depende de los factores de ensuciamiento y los coeficientes de película de ambos fluidos (ecuación 3.17). Cabe destacar, que para determinar este parámetro no se ha tenido en cuenta la resistencia de conducción a través del espesor de los tubos del intercambiador. Esto es debido a que esta resistencia se puede considerar despreciable con respecto a las de tranferencia por convección.

$$U = \frac{1}{\frac{de}{hi \cdot di} + Fsi \cdot \frac{de}{di} + Fse + \frac{1}{he}}$$
(3.17)

Siendo:

- Fsi y Fse los factores de ensuciamiento interno y externo (m²·K/W). Su valor será de 0,0002 m²·K/W cuando se trate de fluidos orgánicos, y 0,0001 m²·K/W para el resto de fluidos [29].
- *di* y *de* el diámetro interno y el diámetro externo del tubo, respectivamente (m). Se han empleado medidas normalizadas de acuerdo al Anexo I.

Por otro lado, hi y he hacen referencia a los coeficientes de película de los fluidos que circulan por el intercambiador ($W/m^2 \cdot K$). Estos coeficientes se obtienen mediante la ecuación 3.18:

$$h = \frac{Nu \cdot k}{d_{eq}} \tag{3.18}$$

Donde:

- k es la conductividad térmica de los fluidos (W/m·K).
- d_{eq} es el diámetro equivalente empleado para la realización de los cálculos. En el fluido que circula por

el interior de los tubos, el diámetro equivalente es igual al diámetro interno del tubo. Por el contrario, el diámetro equivalente del fluido que circula por la carcasa viene definido por la ecuación 3.19 [29].

$$d_{eq} = 1,27 \cdot (pitch^2 - 0,785 \cdot de^2) \tag{3.19}$$

Donde *pitch* hace referencia a la distancia entre los tubos del intercambiador (m). Es recomendable que el pitch sea 1,25 veces el diámetro externo del tubo [29].

Nu es el número adimensional de Nusselt.

El número de Nusselt se calcula por medio de correlaciones [30], y toma un valor u otro según el régimen en el que se encuentre el fluido (laminar, turbulento, turbulento completamente desarrollado...). En cualquier caso, este parámetro es función de los números adimensionales de Prandtl y Reynolds, que vienen definidos mediante las ecuaciones 3.20 y 3.21:

$$Re = \frac{\rho \cdot v \cdot d_{eq}}{\mu} \tag{3.20}$$

$$Pr = \frac{Cp \cdot \mu}{K} \tag{3.21}$$

Siendo v la velocidad del fluido (m/s), obtenida mediante la ecuación 3.22:

$$v = \frac{\dot{m}}{\rho \cdot A_{paso}} \tag{3.22}$$

Teniendo en cuenta que el área de paso del fluido que circula por el interior de los tubos viene definida por la ecuación 3.23:

$$A_{paso}(interior) = \frac{n_{tubos}}{n_{pasos}} \cdot \frac{\pi \cdot di^2}{4}$$
(3.23)

Mientras que el área de paso del fluido que circula por la carcasa se calcula con la ecuación 3.24:

$$A_{paso}(exterior) = \frac{(pitch - de) \cdot Ds \cdot Lb}{pitch}$$
(3.24)

Donde:

- *Ds* es el diámetro de la carcasa del intercambiador (m²).
- *Lb* es la distancia entre los bafles del intercambiador (m²).

Para calcular el diámetro de la carcasa y la distancia entre los baffles se van a emplear las ecuaciones 3.25 y 3.26 [29].

$$Ds = de \cdot \left(\frac{n_{tubos}}{k1}\right)^{\frac{1}{n1}} \tag{3.25}$$

$$Lb = \frac{Ds}{5} \tag{3.26}$$

Siendo n1 y k1 constantes que toman un valor u otro en función del número de pasos por tubo. En este caso los tubos de los intercambiadores darán dos pasos, por tanto: n1=2,207 y k1=0,249 [29].

Para calcular el número de tubos es necesario fijar la longitud del intercambiador, con la longitud se puede

calcular el área de un tubo (ecuación 3.27), y posteriormente el número de tubos (ecuación 3.28).

$$A_{tubo} = \pi \cdot L \cdot de \tag{3.27}$$

$$n_{tubos} = \frac{A}{A_{tubo}} \tag{3.28}$$

La longitud del intercambiador debe ser entre 5 y 10 veces el diámetro de la carcasa, intentando no superar los 6 metros [31].

Debido que la pérdida de carga no es muy elevada, todos los intercambiadores (a excepción del precalentador de aire) de la instalación serán carcasa y tubo tipo E, con un paso por carcasa y dos pasos por tubos. Además, los tubos tendrán forma de U, para facilitar la limpieza de los bancos de tubos [29].

La disposición de los tubos en el interior de los intercambiadores será triangluar, de este modo se puede conseguir aumentar el área de transferencia en un 15% [31]. Y por motivos de seguridad, será el fluido caliente el que circule por el interior de los tubos, mientras que el fluido frío lo hará por la carcasa.

Con las ecuaciones mencionadas anteriormente se estiman los valores de los parámetros de diseño de los intercambiadores. Pero para normalizar estos valores se ha seguido la norma TEMA (Anexo I). En la Tabla 3.2 se muestran los resultados obtenidos acerca de los parámetros de diseño de los intercambiadores.

Intercambiador	Diámetro tubos (in)	Número de tubos	Diámetro de la carcasa (in)	Longitud (m)
E-101 A/B/C/D	3⁄4 10 BWG	1126	37	6
E-102 A/B	3⁄4 10 BWG	1126	37	5,8
E-103	3⁄4 10 BWG	566	29	4,8
E-104	3⁄4 10 BWG	100	15 ¼	3
E-105	3⁄4 10 BWG	558	27	5,2
E-106	3⁄4 10 BWG	1126	37	5,7

Tabla 3.2. Resultados del diseño de los intercambiadores carcasa y tubo

3.2.2. Horno

En lo referido al horno H-101, las ecuaciones correspondientes al balance de energía y al diseño del equipo son bastante parecidas, pero hay que tener en cuenta que la resolución del balance de materia es algo más complejo, ya que en el interior del horno ocurren varias reacciones de combustión.

En el horno se va a emplear gas natural como combustible. Para facilitar los cálculos referidos al balance de materia se va a suponer que la combustión es completa. De este modo se considera despreciable la cantidad de CO producida.

En la Tabla 3.3 se muestra la composición del gas natural comercial.

Tabla 5.5. Composicion del gas natural [50].	Tabla	3.3.	Comp	osición	del gas	natural	[30].
--	-------	------	------	---------	---------	---------	-------

Componente	Composición (%Volumen)
Nitrógeno	3,0
Metano	86,0
Etano	7,6
Propano	2,4
Butano	1,0

Las reacciones que tienen lugar en el horno son las que se muestran a continuación:

$$CH_4 + 2O_2 \to CO_2 + 2H_2O$$
 (3.29)

$$C_2H_6 + \frac{7}{2}O_2 \to 2CO_2 + 3H_2O$$
 (3.30)

$$C_3H_8 + 5O_2 \to 3CO_2 + 4H_2O \tag{3.31}$$

$$C_4 H_{10} + \frac{13}{2} O_2 \to 4CO_2 + 5H_2O$$
 (3.32)

La reacción de combustión del nitrógeno se ha considerado despreciable debido a la elevada temperatura de operación del horno (1.500 °C [23]).

A partir de las reacciones anteriores, y fijando un exceso de aire del 5% (valor típico cuando se trabaja con combustibles gaseosos), se puede resolver el balance de materia en el horno fácilmente mediante cálculos estequiométricos.

El horno cuenta con un intercambiador de calor de flujo cruzado que aprovecha el calor de los gases de la chimenea para calentar el aire que se alimenta como comburente. De modo que sera necesario realizar un balance de energía en el horno, otro en el precalentador de aire y otro global (horno y precalentador).

En primer lugar, se va a plantear el balance en el horno (ecuación 3.33).

$$Q_{cble} + Q_{aire} = Q_{util} + Q_{gases} + Q_{vapor} + P_{tr}$$
(3.33)

Donde:

• Q_{cble} es la potencia aportada por el combustible, que se define mediante la masa de combustible alimentada y su poder calorífico inferior, que tiene un valor de 45.000 kJ/kg.

$$Q_{cble} = m_{cble} \cdot PCI \tag{3.34}$$

• Q_{aire} es la potencia aportada por el aire, y se determina mediante la ecuación 3.35:

$$Q_{aire} = m_{aire} \cdot m_{cble} \cdot Cp_{aire} \cdot (Tas - 25)$$
(3.35)

Siendo m_{aire} el caudal de aire alimentado por kg de combustible, y *Tas* la temperatura a la que el aire entra en el horno (es la temperatura de salida del precalentador).

• Q_{util} eslas potencia transferida al fluido que se calienta en el horno (ecuación 3.36). Para obtener su valor es necesario conocer el caudal de fluido que se quiere calentar, y las entalpías de entrada y salida del horno.

$$Q_{util} = m_f \cdot (Hs_f - He_f) \tag{3.36}$$

 Q_{gases} es la potencia de los gases secos en la chimenea del horno, antes de entrar en el precalentador. Se calucula con la ecuación 3.37:

$$Q_{gases} = m_{gases} \cdot m_{cble} \cdot Cp_{gases} \cdot (Tsg_1 - 25) \tag{3.37}$$

Donde Tsg_1 hace referencia a la temperatura de los gases antes de entrar en el precalentador.

• *Q_{vapor}* es la potencia del vapor de agua formado en la combustión en la chimenea, y se obtiene de forma similar a la de los gases (ecuación 3.38).

$$Q_{vapor} = m_{vapor} \cdot m_{cble} \cdot Cp_{vapor} \cdot (Tsg_1 - 25) \tag{3.38}$$

• P_{tr} son las pérdidas por transmisión de calor en el horno. En este caso se van a considerar como el 2% de la potencia aportada por el combustible. Este valor se ha impuesto en base a los valores típicos de un horno, donde las pérdidas suponen el 1,5-2,5% del calor aportado por el combustible [27].

Posteriormente, es necesario realizar el balance de energía en el precalentador de aire. Para ello, se utilizan las ecuaciones 3.39 y 3.40:

$$Q = (m_{gases} \cdot Cp_{gases} + m_{vapor} \cdot Cp_{vapor}) \cdot m_{cble} \cdot (Tsg_1 - Tsg_2)$$
(3.39)

$$Q = m_{aire} \cdot Cp_{aire} \cdot m_{cble} \cdot (Tae - Tas)$$
(3.40)

Donde:

- Tsg_2 es la temperatura a la que salen los gases de combustión del precalentador de aire.
- *Tae* es la temperatura a la que el aire ambiente se alimenta al precalentador, se ha considerado que este término tendrá un valor de 25°C.

Para determinar el valor de *Tas* es necesario tener en cuenta los siguientes factores:

- Cuanto mayor sea *Tas*, mayor será la potencia aportada por el aire en el horno, y menos potencia tendrá que aportar el combustible. Por tanto, los costes de operación disminuirán.
- Cuanto mayor sea *Tas*, mayor deberá ser la cantidad de calor intercambiada en el precalentador, por lo que esté intercambiador será grande (y también más caro). Por lo tanto, los costes de operación aumentarán.

Como se puede observar, un aumento de *Tas* tiene efectos contrapuestos desde el punto de vista económico, ya que supone una disminución de los costes de operación, pero también un aumento de los costes de inversión.

Para obtener el valor óptimo de *Tas* es necesario determinar qué es más elevado: el coste de operación o el de inversión. Para ello, es necesario calcular una función objetivo (FO), y representarla gráficamente frente a *Tas*, de este modo se puede observar cual es el valor de *Tas* que maximiza la FO (Figura 3.2).

También es posible llevar a cabo este procedimiento utilizando la función min/max del *EES*, que proporciona directamente el valor de *Tas* que maximiza la FO. Aun así, en esta ocasión se ha realizado la representación gráfica, ya que en el caso de que la función tuviera más de un máximo el *EES* podría proporcionar un resultado que no es el deseado (correspondiente a un máximo relativo).

La función objetivo viene definida por la ecuación 3.41, y representa la diferencia entre los ingresos y los gastos de la planta

$$FO\left(\frac{\$}{ano}\right) = Ahorro_{cble}\left(\frac{\$}{ano}\right) - \frac{Coste \, precalentador}{Vida \, planta}\left(\frac{\$}{ano}\right)$$
(3.41)

Se ha considerado que la vida de la planta es de 20 años, y el ahorro de combustible se obtiene mediante la ecuación 3.42

$$Ahorro_{cble} = m_{cble}(sin \, precalentador) - m_{cble}(con \, precalentador)$$
(3.42)

En la Figura 3.2 se puede observar como la función objetivo aumenta conforme aumenta *Tas*. Esto significa que los ingresos producidos por el ahorro de combustible son más elevados que los costes de inversión del precalentador.

De esto se puede deducir que es rentable instalar el precalentador y aprovechar el calor sensible de los gases de combustión.

Figura 3.2. Función objetivo (\$/año) frente a temperatura de entrada del aire en el horno (°C).

Cabe destacar que las ecuaciones del precalentador de aire son las mismas que se explicaron anteriormente, en el apartado de intercambiadores.

