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Summary 

The following document contains the development of a guidance and control system for small fixed-wing 

aircraft. The flight controller developed is based on the one mentioned in ( [1] R. W. Beard and T. W. McLain, 

Small unmanned aircraft: theory and practice, Princeton University Press, 2012. ) and, once finished, its 

functionality is tested in a simulation. A mathematical model of a well known and parameterized aircraft is 

developed for the simulation. The model includes equations for kinematic, dynamic, force and moment 

behaviour. The parameters of the autopilot controlling the aircraft are first tuned with linear models and then 

with the complete mathematical model. Finally, the entire system is tested in a virtual environment simulated 

in Matlab. 
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Abstract 

Unmanned aerial systems (UAS) are playing increasingly prominent roles in defense programs and defense 

strategy around the world. And although civil and commercial applications are not as well developed, potential 

applications are extremely broad in scope, including environmental monitoring, border patrol, aerial 

surveillance and mapping, traffic monitoring, precision agriculture, disaster relief, ad hoc communications 

networks, and rural search and rescue. For many of these applications to develop to maturity, the reliability of 

UAS needs to increase, their capabilities extended further, their ease of use needs to be improved, and their 

cost must decrease [1]. 

For operation, UAS use a combination of hardware and software to control the aircraft during all phases of 

flight without the assistance of a pilot. This is called a flight controller. A flight controller for fixed-wing 

aircraft is developed in this document. Afterwards, a simulation is carried out to demonstrate its operation. 

The developed flight controller must be able to control an aircraft so that it flights through a series of GPS 

positions. For the simulation, a photogrammetric session has been chosen because it includes takeoff and 

landing maneuvers and a flight with specific requirements. A photogrammetric session makes it easy to check 

that the autopilot is capable of fulfilling certain specifications, as it must be able to guide de aircraft so as to fly 

over the area to be photographed in a precise way. 

This document follows a quick and practical approach to coordinate transformations, aerodynamics, autopilot 

design, state estimation and path planning without going into too much detail on these topics. The aim is, 

therefore, to slightly cover these wide range of topics, focusing in particular on their application to small fixed-

wing vehicles. 

To achieve greater cohesion, this document has been divided into two distinct parts: Guidance and Control 

and Simulation. In turn, each part is structured in: Introduction, Development, Results and Conclusions and 

Improvements. 
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Notation 

ϕ Roll angle 

θ Pitch angle 

ψ Yaw angle 

α Angle of attack 

β Sideslip angle 
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1. GUIDANCE AND CONTROL 

 

 

 

 

 

 

1.1 Introduction to Guidance and Control 

A guidance and control system must be able to determine the actuation on the control surfaces of an aircraft to 

navigate effectively through a series of waypoints. To achieve this, it must be first determined the path the 

aircraft must follow to get from one waypoint to another. Altitude, speed and course of the vehicle must then 

be determined for the next iteration of the autopilot. The result of all the above operations must be the set of 

actions to be applied to the actuators of the control surfaces. 

1.2 System Architecture 

To carry out the operations mentioned in the introduction, the system uses a series of modules that delimit the 

set of these operations. The system is therefore composed of the path manager, the path following and the 

autopilot blocks. As shown in Fig. 1, the path manager is responsible for defining the trajectories that the 

vehicle must follow, while the path following is in charge of determining the altitude, airspeed and heading. 

Finally, the autopilot calculates the required actions on the control surfaces. 

 

aircraft (simulation) 

path manager 

path following 

autopilot 

altitude, 
airspeed, 

heading 

path definition 

waypoints 

commands 

tracking error 

position error 

Fig. 1 System architecture and aircraft 
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Described below are the equations that govern the different blocks of the system. Later on, a common method 

is described to tune the parameters of the autopilot and the results obtained from isolated tests with it are 

provided. 

1.3 Path Manager 

The aim of this section is to describe a very simple strategy that combines straight-line and orbital paths to 

make transitions between consecutive waypoints. The result of the algorithm shown in this section can be 

described as the definition of the path the aircraft must follow from takeoff to landing through all waypoints. 

1.3.1 Transitions between waypoints 

Straight-line and orbit guidance strategies can be used to follow a series of waypoints. Define a waypoint path 

as an ordered sequence of waypoints 

𝒲 = {𝒘1, 𝒘2, … ,𝒘𝑁}, 

where 𝒘𝑖 = (𝑤𝑛,𝑖, 𝑤𝑒,𝑖, 𝑤𝑑,𝑖)
𝑇 ∈ ℝ3. 

 

Consider the following scenario: 

When the vehicle reaches 𝒘𝑖 it is desired to switch the guidance algorithm so that it will track the straight line 

segment 𝒘𝑖𝒘𝑖+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Naturally, there are many ways in wich this behaviour can be accomplished. The first that 

come to our minds would probably be to design the algorithm so that it switches when the vehicle enters a ball 

around 𝒘𝑖. The problem with small aerial vehicles is that wind can easily push the vehicle off course, thus 

forcing the vehicle to try and turn repeatedly until it reaches the ball. 

A suitable alternative, one that is not sensitive to tracking error, is to use a half-plane switching criteria. Given 

a point 𝒓 ∈ ℝ3 and a normal vector, define the half plane ℋ(𝒓, 𝒏) ≜ {𝒑 ∈ ℝ3: (𝒑 − 𝒓)𝑇𝒏 ≥ 0}. 

Fig. 2 Sequence of waypoints 
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The aircraft tracks the straight-line path from 𝒘𝑖−1 to 𝒘𝑖 until it enters ℋ(𝒘𝒊, 𝒏𝒊), at which point it will track 

the straight-line path from 𝒘𝑖 to 𝒘𝑖+1. The paths, however, provide neither a smooth nor balanced transition 

between the straight-line segments. An alternative is to smoothly transition between waypoints by inserting a 

fillet. 

To put into practice the fillet maneuver, we will follow the straight-line segment 𝒘𝑖−1𝒘𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅  until entering the half 

plane ℋ1. The right-handed orbit of radius 𝑅 is then followed until entering the half plane ℋ2, at which point 

the stright-line segment 𝒘𝑖𝒘𝑖+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is followed. 

  

Fig. 4 Fillet smoothed transition 

Fig. 3 Half-plane switching criteria 
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The angle between waypoints 𝒘𝑖−1𝒘𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝒘𝑖𝒘𝑖+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is given by 

𝜚 = cos−1(−𝒒𝑖−1
𝑇 𝒒𝑖) 

whereas the center of the fillet is 

𝒄 = 𝒘𝑖 −
𝑅

sin
𝜚
2

𝒒𝑖−1 − 𝒒𝑖
‖𝒒𝑖−1 − 𝒒𝑖‖

 

The half plane ℋ1 is defined by the location 

𝒓1 = 𝒘𝑖 −
𝑅

tan
𝜚
2

𝒒𝑖−1 

and the normal vector 

𝒒𝑖−1 =
𝒘𝑖 −𝒘𝑖−1
‖𝒘𝑖 −𝒘𝑖−1‖

 

Similarly, he half plane ℋ2 is defined by 

𝒓2 = 𝒘𝑖 +
𝑅

tan
𝜚
2

𝒒𝑖 

𝒒𝑖 =
𝒘𝑖+1 −𝒘𝑖
‖𝒘𝑖+1 −𝒘𝑖‖

 

1.4 Path Following 

The aim of this section is to develop guidance laws for tracking straight-line segments and constant-altitude 

circular orbits. Therefore, algorithms for the path following block are described below. 

The first approach to solve the following problem that comes to our minds could be to track a moving point. 

But this can result in significant problems for small aircrafts if disturbances, such as those due to wind, are not 

properly accounted for (wich is an unpractical task). If the vehicle is flying into a strong wind, the progression 

of the trajectory point must be slowed accordingly. Similarly, if it is flying downwind, the speed of the 

tracking point must be increased to keep it from overrunning the desired position. 

Rather than using a trajectory tracking approach, the objective here is to be on the path rather than at a certain 

point at a particular time. With path following, the time dependence of the problem is removed. 

The method described below is very simple and therefore has some limitations in terms of manoeuvres such as 

ascent or descent. As the method describes a straight line between two points to generate the trajectory, the 

attitude of the aircraft, as well as the speed on orbital trajectories, is very limited. The changes that have been 

added to this core algorithm are found in the corresponding part of the annex. 

1.4.1 Straight-line Path Following 

A straight-line path is described by two vectors in ℝ3, namely  

𝑃𝑙𝑖𝑛𝑒(𝒓, 𝒒) = {𝒙 ∈ ℝ
3: 𝒙 = 𝒓 + 𝜆𝒒, 𝜆 ∈ ℝ}, 

where ℝ3 is the origin of the path, and 𝑞 ∈ ℝ3 is a unit vector whose direction indicates the desired direction 

of travel. The course angle of 𝑃𝑙𝑖𝑛𝑒(𝒓, 𝒒), as measured from north is given by 

𝑋𝑞 ≜ tan
−1 𝑞𝑒

𝑞𝑛
 

where 𝒒 = (𝑞𝑛 𝑞𝑒 𝑞𝑑)
𝑇 expresses the north, east, and down components of the unit direction vector. The 

path-following problem is most easily solved in a frame relative to the straight-line path. Selecting r as the 

center of the path frame, with the x-axis aligned with the projection of q onto the local north-east plane, the z-

axis aligned with the inertial z-axis, and the y-axis selected to create a right-handed coordinate system, then 
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𝑅𝑖
𝑃 ≜ (

cos𝑋𝑞 sin𝑋𝑞 0

−sin𝑋𝑞 cos𝑋𝑞 0

0 0 1

) 

is the transformation from the inertial frame to the path frame, and 

𝒆𝑝 = (

𝑒𝑝𝑥
𝑒𝑝𝑦
𝑒𝑝𝑧

) ≜ 𝑅𝑖
𝑃(𝒑𝑖 − 𝒓𝑖) 

is the relative path error expressed in the path frame. The lateral straight-line path following problem is to 

select 𝑋𝑐 so that 𝑒𝑝𝑦 → 0 asymptotically when 𝑋𝑞 is known. 

 

 

The strategy will be to construct a desired course angle vector field that results in the vehicle moving toward 

the path so when 𝑒𝑝𝑦 is large, the aircraft is directed to approach the path with course angle 𝑋∞ ∈ (0,
𝜋

2
], and 

so that as 𝑒𝑝𝑦 approaches zero, the desired course also approaches zero. The command for lateral path 

following is given by 

𝑋𝑐(𝑡) = 𝑋𝑞 − 𝑋
∞
2

𝜋
tan−1 (𝑘𝑝𝑎𝑡ℎ𝑒𝑝𝑦(𝑡)) 

where 𝑘𝑝𝑎𝑡ℎ is a positive constant that influences the rate of the transition from 𝑋∞ to zero. Large values of 

𝑘𝑝𝑎𝑡ℎ yield abrupt transitions from 𝑋∞ to zero, while small ones give smooth transitions. 

To calculate the desired altitude, it is necessary to project the relative path error vector onto the vertical plane 

containing the path direction vector q. The projection s of the relative error vector is defined as 

𝒔𝑖 = (

𝑠𝑛
𝑠𝑒
𝑠𝑑
) = 𝒆𝑝

𝑖 − (𝒆𝑝
𝑖 · 𝒏)𝒏 

where 

north 

east 

Fig. 5 North-east straigh-line path problem projection 
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𝒆𝑝
𝑖 = (

𝑒𝑝𝑛
𝑒𝑝𝑒
𝑒𝑝𝑑

) ≜ 𝒑𝑖 − 𝒓𝑖 = (

𝑝𝑛 − 𝑟𝑛
𝑝𝑒 − 𝑟𝑒
𝑝𝑑 − 𝑟𝑑

) 

and the unit vector normal to the 𝒒 − 𝒌𝑖 plane is calculated as 

𝒏 =
𝒒 × 𝒌𝑖

‖𝒒 × 𝒌𝑖‖
 

The desired altitude for an aircraft at p following the straight-line path is given by 

ℎ𝑑(𝒓, 𝒑, 𝒒) = −𝑟𝑑 +√𝑠𝑛
2 + 𝑠𝑒

2 (
𝑞𝑑

√𝑞𝑛
2 + 𝑞𝑒

2
) 

The longitudinal straight-line path following problem is to select ℎ𝑐 so that ℎ → ℎ𝑑(𝒓, 𝒑, 𝒒), which results in 

zero steady-state error in altitude for straight-line paths. 

 

1.4.2 Orbit Following 

An orbit path is described by a center 𝒄 ∈ ℝ3, a radius 𝜌 ∈ ℝ, and a direction 𝜆 ∈ {−1, 1}, as 

𝑃𝑜𝑟𝑏𝑖𝑡(𝒄, 𝜌, 𝜆) = {𝒓 ∈ ℝ
3: 𝒓 = 𝒄 + 𝜆𝜌(cos𝜑 , sin𝜑 , 0)𝑇 , 𝜑 𝜖 [0, 2𝜋)} 

where 𝜆 = 1 signifies a clockwise orbit and 𝜆 = −1 a counterclockwise one. The center of the orbit is 

expressed in inertial coordinates so that 𝒄 = (𝑐𝑛, 𝑐𝑒 , 𝑐𝑑)
𝑇, where −𝑐𝑑 represents the desired altitude of the 

orbit and to maintain altitude we let ℎ𝑐 = −𝑐𝑑. 

Fig. 6 q-ki plane path problem projection 
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Similarly to the straight-line path following problem, the strategy is to construct a desired course field that 

moves the aircraft onto the orbit 𝑃𝑜𝑟𝑏𝑖𝑡(𝒄, 𝜌, 𝜆). When the distance between the vehicle and the center of the 

orbit is large, it is desirable for the vehicle to fly toward the orbit center. 

The course command for orbit following is given by 

𝑋𝑐(𝑡) = 𝜑 + 𝜆 [
𝜋

2
+ tan−1 (𝑘𝑜𝑟𝑏𝑖𝑡 (

𝑑 − 𝜌

𝜌
))] 

where 𝑑 is the radial distance from the desired center of the orbit to the vehicle, 𝜑 = tan−1(𝑝𝑒 − 𝑐𝑒 , 𝑝𝑛 − 𝑐𝑛) 
is the phase angle of the relative position as shown in Fig. 7 and 𝑘𝑜𝑟𝑏𝑖𝑡 > 0 is a constant that specifies the rate 

of transition from 
𝜆𝜋

2
 to zero. 

1.5 Autopilot 

An autopilot is a system used to guide an aircraft without the assistance of a pilot. For UAVs, the autopilot is 

in complete control of the aircraft during all phases of flight and, while some control functions may reside in 

the ground control station, the autopilot portion of the UAV control system resides on board the vehicle. 

Fig. 7 Top-down view of the orbital path problem 
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1.6  Autopilot Design Using Succesive Loop Closure 

The primary goal in autopilot design is to control the inertial position (pn, pe, h) and attitude (∅, θ, ψ) of the 

aircraft. It is assumed that the longitudinal dynamics are decoupled from the lateral dynamics, wich for most 

flight maneuvers of interest yields good performance. This simplifies the development of the autopilot 

significantly and allows to utilize a technique commonly used for autopilot design called successive loop 

closure. 

The basic idea behind successive loop closure is to close several simple feedback loops in succession rather 

than designing a single (presumably more complicated) control system. A necessary condition in the design 

process is that the inner loop has the highest bandwidth (bandwidth been the band of frequencies to which the 

system responds satisfactorily) –without violating the saturation constraints-, so if the frequency of the 

reference signal is within bandwidth, then the ouput will be able to track it; else, tracking will be very slow. 

Fig. 8 Autopilot PID equations for the control surfaces 

Ailerons → 𝛿𝑎 = 𝑘𝑝∅(𝜙
𝑐 − 𝜙) − 𝑘𝑑𝜙𝑝 

Roll → 𝜙𝑐 = 𝑘𝑝𝜒(𝜒
𝑐 − 𝜒) +

𝑘𝑖𝜒

𝑠
(𝜒𝑐 − 𝜒) 

Pitch (𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ℎ𝑜𝑙𝑑) → 𝜃𝑐 = 𝑘𝑝ℎ(ℎ
𝑐 − ℎ) +

𝑘𝑖ℎ
𝑠
(ℎ𝑐 − ℎ) 

Pitch (𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 ℎ𝑜𝑙𝑑) → 𝜃𝑐 = 𝑘𝑝𝑉2(𝑉𝑎
𝑐 − 𝑉𝑎) +

𝑘𝑖𝑉2
𝑠
(𝑉𝑎
𝑐 − 𝑉𝑎) 

 

Rudder → 𝛿𝑟 = −𝑘𝑝𝛽𝛽 −
𝑘𝑖𝛽

𝑠
𝛽 

Elevator → 𝛿𝑒 = 𝑘𝑝𝜃(𝜃
𝑐 − 𝜃) − 𝑘𝑑𝜃𝑞 

Throttle → 𝛿𝑡 = 𝛿𝑡
∗ + 𝑘𝑝𝑉(𝑉𝑎

𝑐 − 𝑉𝑎) +
𝑘𝑖𝑉
𝑠
(𝑉𝑎
𝑐 − 𝑉𝑎) 



  

9 

 

9 Guidance and Control of a Fixed Wing Aircraft 

 
The key assumption made is that for frequencies well below the bandwidth of the inner loop, the closed loop 

transfer function can be modeled as a gain of 1. With the inner-loop transfer function modeled as a gain of 1, 

design of the second loop is simplified because it includes only the plant transfer function and the 

compensator. The critical step in closing the loops successively is to design the bandwidth of the next loop so 

that it is a factor of 5 to 10 times smaller in frequency, thus ensuring that the unity gain assumption on the 

inner loop is not violated over the range of frequencies that the middle loop operates. 

Since the longitudinal and lateral dynamics are decoupled, the autopilot design will be divided into lateral 

autopilot and longitudinal autopilot. 

1.6.1 Lateral Autopilot 

The lateral autopilot includes roll-attitude hold as an inner loop and course-angle hold as an outer loop. 

 

1.6.1.1 Roll Loop Equations 

The inner loop of the lateral autopilot is used to control roll angle and roll rate. Here is a systematic method for 

selecting the control gains based on the desired response of closed-loop dynamics: 

Given the transfer function from 𝜙𝑐 to 𝜙 

𝐻𝜙/𝜙𝑐 =
𝑎𝜙2𝑘𝑝𝜙

𝑠2 + (𝑎𝜙1 + 𝑎𝜙2𝑘𝑑𝜙) 𝑠 + 𝑎𝜙2𝑘𝑝𝜙

 

and since the DC gain of a system is the gain at the steady state (with t tending to infinity or s tending to zero), 

it can be noted that the DC gain is equal to 1. 

If the desired response is given by a canonical second-order transfer function and the proportional gain is 

selected so that the ailerons saturate when the roll error is 𝑒𝜙
𝑚𝑎𝑥 (being a design parameter), we get 

𝑘𝑝𝜙 =
𝛿𝑎
𝑚𝑎𝑥

𝑒𝜙
𝑚𝑎𝑥 𝑠𝑖𝑔𝑛(𝑎𝜙2) 

The natural frequency of the roll loop is therefore given by 

𝜔𝑛𝜙 = √|𝑎𝜙2|
𝛿𝑎
𝑚𝑎𝑥

𝑒𝜙
𝑚𝑎𝑥   

and finally 

Fig. 9 Autopilot for lateral control using successive loop closure 
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𝑘𝑑𝜙 =
2𝜁𝜙𝜔𝑛𝜙 − 𝑎𝜙1

𝑎𝜙2
 

where the damping ratio 𝜁∅ is a design parameter. 

It must be noted that the open-loop transfer function in the figure below, is a type one system which implies 

that zero steady-state tracking error in roll should be achievable without an integer. 

 

Although in the process of creating the linear, reduced-order model of the roll dynamics, some terms were 

neglected –being seen now as disturbances-, I am not using any until the course loop and only to correct for 

steady state values. Integrators are known to add delays and instability and thus, are not very convenient on 

inner loops. 

 

The output of the roll attitude hold loop is 

𝛿𝑎 = 𝑘𝑝∅(𝜙
𝑐 − 𝜙) − 𝑘𝑑𝜙𝑝 

1.6.1.2 Course Hold Loop Equations 

If the the roll loop has been adequately tuned, then the DC gain is 1 over the range of frequencies from 0 to 

𝜔𝑛𝜙. Under this condition, the resulting block diagram for the course hold can be simplified to the block 

below for the purposes of designing the outer loop. 

 

 

Fig. 10 Roll attitude hold control loops 

Fig. 11 Course hold outer feedback loop 
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The objective of the course hold design is to select 𝑘𝑝𝜒 and 𝑘𝑖𝜒 so that the course 𝜒 asymptotically tracks steps 

in the commanded course 𝜒𝑐. From the simplified block diagram, the transfer functions from the inputs 𝜒𝑐 and 

𝑑𝜒 to the output are given by 

𝜒 = (
𝑔 𝑉𝑔𝑠⁄

𝑠2 + 𝑘𝑝𝜒 𝑔 𝑉𝑔𝑠⁄ + 𝑘𝑖𝜒 𝑔 𝑉𝑔⁄
)𝑑𝜒 + (

𝑘𝑝𝜒 𝑔 𝑉𝑔𝑠⁄ + 𝑘𝑖𝜒 𝑔 𝑉𝑔⁄

𝑠2 + 𝑘𝑝𝜒 𝑔 𝑉𝑔𝑠⁄ + 𝑘𝑖𝜒 𝑔 𝑉𝑔⁄
)𝜒𝑐 

It must be noted that, if 𝑑𝜒 and 𝜒𝑐  are constants, then the final value theorem lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0

𝑠𝑋(𝑠) implies 

that 𝑋 → 𝑋𝑐. The transfer function from 𝜒𝑐 to 𝜒 has the form 

𝐻𝑋/𝑋𝑐 =
2𝜁𝑥𝜔𝑛𝑥𝑠 + 𝜔𝑛𝑥

2

𝑠2 + 2𝜁𝑥𝜔𝑛𝑥𝑠 + 𝜔𝑛𝑥
2  

As with the inner feedback loops, we can choose the natural frequency and damping of the outer loop and 

from those values calculate the feedback gains 𝑘𝑝𝑥 and 𝑘𝑖𝑥. Note that because of the numerator zero, the 

standard intuition for the selection of 𝜁𝑥 does not hold for this transfer function. Larger 𝜁𝑥 results in larger 

bandwidth and smaller overshoot. 

Comparing coefficients in the equations above, we find 

𝑘𝑝𝑥 =
2𝜁𝑥𝜔𝑛𝑥𝑉𝑔

𝑔
 

𝑘𝑖𝑥 =
𝜔𝑛𝑥
2 𝑉𝑔

𝑔
 

To ensure proper function of this successive-loop-closure design, it is essential that there be sufficient 

bandwidth separation between the inner an outer feedback loops. Adequate separation can be achieved by 

letting 

𝜔𝑛𝑥 =
𝜔𝑛𝜙
𝑊𝑥

 

where 𝑊𝑥 the separation is a design parameter, as said beforehand, usually chosen to be between 5 and 10. 

Generally, more bandwidth separation is better but requires either slower response in the 𝜒 loop (lower 𝜔𝑛𝑥), 

or faster response in the 𝜙 loop (higher 𝜔𝑛𝜙). Faster response usually comes at the cost of requiring more 

actuator control authority, which may not be possible given the pysical constraints of the actuators. 

 

The output of the course hold loop is 

𝜙𝑐 = 𝑘𝑝𝜒(𝜒
𝑐 − 𝜒) +

𝑘𝑖𝜒
𝑠
(𝜒𝑐 − 𝜒) 

1.6.1.3 Sideslip Hold Loop Equations 

If the aircraft is equipped with a rudder, the rudder can be used to maintain zero sideslip angle. The sideslip 

hold loop is shown in the figure below, and the transfer function 𝛽𝑐 from to 𝛽 is given by 

𝐻𝛽/𝛽𝑐 = (
𝑎𝛽2𝑘𝑝𝛽𝑠 + 𝑎𝛽2𝑘𝑖𝛽

𝑠2 + (𝑎𝛽1 + 𝑎𝛽2𝑘𝑝𝛽) 𝑠 + 𝑎𝛽2𝑘𝑖𝛽

) 
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Supossing that the maximum error in sideslip is given by 𝑒𝛽
𝑚𝑎𝑥 and that the maximum allowable rudder 

deflection is given by 𝛿𝑟
𝑚𝑎𝑥, we obtain 

𝑘𝑝𝛽 =
𝛿𝑟
𝑚𝑎𝑥

𝑒𝛽
𝑚𝑎𝑥 𝑠𝑖𝑔𝑛(𝑎𝛽2) 

And by choosing a value for 𝜁𝛽 to give the desired damping, we get 

𝑘𝑖𝛽 =
1

𝑎𝛽2
(
𝑎𝛽1 + 𝑎𝛽2𝑘𝑝𝛽

2𝜁𝛽
)

2

 

 

The output of the sideslip hold loop is 

𝛿𝑟 = −𝑘𝑝𝛽𝛽 −
𝑘𝑖𝛽
𝑠
𝛽 

 

 

1.6.1.4 Control Gains Tuning using Matlab 

For the design of the control loops it must be taken into account both the physical capabilities of the actuators 

and the inertial properties of the vehicle, including the structural integrity of the aircraft. 

For the design of the experiments, it is also very important to take into account how the system will behave in 

the different situations to which we subject it. Therefore, we must take a pragmatical approach when deciding 

the inputs for the control loops, as well as when analyzing the responses of the magnitudes of which we have 

intuitive physical awareness, which I reckon can be very puzzling if we do not have an aeronautical based 

education but, nonetheless, can be overcomed with a reasonable research in the field. 

I must say that analyzing results from existing experiments showing cinematic and dynamic behaviour on 

aircrafts provide with the sense of aeronautical intuition that is needed to be able to comprehend the physical 

capabilities of these stunning flying marvels. 

Some magnitudes relative to the dynamic behaviour of most aircraft can be seen in the table below. 

 

 

 

Fig. 12 Sideslip hold control loop 
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roll rate (p) 80 deg/s 

yaw rate (r) 50 deg/s 

heading 20 deg/s 

aileron deflection (each) ±30 degrees 

ruddervator deflection (as rudder) ±30 degrees 

Table 1 Common dynamic behaviour of MAVS [2], [3] and [4] 

 

There are seven gains associated with the lateral autopilot. The derivative gain 𝑘𝑑𝜙 provides roll rate damping 

for the innermost loop. The roll attitude is regulated with the proportional gain 𝑘𝑝𝜙. The course angle is 

regulated with the proportional and integral gains 𝑘𝑝𝑥 and 𝑘𝑖𝑥. The sideslip hold is governed with the 

proportional and integral gains 𝑘𝑝𝛽 and 𝑘𝑖𝛽. The idea with successive loop closure is that the gains are 

successively chosen beginning with the inner loop and working outward. In particular, 𝑘𝑑𝜙 and 𝑘𝑝𝜙 are 

selected first, and finally 𝑘𝑝𝑥 and 𝑘𝑖𝑥. The gains 𝑘𝑝𝛽 and 𝑘𝑖𝛽 are selected indepently. 

To select 𝑘𝑑𝜙 and 𝑘𝑝𝜙 it has been taken into account the physical limitations of the ailerons and the cinematic 

and dynamic behaviour of the aircraft. 

After a thorough study of the dynamics I’ve found out that the behaviour of some of the system loops differs 

greatly from the one outside the simulation if only the method of comparison with second-order systems is 

used for the design of the gains. Therefore, I’ve decided to select some of the gains by carefully analyzing the 

system with respect to the data available from existing aircrafts. 

1.6.1.4.1 Roll Loop Design 

 

 

 

Fig. 13 Commanded roll angle and roll response [deg] 
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The roll loop design has been conducted commanding a banking angle of 15º. It can be seen that the roll rate 

keeps between common values. Also, the ailerons command does not exceeds its physical limitations (60º). 

Since most of the aircraft’s weight is located on the belly and the ailerons are so far off the wings, it is typical 

for the bank response to be the fastest actuation on the aircraft. Since the ailerons actuation refers to the angle 

difference between both the ailerons, the command for each of them results in a deflection half the value 

shown. For a faster behaviour, the roll action must be under-damped, which results in overshoot; one degree 

and a half is ridiculously small, though, so the behaviour is perfectly fine. As soon as the desired roll is 

achieved, the ailerons go back to zero deflection. 

 

Fig. 15 Ailerons actuation [deg] 

Fig. 15 Roll rate [deg/s] 
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1.6.1.4.2 Course Hold 

 

  

Fig. 16 Roll rotation example 

Fig. 17 Commanded course angle and course response [deg] 



  

13 

 

13 Guidance and Control of a Fixed Wing Aircraft 

 

 

For the course hold design it has been comanded a 10 degrees clockwise turn. There’s a big difference in speed 

with respect to the roll response because the course hold loop has to allow the inner one (the roll loop) to reach 

the desired command. Here, the rise time is also consistent with a typical heading rate. In the second figure it 

can be seen that the vehicle is commanded to place the belly so that the lateral component of the lift force 

pushes the aircraft to increase the heading angle and that, once the desired course is reached, the roll signal 

returns to 0. 

 

  

Fig. 18 Commanded roll [deg] 

Fig. 19 Disturbance in course angle and course response [deg] 
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If a gust of wind pushes the aircraft in such a way so that it drifts from course, say 5º, it can be seen that it 

takes more or less 4 seconds to correct course. But this is good because we don’t want the vehicle to sharp 

turn; as a consecuence, the aircraft will continue its path smoothly. From the seconde figure it is clear that the 

UAV shows its belly in the direction where the disturbance took place so that the lateral component of the lift 

force helps adjust the drifting. The aircraft will continue to counteract the disturbance by commanding a roll 

angle different than 0 until the disturbance dissappears. 

1.6.1.4.3 Sideslip Hold 

 

 

 

 

Fig. 20 Commanded roll [deg] 

Fig. 21 Disturbance and yaw angle response [deg] 
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One of the interesting advantages of the ruddervators is that the maximum total deflection exceeds the one of 

its t-tail counterpart which results in better maneuverability. If our vehicle ecounters a gust, it will likely 

change its attitude. If the yaw angle is affected 30º as a disturbance, the ruddervators will counteract the effect. 

Since the tail is located far off the center of gravity, its angular momentum will be quite strong and the aircraft 

will soon regain its attitude. Although it seems slow to react, it must be taken into account that the effect is 

very little, wich accounts for a faster damping of the disturbance. The rudder will continue acting upon the the 

effects of the disturbance until the last one disappears. 

 

 

  

Fig. 22 Rudder actuation [deg] 

Fig. 23 Heading angle example 
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𝒌𝒅𝝓 0,3 

𝒌𝒑𝝓 2,9 

𝒌𝒊𝝓  3,1 

𝒌𝒑𝒙 4,29 

𝒌𝒊𝒙  4,005 

𝒌𝒑𝜷 -2 

𝒌𝒊𝜷 -12,88 

Table 2 PID values obtained from the lateral controller design 

1.6.2 Longitudinal Autopilot 

The longitudinal autopilot is more complicated than his partner because airspeed plays a significant role in the 

longitudinal dynamics. The design objective will be to regulate airspeed and altitude using the throttle and the 

elevator as actuators. The method used depends on the altitude error and will be divided into the regimes 

shown below and implemented as a state machine. 

 

 

In the take-off zone, full throttle is commanded and pitch is regulated to a fixed angle using the elevator. The 

objective in the climb zone is to maximize the climb rate, full throttle is commanded and the airspeed is 

regulated using the pitch angle. If the airspeed increases above its nominal value, then the aircraft is caused to 

pitch up, which results in an increase in climb rate and a decrease in airspeed. Similarly, if the airspeed drops 

below the nominal value, the aircraft is pitched down, thereby increasing the airspeed but also decreasing the 

climb rate. Regulating the airspeed using pitch attitude effectively avoids stall conditions. After take-off the 

Descend zone 

Altitude hold zone 

Climb zone 

Take-off zone 

Fig. 24 Flight regimes for the longitudinal autopilot 
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aircraft is attempting to increase its airspeend and doing so by pitching down would drive the aircraft into the 

ground, that’s why we do not regulate airspeed with pitch attitude immediately after take-off. 

In the descend zone the throttle is commanded to zero. Again, stall conditions are avoided by regulating 

airspeed using the pitch angle, thus maximizing the descent rate at a given airspeed. In the altitude hold zone, 

the airspeed is regulated by adjusting the throttle and the altitude is regulated by commanding pitch. 

To implement the longitudinal autopilot, we need the following feedback loops: 

1.6.2.1 Pitch Attitude Hold Loop Equations 

The pitch attitude hold loop is similar to the roll attitude hold loop and a similar approach will be conducted. 

 

The transfer function from 𝜃𝑐 to 𝜃 is given by 

𝐻𝜃/𝜃𝑐 =
𝑎𝜃3𝑘𝑝𝜃

𝑠2 + (𝑎𝜃1 + 𝑎𝜃3𝑘𝑑𝜃)𝑠 + (𝑎𝜃2 + 𝑎𝜃3𝑘𝑝𝜃)
 

but contrary to the ones before, its DC gain is not equal to one. 

If the desired response is given by the canonical second-order transfer function and the proportional gain is set 

so to avoid saturation when the maximum input error is experienced, we get 

𝑘𝑝𝜃 =
𝛿𝑒
𝑚𝑎𝑥

𝑒𝜃
𝑚𝑎𝑥 𝑠𝑖𝑔𝑛(𝑎𝜃3) 

since 𝑘𝑝𝜃 and 𝑎𝜃3 need to be of the same sign to ensure stability. 

The bandwidth limit of the pitch loop can be calculated as 

𝜔𝑛𝜃 = √𝑎𝜃2 + |𝑎𝜃3|
𝛿𝑒
𝑚𝑎𝑥

𝑒𝜃
𝑚𝑎𝑥   

and finally 

𝑘𝑑𝜃 =
2𝜁𝜃𝜔𝑛𝜃 − 𝑎𝜃1

𝑎𝜃3
 

where the damping ratio 𝜁∅ is a design parameter. 

The DC gain of this inner-loop transfer function is given by 

𝐾𝜃𝐷𝐶 =
𝑎𝜃3𝑘𝑝𝜃

𝑎𝜃2 + 𝑎𝜃3𝑘𝑝𝜃
 

which for typical gain values is significantly less than one. The design of the outer loops will use this DC gain 

to represent the gain of the inner loop over itrs full badwidth. An integral feedback term could be employed to 

Fig. 25 Pitch attitude hold feedback loops 
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ensure unity DC gain on the inner loop. The addition of an integral term, however, can severely limit the 

bandwidth of the inner loop. For this reason, I am not using the integral control on th epitch loop. The actual 

pitch, though, will not  converge to the commanded pitch angle. This fact will be taken into account in the 

development of the outer loops. 