Por ultimo, se va a plantear el balance de energía global, que incluye al horno y al precalentador (ecuación 3.43).

$$Q_{cble} = Q_{util} + Q_{gases} + Q_{vapor} + P_{tr}$$
(3.43)

Hay que tener en cuenta que en este caso la potencia aportada por el aire es nula, ya que entra al precalentador a 25°C. Por otro lado, los térrminos Q_{gases} y Q_{vapor} se calculan con las ecuaciones 3.44 y 3.45. Mientras que el resto de términos de la ecuación 3.43 se obtienen del mismo modo que en el balance de energía del horno.

$$Qgases = m_{aases} \cdot m_{cble} \cdot Cp_{aases} \cdot (Tsg_2 - 25)$$
(3.44)

$$Qvapor = m_{vapor} \cdot m_{cble} \cdot Cp_{vapor} \cdot (Tsg_2 - 25) \tag{3.45}$$

Para terminar de cerrar el balance, es necesario fijar el rendimiento del horno. Normalmente, los hornos operan con un rendimiento del 80-90% [29], en base a estos datos, se ha impuesto un rendimiento del 85%. Este parámetro viene definido por la ecuación 3.46:

$$\eta = \frac{Q_{util}}{Q_{cble} + Q_{aire}} \tag{3.46}$$

Determinar el área de transferencia del horno es algo bastante complejo, ya que en este equipo el calor se transmite por radiación y por convección (en los intercambiadores solo por convección). Habitualmente, el 50-70% del calor se transfiere por radiación [29]. En este caso, para simplificar los cálculos, se ha supuesto que todo el calor se transmite por convección. De este modo, se puede calcular el área de transferencia con la ecuación 3.15, como si fuera un intercambiador de calor.

Se ha considerado que el coeficiente global de transferencia tendrá un valor de 40W/m²·K, y que la velocidad del fluido que circula por el interior de los tubos del horno será de 1,5 m/s (ambos datos se han elegido en base a valores típicos) [29].

3.3 Tanques

El volumen de los tanques se ha seleccionado para que estos equipos tengan una capacidad de almacenamiento de 30 días. Una vez conocido el volumen total, se ha utilizado la norma GNT-SSNP-M001-2005 de la compañía Pemex (Figura 3.3) para dimensionar los tanques.

CAPACIDAD Barriles (Metros cúbicos)	DIÁMETRO Metros (Pies)	ALTURA Metros (Pies)
1000	6.096	5.486
(159)	(20)	(18)
2000	7.468	7.315
(318)	(24.5)	(24)
3,000	9.144	7.315
(477)	(30.00)	(24.00)
5,000	9.652	10.973
(795)	(31.66)	(36.00)
10,000	12.954	12.192
(1,590)	(42.50)	(40.00)
15,000	17.678	9.754
(2,385)	(58.00)	(32.00)
20,000	18.288	12.192
(3,180)	(60.00)	(40.00)
30,000	22.352	12.192
(4,770)	(73.33)	(40.00)
40,000	25.908	12.192
(6,360)	(85)	(40)
55,000	30.480	12.192
(8,745)	(100.00)	(40.00)
80,000	36.576	12.192
(12,720)	(120.00)	(40.00)
100,000	40.843	12.192
(15,900)	(134.00)	(40.00)
150,000	45.720	14.630
(23,850)	(150.00)	(48.00)
200,000	54.864	14.630
(31,800)	(180.00)	(48.00)
500,000	85.344	14.630
(79,500)	(280.00)	(48.00)

Figura 3.3. Dimensiones tanques

Todos los tanques se encontrarán a presión atmosférica y temperatura ambiente (con excepción del de hidrógeno), por lo que será necesario enfriar las corrientes antes de introducirlas en los tanques. Para ello, se emplearán intercambiadores carcasa y tubo, que utilizán como fluido de refrigeración el R134a a una temperatura de -40 °C.

Es muy importante tener en cuenta que, tanto los hidrocarburos aromáticos como el metanol son fluidos muy peligrosos debido a su elevado punto de inflamación. El punto de inflamación es aquella temperatura a partir de la cual un líquido arde cuando se produce una chispa o cualquier fuente de ignición. En la Tabla 3.4 se pueden observar los puntos de inflamación de los compuestos mencionados anteriormente.

Compuesto	Punto de inflamación (°C)	Peligrosidad
Tolueno	4	Altamente inflamable
P-xileno	24-27	Inflamable
Metanol	12	Altamente inflamable

Tabla 3.4. Punto de inflamabilidad de tolueno, p-xileno y metanol [32, 33, 34].

Si el punto de inflamación de un componente es inferior o muy cercano a la temperatura de almacenamiento, es recomendable emplear tanques de techo flotante por motivos de seguridad. De modo que los tanques de almacenamiento de tolueno, xileno y metanol serán de techo flotante.

Por otra parte, el tanque de almacenamiento de agua será de techo fijo, ya que es un compuesto que carece de peligrosidad.

El tanque de hidrógeno se ha diseñado de forma diferente al resto. Para facilitar el transporte y el almacenamiento, este compuesto se almacenará a 300 bar, por lo que será necesario que el tanque cuente con un aislamiento de resina epoxy.

Además, se ha establecido un volumen capaz de soportar la capacidad de almacenamiento de 10 días de producción, no de 30. El motivo de esta decisión es que el almacenamiento de grandes cantidades de hidrógeno es bastante caro [21].

En la Tabla 3.5 se muestra el volumen de los diferentes tanques de la instalación

Tanque	Fluido que almacena	Volumen (m ³)
TK-101	Tolueno	12.720
TK-102	Metanol	8.745
TK-103	Hidrógeno	5.983
TK-104	P-xileno	12.720
TK-105	Agua	3.180

Tabla 3.5. Capacidad tanques de almacenamiento

3.4. Reactor

3.4.1. Diseño del reactor

El reactor es uno de los equipos más importantes de la planta. En su interior el tolueno y el metanol reaccionan para formar p-xileno. Aunque hay que tener en cuenta que también se forman otros compuestos no deseados.

Para obtener los flujos molares a la salida del reactor se han empleado las ecuaciones de balance de un flujo piston, puesto que su comportamiento se asemeja al de un reactor tubular de lecho fijo. En las ecuaciones 3.47 y 3.48 se muestran las ecuaciones de balances de materia y energía.

$$\frac{dF_i}{dW} = \sum_{j=1}^{N_r} v_{ij} \cdot \eta_j \cdot r'_j \tag{3.47}$$

Donde:

- Los subíndices i y j hacen referencia al número de componentes y de reacciones, respectivamente (i=8, j=5).
- F_i es el flujo molar de cada componente (kmol/h).
- W la masa de catalizador del reactor (kg).
- v_{ij} es el coeficiente estequiométrico de cada componente en cada reacción.
- η_i es el factor de efectividad global de cada reacción, y se utiliza para tener en cuenta los efectos de difusión en el catalizador. Las reacciones 1, 3 y 4 son las que se dan dentro de los poros del catalizador, y los valores de sus factores de efectividad se muestran en la Tabla 3.6. Estos parámetros han sido obtenidos de manera empírica, de la misma referencia que la cinética de las reacciones. El reactor opera con el mismo catalizador, pero las condiciones de operación no son exactamente las mismas, aunque sí son parecidas. Aun así, se han tomado estos valores de los factores de efectividad, ya que pueden servir como una primera estimación, aunque hay que tener en cuenta que en la realidad pueden ser algo distintos.
- r'_i es la velocidad de reacción intrínseca por unidad de masa de catalizador (kmol/kgcat·s).

$$\sum_{i=1}^{N_c} F_i \cdot Cp_i \frac{dT}{dW} = \sum_{j=1}^{N_r} \left(-\Delta H_{R,T}\right)_j \cdot \eta_j \cdot r_j' + \frac{4}{D_{tubo} \cdot (1 - \varepsilon_b) \cdot \rho_{cat}} \cdot U \cdot (T_{ref} - T)$$
(3.48)

Siendo

- Cp_i el calor específico de cada componente (kJ/kmol·K).
- *T* la temperatura en cada punto del reactor (K).
- $\Delta H_{R,T}$ la entalpía de cada reacción a la temperatura a la que se encuentra el reactor en cada punto (kJ/kmol).
- *D_{tubo}* es el diámetro del reactor (m).
- ε_b es la porosidad del lecho, se ha supuesto un valor de 0,6.
- ρ_{cat} es la densidad del catalizador: 1780 kg/m³ [36].
- U es el coeficiente global de transferencia (W/m²·K).
- *T_{ref}* es la temperatura del refrigerante (K). Se ha elegido como refrigerante una sal fundida que cambia de fase a 421,4℃ [22].

Como se explica en el apartado de los intercambiadores de calor, el coeficiente global de transferencia depende de los coeficientes de película interno y externo. En este caso el externo es el del refrigerante (sal fundida) y el interno el de los productos que se encuentran dentro del reactor (gases).

Por lo tanto, se puede decir que el valor de U dependerá, principalmente, del coeficiente de película interno, que tendrá un valor mucho menor que el externo. Esto se debe a que el coeficiente de película de las sales fundidas es del orden de 1500-2500 W/m²·K, mientras que el de los gases es del orden de 100 W/m²·K.

En consecuencia, se ha calculado el coeficiente de película interno, que tiene un valor de 134,8 $W/m^2 \cdot K$, y a partir de este resultado se ha estimado un valor de U de 130 $W/m^2 \cdot K$.

Tabla 3.6. Factores de efectividad global [19]

Factor de efectividad global	Valor
η_1	1
η_3	0,7781
η4	2,977

Con el objetivo de determinar la potencia que deben ceder las bombas de alimentación, se ha calculado la pérdida de carga del fluido a lo largo del reactor. Para ello, se ha utilizado la ecuación 3.49. Cabe destacar que este proceso se ve favorecido por operar a presiones cercanas a la presión atmosférica, es recomendable que la presión de alimentación al reactor no exceda los 3 bares para que la selectividad hacia el p-xileno sea lo suficientemente alta.

$$\frac{dP}{dW} = -f_{ERGUN} \cdot \propto \cdot \frac{\rho_{gas} \cdot u_{gas}^2}{dp}$$
(3.49)

Donde:

• *P* representa la presión del fluido en cada punto del reactor (Pa).

 u_{gas} hace referencia a la velocidad del gas (m/s).

- *dp* es el diámetro de las partículas del catalizador (m). Se tomado un valor de 8 mm para que la pérdida de carga no sea muy elevada [19].
- f_{ERGUN} y \propto son parámetros que se obtienen mediante las ecuaciones 3.50 y 3.51

$$f_{ERGUN} = \left(1,75 + \frac{150}{Re_p} \cdot (1 - \varepsilon_b)\right) \cdot \frac{1 - \varepsilon_b}{\varepsilon_b^3}$$
(3.50)

$$\alpha = \frac{1}{A_T \cdot N_{tubos} \cdot (1 - \varepsilon_b) \cdot \rho_{cat}}$$
(3.51)

Donde:

- Rep es el número adimensional de Reynolds de las partículas de catalizador
- A_T el área de paso de uno de los tubos del reactor.
- *N_{tubos}* es el número de tubos del reactor

Finalmente, el volumen del reactor se obtiene a partir de la ecuación 3.52.

$$dV = \frac{dW}{(1 - \varepsilon_b) \cdot \rho_{cat}} \tag{3.52}$$

A partir del volumen se pueden determinar el resto de dimensiones del reactor con ayuda de la ecuación 3.53.

$$V = N_{tubos} \cdot A_T \cdot L \tag{3.53}$$

Para emplear las ecuaciones descritas anteriormente, es necesario fijar algunos datos de partida, como la composición, la temperatura y la presión de alimentación al reactor. Estos valores se han impuesto es base a la conversión y selectividad deseadas.

En la Tabla 3.7 se muestran la composición, presión y temperatura de la corriente de alimentación al reactor, además de los valores típicos recomendados.

Parámetro	Valor recomendado	Valor elegido
Temperatura de alimentación (°C)	350-475	400
Relación tolueno/metanol	1-12 (habitualmente 4)	3
Relación tolueno/inerte	0,125-1 (habitualmente 0,5)	0,5
Presión de alimentación (bar)	1-3	3

Tabla 3.7. Condiciones de operación reactor [3, 19, 20]

Una vez fijados los parámetros expuestos en la Tabla 3.7 ya se puede determinar la masa de catalizador, además del resto de dimensiones del reactor (Tabla 3.8).

En primer lugar, se obtiene el volumen del reactor a partir de la ecuación 3.54. Posteriormente, es necesario fijar el valor dos parámetros (diámetro de tubos, longitud o número de tubos). En este caso, se ha impuesto un diámetro de tubos de 2 pulgadas (valor habitual) y una longitud de 5 metros (para que desmotar el reactor no sea un proceso muy aparatoso). A partir de ahí, el número de tubos se puede obtener fácilmente con la ecuación 3.55. En la Tabla 3.8 aparece un cuadro resumen en el que se muestran las dimensiones del reactor.

Parámetro	Valor
Masa de catalizador (kg)	12.500
Volumen (m ³)	17,56
Longitud (m)	5
Diámetro tubos (in)	2
Número de tubos	1.732

Tabla 3.8. Dimensiones del reactor.

A continuación, se muestran algunas gráficas en las que se puede observar el comportamiento de distintas variables a lo largo del reactor.

Figura 3.4. Evolución de la temperatura (°C) a lo largo del reactor.

En la Figura 3.4 se puede observar como afecta el uso de un refrigerante al reactor. Los reactivos se alimentan al reactor a 400°C, y al prinpicio la temperatura sube de forma brusca debido a la exotermidad de las reacciones, pero luego el refrigerante hace que la temperatura vaya disminuyendo hasta alcanzar la temperatura de salida (425,6 °C).

Figura 3.5. Evolución de la pérdida de carga (Pa) a lo largo del reactor.

Tal y como se muestra en la Figura 3.5, la presión disminuye de forma lineal a lo largo del reactor. La alimentación al reactor se introduce a 3 bares, de este modo el fluido conseguirá vencer la pérdida de carga del reactor y la de los dos intercambiadores que se encuentran a continuación. La pérdida de carga en el reactor es de 1,6 bares, por lo que el fluido tendrá una presión de 1,4 bares al abandonar el reactor.

Figura 3.6. Caudal de m-xileno y o-xileno (kmol/h) a lo largo del reactor.

Figura 3.7. Caudal de p-xileno (kmol/h) a lo largo del reactor.

Analizando las Figuras 3.6 y 3.7 se puede ver que la producción de p-xileno es muy superior que la de los isómeros meta y orto. De modo que se ha conseguido el objetivo buscado, una selectividad elevada hacia el p-xileno (Figura 3.9).

Por otro lado, esto también implica que la conversión obtenida no será muy alta. Como se puede apreciar en la Figura 3.8, la conversión aumenta a lo largo del reactor, pero no llega a alcanzar un valor elevado.

Figura 3.8. Evolución de la conversión de tolueno (%) a lo largo del reactor.

Figura 3.9. Evolución de la selectividad (%) a lo largo del reactor

En la Tabla 3.9 aparecen la selectividad y la conversión obtenida bajo estas condiciones de operación, además de la producción de xileno.

Parámetro	Valor obtenido
Producción p-xileno (kmol/h)	118,4
Producción o-xileno (kmol/h)	2,268
Producción m-xileno (kmol/h)	2,268
Selectividad (%)	96,31
Conversión (%)	10,31

Tabla 3.9. Conversión y selectividad en el reactor.

3.4.2. Análisis de sensibilidad

En las gráficas que se muestran a continuación se puede observar el comportamiento del reactor, y como varían la conversión y la selectividad con respecto a las caracteríscas de la alimentación del reactor. Cuando se habla de selectividad se hace referencia a la selectividad del p-xileno con respecto al m-xileno y el o-xileno.

Figura 3.11. Selectividad hacia p-xileno (%) frente a masa de catalizador (kg) en función de la temperatura de alimentación.

En las Figuras 3.10 y 3.11 se muestra como varían la selectividad y la conversión con la temperatura de alimentación. Cuando aumenta la temperatura también aumenta la conversión (Figura 3.10), aunque la selectividad hacia el p-xileno disminuye (Figura 3.11).

Esta disminución de la selectividad se dede a que, la producción de o-xileno y m-xileno aumenta con la temperatura a mayor velocidad que la producción de p-xileno.

Pero no sólo es la selectividad del p-xileno hacia los isómeros meta y orto la que se ve perjudicada al aumentar la temperatura de alimentación. La reacción de desproporción de tolueno (se forma benceno) también se ve favorecida por las altas temperaturas [20].

De modo que al aumentar la temperatura de alimentación aumenta la producción de m-xileno, o-xileno y benceno, mientras que la de p-xileno también aumenta, pero de forma más lenta.

Este proceso requiere una selectividad muy elevada en el reactor (por encima del 96%). Esto se debe a que el pxileno es demandado en el mercado con una pureza superior al 99%, y la separación de los distintos isómeros del xileno es un proceso muy complicado y caro.

De modo que es necesario que la alimentación al reactor no se encuentre a una temperatura muy alta para que la selectividad sea elevada. Pero la temperatura tampoco puede ser muy baja, ya que si la conversión disminuye demasiado también disminuirá la producción de p-xileno, y haría falta un reactor de gran tamaño (mucha cantidad de catalizador) para obtener la producción fijada.

Figura 3.12. Conversión (%) frente a relación tolueno/metanol en la alimentación.

Figura 3.13. Selectividad (%) frente a relación tolueno/metanol en la alimentación.

En las Figura 3.12 y 3.13 se puede advertir como varían la conversión y la selectividad con respecto a la relación tolueno/metanol en la alimentación al reactor. Como se puede observar, la conversión es más sensible que la selectividad a una variación en este parámetro. Al aumentar la ratio tolueno/metanol la conversión sufre una gran disminución, mientras que la selectividad aumenta, pero no demasiado.

Aun así, no es recomendable operar a bajas relaciones de tolueno/metanol, debido a que esto provocaría una mayor pédida de metanol en la reacción de deshidratación de metanol (una reacción lateral no deseada). Por ejemplo, si la ratio tolueno/metanol fuese igual a la unidad (a una temperatura de 500°C), aproximadamente el 82% del metanol reaccionado sería consumido por reacciones secundarias [19].

Para obtener una selectividad alta, es necesario que el tiempo espacial sea bajo, aunque esto también supondrá que la conversión sea algo menor. Un tiempo espacial bajo implica un bajo tiempo de contacto de los reactivos en la superficie del catalizador, lo que disminuye las reacciones de isomerización no deseadas de p-xileno hacia m-xileno y o-xileno. Se puede conseguir un tiempo espacial bajo con un alto contenido de tolueno en la alimentación (una ratio tolueno/metanol elevado) [20].

Figura 3.14. Selectividad hacia p-xileno (%) frente a masa de catalizador a lo largo del reactor (kg) en función de la ratio tolueno/inerte.

En las Figuras 3.14 y 3.15 se expone la influencia de la relación tolueno/inerte en el comportamiento del reactor. El inerte se añade con el objetivo de diluir la alimentación y poder controlar el tiempo de contacto [3,20].

Como se puede observar, tanto la conversión como la selectividad son muy sensibles frente a una variación de la relación tolueno/inerte. Cuando este parámetro aumenta, tiene lugar un incremento de la conversión, pero la selectividad disminuye. Además, también hay que tener en cuenta que la desactivación del catalizador por acumulación de coque se acelera conforme aumenta la ratio tolueno/inerte [20].

En muchos estudios, se recomienda que la ratio tolueno/inerte tenga un valor de 0,5. De este modo se obtendrá una buena selectividad sin que la conversión disminuya demasiado [3,20].

3.5. Equipos de separación

Como ya se ha dicho anteriormente, no forma parte del alcance de este proyecto el diseño riguroso de los equipos relacionados con la separación. Sin embargo, se va a llevar a cabo una estimación preliminar de sus dimensiones, con el objetivo de poder calcular en el siguiente apartado los costes de inversión de la instalación.

3.5.1. Flash

Con las condiciones de operación mencionadas en el apartado anterior, se consiguen eliminar por cabeza del flash (V-101) el 85% de los hidrocarburos gaseosos y el 99% del hidrógeno de la corriente de alimentación [19].

En lo referido al dimensionamiento de este equipo, cabe destacar que su diámetro debe ser lo suficientemente grande como para disminuir la velocidad del gas por debajo de la velocidad a la cual las partículas se asentarán. Este diámetro es el mínimo permisible, y viene definido por la ecuación 3.54 [29].

$$D_{\nu} = \sqrt{\frac{4 \cdot Q_g}{\pi \cdot u_t}} \tag{3.54}$$

Donde:

- D_v es el diámetro mínimo del flash (m).
- Q_g es el caudal volumétrico del gas (m³/s).
- u_t es la velocidad de asentamiento de las gotas líquidas (m/s), y se calcula con la ecuación 3.55

$$u_t = 0.07 \cdot \left(\frac{\rho_L - \rho_g}{\rho_g}\right)^{0.5} \tag{3.55}$$

Siendo ρ_L y ρ_g las densidades del líquido y el gas (kg/m³), respectivamente.

La altura del flash se divide en dos partes, la ocupada por el gas y la ocupada por el líquido. La altura ocupada por el gas debe ser lo suficientemente grande como para permitir el desacoplamiento de las gotas líquidas, y su valor solo depende del diámetro mínimo permisible, tal y como se muestra en la Figura 3.16.

Figura 3.16. Esquema de las dimensiones de un separador flash [29].

Por otro lado, la altura ocupada por el líquido dependerá del tiempo de retención necesario, que habitualmente es de 10 minutos [29].

En la Tabla 3.10 se muestran los resultados obtenidos al estimar las dimensiones de este equipo.

Tabla 3.10. Dimensiones del flash V-101

$Qg (m^3/s)$	QL (m ³ /s)	ut (m/s)	Altura del gas (m)	Altura del líquido (m)	Diámetro (m)	Volumen (m ³)
15,37	0,041	1,77	5,38	2,82	3,32	71,03

3.5.2. Decantador

Los balances de materia se han realizado imponiendo rendimientos de separación, al igual que en el caso del flash. El agua resulta bastante fácil de eliminar de la corriente de aromáticos debido a que su densidad es bastante mayor (se separa el 99,71%). Por el contrario, sólo se consigue eliminar el 68% del metanol, ya que, a pesar de encontrarse disuelto en el agua, su densidad es menor [19].

Para calcular el volumen óptimo que debe tener este equipo, es necesario determinar el tiempo de residencia requerido por la mezcla para separarse (ecuación 3.56 [3]).

$$t = 100 \cdot \frac{\mu_a}{\rho_a - \rho_o} \tag{3.56}$$

Donde:

- t es el tiempo necesario de separación (h).
- μ_a es la viscosidad de la fase acuosa (kg/m·s).
- ρ_a y ρ_o son las densidades de la fase acuosa y la fase orgánica, respectivamente (kg/m³).

Conociendo el tiempo de separación resulta bastante sencillo calcular el volumen (ecuación 3.57 [3]).

$$V = Q \cdot t \tag{3.57}$$

Siendo V el volumen del decantador (m³), y Q el caudal volumétrico que se alimenta a este equipo (m³/h). En la Tabla 3.11 se muestran los resultados obtenidos:

Tabla 3.11. Dimensiones del decantador V-102

Caudal (m ³ /min)	Tiempo (min)	Volumen (m ³)
2,418	4,621	11,17

3.5.3. Columnas de destilación

El diseño riguroso de una columna de destilación es muy complejo, ya que habría que tener en cuenta la transferencia de materia y de calor en cada etapa. Para simplificar los cálculos, se ha determinado el número de etapas ideales con la Ecuación de Fenske (ecuación 3.58 [36]), y posteriormente se ha impuesto un rendimiento del 70% en cada etapa (ecuación 3.59).

Es importante tener en cuenta que estos cálculos no son más que una aproximación, y se realizan con el único objetivo de disponer de algún dato para poder estimar, en el siguiente apartado, los costes de inversión de la instalación. Para realizar un diseño más fiable sería necesario emplear un software más complejo, como por ejemplo *Aspen Plus*.

$$N_{min} = \frac{\log_{10} \left(\frac{x_D}{x_B} \cdot \left(\frac{1 - x_B}{1 - x_D} \right) \right)}{\log_{10} \alpha}$$
(3.58)

$$N_{real} = \frac{N_{min}}{\eta} \tag{3.59}$$

Donde:

- *N_{min}* es el número de etapas ideales.
- N_{real} es el número de etapas reales.
- η es el rendimiento de cada etapa (70%).
- x_D es la fracción másica del componente más volátil en la cabeza de la torre.
- x_B es la fracción másica del componente más volátil en el fondo de la torre.
- α es la volatilidad relativa de los dos componentes que se quieren separar.

Para dimensionar la torre se han utilizado las ecuaciones 3.60 y 3.61 [29].

$$H = N_{real} \cdot L_t \tag{3.60}$$

$$D = \sqrt{\frac{4 \cdot V_w}{\pi \cdot \rho_v \cdot u_v}} \tag{3.61}$$

Donde:

- *H* y *D* son la altura y el diámetro de la torre (m).
- L_t es la distancia entre los platos de la torre, se le ha asignado un valor de 0,5 metros [29].
- V_w es el caudal de vapor (kg/s).
- ρ_{v} es la densidad del vapor (kg/m³).
- u_v es la velocidad del vapor, se ha tomado un valor típico de 2m/s [29].

En la Tabla 3.12 se muestran las dimensiones obtenidas por medio de las ecuaciones anteriores.

Torre	Volatilidad relativa	nº etapas ideales	nº etapas reales	Diámetro (m)	Altura (m)	Volumen (m ³)
T-101	2,03	14	19	0,7	9,5	3,7
T-102	2,08	24	33	3,0	16,5	116,6
T-103	2,99	9	13	0,9	6,2	4,1
T-104	1,17	34	48	1,5	23,8	38,4

Tabla 3.12. Dimensiones columnas de destilación

El volumen de la torre T-105 se ha considerado despreciable con respecto al resto. Debido a la elevada volatilidad relativa existente entre el benceno y el p-xileno, se requieren muy pocas etapas para realizar la separación de estos dos compuestos. De modo que las dimensiones de este equipo pueden considerarse despreciables a la hora de estimar los costes de inversión.

4. MEDICIONES Y PRESUPUESTOS

Con el objetivo de estimar la inversión inicial requerida en la planta, se va a determinar el coste de los equipos que la forman. Además, también se deberán en cuenta otros costes fijos como la instalación, el terreno, la instrumentación...

4.1. Coste de equipos

4.1.1. Correlaciones de costes

El coste de los equipos se ha estimado por medio de correlaciones. Para calcular el coste de un equipo a través de su capacidad, se utiliza la correlación mostrada en la ecuación 4.1 [37].

$$\log_{10}(C_{equipo}) = K_1 + K_2 \cdot \log_{10}(A) + K_3 \cdot (\log_{10}(A))^2$$
(4.1)

Donde:

- *C_{equipo}* es el coste de un equipo a presión atmosférica, temperatura ambiente y construido con acero al carbono.
- *A* es la capacidad o tamaño del equipo. Este parámetro depende cada equipo, por ejemplo, en un intercambiador de calor es el área, mientras que en una bomba es la potencia consumida. En la Tabla 4.1 se muestra cual es la capacidad o tamaño de cada equipo.
- K_i son parámetros característicos de cada equipo, y se muestran en la Tabla 4.2.

En el caso de que la presión de operación del equipo sea distinta a la atmosférica, el valor del coste del equipo se debe corregir aplicando en un factor de corrección por presión [37].

$$\log_{10}(F_P) = C_1 + C_2 \cdot \log_{10}(P) + C_3 \cdot (\log_{10}(P))^2$$
(4.2)

Donde:

- F_P es el factor de corrección (bar), que depende de la presión de operación del equipo.
- *P* es la presión de operación del equipo en bares.
- C_i son parámetros característicos del equipo, cuyos valores se muestran en la Tabla 4.3.

En el caso de que el material de construcción del equipo sea distinto al acero al carbono, el valor del coste del equipo se debe corregir aplicando un factor de corrección por material (F_M). No se será necesario llevar a cabo dicha corrección en este proceso, ya que los fluidos empleados no son corrosivos ni peligrosos. De modo que todos los equipos estarán construidos con acero al carbono ($F_M = 1$).