 

The output of the pitch attitude-hold loop is 

𝛿𝑒 = 𝑘𝑝𝜃(𝜃
𝑐 − 𝜃) − 𝑘𝑑𝜃𝑞 

1.6.2.2 Altitude Hold Using Commanded Pitch Loop Equations 

The altitude-hold autopilot utilizes a successive-loop-closure strategy with the pitch-attitude-hold autopilot as 

an inner loop, as shown in the figure below. 

 

 

Assuming that the pitch loop functions as designed and that 𝜃 ≈ 𝐾𝜃𝐷𝐶𝜃
𝑐, the altitude-hold loop using the 

commanded pitch can be approximated by the block diagram below. 

 

 

  

Fig. 26 Successive loop feedback structure for altitude-hold autopilot 

Fig. 27 Altitude-hold loop using the commanded pitch angle 
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In the Laplace domain: 

ℎ = (
𝑠

𝑠2 + 𝐾𝜃𝐷𝐶𝑉𝑎𝑘𝑝ℎ𝑠 + 𝐾𝜃𝐷𝐶𝑉𝑎𝑘𝑖ℎ
)𝑑ℎ +

(

 
𝐾𝜃𝐷𝐶𝑉𝑎𝑘𝑝ℎ (𝑠 +

𝑘𝑖ℎ
𝑘𝑝ℎ
)

𝑠2 + 𝐾𝜃𝐷𝐶𝑉𝑎𝑘𝑝ℎ𝑠 + 𝐾𝜃𝐷𝐶𝑉𝑎𝑘𝑖ℎ
)

 ℎ𝑐 

where it can be seen that the DC gain is 1 and constant disturbances are rejected. The closed-loop transfer 

funtion is again independent of aircraft parameters and is dependent only on the known airspeed. 

Similar to the course loop, let 

𝜔𝑛ℎ =
1

𝑊ℎ
𝜔𝑛𝜃 

where the bandwidth separation 𝑊ℎ is a design parameter that is usually between 5 and 15. If the desired 

response of the altitude-hold loop is given by the canonical second-order transfer function and the gains 𝑘𝑖ℎ 

and 𝑘𝑝ℎ should be chosen such that the bandwidth of the altitude-from-pitch loop is less than the bandwidth of 

the pitch-attitude-hold loop, then 

𝑘𝑖ℎ =
𝜔𝑛ℎ
2

𝐾𝜃𝐷𝐶
 

𝑘𝑝ℎ =
2𝜁ℎ𝜔𝑛ℎ
𝐾𝜃𝐷𝐶𝑉𝑎

 

The output of the altitude-hold-with-pitch loop is 

 

𝜃𝑐 = 𝑘𝑝ℎ(ℎ
𝑐 − ℎ) +

𝑘𝑖ℎ
𝑠
(ℎ𝑐 − ℎ) 

1.6.2.3 Airspeed Hold Using Commanded Pitch 

The dynamic model for airspeed using pitch angle is the following: 

 

  

Fig. 28 Airspeed regulation using the pitch angle 
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Where it can be seen that disturbance rejection requires a PI controller. In the Laplace domain, we have 

�̅�𝑎 = (
𝑠

𝑠2 + (𝑎𝑉1−𝐾𝜃𝐷𝐶𝑔𝑘𝑝𝑉2)𝑠 − 𝐾𝜃𝐷𝐶𝑔𝑘𝑖𝑉2
)𝑑𝑉 +

(

 
−𝐾𝜃𝐷𝐶𝑔𝑘𝑝𝑉2 (𝑠 +

𝑘𝑖𝑉2
𝑘𝑝𝑉2

)

𝑠2 + (𝑎𝑉1−𝐾𝜃𝐷𝐶𝑔𝑘𝑝𝑉2)𝑠 − 𝐾𝜃𝐷𝐶𝑔𝑘𝑖𝑉2
)

 �̅�𝑎
𝑐
 

Note that the DC gain is 1 and the step disturbances are rejected. 

To hold a constant airspeed, the pitch angle must approach a non-zero angle of attack. The integrator will wind 

up to command the appropriate angle of attack. 

The gains 𝑘𝑝𝑉2  and 𝑘𝑖𝑉2 should be chosen so that the bandwidth of the airspeed-from-pitch loop is less than 

the bandwidth of the pitch-attitude-hold loop. Let 

𝜔𝑛𝑉2 =
1

𝑊𝑉2
𝜔𝑛𝜃 

where the bandwidth separation 𝑊𝑉2 is a design parameter. If we match, as done before, the denominator 

coefficients in our Laplace domain equation with those of a canonical second-order transfer function, we get 

𝑘𝑖𝑉2 = −
𝜔𝑛𝑉2
2

𝐾𝜃𝐷𝐶𝑔
 

𝑘𝑝𝑉2 =
𝑎𝑉1 − 2𝜁𝑉2𝜔𝑛𝑉2

𝐾𝜃𝐷𝐶𝑔
 

 

The output of the airspeed hold with pitch loop is 

𝜃𝑐 = 𝑘𝑝𝑉2(𝑉𝑎
𝑐 − 𝑉𝑎) +

𝑘𝑖𝑉2
𝑠
(𝑉𝑎
𝑐 − 𝑉𝑎) 

1.6.2.4 Airspeed Hold Using Throttle 

The dynamic model for airspeed using the throttle as an input is 

 

 

  

Fig. 29 Airspeed hold using throttle 
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and if proportional-integral control is used, then 

�̅�𝑎 = (
1

𝑠2 + (𝑎𝑉1 + 𝑎𝑉2𝑘𝑝𝑉)𝑠 + 𝑎𝑉2𝑘𝑖𝑉
)𝑑𝑉 + (

𝑎𝑉2(𝑘𝑝𝑉𝑠 + 𝑘𝑖𝑉)

𝑠2 + (𝑎𝑉1 + 𝑎𝑉2𝑘𝑝𝑉)𝑠 + 𝑎𝑉2𝑘𝑖𝑉
) �̅�𝑎

𝑐
 

which results in a DC gain of 1, with step disturbance rejection. 𝑘𝑝𝑉  and 𝑘𝑖𝑉  are calculated, as previously 

mentioned, as 

𝑘𝑖𝑉 =
𝜔𝑛𝑉
2

𝑎𝑉2
 

𝑘𝑝𝑉 =
2𝜁𝑉𝜔𝑛𝑉 − 𝑎𝑉1

𝑎𝑉2
 

The output of the airspeed hold with throttle loop is 

𝛿𝑡 = 𝛿𝑡
∗ + 𝑘𝑝𝑉(𝑉𝑎

𝑐 − 𝑉𝑎) +
𝑘𝑖𝑉
𝑠
(𝑉𝑎
𝑐 − 𝑉𝑎) 

where, if 𝛿𝑡
∗
 is not known, it can simply be thought of as a step disturbance, and the integrator will wind up to 

reject it. 

1.6.2.5 Control Gains Tuning using Matlab 

For the design of the longitudinal autopilot, we have to pay special attention to the saturation limits of the 

control surfaces and the lift force limitations with respect to the angle of attack. As the simulink model for the 

design of the control loops does not take into account all the ins and outs of the aerodynamic equations, I have 

incorporated saturations from ±60° pitch (which is very close to angle of attack in the absence of wind), which 

depicts the moment where the lift force falls. Once the pitch attitude hold loop is designed, the last three 

feedback loops can be designed somewhat independently. 

 

pitch rate (q) 65 deg/s 

elevator deflection ±30 degrees 

Table 3 Common dynamic behaviour of small unmanned aerial vehicles [2] and [4] 

 

There are eight gains associated with the lateral autopilot. The derivative gain 𝑘𝑑𝜃 provides pitch rate damping 

for the innermost loop. The pitch attitude is regulated with the proportional gain 𝑘𝑝𝜃. The altitude is regulated 

with the proportional and integral gains 𝑘𝑝ℎ and 𝑘𝑖ℎ. The airspeed hold using pitch is governed with the 

proportional and integral gains 𝑘𝑝𝑉2  and 𝑘𝑖𝑉2. And finally, the airspeed hold using throttle is governed with the 

proportional and integral gains 𝑘𝑝𝑉  and 𝑘𝑖𝑉The idea with successive loop closure is that the gains are 

successively chosen beginning with the inner loop and working outward. In particular, 𝑘𝑑𝜃 and 𝑘𝑝𝜃 are 

selected first, and the rest of the gains are selected taking into account the behaviour of the inner loop. 
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1.6.2.5.1 Pich Hold 

 

 

 

 

 

 

Fig. 31 Commanded pitch angle and pitch response [deg] 

Fig. 31 Elevator actuation [deg] 
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Given a pitch command of 10º, it can be seen in Fig. 31 that the response is very quick. There is a steady state 

error though. The pitch rate is also faithful to the physical capabilities of the aircraft since its values do not 

exceed the average 65º/s. The ruddervators can be seen as having a very fast operation, but is a speed 

commonly seen on servo actuated control surfaces. The negative value on the figure to the center means that 

the elevator is pointing upwards so that the surrounding airmass is making the aircraft to pitch up. Since the 

desired pitch is different than 0, the ruddervators will continue to be deflected until altitude level flight is 

commanded, this is because of the inherent stabilization of the aircraft. 

  

Fig. 33 Pitch angle example 

Fig. 32 Pitch rate [deg/s] 
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1.6.2.5.2 Altitude Hold Using Pitch 

 

For a difference of 10 meters in height, the aircraft is able to climb at approximately a maximum rate of at least 

15 m/s, which is consistent with its operational speed range. In Fig. 35 we can see that the steepest climb is of 

35º. The commanded pitch is slow enough to allow the elevators to pitch up or down accordingly. It can be 

seen in ¡Error! No se encuentra el origen de la referencia. that the system gives the command to climb and 

then, when it reaches the desired altitude, it tells the vehicle stop pitching up/down, which translates to cease 

the climbing. 

 

 

 

Fig. 35 Commanded altitude and response [m] 

Fig. 35 Commanded pitch [rad] 
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If the aircraft is climbing and enters a region where high winds make its nose to pitch up 5.5º, the vehicle is 

going to climb around 1 meter in addition. And it will take about one minute for the vehicle to get near its 

desired altitude. But this additional climbing will only take place if the aircraft is already climbing; if the 

aircraft is in level flight, from the equation of the disturbance 𝑑ℎ ≜ (𝑢 sin𝜃 − 𝑉𝑎𝜃) − 𝑣 sin𝜙 cos 𝜃 −
𝑤 cos𝜙 cos 𝜃, we have that 𝑑ℎ ≈ 0  The aircraft will be fighting the disturbance by commanding to pitch 

down until it desappears, but the transient response will take place for less than 10 seconds. It can be seen that 

the response against disturbances is slower than the response against a commanded altitude difference. This 

occurs because the integral gain is twenty times smaller than the proportional gain. 

  

Fig. 37 Altitude during level flight pitch disturbance [m] 

Fig. 37 Pitch disturbance during level flight and pitch signal response [rad] 
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1.6.2.5.3 Airspeed Hold Using Commanded Pitch 

 

For the aircraft to increase its velocity over the cruise speed 8 m/s, the vehicle has to pitch down and, since the 

desired velocity exceeds the cruise speed, the nose needs to continue pointing down to the earth; this can be 

seen in Fig. 39. Although the aircraft is told to command a pitch angle between ±60º (it can be seen that it has 

saturated in Fig. 39), the gravity is helping the aircraft increase its speed. As a result, an increment of 28.8 

km/h on the speed is achieved in a relatively short period of time, as seen in Fig. 39. 

 

Fig. 39 Commanded airspeed increment using pitch [m/s] 

Fig. 39 Commanded pitch [rad] 
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Although the equation of the disturbance (it includes linearized dynamics and wind) is a bit complex, it can 

always be translated into a pitch variation. For the aircraft to mitigate the effects of a disturbance resulting on a 

10º nose down motion, the commanded pitch must make the vehicle to pitch up. It can be seen that the system 

is quite slow if compared with the dynamics beforehand calculated, but it also should be taken into account 

that a wind forcing the nose to pitch down and thus increasing the speed all the time is not an easy one to 

counteract since the elevator is only slightly deflected. 

  

Fig. 41 Airspeed variation by disturbance in pitch [m/s] 

Fig. 40 Disturbance in pitch and commanded pitch [rad] 
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1.6.2.5.4 Airspeed Hold Using Throttle 

 

 

 

The cruise speed is achieved by a throttle signal of 0.3, whereas the maximum power the engine can provide 

corresponds to a signal of 0.6 (although is not convenient to force it continuously). A throttle signal of 0.5 

provides the aircraft with enough power to achieve its maximum speed (without risking the integrity of its 

components). A 30 km/h speed increase command results in the engine working above its nominal value (0 for 

cruise speed on the second figure). It can be seen that an increment of 30 km/h can be achieved in 3 seconds 

with pitch control or with throttle control. 

  

Fig. 43 Commanded airspeed increment using throttle [m/s] 

Fig. 43 Throttle setting increment 
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For the aircraft to mitigate the effects of a disturbance resulting on a increase of the engine rotation, the engine 

must slow down. And it will continue to do so until the disturbance dissappears. 

 

𝐤𝐝𝛉 -0.4092 

𝐤𝐩𝛉 -4.5 

𝐤𝐩𝐡 0.0611 

𝐤𝐢𝐡 0.0028 

𝐤𝐩𝐕𝟐 -0.1556 

Fig. 45 Response in airspeed for disturbance in engine speed [m/s] 

Fig. 44 Disturbance in engine speed and the throttle setting 
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𝐤𝐢𝐕𝟐 -0.1232 

𝐤𝐩𝐕 0.036 

𝐤𝐢𝐕 0.0274 

Table 4 PID values obtained from the longitudinal controller design 

 

1.7 Flight Controller Pseudocode 

Using the blocks developed in the previous sections (path manager, path following and autopilot), the flight 

controller allows an aircraft to navigate between waypoints in a completely autonomous way. 

Following a cascade structure, the path manager block receives the waypoints and defines a path, which will 

be the input to the path following block. The path following block will calculate the altitude, speed and course 

that the autopilot will use to finally command the control surfaces. Lastly, to close the loop, the position error 

returns to the path following block, while the tracking error returns to the path manager. 

 

The algorithm used by the flight controller to pilot the aircraft is reflected below in pseudocode. 

path manager: 

input (list of waypoints, vehicle position) 

1: calculate the tracking error to determine whether to go to the next waypoint 

2: if afirmative then define a path between the reached wp and the next one 

3: invoke the flight controller 

output (path definition) 

path manager 

path following 

autopilot 

altitude, 
airspeed
, heading 

path definition 

waypoints 

commands 

tracking error 

position error 

Fig. 46 Flight controller architecture 
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flight controller: 

input (path definition, vehicle position) 

1: calculate the desired height and course using the path following block 

2: calculate control surface actuations 

3: estimate the vehicle’s position and attitude with sensors or models 

output (vehicle position) 

 

<The complete Matlab code can be read in Annex A> 

 

1.8 Autopilot Fine-tuning Using a Model of the Aircraft 

Normally, the linear models of the aircraft used to design the autopilot controller do not behave so similarly to 

the actual vehicle as to use the parameters obtained from the design in reality. In practice, it is common to 

invest a few hours of flight time in known maneuvers through which, due to the behavior that is being seen, 

the parameters of the controller can be tuned. The pilot usually adjusts the parameters of the controller until the 

aircraft's performance is as close as possible to that expected. 

Since I don't have a real flying vehicle for this paper, I'm going to reproduce the PID tuning using known flight 

maneuvers through a simulation, for which I will need a mathematical model of the aircraft. 

1.8.1 Mathematical Model of the Aircraft 

The mathematical model of the aircraft represents its behaviour in the face of different stimuli. For the 

generation of the model, therefore, it will be necessary to incorporate equations that combine kinematics, 

dynamics, forces and moments. The coordinate frames to which the components of these equations refer will 

also have to be considered. In order to relate them, matrix transformations will be used. 