Una vez conocidos Los factores $F_M y F_P$, la correlación de coste dependerá del tipo de equipo (Tabla 4.5).

4.1.2. Correlaciones de BOEHM

Las correlaciones empleadas para obtener el coste de los equipos requieren que la capacidad o tamaño de los estos se encuentre dentro de un rango determinado. En el caso de los intercambiadores de calor, ocurre que su capacidad (área) calculada es mucho mayor a la comprendida en el rango de las correlaciones anteiores.

En consecuencia, el coste de los intercambiadores de calor se va a estimar por medio de las correlaciones de BOEHM, que se rigen po la ecuación 4.3 [38].

$$C_{equipo} = C_{ref} \cdot \left(\frac{A}{A_{ref}}\right)^{\alpha}$$
(4.3)

Donde:

- Aref es el tamaño de referencia, para el caso de los intercambiadores de calor tiene un valor de 100 m².
- *C_{ref}* es el coste de un equipo cuyo tamaño es igual al de referencia, para el caso de los intercambiadores de calor tiene un valor de 21.000 \$
- α es un parámetro que también viene definido por las correlaciones, tiene un valor de 0,71 en los intercambiadores de calor.

4.1.3. Parámetros característicos y resultados

_	
Equipo	Capacidad o tamaño
Compresor	Potencia (kW)
Intercambiador de calor	Área de transferencia (m ²)
Horno	Calor transferido (kW)
Bomba	Potencia (kW)
Tanque	Volumen (m ³)
Vasija vertical (flash, reactor y columnas)	Volumen (m ³)
Vasija horizontal (decantador)	Volumen (m ³)

Tabla 4.1. Capacidad o tamaño de cada equipo [37].

Tabla 4.2. Parámetros característicos de cada equipo, K_i [37].

Equipo	K ₁	<i>K</i> ₂	K ₃
Compresor	2,2891	1,3603	-0,1027
Horno	7,3488	-1,1666	0,208
Bomba	3,3892	0,0536	0,1538
Tanque de techo fijo	4,8509	-0,3973	0,1445
Tanque de techo flotante	5,9567	-0,7585	0,1749
Vasija vertical	3,4974	0,4485	0,1074
Vasija horizontal	3,5565	0,3776	0,0905

Tabla 4.3. Parámetros característicos de cada equipo, C_i [37].

Equipo	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
Horno	0,1347	-0,2368	0,1021
Bomba	-0,3935	0,3957	-0,00226

El factor de corrección por presión en las vasijas se determina de acuerdo a los datos mostrados en la Tabla 4.4. Tabla 4.4. Factor de corrección por presión en vasijas [37].

Presión (bar)	Fp (bar)
3,45	1,00
6,89	1,05
13,79	1,15
20,68	1,20

Tabla 4.5. Correlación de coste empleada para cada equipo [37].

Equipo	Correlación	
Tanques, bombas y vasijas	$C_T = C_{equipo} \cdot (B_1 + B_2 \cdot F_M \cdot F_P)$	
Compresores	$C_T = C_{equipo} \cdot F_M$	
Hornos	$C_T = C_{equipo} \cdot F_M \cdot F_P$	

Siendo B_i parámetros caracterísitcos de cada equipo, sus valores se muestran en la Tabla 4.6.

Equipo	<i>B</i> ₁	<i>B</i> ₂
Bomba	1,89	1,35
Tanque	1,10	0,00
Reactor	2,25	1,82
Vasija vertical	2,25	1,82
Vasija horizontal	1,49	1,52

Tabla 4.6. Parámetros característicos de cada equipo, B_i [37].

En la Tabla 4.7 se muestra el coste de cada equipo calculado en base a las ecuaciones anteriores.

Equipo	Cantidad	Tamaño	Coste (\$)
Tanque TK-101	1	12.720 m ³	640.728
Tanque TK-102	1	8.745 m ³	509.384
Tanque TK-103	1	5.983 m ³	424.894
Tanque TK-104	1	12.720 m ³	599.567
Tanque TK-105	1	3.180 m ³	167.333
Bomba P-101	2	3 kW	16.489
Bomba P-102	2	3 kW	16.489
Bomba P-103	3	3 kW	15.762
Bomba P-104	2	15 kW	31.097
Bomba P-105	2	10 kW	49.714
Bomba P-106	2	40,5 kW	23.122
Bomba P-107	2	2,2 kW	15.638
Compresor C-101	3	2,670 kW	546.894
Intercambiador E-101	4	596,5 m ²	298.523
Intercambiador E-102	2	600 m ²	245.598
Intercambiador E-103	1	249 m ²	40.144
Intercambiador E-104	1	27,19 m ²	8.331
Intercambiador E-105	1	269,4 m ²	42.438
Intercambiador E-106	1	595 m ²	74.473
Intercambiador E-107	1	528,3 m ²	68.467
Horno H-101	1	2073 m ²	867.935
Reactor R-101	1	17,56 m ³	67.833
Flash V-101	1	71,03 m ³	202.007
Decantador V-102	1	11,17 m ³	33.305
Columna T-101	1	4,07 m ³	26.906
Columna T-102	1	3,70 m ³	26.578
Columna T-103	1	116,6 m ³	310.812
Columna T-104	1	38,42 m ³	17.682
Coste total equipos (\$)	5.489.200		

Tabla 4.7. Coste equipos

4.2. Coste total planta

Una vez conocido el coste de adquisición de todos los equipos, se procede a calcular el coste total de inversión de la planta. Para ello, se va a utilizar el método de Chilton, donde el coste de los equipos se pondera por unos factores medios para obtener el resto de costes.

En la Tabla 4.8 aparecen los costes de cada concepto, además del coste total de inversión para construir la planta. Cada concepto se ha multipliado por le valor medio de cada factor.

Concepto	Factor	Concepto	Coste (\$)
1. Coste equipos principales	1	1	5.489.200
2. Coste equipos instalados	1,40-2,20	1	9.880.560
3. Tuberías (Planta de fluidos)	0,30-0,60	2	4.446.252
4. Instrumentación (Completa automatización)	0,10-0,15	2	1.235.070
5. Edificios y preparación del terreno (Planta interna)	0,60-1,00	2	7.904448
6. Auxiliares (Nueva extensión)	0,25-1,00	2	6.175.350
7. Líneas exteriores (Unidad integrada)	0,00-0,05	2	247.014
8. Coste directo total	Suma 2-7		29.888.694
9. Ingeniería y construcción (complejidad complicada)	0,35-0,50	8	12.702.695
10. Contingencia y beneficio contratista (Proceso completado)	0,10-0,20	8	4.483.304
11. Factor del tamaño (Grande)	0,00-0,15	8	2.241.652
12. Coste indirecto total	Suma 9-11		19.427.651
13. Coste total	Suma	8+11	49.316345

Tabla 4.8. Factores Método de Chilton [37].

5. HOJAS DE ESPECIFICACIONES

TANQUE 1		
Planta: Producción de p-xileno	Nomenclatura: TK-101	
Número de línea: 1	Cantidad: 1	
Material: Acero al carbono		
Descripción: Tanque atmosférico de a	almacenamiento de tolueno	
DIMENSIONES		
Тіро	Cilíndrico	
Tipo de techo	Flotante	
Posición	Vertical	
Volumen (m ³)	12.720	
Altura (m)	12,192	
Diámetro (m)	36,576	
DATOS DE OPERACIÓN		
Fluido	Tolueno	
Estado	Líquido	
Temperatura	25	
Presión (bar)	1	
Aislamiento	No	
Fluido corrosivo	No	
Punto de inflamación (°C)	4	
Temperatura de autoignición (°C)	480	
Peligrosidad	Altamente inflamable	
Densidad (kg/m ³)	862,2	
Viscosidad (Pa·s)	5,48.10-4	

TANQUE 2		
Planta: Producción de p-xileno	Nomenclatura: TK-102	
Número de línea: 3	Cantidad: 1	
Material: Acero al carbono		
Descripción: Tanque atmosférico de almacenamiento de metanol		
DIMENSIONES		
Tipo	Cilíndrico	
Tipo de techo	Flotante	
Posición	Vertical	
Volumen (m ³)	8.745	
Altura (m)	12,192	
Diámetro (m)	30,480	
DATOS DE OPERACIÓN		
Fluido	Metanol	
Estado	Líquido	
Temperatura	25	
Presión (bar)	1	
Aislamiento	No	
Fluido corrosivo	No	
Punto de inflamabilidad (°C)	12	
Temperatura de autoignición (°C)	464	
Peligrosidad	Altamente inflamable	
Densidad (kg/m ³)	786,3	
Viscosidad (Pa·s)	5,45.10-4	

TANQUE 3		
Planta: Producción de p-xileno	Nomenclatura: TK-102	
Número de línea: 8	Cantidad: 1	
Material: Acero al carbono		
Descripción: Tanque atmosférico de almacenamiento de hidrógeno		
DIMENSIONES		
Tipo	Cilíndrico	
Posición	Vertical	
Volumen (m ³)	1.730	
Altura (m)	-	
Diámetro (m)	-	
DATOS DE OPERACIÓN		
Fluido	Hidrógeno	
Estado	Gas	
Temperatura		
Presión (bar)		
Aislamiento		
Temperatura de autoignición (°C)	500-571	
Peligrosidad	Altamente inflamable	
Densidad (kg/m ³)	71,04	
Viscosidad (Pa·s)	1,26.10-5	

TANQUE 4		
Planta: Producción de p-xileno	Nomenclatura: TK-103	
Número de línea: 33	Cantidad: 1	
Material: Acero al carbono		
Descripción: Tanque atmosférico de almacenamiento de p-xileno		
DIMENSIONES		
Tipo	Cilíndrico	
Tipo de techo	Flotante	
Posición	Vertical	
Volumen (m ³)	12.720	
Altura (m)	12,192	
Diámetro (m)	36,576	
DATOS DE OPERACIÓN		
Fluido	p-xileno	
Estado	Líquido	
Temperatura	25	
Presión (bar)	1	
Aislamiento	No	
Fluido corrosivo	No	
Punto de inflamabilidad (°C)	24-27	
Peligrosidad	Inflamable	
Temperatura de autoignición (°C)	464	
Densidad (kg/m ³)	856,7	
Viscosidad (Pa·s)	$6,16 \cdot 10^{-4}$	

TANQUE 5		
Planta: Producción de p-xileno	Nomenclatura: TK-104	
Número de línea: 42	Cantidad: 1	
Material: Acero al carbono		
Descripción: Tamque atmosférico de almacenamiento de agua		
DIMENSIONES		
Tipo	Cilíndrico	
Tipo de techo	Fijo	
Posición	Vertical	
Volumen (m ³)	3.180	
Altura (m)	12,192	
Diámetro (m)	18,288	
DATOS DE OPERACIÓN		
Fluido	Agua	
Estado	Líquido	
Temperatura	25	
Presión (bar)	1	
Aislamiento	No	
Fluido corrosivo	No	
Fluido peligroso	No	
Densidad (kg/m ³)	1000	
Viscosidad (Pa·s)	8,9.10-4	

BOMBA 1						
Planta: Producción de p-xileno	Nomenclatura: P-101 A/B					
Número de línea: 1/2	Cantidad: 2					
Modelo: NPK-G 32-125-142-3AA	Material: Acero al carbono					
Descripción: Bomba centrífuga de alimentación de tolueno						
CONDICIONES DE OPERACIÓN						
Fluido	Tolueno					
Caudal (kg/h)	13.996					
Caudal (m ³ /h)	18					
Diámetro interno (m)	0,054					
Temperatura de trabajo (°C)	25					
Temperatura de diseño (°C)	45					
Densidad (kg/m ³)	862,3					
Viscosidad (kg/m·s)	5,48.10-4					
Altura desarrollada (m)	26,5					
Presión de aspiración (bar)	1					
Presión de impulsión (bar)	3,1					
Presión de vapor (bar)	0,038					
Presión de diseño (bar)	5,1					
NPSH requerido (m)	9,5					
Rendimiento (%)	-					
Potencia consumida (kW)	3					
Velocidad de giro del motor (rpm)	2.900					
BOMBA 2						
--	----------------------------	--	--	--	--	--
Planta: Producción de p-xileno	Nomenclatura: P-102 A/B					
Número de línea: 3/4	Cantidad: 2					
Modelo: NPK-G 32-160.1-166-3AA	Material: Acero al carbono					
Descripción: Bomba centrífuga de alimentación de metanol						
CONDICIONES DE OPERACIÓN						
Fluido	Metanol					
Caudal (kg/h)	8.904					
Caudal (m ³ /h)	12					
Diámetro interno (m)	0,044					
Temperatura de trabajo (°C)	25					
Temperatura de diseño (°C)	45					
Densidad (kg/ m ³)	786,4					
Viscosidad (kg/m·s)	5,46.10-4					
Altura (m)	33					
Presión de aspiración (bar)	1					
Presión de impulsión (bar)	3,1					
Presión de vapor (bar)	0,17					
Presión de diseño (bar)	5,1					
NPSH requerido	10,4					
Rendimiento (%)	-					
Potencia consumida (kW)	3					
Velocidad de giro del motor (rpm)	2.900					

BOMBA 3						
Planta: Producción de p-xileno	Nomenclatura: P-103 A/B/C					
Número de línea: 15/16	Cantidad: 3					
Modelo: HS 125-100-305/177.8	Material: Acero al carbono					
Descripción: Bomba centrífuga de alimentación al flash						
CONDICIONES DE OPERACIÓN						
Fluido	Composición de salida del reactor					
Caudal (kg/h)	195.059					
Caudal (m ³ /h)	185					
Diámetro interno (m)	0,18					
Temperatura de trabajo (°C)	50					
Temperatura de diseño (°C)	70					
Densidad (kg/ m ³)	528,8					
Viscosidad (kg/m·s)	2,76.10-4					
Altura (m)	17					
Presión de aspiración (bar)	0,38					
Presión de impulsión (bar)	1,25					
Presión de vapor (bar)	0,123					
Presión de diseño (bar)	3,25					
NPSH requerido (m)	4,2					
Rendimiento (%)	70					
Potencia consumida (kW)	3					
Frecuencia de giro del motor (Hz)	50					