The coordinate frames and equations that comprise the mathematical model of an aircraft are presented below. 
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1.8.1.1 coordinate frames 

 

 

  

Fig. 50 Vehicle-1 frame 
Fig. 50 Inertial frame and vehicle frame 

Fig. 50 Vehicle-2 frame 

Fig. 50 Body frame 
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1.8.1.2 Kinematics and Dynamics 

 

 

(
�̇�𝑛
�̇�𝑒
�̇�𝑑

) = (

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

)(
𝑢
𝑣
𝑤
) 

(
�̇�
�̇�
�̇�
) = (

𝑟𝑣 − 𝑞𝑤
𝑝𝑤 − 𝑟𝑢
𝑞𝑢 − 𝑝𝑣

) +
1

𝑚
(

𝑓𝑥
𝑓𝑦
𝑓𝑧

) 

(

�̇�

�̇�
�̇�

) = (

1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 − sin𝜙

0
sin𝜙

cos𝜃

cos𝜙

cos 𝜃

)(
𝑝
𝑞
𝑟
) 

Fig. 51 Definition of the axes of motion 

Table 5 State variables for the equations of motion 
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(
�̇�
�̇�
�̇�

) = (

𝛤1𝑝𝑞 − 𝛤2𝑞𝑟

𝛤5𝑝𝑟 − 𝛤6(𝑝
2 − 𝑟2)

𝛤7𝑝𝑞 − 𝛤1𝑞𝑟
)

(

 

𝛤3𝑙 + 𝛤4𝑛
1

𝑗𝑦
𝑚

𝛤4𝑙 + 𝛤8𝑛)

  

where 

𝛤1 =
𝐽𝑥𝑧(𝐽𝑥 − 𝐽𝑦 + 𝐽𝑧)

𝛤
 

𝛤2 =
𝐽𝑧(𝐽𝑧 − 𝐽𝑦) + 𝐽𝑥𝑧

2

𝛤
 

𝛤3 =
𝐽𝑧
𝛤

 

𝛤4 =
𝐽𝑥𝑧
𝛤

 

𝛤5 =
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

 

𝛤6 =
𝐽𝑥𝑧
𝐽𝑦

 

𝛤7 =
(𝐽𝑥 − 𝐽𝑦)𝐽𝑥 + 𝐽𝑥𝑧

2

𝛤
 

𝛤8 =
𝐽𝑥
𝛤

 

and J are the moments of inertia of the airplane. 

1.8.1.3 forces 

(

𝑓𝑥
𝑓𝑦
𝑓𝑧

) = (

−𝑚𝑔 sin𝜃
𝑚𝑔 cos𝜃 sin𝜙
𝑚𝑔 cos𝜃 cos𝜙

) +
1

2
𝜌𝑉𝑎

2𝑆

(

 
 
 
 

𝐶𝑋(𝛼) + 𝐶𝑋𝑞(𝛼)
𝑐

2𝑉𝑎
𝑞 + 𝐶𝑋𝛿𝑒

(𝛼)𝛿𝑒

𝐶𝑌0 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝑝
𝑏

2𝑉𝑎
𝑝 + 𝐶𝑌𝑟

𝑏

2𝑉𝑎
𝑟 +

𝐶𝑍(𝛼) + 𝐶𝑍𝑞(𝛼)
𝑐

2𝑉𝑎
𝑞 + 𝐶𝑍𝛿𝑒

(𝛼)𝛿𝑒

𝐶𝑌𝛿𝑎𝛿𝑎 + 𝐶𝑌𝛿𝑟𝛿𝑟

)

 
 
 
 

+
1

2
𝜌𝑆𝑝𝑟𝑜𝑝𝐶𝑝𝑟𝑜𝑝 (

(𝑘𝑚𝑜𝑡𝑜𝑟𝛿𝑡)
2 − 𝑉𝑎

2

0
0

) 

where 

𝐶𝑋(𝛼) ≜ −𝐶𝐷(𝛼) cos 𝛼 + 𝐶𝐿(𝛼) sin 𝛼 

𝐶𝑋𝑞(𝛼) ≜ −𝐶𝐷𝑞 cos𝛼 + 𝐶𝐿𝑞 sin𝛼 

𝐶𝑋𝛿𝑒
(𝛼) ≜ −𝐶𝐷𝛿𝑒 cos 𝛼 + 𝐶𝐿𝛿𝑒 sin 𝛼 

𝐶𝑍(𝛼) ≜ −𝐶𝐷(𝛼) sin𝛼 − 𝐶𝐿(𝛼) cos𝛼 

𝐶𝑍𝑞(𝛼) ≜ −𝐶𝐷𝑞 sin 𝛼 − 𝐶𝐿𝑞 cos 𝛼 

𝐶𝑍𝛿𝑒
(𝛼) ≜ −𝐶𝐷𝛿𝑒 sin𝛼 − 𝐶𝐿𝛿𝑒 cos 𝛼 

and 

𝐶𝐿(𝛼) = (1 − 𝜎(𝛼))(𝐶𝐿0 + 𝐶𝐿𝛼𝛼) + 𝜎(𝛼)(2𝑠𝑖𝑔𝑛(𝛼) sin
2 𝛼 cos𝛼) 
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𝐶𝐷(𝛼) = 𝐶𝐷𝑝 +
(𝐶𝐿0 + 𝐶𝐿𝛼𝛼)

2

𝜋e𝐴𝑅
 

where e is the Oswald efficiency factor, which ranges between 0,8 and 1,0. 

and 

𝜎(𝛼) =
1 + 𝑒−𝑀(𝛼−𝛼0) + 𝑒𝑀(𝛼+𝛼0)

(1 + 𝑒−𝑀(𝛼−𝛼0))(1 + 𝑒𝑀(𝛼+𝛼0))
 

1.8.1.4 moments 

 

(
𝑙
𝑚
𝑛
) =

1

2
𝜌𝑉𝑎

2𝑆

(

 
 
 
 
𝑏 (𝐶𝑙0 + 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑝

𝑏

2𝑉𝑎
𝑝 + 𝐶𝑙𝑟

𝑏

2𝑉𝑎
𝑟 + 𝐶𝑙𝛿𝑎𝛿𝑎 + 𝐶𝑙𝛿𝑟𝛿𝑟)

𝑐 (𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞
𝑐

2𝑉𝑎
𝑞 + 𝐶𝑚𝛿𝑒𝛿𝑒)

𝑏 (𝐶𝑛0 + 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝑝
𝑏

2𝑉𝑎
𝑝 + 𝐶𝑛𝑟

𝑏

2𝑉𝑎
𝑟 + 𝐶𝑛𝛿𝑎𝛿𝑎 + 𝐶𝑛𝛿𝑟𝛿𝑟))

 
 
 
 

+ (
−𝑘𝑇𝑝(𝑘𝛺𝛿𝑡)

2

0
0

) 

1.8.2 PID Design Results 

1.8.2.1 Roll Loop Design 

  

Fig. 52 Roll [deg], ailerons actuation [deg] and roll rate [deg/s] 
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The new controller parameters make the aircraft react more quickly to roll changes than the ones when 

designing with the linear model. And, although there is an overshoot, it is small considering that it is about 8 

degrees. The actuation on the ailerons is good and the roll rate is no different from that of similar aircrafts. 

Naturally, when the desired roll angle is reached, the flaps return to their original position. 

1.8.2.2 Course Hold Loop 

 

 

Logically, it takes longer for the aircraft to reach the desired course than for it to reach the desired roll. As the 

speed of roll change is not limited, it can be seen that, although a large roll is commanded in a very short time, 

the aircraft does not have time to turn as fast as commanded to and the course response is, therefore, uneven. It 

can also be seen that, once the desired course is reached, the autopilot commands a null roll. 

  

Fig. 53 Course in degrees and commanded roll in degrees 
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1.8.2.3 Pitch Attitude Hold 

 

 

As mentioned earlier, the autopilot will never be able to bring the aircraft up to the desired pitch value in 

steady state. Such a response can be seen in the figure above. The elevator is required to deflect quite a great 

deal in a very short period of time, but it is feasible for the type of servos built in the type of aircraft being 

studied. The pitch change speed is, like the roll speed, within the common parameters. 

  

Fig. 54 Pitch [deg], elevator actuation [deg] and pitch rate [deg/s] 
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1.8.2.4 Altitude Hold using Commanded Pitch 

 

 

The aircraft response to a request for an altitude change is by far the slowest. This is because the configuration 

of the spacecraft makes the mass of the fuselage be distributed in such a way that it is harder for it to rotate 

around the axis that passes through its wings than it is for it to rotate around the axis that passes through its 

nose. Unlike the previous cases, once the desired altitude has been reached, a zero pitch is not commanded. 

This is because it is very complicated to design the altitude hold block without linking the airspeed one. As 

these blocks are interconnected, the response of one will always include the response of the other. 

  

Fig. 55 Altitude [m] and commanded pitch [degrees] 
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1.8.2.5 Airspeed Hold using Commanded Pitch 

 

 

To decrease the airspeed using the pitch angle, the vehicle is forced to pitch up. As a result, the aircraft 

increases its potential energy and decreases its kinetic energy, thus reducing its speed. As with the altitude hold 

using the pitch block, not unlinking these blocks causes the steady state response not to return to zero. 

  

Fig. 56 Airspeed hold using pitch [m/s] and commanded pitch [degrees] 
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1.8.2.6 Airspeed Hold using Throttle 

 

 

The acceleration achieved by using the engine alone may vary depending on the power of the engine being 

used, so the rate of change is not solely related to the controller parameter. Naturally, after the desired speed 

value is reached, the motor must run at the same power to maintain this speed. 

 

1.8.2.7 PID Values 

 

𝐤𝐩𝛟 0,9 

𝐤𝐢𝛟 2,7 

𝐤𝐝𝛟 0,01 

𝐤𝐩𝛘 3,9 

Fig. 57 Airspeed [m/s] and commanded throttle 
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𝐤𝐢𝛘 0,07 

𝐤𝐩𝛉 -5,1 

𝐤𝐢𝛉 -1,2 

𝐤𝐩𝐡 0,047 

𝐤𝐢𝐡 0,009 

𝐤𝐩𝛃* -0,01 

𝐤𝐩𝐕𝟐
 -0,12 

𝐤𝐢𝐕𝟐
 -0,1 

𝐤𝐩𝐕 0,036 

𝐤𝐢𝐕 0,0274 

Table 6 PID values obtained from the fine-tuning design 

 

* The integral gain of the sideslip hold loop does not work well with the algorithm used in the autopilot. This 

is because the sideslip angle is strongly influenced by wind and vehicle inertia. If the rudder fails to reach a 

zero sideslip angle in a short time, the integrator will grow and a wind-up situation will occur. This situation 

can cause a large overshoot and may potentially destabilize the aircraft. One way to avoid all this would be to 

provide the autopilot controller with a timeout to reset the integrator or use a simple yet effective P type 

controller.  
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2. SIMULATION 

 

 

 

 

 

 

 

2.1 Introduction to Simulation 

To test the flight controller, a simple simulation will be carried out in Matlab. The simulation will consist of a 

photogrammetric survey mission and will include: assisted takeoff, flying over an area following a series of 

waypoints and net landing. A photogrammetric mission is especially interesting for testing a flight controller 

because the area to be photographed has to be covered in straight lines and with the appropriate overlapping 

between them. 

The place chosen for the simulation is the Sabangau River in Borneo, which is currently suffering from a 

major environmental problem. 

2.2 Four decades of forest persistence, clearance and logging on Borneo 

The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at 

unprecedented scales since industrial-scale extractive industries began in the early 1970s. It is estimated that 

75.7% (558.060 km2) of Borneo’s area (737.188 km2) was forested around 1973 and that the 1973 forest area 

had declined by 30.2% (168.493 km2) in 2010. The highest losses were recorded in Sabah and Kalimantan 

with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010. There is still hope for 

biodiversity conservation though. Protecting logged forests from fire and conversion to plantations is an urgent 

priority for reducing rates of deforestation in Borneo [5]. 
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2.2.1 Sabangau National Park 

Sabangau National Park is a national park in Central Kalimantan –the Indonesian part of the island of Borneo-. 

The park is centered on Sabangau River. It flows through the Kelompok Hutan Kahayan –a 5.300 km2 peat 

swamp forest-, between the Katingan and Kahayan rivers. The forest is a dual ecosystem, with diverse tropical 

trees standing on a 10m - 12m layer of peat (partly decayed and waterlogged plant material), which in turn 

covers relatively infertile soil. 

The forest is home to the world’s largest orangutan population, estimated at 6.910 individuals in 2003, and 

other rare or unique species. Since the forest has been damaged by legal and illegal forestry, there is no longer 

any continuous forest cover where orangutans may cross the river. The western part, however, is now 

protected as either National Park or National Laboratory Research Area. 

 

Fig. 58 Borneo Forests status 
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2.2.2 Biodiversity Conservation in Borneo 

In order to protect the region, further poaching, logging, or fire damage must be prevented and natural 

hydrological conditions must be restored. The use of unmanned aerial vehicles can help achieve this goal to a 

considerable extent. 

To simulate a contribution to the cause, the mission will take place over the river Sebangau. The river will be 

flown over to carry out a photogrammetric study of the area. The study could serve as a basis for aerial seed 

planting, forest sizing, plant monitoring and reforestation missions. 

2.2.2.1 Aerial Seed Planting 

Large-scale reforestation significantly reduces the carbon dioxide in the atmosphere, thus counteracting global 

warming. In addition, new trees fight erosion, promote biodiversity, and protect the habitat of local wildlife. 

Natural regeneration may develop a more reasonable and stable structure and is an easy way to restore 

vegetation of felled lands. However, in large and remote areas where seeds or coppices are rather limited, 

natural regeneration and subsequent forest succession may take much longer. To overcome this issue, aerial 

seeding is commonly applied to promote vegetation recovery and thus shorten the time required for ecosystem 

restoration. Aerial seeding has a long history –more than 50 years- in China, and has been accomplished for 

1.364 km2 in 2012 alone. Aerial seeding has also been widely used around the world where had significantly 

accelerated forest vegetation recovery. 

  

Fig. 59 Location of Sabangau National Park 
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2.2.2.2 Soil Analysis, Forest Sizing and Post Planting Monitoring 

Aerial photogrammetry provide detailed information on the soil surface which can be used for monitoring 

surface water flows which is very important for planting planning. It also has been used to monitor land use 

and to generate contour maps of forest areas. 

A series of overlapping photographs are taken over the study area so that any single point on the ground 

surface can be identified in 3 separate images. The position of that point is then triangulated. These are then 

brought together to create a single visual image of the area and a 3-dimensional representation of the ground 

surface.  

Once the ground surface is calculated: water flow models can be applied to the calculated soil surface model to 

show where water is likely to flow, or forest areas can be calculated. 

Multispectrum images are taken to analyze soil, water stress and tree species. 

2.2.2.3 Fire Spotting 

The biggest long-term problem inside Borneo’s peat-swamp forests is drainage, the artificial construction of 

canals and channels inside the forest that causes the peat to dry out and sends the fire-risk skyrocketing. 

Even though most peat-swamp forests are now protected in Kalimantan, under the Indonesian government’s 

moratorium on conversion of peatlands, they remain threatened by the long-term consequences of rampant 

illegal logging and failed development programmes in this habitat during the late 1990’s and early 2000’s. 

During this time, a network of large canals were dug to drain the peatland for planned agricultural. Inside the 

forest, illegal loggers cut narrow channels into the peat to float out felled timber, hundreds of them inside 

Sabangau alone, several stretching over 10 km into the forest. These channels remain long after the immediate 

problem has been solved, and drain the once water-logged peat every dry-season. 

In their natural state these forests are permanently flooded and new peat accumulates, but when the peat is 

drained it dries out, oxidises and degrades, putting the whole ecosystem at risk. The crumbling peat surface 

undermines shallow-rooted trees, and little water is retained in the peat by the end of the dry season. Dried peat 

is highly flammable and fires frequently break out in the forest margins and the surrounding sedge swamp, 

sometimes burning large areas. 

UAVs can be equiped with microwave radiometers, smoke sensors and thermal cameras for fire-spotting; 

effectively reducing fires and geolocating hot-spots. 

2.2.2.4 Reforestation 

Reforesting burnt and cleared areas of forest is an essential part of conservation work. Replanting trees 

prevents soil erosion, expands wildlife habitats and reduces fire-risks; it also contributes to the global fight to 

stop climate-change. 

The degraded sedge swamp on the edge of the Sabangau River, a barren grass and fern covered landscape is a 

very interesting site to use aerial seeding by UAVs. 

The first step in the process would be to use mapping and surveying to locate the exact micro-site in which a 

seed will thrive. 
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After the mapping, it is time for seeding. Armed with a payload of seed pellet -each a mixture of fertilizer, 

natural pest deterrents, and the seed- and a compressed air gun, the aircraft fires hundreds of pellets into the 

ground. 

Because the machine can plant seeds so precisely, obstacles like rocks and downed trees aren’t an issue. 

Resolutions of the order of 3 cm are needed though. 

2.3 Mission Planner 

To get quality and useful information out of a photogrammetric survey, a thorough planification must be 

carried through. The information to be gathered includes: purpose and use of the images, scale in which the 

final product will be shown, accuracy and precision. At the same time, maps of the area of interest, aerial 

images and any relevant information of the kind are gathered to carefully plan the flight. The camera 

specifications, cruise speed of the aircraft, endurance and ceiling (among others) are also very important. 

2.3.1 Scale Determination 

The most convenient scale for the image depends on the purpose for which it is intended. In general, it should 

be borne in mind that the smallest detail of the terrain appreciable on the photograph is that which has a size of 

0.1 mm or his equivalent in pixels. Since I am planning a photogrametry mission to study where to plant tree 

seeds, I need to get resolutions of the order of the ones used to count trees (although I expect seed planting to 

be a bit more demanding, but that is ok for this project). For that reason, a ground sample distance (GSD) of, 

say, 3 cm is desired. This means that the distance beween pixel centers needs to be 3 centimeters or 30 000 

microns. The camera I have chosen for this task (a widely used camera in photogrammetric surveys), the 

PhaseOne’s iXU-RS 1000 has a pixel size of 4.6 microns, thus, the scale would be: 30 000/4.6 or 1:6 500. 

2.3.2 Flight Height Determination 

The flight altitude Z will depend on the intended scale of the photographs E, taking into account the focal 

length f of the camera. 

𝑍 = 𝐸 × 𝑓 

Due to the chosen lens, PhaseOne’s Rodenstock 90 mm f, the desired flight height is 𝑍 = 6 500 × 0.09 =
585 𝑚. 