BOMBA 4	BOMBA 4						
Planta: Producción de p-xileno	Nomenclatura: P-104 A/B						
Número de línea: 37/38	Cantidad: 2						
Modelo: MSVB-4/15	Material: Acero al carbono						
Descripción: Bomba centrífuga de agua y metanol							
CONDICIONES DE O	PERACIÓN						
Fluido	Agua y metanol						
Caudal (kg/h)	9.357						
Caudal (m ³ /h)	12						
Diámetro interno (m)	0,043						
Temperatura de trabajo (°C)	49						
Temperatura de diseño (°C)	69						
Densidad (kg/m ³)	841,5						
Viscosidad (kg/m·s)	4,56.10-4						
Altura (m)	146,5						
Presión de aspiración (bar)	1,25						
Presión de impulsión (bar)	10,5						
Presión de vapor (bar)	0,118						
Presión de diseño (bar)	13,2						
NPSH requerido (m)	11,44						
Rendimiento (%)	-						
Potencia consumida (kW)	15						
Velocidad de giro del motor (rpm)	-						

BOMBA 5						
Planta: Producción de p-xileno	Nomenclatura: P-105 A/B					
Número de línea: 34/35	Cantidad: 2					
Modelo : HS 125-100-280/165.1	Material: Acero al carbono					
Descripción: Bomba centrífuga del r	eciclo de tolueno					
CONDICIONES DE OPERACIÓN						
Fluido	Tolueno					
Caudal (kg/h)	104.972					
Caudal (m ³ /h)	115					
Diámetro interno (m)	0,15					
Temperatura de trabajo (°C)	45					
Temperatura de diseño (°C)	65					
Densidad (kg/ m ³)	843,6					
Viscosidad (kg/m·s)	$4,44 \cdot 10^{-4}$					
Altura (m)	22,5					
Presión de aspiración (bar)	1,25					
Presión de impulsión (bar)	3,1					
Presión de vapor (bar)	0,099					
Presión de diseño (bar)	5,1					
NPSH requerido (m)	11,6					
Rendimiento (%)	62					
Potencia consumida (kW)	10					
Frecuencia de giro del motor (Hz)	50					

BOMBA 6						
Planta: Producción de p-xileno	Nomenclatura: P-106 A/B					
Número de línea: 18/19	Nomenclatura: P-106 A/B Cantidad: 2 Material: Acero al carbono DE OPERACIÓN Hidrocarburos aromáticos (BTX) 113.539 135 0,161 45 65 837,9 4,44·10 ⁻⁴ 88,5 1,25 8,5 0,099 10,6 11 68					
Modelo: HS 125-100-280/279.4	Material: Acero al carbono					
Descripción : Bomba centrífuga						
CONDICIONES DE OPERACIÓN						
Fluido	Hidrocarburos aromáticos (BTX)					
Caudal (kg/h)	113.539					
Caudal (m ³ /h)	135					
Diámetro interno (m)	0.161					
Temperatura de trabajo (°C)	45					
Temperatura de diseño (°C)	65					
Densided (kg/m^3)	837.9					
Viscosidad (kg/m/s)	$4.44.10^{-4}$					
Altura (m)	88.5					
Presión de aspiración (bar)	1 25					
Presión de impulsión (bar)	9.5					
Presión de impuisión (bar)	8,5					
Presión de vapor (bar)	0,099					
Presion de diseno (bar)	10,6					
NPSH requerido	11,68					
Rendimiento (%)	73					
Potencia consumida (kW)	40,5					
Frecuencia de giro del motor (Hz)	50					

BOMBA 7						
Planta: Producción de p-xileno	Nomenclatura: P-107 A/B					
Número de línea: 26/27	Cantidad: 2					
Modelo: NKP-G 32-125-130-2.2AA	Material: Acero al carbono					
Descripción: Bomba centrífuga						
CONDICIONES DE OPERACIÓN						
Fluido	P-xileno					
Caudal (kg/h)	12.474					
Caudal (m ³ /h)	18					
Diámetro interno (m)	0,055					
Temperatura de trabajo (°C)	164,5					
Temperatura de diseño (°C)	164,5					
Densidad (kg/ m ³)	726,4					
Viscosidad (kg/m·s)	1,92.10-4					
Altura (m)	21,8					
Presión de aspiración (bar)	2,2					
Presión de impulsión (bar)	3,2					
Presión de vapor (bar)	1,94					
Presión de diseño (bar)	5,2					
NPSH requerido (m)	3					
Rendimiento (%)	-					
Potencia consumida (kW)	2,2					
Velocidad de giro del motor (rpm)	2.900					

COMPRESOR 1							
Planta: Producción de p-xileno	Nomenclatura: C-101 A/B/C						
Número de línea: 45/46	Cantidad: 3						
Material: Acero al carbono							
Descripción: Compresor de reciclo de gases							
CONDICIONES DE OPERACIÓN							
Fluido	Hidrógeno (principalmente)						
Caudal (m ³ /h)	20.883						
Temparatura de entrada (°C)	50						
Temperatura de salida (°C)	287,6						
Temperatura de diseño	307,6						
Densidad (kg/ m ³)	0,056						
Presión de aspiración (bar)	1,25						
Presión de impulsión (bar)	3						
Relación de compresión	2,4						
Presión de diseño (bar)	5						
Rendimiento isentrópico (%)	80						
Potencia (kW)	2.607						

INTERCAMBIADOR 1						
Planta: Producción de p-xilen	0	Nomenclatura: E-101 A/B/C/D		Material: Acero al carbono		
Número de línea carcasa: 6/7		Número de líne	a tubos : 13/14	Cantidad: 4		
Descripción: Intercambiador c	arcasa y	y tubo tipo E con t	tubos en U			
DATOS DE OPERACIÓ	ÓN	CAR	RCASA		TUBOS	
Caudal total (kg/h)		132	2.949		142.846	
Fluido		Tolueno (princip	y metanol palmente)	Composició	Composición de salida del reactor	
Disposición fluidos		F	Frío		Caliente	
Temperatura de entrada (°C)			79		425,6	
Temperatura de salida (°C)		2	230		188	
Presión de entrada (bar)			3,1		1,4	
Pérdida de carga (Pa)		6.	.331		4.062	
Densidad (kg/ m ³)		5	5,92	0,0235		
Viscosidad (Pa·s)		1,4	$6 \cdot 10^{-4}$	2,23.10-5		
Conductividad térmica (W/m ²	·°C)	0,	,082		0,047	
Velocidad del fluido (m/s)		0,	,569		76,74	
Factor de ensuciamiento $(m^2 \cdot K)$	C/W)	2.	10-4		$2 \cdot 10^{-4}$	
Coeficiente de película (W/m2	² ·K)	4	16,7		91,51	
Temperatua media de masa (°C	C)	1:	54,5	306,8		
DIMENSI	ONES		ÁREA Y	CALOR TRA	ANSFERIDO	
Número de tubos		1126	Temperatura de di	seño (°C)	445,6	
Pitcht (m)		0,03705	Presión de diseño	(bar)	5,1	
Disposición de los tubos	-	Triangular	Calor intercambiado (MW)		6,44	
Diámetro interno tubo (in)		3/4	Coeficiente global, U (W/ m ² ·K)		72,85	
BWG		10	Área de intercambio (m ²)		596,5	
Diámetro de la carcasa (in)		37	Área tubo (m ²)		0,53	
Distancia entre baffles (m)		0,188	DTLM		148,1	
Longitud (m)		5,7				

INTERCAMBIADOR 2							
Planta: Producción de p-xileno	С	Nomenclatura:	E-102 A/B	Material: Acero al carbono			
Número de línea: 14/15		Cantidad: 2					
Descripción: Intercambiador carcasa y tubo tipo E con tubos en U							
DATOS DE OPERACIÓ	ĎN	CAR	RCASA		TUBOS		
Caudal total (kg/h)		140	6.265		71.423		
Fluido		Agua de r	efrigeración	Composición	n de salida del reactor		
Disposición fluidos		F	río		Caliente		
Temperatura de entrada (°C)			20	188			
Temperatura de salida (°C)		1	00		50		
Presión de entrada (bar)			1		1,36		
Pérdida de carga (Pa)			-		92.000		
Densidad (kg/m ³)		98	83,2	48,05			
Viscosidad (Pa·s)		4,6	$7 \cdot 10^{-4}$	2,72.10.5			
Conductividad térmica (W/m ²	·°C)	0,	,641		0,0313		
Velocidad del fluido (m/s)		1	,17		3,55		
Factor de ensuciamiento (m ² ·K	(W)	1.	10-4		$2 \cdot 10^{-4}$		
Coeficiente de película (W/m ²	·K)	3.	.221	393,6			
Temperatua media de masa (°C	C)		60	119			
DIMENSIO	ONES		ÁREA Y	393,6 119 Y CALOR TRANSFERIDO diseño (°C) 308			
Número de tubos		1126	Temperatura de di	seño (°C)	308		
Pitcht (m)		0,03705	Presión de diseño	(bar)	3,36		
Disposición de los tubos	,	Triangular	Calor intercambia	do (MW)	13,59		
Diámetro interno tubo (in)		3/4	Coeficiente global $m^2 \cdot K$)	I, U (W/	350,8		
BWG		10	Área de intercamb	oio (m ²)	718,7		
Diámetro de la carcasa (in)		37	Área tubo (m ²)		0,67		
Distancia entre baffles (m)		0,188	DTLM		53,9		
Longitud (m)		6					

INTERCAMBIADOR 3							
Planta: Producción de p-xileno	C	Nomenclatura:	E-103	Material: Acero al carbono			
Número de línea: 23/24		Cantidad: 1					
Descripción: Intercambiador c	arcasa y	y tubo con tubos e	n U				
DATOS DE OPERACIÓ	ĎN	CAR	CASA		TUBOS		
Caudal total (kg/h)		18	1.495		54.658		
Fluido		Agua de r	efrigeración	Tolı	ieno y xileno		
Disposición fluidos		F	Frío		Caliente		
Temperatura de entrada (°C)			20		212		
Temperatura de salida (°C)		1	00		93,4		
Presión de entrada (bar)			1		3,5		
Pérdida de carga (Pa)			-		213.959		
Densidad (kg/m ³)		98	83,2	82,16			
Viscosidad (Pa·s)		4,6	$7 \cdot 10^{-4}$	3,08.10-5			
Conductividad térmica (W/m ²	· °C)	0,	641		0,031		
Velocidad del fluido (m/s)		2	,36		4,58		
Factor de ensuciamiento (m ² ·K	ensuciamiento (m ² ·K/W)		10-4		$2 \cdot 10^{-4}$		
Coeficiente de película (W/m ²	·K)	19	.216		770,7		
Temperatua media de masa (°C	C)		60		152,7		
DIMENSI	ONES		ÁREA Y	152,7 CALOR TRANSFERIDO			
Número de tubos		566	Temperatura de di	seño (°C)	232		
Pitcht (m)		0,03705	Presión de diseño	(bar)	5,5		
Disposición de los tubos		Triangular	Calor intercambia	do (MW)	16,86		
Diámetro interno tubo (in)		3/4	Coeficiente global, U (W/ $m^2 \cdot K$)		741		
BWG		10	Área de intercambio (m ²)		249		
Diámetro de la carcasa (in)		29	Área tubo (m ²)		0,44		
Distancia entre baffles (m)		0,147	DTLM		91,34		
Longitud (m)		4,8					

INTERCAMBIADOR 4							
Planta: Producción de p-xileno	0	Nomenclatura:	E-104	Material: Acero al carbono			
Número de línea: 41/42		Cantidad: 1					
Descripción: Intercambiador c	arcasa y	y tubo con tubos e	n U				
DATOS DE OPERACIÓ	ÓN	CAR	RCASA		TUBOS		
Caudal total (kg/h)		4.	.627		4.146		
Fluido		R	134a		Agua		
Disposición fluidos		F	Frío		Caliente		
Temperatura de entrada (°C)		-	-40		145		
Temperatura de salida (°C)		-	-40		25		
Presión de entrada (bar)		0),52		4,2		
Pérdida de carga (Pa)			-		-		
Densidad (kg/m ³)		1.	.418	95,88			
Viscosidad (Pa·s)		4,6	$5 \cdot 10^{-4}$	4,77.10-5			
Conductividad térmica (W/m ²	· °C)	0),11		0,035		
Velocidad del fluido (m/s)		0),15		0,84		
Factor de ensuciamiento $(m^2 \cdot K)$	K/W) 1		10-4		$1 \cdot 10^{-4}$		
Coeficiente de película (W/m ²	²⋅K)	5:	53,2		109,2		
Temperatua media de masa (°C	C)	-	-40	85			
DIMENSI	ONES		ÁREA Y	1·10 ⁻⁴ 109,2 85 CALOR TRANSFERIDO eño (°C) 165 par) 6.2			
Número de tubos		100	Temperatura de di	seño (°C)	165		
Pitcht (m)		0,03705	Presión de diseño	(bar)	6,2		
Disposición de los tubos		Triangular	Calor intercambia	do (MW)	0,28		
Diámetro interno tubo (in)		3/4	Coeficiente global, U (W/ $m^2 \cdot K$)		455,5		
BWG		10	Área de intercambio (m ²)		27,19		
Diámetro de la carcasa (in)		15 ¼	Área tubo (m^2)		0,27		
Distancia entre baffles (m)		0,077	DTLM		114,8		
Longitud (m)		3					