2.3.3 Ground Surface Covered for each Photo without Overlapping 

If the sensor is a 𝒍𝟏𝑥𝒍𝟐 matrix, it will contain the image of a terrain of dimensions 𝑳𝟏𝑥𝑳𝟐 and area S in 

accordance to: 

𝐿 = 𝑙 × 𝐸 

𝑆 = 𝐿1 × 𝐿2 

According to the camera specifications, the sensor size is 53.4 mm x 40.0 mm, thus the size of the ground 

surface covered given our scale is: 347.1 m x 260 m, covering a total surface area of 90 246 m2 or 9.02 Ha. 

2.3.4 Overlapping 

In order to ensure the total coverage of the area of interest and that the photographs allow stereoscopic 

examination, it shall be considered a forward overlap u of 60% and a side overlap v of 40% in accordance 

with similar studies. 

In favor of compensating a possible lateral error, a new flight path will be added to the total number of flight 

paths calculated to cover the area. Likewise, in order to counteract a longitudinal error, four photographs will 

be added to the total of those calculated as necessary for each path (two at the beginning and two at the end). 
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2.3.5 Useful Advance 

The useful advance B is the distance between the shooting points of two consecutive pictures. 

𝐵 = 𝐿2 × (1 −
𝑢

100
) 

In this case 𝐵 = 260(1 −
60

100
) = 104 𝑚. 

2.3.6 Flight Line Spacing 

Assuming 𝒍𝟏 as the longest side of a sensor, E the chosen scale and v the side overlap; the lateral separation A 

between flight lines shall be 

𝐴 = 𝐿1 × (1 −
𝑣

100
) 

In our case 𝐴 = 347.1 (1 −
30

100
) = 243 𝑚. 

2.3.7 Shooting Interval 

The shooting interval is the elapsed time between shots for the required longitudinal overlap to occur. 

Assuming B as the distance between two shooting points, V  being the resulting speed of the plane and I being 

the shooting interval: 

𝐼 =
𝐵

𝑉
 

 

Since the simulation will be carried on by Textron’s Aerosonde UAV -with a cruise speed of 60 knots or 30.87 

m/s-, the shooting interval will be 𝐼 =
104

30.87
= 3.369 𝑠. This is for guidance only. 

2.3.8 Number of Flight Paths 

This is the number of flying lines needed to cover the entire area to be photographed, taking into account the 

lateral overlap. The area 

𝑁𝐹𝑃 =
𝐴𝑟𝑒𝑎 𝑤𝑖𝑑𝑡ℎ

𝐴
=
1196

243
= 5 

2.3.9 Number of Shots per Flight Line, Total Number of Shots and Flight Time Above Target 

𝑁𝑆𝐹𝐿 =
𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔ℎ𝑡

𝐵
+ 4 =

2400

104
+ 4 = 27 

𝑇𝑁𝑆 = 𝑁𝑆𝐹𝐿 × 𝑁𝐹𝑃 = 27 × 5 = 135 

𝐹𝑇𝐴𝑇 = 𝐼 × 𝑇𝑁𝑆 = 3.369 × 135 = 455 𝑠 = 7.6 𝑚𝑖𝑛 
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2.3.10 Mission Plan 

 

A B 

Fig. 61 Flight plan over Sabangau River (Borneo) 2494.3 m x 1196 m (298.3 Ha) [ESA’s 

Sentinel-2] Scale 1:9000 

B 

Z 

A 

L2 

v 

u 

Fig. 60 Photogrametry nomenclature 
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2.3.11 Geolocation 

Location Latitude Longitude Elevation 

Base camp -2.316570º 113.908020º 14.7 m 

Sabangau river A -2.396338º 113.935791º 17.5 m 

Sabangau river B -2.407315º 113.957935º 19.0 m 

Table 7 Latitude, longitude and elevation of the mission's points of interest 

 

Although there is an elevation difference between locations, the area we are interested in -the vicinity of the 

river- does not have a substancial difference in height for the camera, so the aircraft will not change its flight 

altitude once over the river. 

 

2.3.12 Longitude-Latitude-Altitude to Earth-Centered-Earth-Fixed Conversion 

The Earth-centered-Earth-fixe (ECEF) frame rotates along with the Earth. It is depicted in the picture below, 

and can be defined as having the origin at the center of mass of the Earth, the z-axis passing through the 

conventional terrestrial pole (mean spin axis of the planet), the x-axis passing through the intersection of the 

equatorial plane and the reference meridian (Greenwich) and finally, the y-axis completing the right-hand 

orthogonal coordinate system in the equatorial plane. 

Fig. 62 Aerial view of Sabangau river and the Base camp [ESA’s Sentinel-2] 
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The basic formulas for converting from latitude, longitude and altitude (above reference ellipsoid) to Cartesian 

ECEF are given in the Astronomical Almanac in Appendix K. They depend upon the equatorial earth radius a 

and the "flattening" parameter (the ratio of the difference between the equatorial and polar radii to a) F. 

For WGS84 (an earth centered datum the Global Positioning System uses), a = 6378137 m and (1/F) = 

298.257224. 

Given geodetic (not geocentric) latitude 

𝐶 =
1

√cos2(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + (1 − 𝐹)2 sin2(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)
 

𝑆 = (1 − 𝐹)2𝐶 

then a point in LLA has ECEF coordinates: 

𝑥 = (𝑎𝐶 + ℎ) cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) 

𝑦 = (𝑎𝐶 + ℎ) cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) sin(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) 

𝑧 = (𝑎𝑆 + ℎ) sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) 

  

Fig. 63 ECEF coordinate system 
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Location (ground) x y z 

Base camp -2 582 772.4 m 5 826 155.3 m -256 085.3 m 

Sabangau river A -2 585 450.0 m 5 824 573.7 m -264 898.4 m 

Sabangau river B -2 587 680.8 m 5 823 529.0 m -266 111.2 m 

Table 8 ECEF coordinates of the mission's points of interest 

 

2.3.13 ECEF to Local-Level Frame Conversion 

A local-level frame (LLF) serves to represent a vehicle’s attitude and velocity when near the surface of the 

Earth. This frame is defined as having its origin at the center of the sensor frame, the x-axis pointing to true 

north (different from magnetic north), the y-axis pointing to the east and the z-axis completing the right-

handed orthogonal coordinate system by pointing down to the center of the Earth and perpendicular to the 

reference ellipsoid. This frame is referred to as NED, since its axes are aligned with the north, east, and down 

directions. 

The transformation from the ECEF to the NED is: 

𝑅𝑒
𝑛 = [

− sin𝜑 cos 𝜆 − sin𝜑 sin 𝜆 cos𝜑
− sin𝜆 cos 𝜆 0

−cos𝜑 cos 𝜆 −cos𝜑 sin𝜆 −sin𝜑
] 

Where λ (longitude) is a positive right-hand rotation around the ECEF’s z-axis and φ (latitude) is a positive 

right-hand rotation around the ECEF’s y-axis after the first rotation. 

If Pe,ref is the position of the origin of the local NED (the take-off location) and Pe is the point we want to lacate 

in our local NED frame: 

𝑃𝑛 = 𝑅𝑒
𝑛(𝑃𝑒 − 𝑃𝑒,𝑟𝑒𝑓) 

where λ and φ correspond to Pe,ref. 

 

 

  

Fig. 64 The NED frame in relation to the ECEF frame 
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Location (ground) north east down 

Base camp 0 0 0 

Sabangau river A -8 820.5 m 3 088.8 m 4.1 m 

Sabangau river B -10 034.4 m 5 551.7 m 6.1 m 

Table 9 NED coordinates of the mission's points of interest 

 

2.3.14 Speed and Minimum Turn Radius 

Almost always, to go from waypoint A to waypoint B involves turning. Usually, these waypoint transitions are 

accomplished by following orbits of different radii. Since the aircraft is flying at a certain speed, the minimum 

orbit radius the vehicle is able to follow depends upon the latter. The relationship between speed 𝒗 and orbit 

radius 𝑹 is given by: 

𝑅 =
𝑣2

𝑔 tan𝜙
 

According to the flight line spacing calculated the maximum radius orbit between waypoints should be around 

97 m (at least less than half the distance between the waypoints involved) and, due to the fact that the average 

banking angle in these maneuvers is 30º, the speed at which the vehicle should fly along the area of interest on 

the photogrametry mission should be 111 km/h. 

 

 

  

center of  turn 

𝑚𝑣2

𝑔
 

𝑚 · 𝑔 

𝑅 
𝜙 

Fig. 65 Turn radius example 
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2.4 Simulation Results and Telemetry 

The graphs obtained from the simulation are shown below. These include the route followed by the aircraft 

and telemetry throughout the mission. 

 

 

Above it can be seen the trajectory the aircraft follows from the time it takes off at the base camp to the time it 

lands, flying above the area of interest (marked in green on the ground). Below you can see a zenithal view of 

the previous trajectory, where you can also see how the aircraft flies over the area of interest in straight and 

equally separated lines. You can also see how the vehicle initially takes off at 210 degrees to the north but 

quickly corrects its course to go to the first waypoint. The same thing happens after landing, since the clearing 

in the forest where the base camp is located only allows a runway with this orientation. 

  

Fig. 66 Trajectory plot 
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2.4.1 Altitude 

Telemetry allows for a more detailed understanding of how the aircraft behaved during the mission. 

Fig. 68 Commanded altitude (red) and altitude (blue) during the mission in meters 

Fig. 67 Zenith view of the trajectory plot 
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Although the path manager establishes straight lines as pathways between waypoints, the flight controller 

gives priority to taking off at a certain angle of attack, hence the discrepancy between the commanded altitude 

and that actually accepted by the aircraft. Finally, in order to be able to use the vision-guided navigation 

system for net landing, the aircraft performs an approach manoeuvre until it reaches a flight below 100 metres, 

which will allow it to distinguish the net on which it will land. 

2.4.2 Pitch 

 

As mentioned in the development of the autopilot, the pitch will never reach the required value, hence the 

discrepancy between them commanded pitch and the actual pitch. The large pitch changes seen occur during 

landing, takeoff or approach manoeuvres while the small ones are meant to maintain altitude between 

waypoints. 

2.4.3 Angle of Attack, Sideslip Angle and Airspeed Nomenclature 

In order to better understand the following telemetry, the nomenclature used to relate the trajectory of the 

aircraft to the wind is shown below. 

  

Fig. 69 Commanded pitch (red) and pitch (blue) in degrees 
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ground track 

north 

Fig. 70 North-East plane projected wind triangle nomenclature 

Fig. 71 Side projected wind triangle nomenclature 
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The direction of the ground speed vector relative to an inertial frame is specified using two angles. The flight 

path angle γ is defined as the angle between the horizontal plane and the ground velocity vector 𝑉𝑔, which is 

the direction the vehicle is traveling with respect to the ground. The course χ is the angle between the 

projection of the ground velocity vector onto the horizontal plane an true north. For level flight, the heading 

angle ψ is the angle between the north direction and th direction where the vehicle is pointed. The direction the 

vehicle is traveling with respect to the surrounding air mass is given by the airspeed vector 𝑉𝑎. If there is a 

constant ambient wind, the aircraft will need to crab into the wind in order to follow a ground track that is not 

aligned with the wind. The crab angle 𝑋𝑐 is defined as the difference between the course and the heading 

angles. 𝑉𝑤 is the wind speed. The relationship between the air-mass-referenced flight-path angle, the angle of 

attack, and the pitch angle is given by 𝛾𝑎 = 𝜃 − 𝛼. 

2.4.4 Angle of attack 

The angle of attack α is the angle between the line of the chord of an aerofoil and the relative airflow. 

 

The angle of attack plays a very important role in lift and not paying attention to it can lead to stall conditions. 

Although not equal, the angle of attack will generally follow the same trend as the pitch angle. This will not be 

the case, however, during an abrupt and continuous descent, as the fuselage will begin to slide over the airflow. 

2.4.5 Sideslip Angle 

The sideslip angle is the angle between the actual direction of travel and the direction towards the vehicle is 

pointing. 

  

Fig. 72 Angle of attack in degrees 
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As seen above, the fact that the automatic controller related to this angle only uses a proportional gain does not 

mean that it will not work properly. Since there is no wind in the simulation, the sideslip angle is mostly 

influenced by inertia. The sideslip angle will change whenever a sudden change in course or roll happens. The 

idea behind the sideslip controller is to assist during turning maneuvers to avoid the aircraft from skidding or 

slipping. 

2.4.6 Airspeed 

The idea of speed control is to optimise fuel consumption during flight and increase engine life, as the aircraft 

is subjected to lower drag forces. 

  

Fig. 73 Sideslip angle in degrees 
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During takeoff, the autopilot commands the engine to run at maximum power. As the vehicle ascends, the 

speed decreases due to the fact that it is being used to gain altitude. During descent the engine is switched off 

so that the plane does not pick up too much speed and get difficult to control. 

2.4.7 Roll 

 

Fig. 75 Commanded roll (red) in degrees and actual roll (blue) in degrees 

Fig. 74 Commanded airspeed (red) in m/s and actual airspeed (blue) in m/s 
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The reason the commanded roll looks so much like the actual one is because its controller loop has a very fast 

response. The first thing the flight controller requires of the aircraft is to redirect the course, so as soon as the 

vehicle takes off, the autopilot commands a large roll angle. Each time the aircraft passes through the transition 

plane of a waypoint, the autopilot changes course by commanding a change in the roll. It can be seen that, as 

the waypoints are located more or less in the same way, the changes in the roll angle are practically the same 

every time the vehicle surpasses one of these waypoints. 

2.4.8 Body Frame Velocity: u, v and w 

Although it may appear that the aircraft moves very little sideways or vertically in relation to its trajectory, this 

is not the case. Because, although the maximum and minimum values are small in relation to its speed along 

the i axis, they are large if we think it means that it moves sideways or vertically at that speed. Naturally, these 

movements take place when the vehicle changes the angle of the roll or pitch. 

 

It can be seen in the first graph how the aircraft reaches its maximum speed during takeoff (when the autopilot 

commands full throttle) and when it reaches its minimum during descents (when it commands zero throttle). 

The autopilot seeks to maintain cruise speed for as long as possible in order to optimise the flight. 

  

Fig. 76 From top to bottom: u, v and w in m/s 
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2.5 Conclusion 

A flight controller has been developed in this paper. The flight controller is composed of a path manager, a 

path follower and an autopilot that uses the successive loop closure technique. Afterwards, the flight controller 

has been tested in a simple simulation in Matlab. In light of the results after the simulation, a future 

improvement could be the incorporation of an angular rate limitation. The system could also benefit greatly 

from the addition of dubins path features built into the path manager block. 
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3. ANNEXES 

 

3.1 Annex A1. Autopilot Demonstration 

Mission planning 

Departure, landing and photogrammetric session starting points. 

homePos = [0 0 0]; 

missionPos = [3088.8 -8820.5 585]; 

netHeight = 6;  netPos = homePos + [0 0 netHeight]; 

 

% The mission planner receives as input the locations from which the 

% take-off and landing take place, as well as the position from which the 

% photogrammetric session begins. 

[ interNormal, interRoute ] = MISSION_PLANNING( homePos, missionPos, netPos ); 

Simulator 

Autopilot sampling time in seconds and desired speed for the simulation in km/h. 

T = 0.01; 

speed = 111;    speed = speed/3.6; 

 

% In turn, the simulator receives as input the positions of the transition 

% planes and their normals calculated in the mission planner. The autopilot 

% sampling time and the speed at which the UAV is desired to fly are also 

% part of the input parameters of the simulator. 

route = SIMULATOR( interNormal, interRoute, T, speed ); 

Route visualization 

Finally, the path followed by the aircraft and the transition planes are displayed. 

figure; 

scatter3(interRoute(:,1),interRoute(:,2),interRoute(:,3)); 

hold on 

plot3(route(:,1),route(:,2),-route(:,3),'Color','r'); 

title('Trajectory plot of Aerosonde mission in Sebangau National Park') 

xlabel('East(m)') 

ylabel('North(m)') 

zlabel('altitude(m)') 

txt_home = '\leftarrow Base camp'; 

txt_riverA = 'Sabangau river'; 

text( interRoute(1,1), interRoute(1,2), interRoute(1,3), txt_home ) 

text( interRoute(3,1), interRoute(3,2), interRoute(3,3), txt_riverA ) 

set(gcf,'color','w') 
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% Surveillance area visualization 

x = [3088.8 5551.7 5551.7 3088.8 3088.8]; 

y = [-8820.5 -8820.5 -10034.4 -10034.4 -8820.5]; 

z = [585 585 585 585 585]; 

hold on 

plot3( x, y, z) 

patch( x, y, z) 
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3.2 Annex A1.1. Mission planning 

function [ interNormal, interRoute ] = MISSION_PLANNING( homePos, photo_iniPos, netPos ) 

The mission planner takes into account aircraft capabilities and mission requirements and generates the 

waypoints that the uav must pass through to complete the photogrammetric survey. 