INTERCAMBIADOR 5								
Planta: Producción de p-xileno	C	Nomenclatura:	E-105	Material: Acero al carbono				
Número de línea: 25/26		Cantidad: 1						
Descripción: Intercambiador c	arcasa y	y tubo con tubos e	n U					
DATOS DE OPERACIÓ	ÓN	CAR	CASA		TUBOS			
Caudal total (kg/h)		183	3.388		54.658			
Fluido		Xi	leno	D	owtherm G			
Disposición fluidos		F	Frío		Caliente			
Temperatura de entrada (°C)		10	54,5		300			
Temperatura de salida (°C)		18	87,4		200			
Presión de entrada (bar)			2		1			
Pérdida de carga (Pa)		13	.240		-			
Densidad (kg/m ³)		80	58,7	6,1				
Viscosidad (Pa·s)		4,0	$5 \cdot 10^{-4}$	9,43.10-6				
Conductividad térmica (W/m ²	· °C)	(0,1		0,025			
Velocidad del fluido (m/s)		0,	315		6,91			
Factor de ensuciamiento $(m^2 \cdot K)$	(/W)	1.	10-4		$1 \cdot 10^{-4}$			
Coeficiente de película (W/m ²	·K)	14	.341	470,5				
Temperatua media de masa (°C	C)	50	01,4	77,63				
DIMENSI	ONES		ÁREA Y	CALOR TRA	470,5 77,63 CALOR TRANSFERIDO ño (°C) 320			
Número de tubos		558	Temperatura de di	seño (°C)	320			
Pitcht (m)		0,03705	Presión de diseño	(bar)	4			
Disposición de los tubos		Triangular	Calor intercambia	do (MW)	1,21			
Diámetro interno tubo (in)		3/4	Coeficiente global, U (W/ $m^2 \cdot K$)		67,22			
BWG		10	Área de intercambio (m ²)		270			
Diámetro de la carcasa (in)		27	Área tubo (m ²)		0,48			
Distancia entre baffles (m)		0,137	DTLM		66,8			
Longitud (m)		5,2						

INTERCAMBIADOR 6								
Planta: Producción de p-xileno)	Nomenclatura:	E-106	Material: Ac	ero al carbono			
Número de línea: 32/33		Cantidad: 1						
Descripción: Intercambiador c	arcasa y	y tubo con tubos e	n U					
DATOS DE OPERACIÓ	ĎN	CAR	CASA	TUBOS				
Caudal total (kg/h)		26	5.022	11.147				
Fluido		R	134a	P-xileno				
Disposición fluidos		F	Frío		Caliente			
Temperatura de entrada (°C)		-	-40		114			
Temperatura de salida (°C)		-	-40		25			
Presión de entrada (bar)			1		0,5			
Pérdida de carga (Pa)			-		-			
Densidad (kg/ m ³)		1,	418	817,7				
Viscosidad (Pa·s)		4,6	$5 \cdot 10^{-4}$	3,66.10-4				
Conductividad térmica (W/m ²	· °C)	0	,11		0,12			
Velocidad del fluido (m/s)		0,	144		0,024			
Factor de ensuciamiento (m ² ·K	(W)	1.	10-4		$2 \cdot 10^{-4}$			
Coeficiente de película (W/m ²	·K)	5:	59,2		27,37			
Temperatua media de masa (°C	C)	-	-40		69,47			
DIMENSIO	ONES		ÁREA Y	CALOR TRA	ANSFERIDO			
Número de tubos		1126	Temperatura de di	seño (°C)	134			
Pitcht (m)		0,03705	Presión de diseño	(bar)	3			
Disposición de los tubos		Triangular	Calor intercambia	do (MW)	1,6			
Diámetro interno tubo (in)		3/4	Coeficiente global $m^2 \cdot K$)	, U (W/	26,09			
BWG		10	Área de intercamb	oio (m ²)	595			
Diámetro de la carcasa (in)	37	Área tubo (m ²)		0,53				
Distancia entre baffles (m)	0,188	DTLM		103,2				
Longitud (m)		5,7						

REACTOR								
Planta: Producción de p-xileno	Nomenclatura: R-101							
Número de línea: 12/13	Cantidad: 1							
Material: Acero al carbono								
Descripción: Reactor tubular de lecho fijo								
DATOS DE OPE	RACIÓN							
Caudal másico (kg/h)	142.846							
Caudal molar de alimentación (kmol/h)	4.398							
Caudal volumétrico (m ³ /s)	49,66							
Temperatura entrada (°C)	400							
Temperatura salida (°C)	425,6							
Presión entrada (bar)	3							
Pérdida de carga (bar)	1,6							
DIMENSIO	NES							
Masa de catalizador (kg)	12.500							
Volumen (m ³)	17,56							
Diámetro (in)	2							
Longitud (m)	5							
REFRIGERA	CIÓN							
Fluido refrigerante	Sal fundida en cambio de fase							
Tempearatura refrigerante (°C)	421,4							
Coeficiente global, $U(W/m^2 \cdot K)$	130							
CATALIZA	DOR							
Densidad (kg/m ³)	1780							
Superficie específica (m^2/g)	300-800							
Porosidad	0,6							
Diámetro de partícula (mm)	8							

HORNO	
Planta: Producción de p-xileno	Nomenclatura: H-101
Número de línea: 11/12	Cantidad: 1
Material: Acero al carbono	
Descripción: Horno de procesos que calier	nta la alimentación del reactor
PROPIEDADES F	LUIDO
Temperatura entrada (°C)	233,3
Temperatura salida (°C)	400
Presión entrada (bar)	3
Pérdida de carga (Pa)	175,9
Densidad (kg/ m ³)	6,94
Viscosidad (Pa·s)	2,62.10-4
Velocidad (m/s)	1,5
CALOR INTERCA	MBIADO
Calor útil transferido al fluido (MW)	10,58
Calor aportado por el combustible (MW)	11,38
Calor aportado por el aire (MW)	1,07
Masa de combustible (kg/h)	871,9
Exceso de aire (%)	5
Rendimiento (%)	85
Calor gases chimenea (MW)	1,64
Pérdidas por transmisión de calor (MW)	0,227
Coeficiente global, U (W/ m ² ·K)	40
Área de transferencia (m ²)	2073
COMBUSTIB	LE
Тіро	Gas natural
PCI (kJ/kg)	45.000
Composición (% volumen)	
Nitrógeno	3,0
Metano	86,0
Etano	7,6
Propano	2,4
Butano	1,0

INTERCAMBIADOR 7 (PRECALENTADOR HORNO)											
Planta: Producción de p-xilen	0	Nomenclatura:	E-107	Material: Ac	ero al carbono						
Número de línea carcasa: 49		Número de líne	a tubos : 47/48	Cantidad: 1							
Descripción: Intercambiador d	le flujo o	cruzado que calier	nta el aire alimentad	o al horno							
DATOS DE OPERACIÓ	ÓN	CAR	RCASA	TUBOS							
Caudal total (kg/h)		12	2.495		12.643						
Fluido (kg/h)		Nitrógeno (p	rincipalmente)	Aire							
Disposición fluidos		Ca	liente		Frío						
Temperatura de entrada (°C)		40	09,3		25						
Temperatura de salida (°C)		1	60		305,3						
Presión de entrada (bar)			1		1						
Pérdida de carga (bar)			-		-						
Densidad (kg/m ³)		0),59		1,23						
Viscosidad (Pa·s)		2,8	0.10-5	2,45.10-5							
Conductividad térmica (W/m ²	· °C)	0,	,043		0,035						
Velocidad del fluido (m/s)		0),20		21,18						
Factor de ensuciamiento (m ² ·k	(W)	1.	10-4		$1 \cdot 10^{-4}$						
Coeficiente de película (W/m2	² ·K)	2	213		104,1						
Temperatua media de masa (°C	C)	2	285		165						
DIMENSI	ONES		ÁREA Y	CALOR TRA	ANSFERIDO						
Número de tubos		950	Temperatura de di	seño (°C)	435						
Pitcht (m)		0,01612	Presión de diseño	(bar)	3						
Disposición de los tubos		Triangular	Calor intercambia	do (kW)	4,39						
Diámetro interno tubo (in)		3/8	Coeficiente global m ² ·K)	, U (W/	69,95						
BWG		18	Área de intercamb	io (m ²)	528,3						
Diámetro de la carcasa (m)	0,57	Área tubo (m ²)		0,56							
Distancia entre baffles (m)		0,1135	DTLM		118,8						
Longitud (m)		6									

6. RESUMEN Y CONCLUSIONES

Para concluir, cabe decir que dos de los aspectos más importantes a la hora de diseñar una planta de producción de p-xileno son el reactor y la zona de separación de los productos, especialmente los equipos correspondientes a la separación de los isómeros del xileno, debido a la dificultad que presenta esta operación. Si se consigue obtener una buena selectividad hacia el p-xileno en el reactor, los equipos de separación serán mucho menos costosos, puesto que habrá que eliminar menor cantidad de los compuestos no deseados.

Otro aspecto a observar es que el p-xileno es un producto intermedio, por lo que la mayoría de las plantas de este tipo se sitúan junto a otras plantas con la finalidad de producir otros compuestos, especialmente PET. Teniendo en cuenta que se prevee que el mercado de p-xileno continúe creciendo gracias al aumento en la demanda de PET, se puede concluir que sería interesante la realización de una ingeniería de detalle con el objetivo de llevar a cabo la construcción de esta planta.

7.1.	Anexo	I. Interca	mbiadores	carcasa	y tubo.
------	-------	------------	-----------	---------	---------

		1											
O.D. of Tubing	E.W.G. Gauge	Thick- perr Inches	Internal Area Sq. Inch	Sq. Ft. External Surface Per Foot Length	Sq. Ft. Internal Surface Per Foot Length	Weight Per Ft. Length Steel Lbs.*	I. D. Tubing Inches	Moment ol Inertia Inches ⁴	Section Modulus Inches ³	Radius of Gyration Inches	Constant C**	0. D. 1. D.	Metal Area (Transverse Metal Area) Sq. Inch
1/4 1/4 1/4	22 24 26	.028 .022 .018	.0295 .0333 .0360	.0655 .0655 .0655	.0508 .0539 .0560	.056 .054 .045	.194 .206 .214	.00012 .00011 .00009	.00098 .00083 .00071	.0792 .0810 .0024	46 52 56	1.289 1.214 1.168	.0195 .0159 .0131
3/8 3/8 3/8 3/8	16 20 22 24	.049 .035 .028 .022	.0603 - .0731 .0799 .0860	.0962 .0982 .0982 .0982	.0725 .0798 .0835 .0867	.171 .127 .104 .083	.277 .305 .319 .331	.00068 .00055 .00046 .00038	.0036 .0029 .0025 .0020	.1164 .1213 .1227 .1248	94 114 125 134	1.354 1.233 1.176 1.133	.0502 .0374 .0305 .0244
1/2 1/2 1/2 1/2	16 18 20 22	.065 .049 .035 .028	.1075 .1269 .1452 .1558	.1309 .1309 .1309 .1309	.0969 .1052 .1126 :1162	.302 .236 .174 .141	.370 .402 .430 .444	.0022 .0018 .0014 .0012	.0086 .0072 .0056 .0046	.1556 .1606 .1649 .1671	168 198 227 241	1.351 1.244 1.163 1.126	.0888 .0694 .0511 .0415
5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8	12 13 14 15 16 17 19 20	.109 .095 .063 .072 .053 .058 .049 .042 .035	.1301 .1486 .1655 .1017 .1924 .2025 .2121 .2296 .2419	.1636 .1636 .1636 .1636 .1636 .1636 .1636 .1636 .1636	.1066 .1139 .1202 .1259 .1296 .1333 .1380 .1416 .1453	.602 .537 .479 .425 .388 .350 .303 .262 .221	.407 .435 .459 .481 .495 .509 .527 .527 .541 .555	.0061 .0057 .0053 .0049 .0045 .0042 .0037 .0033 .0028	.0197 .0183 .0170 .0156 .0145 .0134 .0118 .0105 .0091	.1864 .1903 .1938 .1971 .1993 .2016 .2043 .2068 .2089	203 232 258 283 300 317 340 358 377	1.536 1.437 1.362 1.299 1.263 1.228 1.186 1.155 1.126	.177 .158 .141 .125 .114 .103 .089 .077 .065
1/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	10 11 12 13 14 15 15 15 17 18 20	.134 .120 .095 .083 .072 .055 .058 .045 .035	.1823 .2043 .2463 .2675 .2684 .3019 .3157 .3339 .3632	.1963 .1963 .1963 .1963 .1963 .1963 .1963 .1963 .1963	.1262 .1335 .1393 .1466 .1529 .1507 .1623 .1600 .1707 .1760	.884 .809 .748 .666 .592 .520 .476 .428 .367 .269	.402 .510 .532 .560 .584 .606 .620 .620 .652 .680	.0129 .0122 .0116 .0000 .0009 .0083 .0076 .0067 .0050	.0344 .0326 .0309 .0285 .0262 .0238 .0238 .0221 .0203 .0134	.2229 .2267 .2299 .2340 .2340 .2410 .2410 .2433 .2455 .2455 .2455 .2455 .2455	285 319 347 384 418 450 471 492 521 567	1.556 1.471 1.410 1.339 1.284 1.238 1.210 1.183 1.150 1.103	.260 .238 .220 .196 .174 .153 .140 .126 .108 .079
7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8	10 11 12 13 14 16 18 20	.134 .120 .095 .063 .065 .049 .035	.2892 .3156 .3350 .3585 .3948 .4359 .4742 .5020	.2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291	.1589 .1662 .1720 .1793 .1856 .1950 .2034 .2107	1.061 .969 .891 .792 .704 .561 .432 .313	.607 .635 .657 .685 .709 .745 .777 .805	.0221 .0208 .0196 .0180 .0164 .0137 .0109 .0082	.0505 .0475 .0449 .0411 .0374 .0312 .0249 .0187	.2662 .2703 .2736 .2778 .2815 .2873 .2925 .2972	451 494 529 575 616 580 740 794	1.441 1.378 1.332 1.277 1.234 1.174 1.126 1.087	.312 .285 .262 .233 .207 .165 .127 .092
	8 10 11 12 13 14 15 15 10 20	.165 .134 .120 .095 .083 .072 .055 .049 .055	.3526 .4208 .4535 .4803 .5153 .5463 .5463 .5755 .5755 .5945 .6390 .6793	.2618 .2618 .2618 .2618 .2618 .2618 .2618 .2618 .2618 .2618 .2619 .2618	.1754 .1916 .1990 .2047 .2121 .2183 .2241 .2278 .2361 .2435	1.462 1.237 1.129 1.037 .918 .813 .714 .649 .496 .360	.670 .732 .760 .782 .810 .634 .856 .870 .902 .930	.0392 .0350 .0327 .0260 .0253 .0227 .0210 .0166 .0124	.0784 .0700 .0654 .0559 .0507 .0455 .0419 .0332 .0247	.3009 .3098 .3140 .3174 .3217 .3255 .3291 .3314 .3366 .3414	550 656 708 749 804 852 898 927 927 1060	1.493 1.366 1.316 1.279 1.235 1.199 1.167 1.149 1.109 1.075.	.430 .364 .332 .305 .270 .219 .210 .191 .146 .106
1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4	7 10 11 12 13 16 70	.150 .165 .134 .120 .109 .095 .083 .085 .085 .015	.5221 .6548 .7574 .8012 .8365 .8825 .8825 .8229 .9229 .9252 1.042 1.094	.3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272	.2330 .2409 .2571 .2544 .2702 .2775 .2838 .2532 .3016 .3069	2.057 1.921 1.558 1.448 1.329 1.73 1.033 .823 .629 .456	.890 .920 .982 1.010 1.032 1.060 1.084 1.120 1.152 1.150	.0890 .0647 .0741 .0688 .0642 .0579 .0521 .0426 .0334 .0247	.1425 .1355 .1186 .1100 .0926 .0833 .0682 .0534 .0395	.3836 .3880 .3974 .4018 .4052 .4097 .4136 .4196 .4250 .4250	970 1037 1182 1250 1305 1377 1440 1537 1626 1707	1.404 1.359 1.273 1.238 1.211 1.179 1.153 1.116 1.085 1.059	.605 .565 .470 .426 .391 .345 .304 .242 .185 .134
1-1/2 1-1/2 1-1/2 1-1/2	10 12 14 16	.134 .109 .083 .065	1.192 1.251 1.395 1.476	.3927 .3927 .3927 .3927	.3225 .3356 .3492 .3587	1.955 1.618 1.258 .996	1.232 1.282 1.334 1.370	.1354 .1159 .0931 .0756	.1806 .1546 .1241 .1008	4853 .4933 .5018 .5079	1860 2014 2181 2299	1.218 1.170 1.124 1.095	.575 .476 .370 .293
ž	11	.120 .095	2.433 2.573	.5236 . .5236	.4608 .4739	2.410 1.934	1.760	.3144	.3144	.6660	3795 4014	1.136	.709
2-1/2	9	.148	3.915	.6540	.5770	3,719	2.204	.7592	.6074	.8332	5951	1.134	1.094