INPUT: 

 homePos is the location where the vehicle departures 

 photo_iniPos is the location where the vehicle starts the photogrametric survey 

 netPos is the location where the vehicle is recovered 

OUTPUT: 

 interNormal is an array containing the path's directions 

 interRoute is every intermediate place on the route used to switch between straight line 

following mode and orbit following mode 

Path planner 

Spacing between flight lines, number of flight paths, path length and path's main direction 

P_FLS = 243; 

P_NFP = 5; 

P_PL = 2400; 

P_dir = [0 -1 0]; 

 

% The road planner generates an orderly list of waypoints taking into 

% account only the mission requirements. 

waypoints = path_planner( homePos, photo_iniPos, P_dir, P_FLS, P_NFP, P_PL, 1 ); 

Path manager 

Minimum turning radius of the vehicle for the desired speed 

minRadius = 97; 

 

% Taking into account the aircraft's capabilities, the path manager 

% generates a list of transition planes out of the waypoint list generated 

% by the path planner. 

[interNormal, interRoute] = path_manager( waypoints, minRadius, netPos ); 

end 
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3.3 Annex A1.1.1. Path planner 

function waypoints = path_planner( home, W2, dir, FLS, NFP, PL, widen ) 

Taking into account the mission objectives, the path planner generates a list of waypoints. 

INPUT: 

 home is the departure and landing point 

 W2 is the initial waypoint (not departure point) 

 dir is the direction over wich we want to construct the path 

 FLS is the flight line spacing 

 NFP is the number of flight paths 

 PL is the path length 

 widen is used to extend the surveyed area 

OUTPUT: 

 waypoints is the generated list of waypoints 

Variable allocation and parameters 

waypoints = zeros(NFP*2,3); 

dirP = [-dir(2) dir(1) dir(3)]; 

L = 650;    landing_dist = 380; landing_height = 75; 

Waypoint list generation 

for i = 0:NFP 

Normal to direction of flight 

    waypoints(2*i+2,:) = W2 + FLS*dir*i - widen*L*dirP; 

Direction of flight 

    waypoints(2*i+3,:) = (W2 + PL*dirP) + FLS*dir*i + widen*L*dirP; 

Changing waypoint order to achieve zig-zag motion 

    if mod(2*i+2,4) == 0 

        aux = waypoints(2*i+2,:); 

        waypoints(2*i+2,:) = waypoints(2*i+3,:); 

        waypoints(2*i+3,:) = aux; 

    end 

end 

Including departure and landing approximation waypoints 
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waypoints(1,:) = home; 

waypoints(end+1,:) = [-landing_dist*sin(210) landing_dist*cos(210) landing_height]; 

waypoints(end+2,:) = home;  
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3.4 Annex A1.1.2. Path manager 

function [interNormal, interRoute] = path_manager( wp, minRadius, netPos ) 

The path manager generates a list of transition planes out of a waypoints list. 

INPUT: 

 wp contains each of the locations the vehicle is intended to visit. 

 minRadius is the minimum orbit radius the vehicle can follow. 

 netPos is the location where the vehicle is recovered. 

OUTPUT: 

 interNormal is an array containing the path's directions. 

 interRoute is every intermediate place on the route used to switch between straight line 

following mode and orbit following mode. 

Variable allocation 

 nInter Number of intersections between straight-line paths. Array with the 

 cuspAngle vector with the angles between straight-line paths 

 nTrans number of transitions (straight-line to/from orbit) 

 interNormal vector with the transition plane's normals 

 interRoute vector with the transition's positions 

nInter = size(wp,1)-2; 

cuspAngle = zeros(nInter,1); 

nTrans = nInter*2; 

interNormal = zeros(nTrans,3); 

interRoute = zeros(nTrans+2,3); 

Transition planes calculation. 

for i = 1:nInter-1 

    interNormal((i-1)*2 +1,:) = (wp(i+1,:) - wp(i,:))/sqrt((wp(i+1,1) - wp(i,1))^2 + (wp(i+1,2) 

- wp(i,2))^2 + (wp(i+1,3) - wp(i,3))^2); 

    interNormal((i-1)*2 +2,:) = (wp(i+2,:) - wp(i+1,:))/sqrt((wp(i+2,1) - wp(i+1,1))^2 + 

(wp(i+2,2) - wp(i+1,2))^2 + (wp(i+2,3) - wp(i+1,3))^2); 

    cuspAngle(i) = acos(dot(-interNormal((i-1)*2 +1,:),interNormal((i-1)*2 +2,:))); 

    interRoute((i-1)*2 +2,:) = wp(i+1,:) - (minRadius/tan(cuspAngle(i)/2))*interNormal((i-1)*2 

+1,:); 

    interRoute((i-1)*2 +3,:) = wp(i+1,:) + (minRadius/tan(cuspAngle(i)/2))*interNormal((i-1)*2 

+2,:); 

end 

Including departure and landing positions 

interRoute(1,:) = wp(1,:); interRoute(end-3,:) = [];       interRoute(end-2,:) = []; 

interRoute(end-1,:) = netPos;   interRoute(end,:) = netPos; 

end 
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3.5 Annex A1.2. Simulator 

function route = SIMULATOR( interNormal, interRoute, T, Va_c ) 

The simulator reproduces the behaviour of the aircraft from which the model is provided and returns 

the path followed by it. 

INPUT: 

 interNormal is an array containing the path's directions. 

 interRoute is every intermediate place on the route used to switch between straight line 

following mode and orbit following mode. 

 T is the base sampling time. 

 Va_c is the desired speed for the aircraft. 

OUTPUT: 

 route is each of the points the vehicle has flown through at a sampling rate of 1 second. 

Load aircraft 

Loading mass, control surfaces, attitude and kinematics. 

m = 13.5; 

vehicleIni; 

Simulation loop 

The uav starts flying in a straight line to the first waypoint. 

WPi = 2;   samplingIndex = 1; 

routeType = 1; 

route = interRoute(1,:); 

 

while WPi < size(interRoute,1) 

Path following 

The path following decides the height, direction and flight mode of the vehicle. When the mission is 

over a landing signal is activated. When ascending or descending, if the aircraft deviates from the 

command provided by the path following, it maintains altitude to adjust itself to it. 

    if WPi == size(interRoute,1)-1 

        land = 1; 

    else 

        land = 0; 

    end 

    [ altitude_c, course_c, routeType, next ] = path_following( interNormal, interRoute, WPi, 

pos, course, routeType, land ); 

    if flightPhase == 3 && -pos(3) > altitude_c 

        altitude_c = interRoute(WPi,3); 

    elseif flightPhase == 3 && -pos(3) < altitude_c 
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        altitude_c = interRoute(WPi,3); 

    end 

Autopilot 

The autopilot provides the actuations for the control surfaces to meet the demands of the path planner. 

    flightPhase = get_flightPhase( flightPhase, -pos(3), interRoute(WPi,3) ); 

    ctrl = autopilot( course_c, course, altitude_c, -pos(3), vehicAtt(1), vehicAtt(2), Va_c, 

relwind(1), relwind(3), flightPhase, bodyRate(1), bodyRate(2), T, startFlags );    startFlags = 

0; 

State observer 

The state observer provides an estimate of the aircraft's state, from kinematics and dynamics equations. 

    [ pos, vehicAtt, vehicRate, bodyVel, bodyRate, inerVel, course, relwind ] = get_state( pos, 

inerVel, vehicAtt, vehicRate, bodyVel, bodyRate, ctrl, wind, T, m ); 

Vehicle position sampling every second 

    if mod( samplingIndex, 1/T ) == 0 

        route(end+1,:) = pos; 

    end 

    samplingIndex = samplingIndex+1; 

    WPi = WPi + next; 

end 

end 
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3.6 Annex A1.2.1. Path following 

function [ altitude_c, course_c, routeType, next ] = path_following( interNormal, interRoute, 

wp_i, pos, course, routeType, land ) 

Calculates the altitude and course to follow knowing the control parameters and the type of path being 

currently followed. 

INPUT: 

 interNormal contains the path's directions 

 interRoute contains every intermediate place on the route used to change flight mode 

 wp_i is the next waypoint index 

 pos is the current position 

 course is the current course 

 routeType is the current route type being followed 

 land is a signal activated when landing is commanded 

OUTPUT: 

 altitude_c is the desired altitude for the vehicle 

 course_c is the desired course for the vehicle 

 routeType is the route type to be followed (straight & orbit) 

 next is a signal to increase waypoint index 

Control parameters 

k_path = 0.01; 

X_inf = 75;     X_inf = X_inf*pi/180; 

k_orbit = 1; 

minRadius = 97; 

Definitions 

straight = 1; 

orbit = 2; 

State machine 

Follow a straight line between the past and the current waypoint 

if routeType == straight || land 

    [ altitude_c, course_c ] = followStraightLine(interRoute(wp_i-1,:), interNormal(wp_i-1,:), 

pos, course, X_inf, k_path); 

    if dot(pos-interRoute(wp_i,:),interNormal(wp_i-1,:)) >= 0 

        next = 1; 

        routeType = orbit; 

    else 

        next = 0; 

    end 
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Follow an orbit to transition between waypoints 

elseif routeType == orbit  && ~land 

    lambda = get_lambda( interRoute(wp_i-1,:), interRoute(wp_i,:), interRoute(wp_i+1,:) ); 

    orbitCenter = get_orbitCenter( interRoute(wp_i-1,:), interRoute(wp_i,:), 

interRoute(wp_i+1,:), interRoute(wp_i+2,:)); 

    [ altitude_c, course_c ] = followOrbit(orbitCenter, minRadius, lambda, pos, course, 

k_orbit); 

    if dot(pos-interRoute(wp_i,:),interNormal(wp_i-1,:)) >= 0 

        next = 1; 

        routeType = straight; 

    else 

        next = 0; 

    end 

end 

end 
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3.7 Annex A1.2.1.1. Follow straight line 

function [ h_c, X_c ] = followStraightLine(r, q, p, X, X_inf, k_path) 

followStraightLine calculates the course and altitude needed to follow the specified straight path taking 

into account the associated coefficients. 

INPUT: 

 r (NED) is the straight-line-path's starting point. 

 q is the straight-line-path's direction. 

 p (NED) is the vehicle's current position. 

 X is the vehicle's current course. 

 X_inf is a control gain. A big angle gives smooth transitions. 

 k_path is a contorl gain. A small value gives smooth transitions. 

OUTPUT: 

 h_c altitude command. 

 X_c course command. 

Desired altitude computation 

qk = cross(q,[0 0 1]); 

n = qk/norm(qk); 

ep = p - r; 

s = ep - dot(ep,n)*n; 

h_c = r(3) + sqrt(s(1)^2+s(2)^2) * (q(3)/(q(1)^2+q(2)^2)); 

Desired course computation 

Xq = atan2(q(2),q(1)); 

while (Xq-X) < -pi 

    Xq = Xq + 2*pi; 

end 

while (Xq-X) > pi 

    Xq = Xq -2*pi; 

end 

epy = -sin(Xq)*(p(1)-r(1)) + cos(Xq)*(p(2)-r(2)); 

 

X_c = Xq - X_inf*2*atan(k_path*epy)/pi; 

end 
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3.8 Annex A1.2.1.2. Get lambda 

function lambda = get_lambda( w1, w2, w3 ) 

Determines the direction of rotation the vehicle must follow. 

INPUT: 

 w1 is the previous waypoint 

 w2 is the current waypoint 

 w3 is the next waypoints 

OUTPUT: 

 lambda 1: clockwise orbit   -1: anticlockwise orbit 

X = cross( w2-w1,w3-w1 ); 

 

if X(3) > 0 

    lambda = 1; 

elseif X(3) < 0 

    lambda = -1; 

else 

    lambda = 0; 

end 
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3.9 Annex A1.2.1.3. Get orbit centre 

 

function orbitCentre = get_orbitCenter( w1, w2, w3, w4 ) 

Calculates the position of the centre of an orbit around a waypoint given its four intersection planes. 

INPUT: 

 w1 = intersection plane(i-1) 

 w2 = intersection plane(i) 

 w3 = intersection plane(i+1) 

 w4 = intersection plane(i+2) 

OUTPUT: 

 orbitCenter is the position of the orbit's centre 

r1 = [w2(2)-w1(2), -w2(1)+w1(1), 0]; 

r2 = [w3(2)-w4(2), -w3(1)+w4(1), 0]; 

 

if ~norm(cross(r1,r2)) 

    orbitCentre = (w2+w3)/2; 

else 

    lambda = [r1(1) -r2(1); r1(2) -r2(2)]'*[w3(1)-w2(1);w3(2)-w2(2)]; 

    orbitCentre(1) = r1(1)*lambda(1) + w2(1); 

    orbitCentre(2) = r1(2)*lambda(2) + w2(2); 

    orbitCentre(3) = w1(3); 

end 

end 
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3.10 Annex A1.2.1.4. Follow orbit 

function [ h_c, X_c ] = followOrbit(c, minRadius, lambda, p, X, k_orbit) 

followOrbit calculates the course and altitude needed to follow the specified orbit taking into account 

the associated coefficients. 

INPUT: 

 c (NED) is the orbit's center. 

 minRadius is the minimum radius the vehicle can follow at the current speed. 

 lambda: 1.Clockwise orbit    -1.Counterclockwise orbit 

 p (NED) is the vehicle's current position. 

 X is the vehicle's current course. 

 k_orbit is a control gain. Small value gives smooth transitions. 

OUTPUT: 

 h_c altitude command. 

 X_c course command. 

Desired altitude computation 

h_c = c(3); 

Desired course computation 

d = sqrt((p(1)-c(1))^2+(p(2)-c(2))^2); 

phi = atan2(p(2)-c(2),p(1)-c(1)); 

while (phi-X) < -pi 

    phi = phi + 2*pi; 

end 

while (phi-X) > pi 

    phi = phi - 2*pi; 

end 

 

X_c = phi + lambda*(pi/2 + atan2(k_orbit*(d-minRadius),minRadius)); 

end 
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3.11 Annex A1.2.2. Get flight phase 

function newPhase = get_flightPhase( phase, h, h_d ) 

INPUT: 

 phase is the current flight phase. 

 h is the aircraft's altitude. 

 h_d is the desired altitude. 

OUTPUT: 

 newPhase 1.Take-off   2.Climb   3.Altitude hold   4.Descend 

takeoff = 1;    climb = 2;  altHold = 3;    descend = 4; 

Control parameters 

h_hold = 20;    h_takeoff = 10; 

State machine 

switch phase 

    case takeoff 

        if h >= h_takeoff 

            newPhase = climb; 

        else 

            newPhase = takeoff; 

        end 

    case climb 

        if h >= h_d - h_hold 

            newPhase = altHold; 

        elseif h < h_takeoff*0.9 

            newPhase = takeoff; 

        else 

            newPhase = climb; 

        end 

    case altHold 

        if h >= h_d + h_hold 

            newPhase = descend; 

        elseif h < h_d - h_hold 

            newPhase = climb; 

        else 

            newPhase = altHold; 

        end 

    case descend 

        if h < h_d + h_hold 

            newPhase = altHold; 

        else 

            newPhase = descend; 

        end 

end 

end 
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3.12 Annex A1.2.3. Autopilot 

function ctrl = autopilot( X_c, X, h_c, h, roll, pitch, Va_c, Va, beta, flightPhase, p, q, Ts, 

start_flags ) 

The autopilot, which is divided into a longitudinal and a lateral part, determines the positions of the 

control surfaces and the speed of the engine to reach the desired speed, height and course. The 

autopilot is implemented via PIDs ordered in a cascade fashion. A state machine is used to implement 

the longitudinal control. 

INPUT: 

 X_c is the desired course 

 X is the current course 

 h_c is the desired altitude 

 h is the current altitude 

 roll is the current roll angle 

 pitch is the current pitch angle 

 Va_c is the desired speed with respect to the surrounding air mass 

 Va is the current speed with respect to the surrounding air mass 

 beta is the sideslip angle 

 flightPhase is the phase of flight: [take-off, climb, altitude hold, descend] 

 p is the roll rate 

 q is the pitch rate 

 Ts is the autopilot sampling time 

 start_flags is a flag to reset the controller for the first time 

OUTPUT: 

 ctrl are de actuations: ailerons, elevator, rudder, throttle 

Definitions 

takeoff = 1; 

climb = 2; 

altHold = 3; 

descend = 4; 

Control parameters and physical limitations 

The pitch hold loop has no integrator because having one would severely limit the bandwidth of the 

inner loop. The sideslip hold loop does not have an integrator because, if it does not reach the desired 

value in a short time (e.g. in a straight line with cross wind), the integrator reaches a very high value and 

becomes unstable. In order to incorporate an integrator, a timeout condition should be included in the 

controller reset. 

limit_ailerons = 45;    limit_ailerons = limit_ailerons*pi/180; 

limit_elevator = 45;    limit_elevator = limit_elevator*pi/180; 

limit_rudder = 30;      limit_rudder = limit_rudder*pi/180; 

limit_pitch = 20;       limit_pitch = limit_pitch*pi/180; 

limit_roll = 45;        limit_roll = limit_roll*pi/180; 
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dt_max = 0.5; 

pitch_takeoff = 11;     pitch_takeoff = pitch_takeoff*pi/180; 

 

kp_roll = 0.9;          ki_roll = 2.7;      kd_roll = 0.01; 

kp_x = 3.9;             ki_x = 0.07; 

kp_pitch = -5.1;        kd_pitch = -1.2; 

kp_h = 0.047;           ki_h = 0.009; 

kp_B = 2; 

kp_v2 = -0.12;          ki_v2 = -0.1; 

kp_v = 0.036;           ki_v = 0.0274; 

 

ctrl = [0 0 0 0]; 

Flag management 

Flags are used to reset each of the PID structures that govern the actuators. 

persistent cPrev_X; 

persistent cPrev_h; 

persistent cPrev_Va; 

persistent cPrev_roll; 

 

if start_flags 

    flag_roll = 1;  flag_pitchV = 1;    flag_pitchH = 1;    flag_ailerons = 1;  flag_throttle = 

1; 

    cPrev_X = X_c;  cPrev_h = h_c;      cPrev_Va = Va_c; 

else 

    if cPrev_X ~= X_c || X == X_c 

        flag_roll = 1; 

    else 

        flag_roll = 0; 

    end 

    if cPrev_h ~= h_c || h == h_c 

        flag_pitchH = 1; 

    else 

        flag_pitchH = 0; 

    end 

    if cPrev_Va ~= Va_c || Va == Va_c 

        flag_pitchV = 1; 

        flag_throttle = 1; 

    else 

        flag_pitchV = 0; 

        flag_throttle = 0; 

    end 

    cPrev_X = X_c; 

    cPrev_h = h_c; 

    cPrev_Va = Va_c; 

end 

Lateral autopilot 

Includes ailerons and rudder control 

roll_c = ctrl_roll( X_c, X, flag_roll, kp_x, ki_x, limit_roll, Ts ); 

if start_flags 
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    cPrev_roll = roll_c; 

else 

    if cPrev_roll ~= roll_c || roll == roll_c 

        flag_ailerons = 1; 

    else 

        flag_ailerons = 0; 

    end 

    cPrev_roll = roll_c; 

end 

ctrl(1) = ctrl_ailerons( roll_c, roll, flag_ailerons, kp_roll, ki_roll, kd_roll, limit_ailerons, 

Ts, p ); 

ctrl(3) = ctrl_rudder( 0, beta, kp_B, limit_rudder ); 

Longitudinal 

Includes elevator and throttle control. The first three calls are used to reset persistent variables. 

switch flightPhase 

    case takeoff 

        pitch_c = ctrl_pitch( Va_c, Va, flag_pitchV, kp_v2, ki_v2, limit_pitch, Ts ); 

        pitch_c = ctrl_pitch( h_c, h, flag_pitchH, kp_h, ki_h, limit_pitch, Ts ); 

        ctrl(4) = ctrl_throttle(Va_c, Va, flag_throttle, kp_v, ki_v, dt_max, Ts); 

 

        pitch_c = pitch_takeoff; 

        ctrl(4) = dt_max; 

        ctrl(2) = ctrl_elevator( pitch_c, pitch, kp_pitch, kd_pitch, limit_elevator, q ); 

    case climb 

        pitch_c = ctrl_pitch( Va_c, Va, flag_pitchV, kp_v2, ki_v2, limit_pitch, Ts ); 

        ctrl(4) = dt_max; 

        ctrl(2) = ctrl_elevator( pitch_c, pitch, kp_pitch, kd_pitch, limit_elevator, q ); 

    case altHold 

        pitch_c = ctrl_pitch( h_c, h, flag_pitchH, kp_h, ki_h, limit_pitch, Ts ); 

        ctrl(4) = ctrl_throttle(Va_c, Va, flag_throttle, kp_v, ki_v, dt_max, Ts); 

        ctrl(2) = ctrl_elevator( pitch_c, pitch, kp_pitch, kd_pitch, limit_elevator, q ); 

    case descend 

        pitch_c = ctrl_pitch( Va_c, Va, flag_pitchV, kp_v2, ki_v2, limit_pitch, Ts ); 

        ctrl(4) = 0; 

        ctrl(2) = ctrl_elevator( pitch_c, pitch, kp_pitch, kd_pitch, limit_elevator, q ); 

end 

end 
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3.13 Annex A1.2.3.1. Control roll 

function rollC = ctrl_roll( y_c, y, flag, kp, ki, limit, Ts ) 

The roll control function calculates the needed roll attitude using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 flag is used to reset the ingegrator 

 kp is the proportional gain 

 ki is the integral gain 

 limit is the saturation of the signal 

 Ts is the controller sampling time 

OUTPUT: 

 rollC is the roll command 

Set integrator 

persistent integrator; 

persistent error_d1; 

 

if flag 

    integrator = 0; 

    error_d1 = 0; 

end 

 

error = y_c - y; 

integrator = integrator + (Ts/2)*(error + error_d1); 

error_d1 = error; 

Set roll command 

rollC = kp*error + ki*integrator; 

 

if rollC > limit 

    rollC = limit; 

elseif rollC < -limit; 

    rollC = -limit; 

else 

end 

Integrator anti-wind-up scheme 

if ki ~=0 

    u_unsat = kp*error + ki*integrator; 

    integrator = integrator + Ts/ki*(rollC-u_unsat); 

end  
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3.14 Annex A1.2.3.2. Control ailerons 

function da = ctrl_ailerons( y_c, y, flag, kp, ki, kd, limit, Ts, p ) 

The ailerons control function calculates the needed ailerons position using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 flag is used to reset the ingegrator 

 kp is the proportional gain 

 ki is the integral gain 

 kd is the derivative gain 

 limit is the saturation of the signal 

 Ts is the controller sampling time 

 p is the roll rate 

OUTPUT: 

 da is the ailerons command 

Set integrator 

persistent integrator; 

persistent error_d1; 

 

if flag 

    integrator = 0; 

    error_d1 = 0; 

end 

 

error = y_c - y; 

integrator = integrator + (Ts/2)*(error + error_d1); 

error_d1 = error; 

Set aileron position command 

da = kp*error + ki*integrator - kd*p; 

if da > limit 

    da = limit; 

elseif da < -limit; 

    da = -limit; 

end 

Integrator anti-wind-up scheme 

if ki ~=0 

    u_unsat = kp*error + ki*integrator - kd*p; 

    integrator = integrator + Ts/ki*(da-u_unsat); 

end 
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3.15 Annex A1.2.3.3. Control rudder 

function dr = ctrl_rudder( y_c, y, kp, limit ) 

The rudder control function calculates the needed rudder position using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 kp is the proportional gain 

 limit is the saturation of the signal 

OUTPUT: 

 dr is the rudder command 

Set rudder position command 

error = y_c - y; 

 

dr = kp*error; 

 

if dr > limit 

    dr = limit; 

elseif dr < -limit; 

    dr = -limit; 

else 

end 

end 
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3.16 Annex A1.2.3.4. Control pitch 

function pitchC = ctrl_pitch( y_c, y, flag, kp, ki, limit, Ts ) 

The pitch control function calculates the needed pitch attitude using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 flag is used to reset the ingegrator 

 kp is the proportional gain 

 ki is the integral gain 

 limit is the saturation of the signal 

 Ts is the controller sampling time 

OUTPUT: 

 pitchC is the pitch command 

Set integrator 

persistent integrator; 

persistent error_d1; 

 

if flag 

    integrator = 0; 

    error_d1 = 0; 

end 

 

error = y_c - y; 

integrator = integrator + (Ts/2)*(error + error_d1); 

error_d1 = error; 

Set pitch command 

pitchC = kp*error + ki*integrator; 

 

if pitchC > limit 

    pitchC = limit; 

elseif pitchC < -limit; 

    pitchC = -limit; 

else 

end 

Integrator anti-wind-up scheme 

if ki ~=0 

    u_unsat = kp*error + ki*integrator; 

    integrator = integrator + Ts/ki*(pitchC-u_unsat); 

end 
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3.17 Annex A1.2.3.5. Control Throttle 

function dt = ctrl_throttle( y_c, y, flag, kp, ki, limit, Ts ) 

The throttle control function calculates the needed throttle velocity using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 flag is used to reset the ingegrator 

 kp is the proportional gain 

 ki is the integral gain 

 limit is the saturation of the signal 

 Ts is the controller sampling time 

OUTPUT: 

 dt is the throttle command 

Set integrator 

persistent integrator; 

persistent error_d1; 

 

if flag 

    integrator = 0; 

    error_d1 = 0; 

end 

 

error = y_c - y; 

integrator = integrator + (Ts/2)*(error + error_d1); 

error_d1 = error; 

Set throttle speed command 

dt = kp*error + ki*integrator; 

 

if dt > limit 

    dt = limit; 

elseif dt < 0; 

    dt = 0; 

else 

end 

Integrator anti-wind-up scheme 

if ki ~=0 

    u_unsat = kp*error + ki*integrator; 

    integrator = integrator + Ts/ki*(dt-u_unsat); 

end 
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3.18 Annex A1.2.3.6. Control elevator 

function de = ctrl_elevator( y_c, y, kp, kd, limit, q ) 

The elevator control function calculates the needed elevator position using a PID. 

INPUT: 

 y_c desired output 

 y current output 

 kp is the proportional gain 

 kd is the derivative gain 

 limit is the saturation of the signal 

 q is the pitch rate 

OUTPUT: 

 de is the elevator command 

Set elevator position command 

de = kp*(y_c-y) - kd*q; 

 

if de > limit 

    de = limit; 

elseif de < -limit; 

    de = -limit; 

end 

end 
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3.19 Annex A1.2.4. Get state 

function [ pos, vehicAtt, vehicRate, bodyVel, bodyRate, inerVel, course, relwind ] = get_state( 

pos, inerVel, vehicAtt, vehicRate, bodyVel, bodyRate, ctrl, wind, T, m ) 

Estimates the state of the vehicle using kinematic and dynamics equations and calculating the forces 

and moments acting on the vehicle. 

INPUT: 

 pos = [posN posE posD] 

 inerVel = [posN_dot posE_dot posD_dot] 

 vehicAtt = [roll pitch yaw] 

 vehicRate = [pitch_dot roll_dot yaw_dot] 

 bodyVel = [u v w] 

 bodyRate = [p q r] 

 ctrl = [da de dr dt] 

 wind = [Uw Vw Ww] 

 T is the sampling time 

 m is the mass of the vehicle 

OUTPUT: 

 pos = [posN posE posD] 

 vehicAtt = [roll pitch yaw] 

 vehicRate = [pitch_dot roll_dot yaw_dot] 

 bodyVel = [u v w] 

 bodyRate = [p q r] 

 inerVel = [posN_dot posE_dot posD_dot] 

 course is the current course 

 relwind = [Va alfa beta] 

Forces and moments 

relwind = get_relwind( bodyVel, wind ); 

forces = get_forces( vehicAtt, bodyRate, ctrl, relwind ); 

moments = get_moments( bodyRate, ctrl, relwind ); 

Kinematics and dynamics 

bodyRate2 = get_bodyRate2( bodyRate, moments ); 

bodyRate = get_bodyRate( bodyRate, bodyRate2, T ); 

bodyAcc = get_bodyAcc( bodyRate, bodyVel, forces, m ); 

bodyVel = get_bodyVel( bodyVel, bodyAcc, T ); 

vehicRateo = vehicRate; 

vehicRate = get_vehicRate( vehicAtt, bodyRate ); 

vehicAtt = get_vehicAtt( vehicAtt, vehicRateo, vehicRate, T ); 

inerVelo = inerVel; 

inerVel = get_inerVel( vehicAtt, bodyVel ); 

course = atan2(inerVel(2),inerVel(1)); 

pos = get_pos( pos, inerVelo, inerVel, T );  
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3.20 Annex A1.2.4.1. Get relative wind 

function relwind = get_relwind( bodyVel, wind ) 

Calculates the speed with respect to the surrouding air mass, the angle of attack and the sideslip angle. 

INPUT: 

 bodyVel = [u v w] 

 wind = [uw vw ww] 

OUTPUT: 

 relwind = [Va alfa beta] 

relwind(1) = sqrt((bodyVel(1)-wind(1))^2+(bodyVel(2)-wind(2))^2+(bodyVel(3)-wind(3))^2); 

if (bodyVel(3)-wind(3)) == 0 && (bodyVel(1)-wind(1)) == 0 

    relwind(2) = 0; 

else 

    relwind(2) = atan((bodyVel(3)-wind(3))/(bodyVel(1)-wind(1))); 

end 

if (bodyVel(2)-wind(2)) == 0 && relwind(1) == 0 

    relwind(3) = 0; 

else 

    relwind(3) = asin((bodyVel(2)-wind(2))/(relwind(1))); 

end 

 

relwind = [relwind(1) relwind(2) relwind(3)]; 

end 
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3.21 Annex A1.2.4.2. Get forces 

function forces = get_forces( vehicAtt, bodyRate, ctrl, relwind ) 

Calculates the forces acting on the aircraft. 

INPUT: 

 vehicAtt = [roll pitch yaw] 

 bodyRate = [p q r] 

 ctrl = [da de dr dt] 

 relwind = [Va alfa beta] 

OUTPUT: 

 forces = [fx fy fz] 

Definitions 

m = 13.5; 

S = 0.55; 

b = 2.8956; 

c = 0.18994; 

Sprop = 0.2027; 

kmotor = 80; 

e = 0.9; 

CL0 = 0.28; 

CD0 = 0.03; 

CLa = 3.45; 

CLq = 0; 

CDq = 0; 

CLde = -0.36; 

CDde = 0; 

Cprop = 1; 

M = 50; 

a0 = 0.4712; 

CY0 = 0; 

CYB = -0.98; 

CYp = 0; 

CYr = 0; 

CYda = 0; 

CYdr = -0.17; 

AR = b^2/S; 

ro = 1.2682; 

g = 9.807; 

Forces calculation 

sigma = (1+exp(-M*(relwind(2)-a0))+exp(M*(relwind(2)+a0)))/((1+exp(-M*(relwind(2)-

a0)))*(1+exp(M*(relwind(2)+a0)))); 

 

CD_a = CD0 + (CL0 + CLa*relwind(2))^2/(pi*e*AR); 

CL_a = (1-

sigma)*(CL0+CLa*relwind(2))+sigma*(2*sign(relwind(2))*cos(relwind(2))*(sin(relwind(2)))^2); 
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CX_a = -CD_a*cos(relwind(2))+CL_a*sin(relwind(2)); 

CXq_a = -CDq*cos(relwind(2))+CLq*sin(relwind(2)); 

CXde_a = -CDde*cos(relwind(2))+CLde*sin(relwind(2)); 

CZ_a = -CD_a*sin(relwind(2))-CL_a*cos(relwind(2)); 

CZq_a = -CDq*sin(relwind(2))-CLq*cos(relwind(2)); 

CZde_a = -CDde*sin(relwind(2))-CLde*cos(relwind(2)); 

 

forces = [-m*g*sin(vehicAtt(2)) m*g*cos(vehicAtt(2))*sin(vehicAtt(1)) 

m*g*cos(vehicAtt(2))*cos(vehicAtt(1))]... 

    + 0.5*ro*relwind(1)^2*S*[CX_a+CXq_a*c*bodyRate(2)/(2*relwind(1)+0.000001)+CXde_a*ctrl(2) 

CY0+CYB*relwind(3)+CYp*b*bodyRate(1)/(2*relwind(1)+0.000001)+CYr*b*bodyRate(3)/(2*relwind(1)+0.0

00001)+CYda*ctrl(1)+CYdr*ctrl(3) 

CZ_a+CZq_a*c*bodyRate(2)/(2*relwind(1)+0.000001)+CZde_a*ctrl(2)]... 

    + 0.5*ro*Sprop*Cprop*[(kmotor*ctrl(4))^2-relwind(1)^2 0 0]; 

end 
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3.22 Annex A1.2.4.3. Get moments 

function moments = get_moments( bodyRate, ctrl, relwind ) 

Calculates the moments acting on the aircraft. 

INPUT: 

 bodyRate = [p q r] 

 ctrl = [da de dr dt] 

 relwind = [Va alfa beta] 

OUTPUT: 

 moments = [l m n] 

Definitions 

S = 0.55; 

b = 2.8956; 

c = 0.18994; 

kTp = 0; 

komega = 0; 

Cm0 = -0.02338; 

Cma = -0.38; 

Cmq = -3.6; 

Cmde = -0.5; 

Cndr = -0.032; 

Cl0 = 0; 

Cn0 = 0; 

ClB = -0.12; 

CnB = 0.25; 

Clp = -0.26; 

Cnp = 0.022; 

Clr = 0.14; 

Cnr = -0.35; 

Clda = 0.08; 

Cnda = 0.06; 

Cldr = 0.105; 

ro = 1.2682; 

Moments calculation 

moments = 

0.5*ro*relwind(1)^2*S*[b*(Cl0+ClB*relwind(3)+Clp*b*bodyRate(1)/(2*relwind(1)+0.000001)+Clr*b*bod

yRate(3)/(2*relwind(1)+0.000001)+Clda*ctrl(1)+Cldr*ctrl(3)) 

c*(Cm0+Cma*relwind(2)+Cmq*c*bodyRate(2)/(2*relwind(1)+0.000001)+Cmde*ctrl(2)) 

b*(Cn0+CnB*relwind(3)+Cnp*b*bodyRate(1)/(2*relwind(1)+0.000001)+Cnr*b*bodyRate(3)/(2*relwind(1)+

0.000001)+Cnda*ctrl(1)+Cndr*ctrl(3))]... 

    + [-kTp*(komega*ctrl(4))^2 0 0]; 

end  
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3.23 Annex A1.2.4.4. Get body rate 2 

function bodyRate2 = get_bodyRate2( bodyRate, moments ) 

Calculates the angular accelerations. 