Figura 7.1. Intercambiadores carcasa y tubo: características de los tubos [28]

	1				1			1	1	1			1	1	1.	1			
37	35	33	31	_ 29	27	25	231/4	211/4	191/4	171/4	151/4	131/4	12	10	8	I.D.	of Shell	(In.)	
1269 1127 965 699 595	1143 1007 865 633 545	1019 889 765 551 477	881 765 665 481 413	763 667 587 427 359	663 577 495 361 303	553 493 419 307 255	481 423 355 247 215	391 343 287 205 179	307 277 235 163 139	247 217 183 133 111	193 157. 139 103 83	135 117 101 73 65	105 91 85 57 45	60 57 53 33 33	33 33 33 15 17	* on 1 * on 1 * on 1 1 on 1 1 on 1		Tubes	One-Pass
1242 1088 940 683 584	1088 972 840 608 522	964 858 746 530 460	846 746 644 462 402	734 646 560 410 348	626 556 480 346 298	528 468 408 292 248	452 398 346 244 218	370 320 280 204 172	300 264 222 162 136	228 208 172 126 106	166 154 120 92 70	124 110 94 62 50	94 90 78 52 40	58 56 48 32 26	32 28 26 16 12	³ / ₄ on ¹ ³ / ₄ on 1 ³ / ₄ on 1 ³ / ₄ on 1 ¹ on 1 ¹ / ₉		Fixed Tubes	Two-
1126 1000 884 610 526	1008 882 778 532 464	882 772 688 466 406	768 674 586 396 350	648 566 506 340 304	558 454 436 284 256	460 406 362 234 214	398 336 304 192 180	304 270 242 154 134	234 212 188 120 100	180 158 142 84 76	134 108 100 58 58	94 72 72 42 38	64 60 52 26 22	34 26 30 8 12	8 12 XX XX	* on 1 * on 1 * on 1 1 on 1 1 on 1		U Tubes ³	Pass
1172 1024 880 638 534	1024 912 778 560 476	904 802 688 486 414	788 692 590 422 360	680 596 510 368 310	576 508 440 308 260	484 424 366 258 214	412 360 308 212 188	332 292 242 176 142	266 232 192 138 110	196 180 142 104 84	154 134 126 78 74	108 96 88 60 48	84 ·72 72 44 40	48 44 48 24 24	XX XX XX XX XX XX	1 on 1 1 on 1 1 on 1 1 on 1 1 on 1		Fixed Tubes	Four
1092 968 852 584 500	976 852 748 508 440	852 744 660 444 384	740 648 560 376 336	622 542 482 322 286	534 462 414 260 238	438 386 342 218 198	378 318 286 178 166	286 254 226 142 122	218 198 174 110 90	166 146 130 74 60	122 98 90 50 50	84 64 64 36 32	56 52 44 20 16	28 20 24 XX XX	XX XX XX XX XX XX	* on 1 * on 1 * on 1 1 on 1 1 on 1		U Tubes ³	-Pass
1106 964 818 586 484	964 852 224 514 430	844 744 634 442 368	732 640 536 382 318	632 548 460 338 268	532 464 394 274 226	440 388 324 226 184	372 322 266 182 154	294 258 212 150 116	230 202 158 112 88	174 156 116 82 66	116 104 78 56 44	80 66 54 34 XX	XX XX XX XX XX XX XX	XX XXX XXX XXX XXX	XX XX XX XX XX	³ / ⁶ on ¹ / ₇ ³ / ⁶ on 1 ³ / ⁶ on 1 ¹ / ₇ on 1 ¹ / ₇ on 1 ¹ / ₇		Fixed Tubes	Sir-
1058 940 820- 562 478	944 826 718 -488 420	826 720 632 426 362	716 626 534 356 316	596 518 458 304 268	510 440 392 252 224	416 366 322 206 182	358 300 268 168 152	272 238 210 130 110	206 184 160 100 80	156 134 118 68 60	110 88 80 42 42	74 56 56 30 XX		XX XXX XXX XXX	XX XX XX XX XX	" on 1 " on 1 " on 1 1 on 1 1 on 1		U Tubes ³	Pass
1040 902 760 542 438	902 798 662 466 383	790 694 576 400 334	682 588 490 342 280	576 496 414 298 230	484 422 352 240 192	398 344 286 190 150	332 286 228 154 128	258 224 174 120 94	198 170 132 90 74	140 124 94 66 XX	94 82 XX XX XX	XX XX XX XX XX	XX XX XX XX XX XX	XXXXXX	XXXXXXXX	" on 1 " on 1 " on 1 " on 1 1 on 1 1 on 1		Fired Tubes	Elgh
1032 908 792 540 456	916 796 692 464 396	796 692 608 404 344	688 600 512 340 300	578 498 438 290 254	490 422 374 238 206	398 350 306 190 170	342 286 254 154 142	254 226 194 118 98	190 170 146 90 70	142 122 105 58 50	102 82 70 38 34	68 52 48 24 XX	XX XX XX XX XX XX	XX XXX XXX XXX XXX	XX XX XX XX XX XX	" on 1 " on 1 " on 1 1 on 1 1 on 1 1 on 1		U Tubes ³	t-Pass
37	35	33	31	29	27	25	231/4	211/4	191/4	171/4	151/4	131/4	12	10	8	I.D. of S	Shell (in	.)	

Figura 7.2. Intercambiadores carcasa y tubo: diámetro de la carcasa y número de tubos en intercambiadores de placas tubulares fijas y de tubos en U [28].

7.2. Anexo II. Catálogos de bombas

		Pote	ncia		Amperios								Câ	udal	m ³ /	hora							
Modelo	-	1010	neia	Potencia	trifásico	0	6	9	12	18	21	24	30	33	36	39	48	54	60	66	72	90	93
		CV	kW	(P1)	380V								Alt	ura e	n me	tros							
-3/5,5		7,5	5,5	6,8	11,8	91	84,9	81,4	76,5	64,2	54,1	44,7	20,7										
MSVA -4/7,5		10	7,5	8,6	14,7	120,3	111,6	107,7	101	83,8	73,2	62,1	32,5										
-5/9,2		12,5	9,2	10,5	18,2	154,5	143	137	129,4	108,5	97,3	83,8	50,5										
MSHA -6/11		15	11	12,9	22,2	179	167,2	159,5	150	123,2	107,6	87,4											
-8/15		20	15	17,2	28,8	240,4	227,2	219,2	206,5	171,7	147	118,4											
-2/7,5		10	7,5	9	15,4	76,8		73,8	72,9	68,7	66,2	63	54,1	49,5	44,5	38,9							
-3R/9,	2	12,5	9,2	10,9	18,7	103,5		103	102	95,5	92	85,4	70,7	62,1	53,6	44,5							
MSVB -3/11		15	11	12,8	22,2	116,6		113,1	111,6	106	101,5	96	83,8	76	67,7	57,8							
-4/15	- [20	15	16,4	27,6	155,5		149,5	146,5	137,5	133	125,8	110	100,5	91	84,8							
MSHB -5/18,5	5	25	18,5	21,7	35,7	195,5		185,4	181	170,8	163,7	155,5	137,7	126,3	114,1	102							
-6/22		30	22	24,7	41,8	226,2		218,6	214,6	203	195,2	185,3	162,6	149,5	135,3	120,2							
-2R1/1	1	15	11	13	22,5	80,2					78,8	76,8	73,2	71	68,6	65,6	55,2	46,4	34,4				
-3R/15		20	15	18,3	31	113,2					111,3	109	102,8	98,5	94,1	89,9	72,8	59,3	42,4				
MSVC -3/18,5	5	25	18,5	21,5	35,3	131,3					128,8	126	119,2	115,6	111,3	107	90,9	79,7	63,8	54,5			
-4R1/2	2	30	22	25,5	43,3	162,2					160,7	157,5	150,3	145,3	139,7	134,1	119,4	98,9	79,3	66,6			
MSHC -5/30		40	30	35,7	59,4	219					212,5	208,5	200	194,5	188,4	181,3	155,5	135,8	111,3	96,6			
-6/37		50	37	43,9	72,4	261,5					256,7	252	239,4	233	225	217	189,6	165,5	134,8	118,2			
-2/15		20	15	17,9	29,8	79,8								79	78	77	73,4	69,9	66	61,6	56,7	38,4	34,3
MSVD -3R/18	,5	25	18,5	22,4	37,2	104								103,2	101,5	99,5	93,2	88,4	82,8	76,7	69,7	44,7	39,9
-3/22		30	22	24,9	42,4	119,2								118	116	114	107,4	102,2	95,6	88,9	81,2	56,1	51,5
MSHD -4/30		40	30	33,7	55,8	155,5								154,7	152,7	150,5	141,4	134,3	126,3	116,7	107	73,2	65,8
-5/37		50	37	41,9	69,6	197,5								191,4	188	185	173,8	164,4	154	143,4	132	90,9	82,6

Figura 7.3. Catálogo bombas. AGP bombas: serie SM.

MODELO	P2 NOMINAL		m³/h	0	6	12	18	24	30	36	42	48	54	60
MODEL	HP	KW	l/min	0	100	200	300	400	500	000	700	800	900	1000
NKP-G 32-125.1 - 102 - 0.75 A A	1	0,75		13	12,5	11	8							
NKP-G 32-125.1 - 115 - 1.1 A A	1,5	1,1		17,2	17	15	12,5							
NKP-G 32-125.1 - 125 - 1.5 A A	2	1,5		21	20,8	19	16,8							
NKP-G 32-125.1 - 140 - 2.2 A A	3	2,2		27	26,9	25,9	23	19,5						
NKP-G 32-125 - 110 - 1.1 A A	1,5	1,1		15,8	15,4	14,5	12,9	9,9						
NKP-G 32-125 - 120 - 1.5 A A	2	1,5		19,4	19	18,2	16,8	14,5						
NKP-G 32-125 - 130 - 2.2 A A	3	2,2		23,7	23,4	23	21,8	19,8	16,8					
NKP-G 32-125 - 142 - 3 A A	4	3		28,6	28,2	27,6	26,5	24,6	21,8	17,9				
NKP-G 32-160.1 - 155 - 2.2 A A	3	2,2		32	31	27	22							
NKP-G 32-160.1 - 166 - 3 A A	4	3		38	36	33	28							
NKP-G 32-160 - 151 - 3 A A	4	3		30,5	30	29	27	24	19,5					
NKP-G 32-160 - 163 - 4 A A	5,5	4		36	36	35	33,5	30,5	27	22				
NKP-G 32-160 - 177 - 5.5 A A	7,5	5,5		43,5	43,2	42,6	41,5	39	36	31,5	25,5			
NKP-G 32-200.1 - 188 - 4 A A	5,5	4		51	48	44	37							
NKP-G 32-200.1 - 205 - 5.5 A A	7,5	5,5		57	56	52	46	35						
NKP-G 32-200 - 190 - 5.5 A A	7,5	5,5		47	46,5	45	43	40	35	29				
NKP-G 32-200 - 210 - 7.5 A A	10	7,5		58,5	58	57	56	53	49	44				

Figura 7.4. Catálogo bombas. Saci pumps: Serie NKP-G.

Figura 7.5. Curvas características bomba HS 125-100-305.

Figura 7.6. Curvas características bomba HS 125-100-280.

7.3. Anexo III. Diagrama de flujo del proceso completo, PFD.

Figura 7.7. Diagrama de flujo del proceso completo, PFD

7.4.	Anexo IV. Balances de materia y energía	1
------	---	---

Corriente		1	2	3	4	5	6	7	8	9	10
Caudal molar	kmol/h	151,90	151,9	277,9	277,9	429,8	1727,2	1727,2	256,0	2670,8	4398,0
Caudal másico	kg/h	13996	13996	8904	8904	22900	132949	132949	512	9946	142895
Temperatura	°C	25,00	25,00	25,00	25,00	25,00	79,02	230,00	25,00	265,5	233,33
Presión	bar	1,00	3,10	1,00	3,10	3,10	3,10	3,05	300,00	3,05	3,05
Tolueno	kmol/h	151,90	151,90	0,00	0,00	151,90	1293,00	1293,00	-	7,35	1300,35
Metanol	kmol/h	-	-	277,90	277,90	277,90	425,60	425,60	-	7,74	433,34
P-xileno	kmol/h	-	-	-	-	-	0,01	0,01	-	0,29	0,30
O-xileno	kmol/h	-	-	-	-	-	-	-	-	0,01	0,01
M-xileno	kmol/h	-	-	-	-	-	-	-	-	0,01	0,01
Benceno	kmol/h	-	-	-	-	-	0,34	0,34	-	0,21	0,56
Hidrocarburos ligeros	kmol/h	-	-	-	-	-	0,00	0,00	-	136,40	136,40
Agua	kmol/h	-	-	-	-	-	8,20	8,20	-	6,83	15,04
Nitrógeno	kmol/h	-	-	-	-	-	-	-	256,00	2512,00	2512,00
ТВВ	kmol/h	-	-	-	-	-	-	-	-	-	-
DTBB	kmol/h	-	-	-	-	-	-	-	-	-	-
твмх	kmol/h	-	-	-	-	-	-	-	-	-	-

Tabla 7.1. Balances de materia y energía corrientes 1-10

Corriente		11	12	13	14	15	16	17	18	19	20
Caudal molar	kmol/h	4398,0	4439,4	4439,4	4439,4	4439,4	1756,4	1381,4	1381,4	21,9	96,5
Caudal másico	kg/h	142895	142846	142846	142846	142846	132380	122922	122922	563	4274
Temperatura	°C	400,00	425,60	188,00	50,00	50,00	50,00	45,00	45,00	74,25	74,25
Presión	bar	3,00	1,40	1,36	0,38	1,25	1,25	1,25	8,50	8,00	8,00
Tolueno	kmol/h	1300,35	1166,00	1166,00	1166,00	1166,00	1158,00	1152,00	1152,00	-	11,29
Metanol	kmol/h	433,34	238,10	238,10	238,10	238,10	229,50	73,44	73,44	-	73,44
P-xileno	kmol/h	0,30	118,40	118,40	118,40	118,40	118,10	117,50	117,50	-	-
O-xileno	kmol/h	0,01	2,27	2,27	2,27	2,27	2,26	2,25	2,25	-	-
M-xileno	kmol/h	0,01	2,27	2,27	2,27	2,27	2,26	2,25	2,25	-	-
Benceno	kmol/h	0,56	11,78	11,78	11,78	11,78	11,55	11,49	11,49	-	11,14
Hidrocarburos ligeros	kmol/h	136,40	178,30	178,30	178,30	178,30	26,74	19,95	19,95	19,95	-
Agua	kmol/h	15,04	210,30	210,30	210,30	210,30	202,70	0,59	0,59	-	0,59
Nitrógeno	kmol/h	2512,00	2512,00	2512,00	2512,00	2512,00	5,28	1,94	1,94	1,94	-
ТВВ	kmol/h	-	-	-	-	-	-	-	-	-	-
DTBB	kmol/h	-	-	-	-	-	-	-	-	-	-
твмх	kmol/h	-	-	-	-	-	-	-	-	-	-

Tabla 7.2. Balances de materia y energía corrientes 11-20

Corriente		21	22	23	24	25	26	27	28	29	30
Caudal molar	kmol/h	1263,3	1263,3	1263,3	122,1	122,1	122,1	2,9	9,7	115,9	3,6
Caudal másico	kg/h	118110	118110	118110	12957	12957	12957	497	1193	12261	345
Temperatura	°C	212,83	212,83	93,40	164,50	187,32	187,32		156,56	136,99	78,13
Presión	bar	8,20	3,53	1,39	2,00		3,20		1,10	1,00	0,40
Tolueno	kmol/h	1141,00	1141,00	1141,00	0,06	0,06	0,06	-	-	0,06	0,02
Metanol	kmol/h	0,00	0,00	0,00	-	-	-	-	-	-	-
P-xileno	kmol/h	117,50	117,50	117,50	117,50	117,50	117,50	-	3,49	114,01	2,13
O-xileno	kmol/h	2,25	2,25	2,25	2,25	2,25	2,25	-	1,92	0,33	-
M-xileno	kmol/h	2,25	2,25	2,25	2,25	2,25	2,25	-	-	-	-
Benceno	kmol/h	0,34	0,34	0,34	-	-	-	-	-	1,50	1,49
Hidrocarburos ligeros	kmol/h	-	-	-	-	-	-	-	-	-	-
Agua	kmol/h	-	-	-	-	-	-	-	-	-	-
Nitrógeno	kmol/h	-	-	-	-	-	-	-	-	-	-
твв	kmol/h	-	-	-	-	-	-	0,96	0,15	-	-
DTBB	kmol/h	-	-	-	-	-	-	1,92	1,21	-	-
ТВМХ	kmol/h	-	-	-	-	-	-	-	2,92	-	-

Tabla 7.3. Balances de materia y energía corrientes 21-30

Corriente		31	32	33	34	35	36	37	38	39	40
Caudal molar	kmol/h	112,3	104,4	1141,4	1141,4	1297,3	374,8	374,8	10,1	155,9	208,8
Caudal másico	kg/h	11916	11087	105160	105160	110040	9440	9440	197	4880	4362
Temperatura	°C	113,94	25,00	93,30	93,30	91,41	49,00	49,00	70,87	70,87	145,09
Presión	bar	0,50	0,50	1,25	3,10	3,10	1,25	10,50	4,00	4,00	4,20
Tolueno	kmol/h	0,04	0,03	1141,00	1141,00	1141,00	5,79	5,79	-	0,00	5,79
Metanol	kmol/h	-	-	0,00	0,00	147,70	156,10	156,10	-	147,70	8,40
P-xileno	kmol/h	111,88	104,07	0,01	0,01	0,01	0,59	0,59	-	-	0,59
O-xileno	kmol/h	0,33	0,32	-	-	-	0,01	0,01	-	-	0,01
M-xileno	kmol/h	-	-	-	-	-	0,01	0,01	-	-	0,01
Benceno	kmol/h	0,01	0,01	0,34	0,34	0,34	0,06	0,06	-	-	0,06
Hidrocarburos ligeros	kmol/h	-	-	-	-	-	6,79	6,79	6,79	-	-
Agua	kmol/h	-	-	-	-	8,20	202,10	202,10	-	8,20	193,90
Nitrógeno	kmol/h	-	-	-	-	-	3,34	3,34	3,34	-	-
твв	kmol/h	-	-	-	-	-	-	-	-	-	-
DTBB	kmol/h	-	-	-	-	-	-	-	-	-	-
ТВМХ	kmol/h	-	-	-	-	-	-	-	-	-	-

Tabla 7.4. Balances de materia y energía corrientes 31-40

Corriente		41	42	43	44	45
Caudal molar	kmol/h	208,8	2683,4	268,3	2414,8	2414,8
Caudal másico	kg/h	4362	10481	1048	9434	9434
Temperatura	°C	25,00	50,00	50,00	50,00	287,60
Presión	bar	4,20	1,25	1,25	1,25	3,05
Tolueno	kmol/h	5,79	8,16	0,82	7,35	7,35
Metanol	kmol/h	8,40	8,60	0,86	7,74	7,74
P-xileno	kmol/h	0,59	0,32	0,03	0,29	0,29
O-xileno	kmol/h	0,01	0,01	0,00	0,01	0,01
M-xileno	kmol/h	0,01	0,01	0,00	0,01	0,01
Benceno	kmol/h	0,06	0,24	0,02	0,21	0,21
Hidrocarburos ligeros	kmol/h	0,00	151,50	15,15	136,40	136,40
Agua	kmol/h	193,90	7,59	0,76	6,83	6,83
Nitrógeno	kmol/h	-	2507,00	250,70	2256,00	2256,00
твв	kmol/h	-	-	-	-	-
DTBB	kmol/h	-	-	-	-	-
ТВМХ	kmol/h	-	-	-	-	-

Tabla 7.5. Balances de materia y energía corrientes 41-46

8 BIBLIOGRAFÍA

[1] Kirk Othmer, *Enciclopedia de Tecnología Química: Volumen 16. Primera edición*. Interscience publishers. 1961.

[2] Kirk Othmer, Encyclopedia of Chemical Tecnology: Volume 24 (2007).

[3] T. Dursch et al, Toluene methylation to para-xylene (2009). Senior Design Reporst (CBE). 7.

[5] Kirk Othmer, *Enciclopedia de Tecnología Química: Volumen 3. Primera edición.* Interscience publishers. 1961.

[6] Diego Fernández Escribano, técnico de CEPSA (Refinería Gibraltar-San Roque). *Apuntes de tecnología de combustibles. Tema: Aromáticos.*

[7] C. Perego and P. Pollesel, *Advances in Nanoporous Materials: Advances in Aromatics Processing Using Zeolite Catalysts.* Volume 1. 2010. Pages 97-149.

[8] T. Iwamura et al. Disproportionation of Toluene (January 12, 1971).

[9] J. Valverde, *Alquilación de tolueno con metanol mediante catalizadores de zeolita ZSM-5 modificados.* Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Departamento de Ingeniería Química. Junio 1991.

[10] J. Hyung-Joon, *Investigation into the reaction of toluene methylation to p-xylene over acidic zeolites*. 2013. Tecnhnische Universität München.4.

[11] Oferta y demanda de paraxileno en el mundo, fibre2fashion.com <u>http://www.fibre2fashion.com/industry-article/7710/paraxylene-market-outlook-2015</u>

[12] Mercado de p-xileno: https://www.grandviewresearch.com/press-release/global-paraxylene-market

[13] Boletín informativo del Instituto Petroquímco Argentino (IPA). Nro. 83 (2016).

[14] Demanda de poliéster:

http://www.marketresearchstore.com/content/uploadedimages/Global_Polyester_Fiber-_Market.jpg

[15] Demanda de PET: <u>http://www.transparencymarketresearch.com/images/global-pet-volumes-and-revenue.PNG</u>

[16] Mercado de paraxileno: <u>http://www.micromarketmonitor.com/market/europe-para-xylenes-3058164065.html</u>

[17] Boletín Oficial del Estado. Núm. 92. Sec. III. Pág. 30442. Martes 18 de abril de 2017. Ministerio de agricultura y pesca, alimentación y medio ambiente.

[18] Informe de gestión consolidado de REPSOL (2011).

[19] M. Tahir Ashraf et al, *Process of p-xylene production by highly selective methylation of toluene. Ind. Chem. Res.* 2013, 52 (38), pp 13730-13737.

[20] J. Das et al, *Kinetics of toluene methylation oversilica modified HZSM-5 zeolites. Indian Journal of chemical Technology. Vol. 9. July 2002. pp 334-340.*

[21] M.E. Guervós Sánchez, Principales técnicas de almacenamiento de hidrógeno. (15 de marzo de 2003).

[22] X. Li et al. *Experimental investigation and thermodynamic modeling of an innovative molten salt for termal energy storage (TES)*. (2017).

[23] Stanley M. Walas, Chemical Process Equipment Selection and Design. Butterworth-Heinemann .1990

[24] Refrigerantes http://www.indubel.com.ar/pdf/gases/refrigerantes.pdf

[25] S. Saito et al. *Separation of meta- and para-xylene miture by distillation accompained by chemical reations. J. Chem. Eng. Jpn.* Vol 4, pp 37-43 (1971).

[26] Guía de productos. Fluidos de transferencia de calor dowtherm, syltherm, dowfrost y dowcal.

[27] Esmeralda Portillo. Tema 4 Ingeniería de procesos: Diagramas de procesos.

[28] Çengel Y.A, Boles M-A. Termodinámica. McGraw-Hill, 2009.

[29] Coulson & Richardson's. Chemical Engineering Desing. Volume 6. Fourth edition. R.K. Sinnott (2005).

[30] David Velázquez y Rocio González. Tablas y gráficos de tecnologís energética.

[31] David Velázquez. Tema 1 Tecnología energética: Cambiadores de calor.

[32] Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT). Fichas Internacionales de Seguridad Química: Tolueno. ICSC: 0078 (Octubre 2002).

[33] Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT). Fichas Internacionales de Seguridad Química: Metanol. ICSC: 0057 (Abril 2000).

[34] ROTH. Ficha de datos de seguridad: p-xileno. Artículo número 8817 (Julio 2016).

[35] D.H Olson, W.O. Haag, R.M. Lago. Chemical and physical properties of the ZSM-5 substitutional series. Journal of catalysis. Volume 61, Issue 2, February 1980, Pages 390-396.

[36] A. Narváez-García et al. Método corto para la destilación discontinua multicomponente considerando una política de reflujo variable. Revista Mexicana de Ingeniería Química. Vol. 12. No. 3 (2013) 621-637.

[37] Esmeralda Portillo. Tema 9 Ingeniería de procesos: Análisis económico de procesos químicos.

[38] Correlaciones de BOEHM: intercambiadores de calor.