INPUT: 

 bodyRate = [p q r] 

 moments = [l m n] 

OUTPUT: 

 bodyRate2 = [p_dot q_dot r_dot] 

Jx = 0.8244; 

Jy = 1.135; 

Jz = 1.759; 

Jxz = 0.1204; 

gamma0 = Jx*Jz - Jxz*Jxz; 

gamma = zeros(8,1); 

gamma(1) = Jxz*(Jx - Jy + Jz)/gamma0; 

gamma(2) = (Jz*(Jz - Jy) + Jxz*Jxz)/gamma0; 

gamma(3) = Jz/gamma0; 

gamma(4) = Jxz/gamma0; 

gamma(5) = (Jz - Jx)/Jy; 

gamma(6) = Jxz/Jy; 

gamma(7) = (Jx*(Jx - Jy) + Jxz*Jxz)/gamma0; 

gamma(8) = Jx/gamma0; 

 

 

bodyRate2 = [gamma(1)*bodyRate(1)*bodyRate(2)-gamma(2)*bodyRate(2)*bodyRate(3),... 

    gamma(5)*bodyRate(1)*bodyRate(3)-gamma(6)*(bodyRate(1)^2-bodyRate(3)^2),... 

    gamma(7)*bodyRate(1)*bodyRate(2)-gamma(1)*bodyRate(2)*bodyRate(3)]... 

    +[gamma(3)*moments(1)+gamma(4)*moments(3) moments(2)/Jy 

gamma(4)*moments(1)+gamma(8)*moments(3)]; 

end 

  



 

  Annexes 

92 

 

92 

3.24 Annex A1.2.4.5 Get body rate 

function bodyRate = get_bodyRate( bodyRate, bodyRate2, T ) 

Calculates the angular rates defined with respect to a reference system linked to the vehicle. 

INPUT: 

 bodyRate = [p q r] 

 bodyRate2 = [p_dot q_dot r_dot]s 

 T is the sampling time 

OUTPUT: 

 bodyRate = [p q r] 

bodyRate = bodyRate + bodyRate2*T; 

end 
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3.25 Annex A1.2.4.6. Get body accelerations 

function bodyAcc = get_bodyAcc( bodyRate, bodyVel, forces, m ) 

Calculates the accelerations defined with respect to a reference system linked to the vehicle. 

INPUT: 

 bodyRate = [p q r] 

 bodyVel = [u v w] 

 forces = [fx fy fz] 

 m is the mass of the vehicle 

OUTPUT: 

 bodyAcc = [u_dot v_dow w_dot] 

bodyAcc = [bodyRate(3)*bodyVel(2)-bodyRate(2)*bodyVel(3) bodyRate(1)*bodyVel(3)-

bodyRate(3)*bodyVel(1) bodyRate(2)*bodyVel(1)-bodyRate(1)*bodyVel(2)]... 

    + [forces(1) forces(2) forces(3)]/m; 

end 
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3.26 Annex A1.2.4.7. Get body velocities 

function bodyVel = get_bodyVel( bodyVel, bodyAcc, T ) 

Calculates the velocity defined with respect to a reference system linked to the vehicle. 

INPUT: 

 bodyVel = [u v w] 

 bodyAcc = [u_dot v_dow w_dot] 

 T (sampling period) 

OUTPUT: 

 bodyVel = [u v w] 

bodyVel = bodyVel + bodyAcc*T; 

end 
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3.27 Annex A1.2.4.8. Get vehicle rates 

function vehicRate = get_vehicRate( vehicAtt, bodyRate ) 

Calculates the angular rate of the vehicle using the kinematics equation. 

INPUT: 

 vehicAtt = [roll pitch yaw] 

 bodyRate = [p q r] 

OUTPUT: 

 vehicRate = [pitch_dot roll_dot yaw_dot] 

body2vehicle = [1 sin(vehicAtt(1))*tan(vehicAtt(2)) cos(vehicAtt(1))*tan(vehicAtt(2));... 

    0 cos(vehicAtt(1)) -sin(vehicAtt(2));... 

    0 sin(vehicAtt(1))/cos(vehicAtt(2)) cos(vehicAtt(1))/cos(vehicAtt(2))]; 

 

vehicRate = body2vehicle*bodyRate'; 

vehicRate = vehicRate'; 

end 
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3.28 Annex A1.2.4.9. Get vehicle attitude 

function vehicAtt = get_vehicAtt( vehicAtto, vehicRateo, vehicRatef, T ) 

Calculates the attitude (-π,π) of the vehicle using the kinematics equation. 

INPUT: 

 vehicAtto is the previous attitude. 

 vehicRateo = [pitch_dot roll_dot yaw_dot] (previous). 

 vehicRatef = [pitch_dot roll_dot yaw_dot] (last). 

 T is the sampling time. 

OUTPUT: 

 vehicAtt = [pitch roll yaw] 

vehicAtt = vehicAtto + (vehicRateo + vehicRatef)*T/2; 

 

while vehicAtt(1) > pi || vehicAtt(1) < -pi 

    if vehicAtt(1) > pi 

        vehicAtt(1) = vehicAtt(1) - 2*pi; 

    elseif vehicAtt(1) < -pi 

        vehicAtt(1) = vehicAtt(1) + 2*pi; 

    end 

end 

 

while vehicAtt(2) > pi || vehicAtt(2) < -pi 

    if vehicAtt(2) > pi 

        vehicAtt(2) = vehicAtt(2) - 2*pi; 

    elseif vehicAtt(2) < -pi 

        vehicAtt(2) = vehicAtt(2) + 2*pi; 

    end 

end 

 

while vehicAtt(3) > pi || vehicAtt(3) < -pi 

    if vehicAtt(3) > pi 

        vehicAtt(3) = vehicAtt(3) - 2*pi; 

    elseif vehicAtt(3) < -pi 

        vehicAtt(3) = vehicAtt(3) + 2*pi; 

    end 

end 

end 
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3.29 Annex A1.2.4.10. Get inertial velocity 

function inerVel = get_inerVel( vehicAtt, bodyVel ) 

Calculates the inertial speed give the attitude and speed in relation to a reference system attached to 

the vehicle. 

INPUT: 

 vehicAtt = [roll pitch yaw] 

 bodyVel = [u v w] 

OUTPUT: 

 inerVel = [posN_dot posE_dot posD_dot] 

body2inertial = [cos(vehicAtt(2))*cos(vehicAtt(3)) 

sin(vehicAtt(1))*sin(vehicAtt(2))*cos(vehicAtt(3))-cos(vehicAtt(1))*sin(vehicAtt(3)) 

cos(vehicAtt(1))*sin(vehicAtt(2))*cos(vehicAtt(3))+sin(vehicAtt(1))*sin(vehicAtt(3));... 

    cos(vehicAtt(2))*sin(vehicAtt(3)) 

sin(vehicAtt(1))*sin(vehicAtt(2))*sin(vehicAtt(3))+cos(vehicAtt(1))*cos(vehicAtt(3)) 

cos(vehicAtt(1))*sin(vehicAtt(2))*sin(vehicAtt(3))-sin(vehicAtt(1))*cos(vehicAtt(3));... 

    -sin(vehicAtt(2)) sin(vehicAtt(1))*cos(vehicAtt(2)) cos(vehicAtt(1))*cos(vehicAtt(2))]; 

 

inerVel = body2inertial*bodyVel'; 

inerVel = inerVel'; 

end 
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3.30 Annex A1.2.4.11. Get position 

function pos = get_pos( poso, inerVelo, inerVelf, T ) 

Calculates the position of the vehicle using the kinematics equation. 

INPUT: 

 poso is the previous position of the vehicle. 

 inerVelo = [posN_dot posE_dot posD_dot] (previous). 

 inerVelf = [posN_dot posE_dot posD_dot] (last). 

 T is the sampling time. 

OUTPUT: 

 pos = [posN posE posD] 

pos = poso + (inerVelo + inerVelf)*T/2; 

end 
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4. APPENDIX 

4.1 Phase One’s iXU-RS 1000 Aerial Camera Specifications 

 

 

The main reason I chose Phase One Aerial Camera Systems is because their cameras are designed exclusively 

for aerial photography and are widely used all over the world for studies such as this. The cameras are very 

suitable for use on UAVs given their light weight frame, reliability at high shutter speed, and excellent results 

even with vibrations and different light conditions. They also include features such us: scability to form multi-

camera arrays as well as easy integration with flight management systems and GPS/IMU receivers. 

As weather conditions deteriorate, the CMOS technology of the iXU-RS 1000 enables to move from ISO 50 

all the way up to 6400, providing quality images all across the ISO range, so they are a great choice for 

projects where light conditions can’t be predicted (as in forests). The 100 MP sensor, offers a small-bodied 

(the body is barely wider than their lens barrels), light weight (starting from 1.25 kg) medium format camera 

with high performance optics. The camera delivers 11 608 pixels cross-track coverage, wich is 12 percent 

greater than previously available medium format aerial camera systems. 

Phase One cameras are easily integrated with UAVs given the comprehensive documentation, including 2D 

and 3D drawings that is available in the manufacturer’s web. The cameras also have predefined settings for the 

most popular GNSS receivers and have the ability to write the IMU/GNSS data directly to the EXIF (a 

standard that specifies the formats for images tags used by digital cameras) of each file, creating geo-tagged 

images. The reliance of the RS shutter’s capacity of 500 000 cycles along with the exposure time of 1/2500 s 

enables faster flying, and allows to execute and manage the most demanding aerial photography missions with 

higher operational efficiency, reliability, and in a cost effective way. 

  

Fig. 77 iXU-RS 1000 with different lenses 
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4.1.1  4-Band Solution. Four-Channel Imaging 

 

 

Phase One offers a fully automatic solution for capturing and processing 4-Band imagery, specifically 

designed for photogrammetric airborne tasks. It uses two synchronized Phase One metric calibrated cameras 

(RGB and NIR) mounted side by side on a specially designed base plate, an iX Controller computer and the iX 

Capture software. The software automatically generates distortion-free images and performs fine co-

registration of pixels from the NIR to the RGB images, including processing different image sizes. 

NIR wave length is very important for analyzing and detecting vegetation. In the past, capturing and analyzing 

images of vegetation required analog cameras using color or black and white infrared film. Using film 

presented challenges as film reacted differently to the infrared and visual wavelenghts and a lot of calibration 

was needed. Today’s digital sensors offer a much easier workflow and have a real benefit, as they are sensitive 

to near infrared from 720 nm up to a wave lenght of approximately 1100 nm.  

In digital cameras, users don’t want their images recording NIR, which destroys the image, because the focus 

position is different for visible light and NIR and a combined visual and NIR image would appear unusable. 

To isolate the specific region of light that is needed to capture, an IR pass filter, which blocks visual light and 

only allows NIR light to pass from a specific wavelength, is used. Since NIR and visual light have different 

wavelengths, the focus positions are different, which requires the camera to have a different infinity focus. 

The filter used to block specific wavelengths can be screwed in front of the lens or even placed in front of the 

sensor instead of the optical glass. When a filter is placed in front of the sensor, the camera can only be used 

for one purpose only. To mount the cameras side by side, a plate is needed on which both cameras can be 

attached in the nadir (the point directly below) position so that both footprints are almost identical. A Phase 

One multi-sync cable daisy chains the cameras together, enabling a synchronization speed of 100 

microseconds. When used with Phase One’s iX Capture software, an operator can control each camera (e.g. 

ISO, shutter speed and aperture), as well as view each image after it is captured. 

If two cameras are mounted together, both capturing the same footprint by pointing nadir, their images can be 

combined in post processing to create four-channel images. One camera would be capturing visual light and 

the second one would have a filter attached to its lens to block visual light. 

The images captured from RGB and NIR cameras can be merged in post processing software. Since our eyes 

can only see visual light and monitors can only display RGB, the merged image is normally displayed as a 

color infrared (CIR) in the following manner: red channel is replaced by the infrared, green channel is replaced 

by the red and blue channel is replaced by the green. These images typically display vegetation as red. 

  

Fig. 78 Phase One 4-band base plate and cameras 
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Four-channel imagery can be used to check when crops are healthy. Geo-referenced 4-channel images indicate 

where to actuate (if necessary) by flying over the field with a narrow band filter to match the bandwith with the 

tabulated “healthy” values. 

4.1.2 iXU-RS 1000 Aerial Camera Technical Specifications 

 

Resolution 100 MP (11608 x 8708) 

Pixel Size 4.6 micron 

Sensor size effective 53.4 x 40.0 mm 

Light sensitivity (ISO) 50-6400 

Shutter speed Leaf shutter: up to 1/2500 second 

Data storage 1 TB SSD storage 

Fig. 79 CIR Aerial Photo 
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Capture rate – full resolution frame 0.6 s 

Output formats Phase One RAW, TIF, JPG, CIR and NDVI 

Weight (excluding lens) 0.930 kg 

Temperature -10 ºC to 40 ºC 

Humidity 15 to 80% (non-condensing) 

Table 10 iXU-RS 1000 aerial camera specifications 

4.1.3 Rodenstock 90 mm f/5.6 Lens Specifications 

The choice of this lens comes from the fact that it enables the user to take images with very little distortion, 

without having to fly too close to the ground and, therefore allows to have more than enough time between 

shots, which in turn improves the accuracy of the system. 

 

Aperture range f/5.6 – f/22 

LS shutter speed max. Up to 1/2000 sec 

Dimensions 97.4 x 93 x 218 mm 

Weight 1150 g 

Angle of view 100 MP 33.0º (Long side) 25.1º (Short side) 

Table 11 Rodenstock 90 mm f/5.6 lens specifications 
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4.2 Textron System’s Aerosonde UAV 

Aerosonde is a small unmanned aerial vehicle (SUAV) designed to collect weather data, including 

temperature, atmospheric pressure, humidity, and wind measurements over oceans and remote areas. The 

aircraft was also the first of his kind to cross the Atlantic Ocean and  the first unmanned vehicle to penetrate 

tropical cyclones. 

 

 

Aerosonde is a widely used unmanned aircraft and hence the umpteen information (mass, geometry, 

propulsion and aerodynamic coefficients) available to the public. The table below is a recollection of 

aerodynamic coefficients and mass properties of the vehicle. 

 

Parameter Value Long. coef. Value Lat. coef. Value 

m 13.5 kg CL0 0.28 CY0 0 

Jx 0.8244 kg m2 CD0 0.03 Cl0 0 

Jy 1.135 kg m2 Cm0 -0.02338 Cn0 0 

Jz 1.759 kg m2 CLα 3.45 CYβ -0.98 

Jxz 0.1204 kg m2 CDα 0.3 Clβ -0.12 

S 0.55 m2 Cmα -0.38 Cnβ 0.25 

b 2.8956 m CLq 0 CYp 0 

c 0.18994 m CDq 0 Clp -0.26 

Sprop 0.2027 m2 Cmq -3.6 Cnp 0.022 

kmotor 80 CLδe -0.36 CYr 0 

kTp 0 CDδe 0 Clr 0.14 

Fig. 80 Textron System's Aerosonde UAV 
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kΩ 0 Cmδe -0.5 Cnr -0.35 

e 0.9 Cprop 1.0 CYδa 0 

  M 50 Clδa 0.08 

  α0 0.4712 Cnδa 0.06 

  є 0.1592 CYδr -0.17 

  CDp 0.0437 Clδr 0.105 

  Cnδr -0.032   

Table 12 Aerodynamic coefficients for the Aerosonde UAV 

4.2.1 Aerosonde Specifications 

 

Wing span 2.9 m 

Engine 20 or 26 cc, 750 up to 1300 watt 

MTOW 17.7 or 24.9 kg depending on engine type 

Navigation GPS 

Take-off Catapult or car roof rack 

Landing On net or belly 

Communications Radio or satellite 

Range >3000 km 

Endurance >30 h 

Service altitude range 100 – 4000 m 

Maximum altitude range 20 – 4572 m 

Cruise speed 111 km/h 

Max. speed 148 km/h 

Min. speed (stall) 57 km/h 

Table 13 Aerosonde UAV specifications 
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4.2.2 Assisted Take-off 

For an aircraft to leave the ground, the following condition must be met: 

𝐹𝑙𝑖𝑓𝑡 > 𝑚𝑔 

To get an idea of the required take-off speed, we can use: 

𝐹𝑙𝑖𝑓𝑡 =
1

2
𝜌𝑉𝑎

2𝑆 [𝐶𝐿(𝛼) + 𝐶𝐿𝑞
𝑐

2𝑉𝑎
𝑞 + 𝐶𝐿𝛿𝑒𝛿𝑒 ] 

where 𝐶𝐿(𝛼) can be approximated by 

𝐶𝐿(𝛼) = 𝐶𝐿0 + 𝐶𝐿𝛼𝛼 

For the aerosonde, 𝐶𝐿𝑞 is 0 so the equation gets simpler. 

As the Aerosonde's belly is very short in the longitudinal direction, we cannot add to it a triangle of landing 

wheels that increase its inclination too much (in stationary position). Assuming therefore an angle of attack of 

2° during take-off, the necessary speed (without wind) to raise from the ground will be 111 km/h which is 

almost the cruise speed, and thus a very far-fetched velocity. If a catapult is used however, with an inclination 

of 11º, the speed needed decreases to 72 km/h wich is easily realizable. 

 

The catapult has the following specifications: 

 

Rail length 4 m 

Maximum UAV weight 35 kg 

Launching height 1.1 m 

Launching speed for 13.5 kg 24 m/s 

Inclination 11º 

Table 14 Factory 6 KJ catapult specs. 

  

Fig. 81 UAV Factory 6 kJ portable pneumatic catapult 
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