
WAP Binary XML Content Format
Document id WAP-192-WBXML-20000515

Version 1.3
Approved Version 15th May 2000

This Document Document Identifier 192
Date 15th May 2000
Subject: Version 1.3 WBXML

Wireless Application Protocol
Binary XML Content Format Specification

Disclaimer:
This document is subject to change without notice.

Version 15th May 2000- Approved Page 3 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

Contents

1. SCOPE .. 4

2. DOCUMENT STATUS ... 5

2.1 COPYRIGHT NOTICE.. 5
2.2 ERRATA .. 5
2.3 COMMENTS... 5
2.4 DOCUMENT HISTORY.. 5
2.5 CHANGES IN THIS VERSION ... 5

3. REFERENCES... 7

3.1 NORMATIVE REFERENCES... 7
3.2 INFORMATIVE REFERENCES 7

4. DEFINITIONS AND ABBREVIATIONS ... 8

4.1 DEFINITIONS ... 8
4.2 ABBREVIATIONS ... 8

5. BINARY XML CONTENT STRUCTURE ... 9

5.1 MULTI-BYTE INTEGERS... 9
5.2 CHARACTER ENCODING.. 9
5.3 BNF FOR DOCUMENT STRUCTURE ... 9
5.4 VERSION NUMBER .. 10
5.5 DOCUMENT PUBLIC IDENTIFIER.. 10
5.6 CHARSET... 11
5.7 STRING TABLE .. 11
5.8 TOKEN STRUCTURE .. 12

5.8.1 Parser State Machine.. 12
5.8.2 Tag Code Space ... 13
5.8.3 Attribute Code Space (ATTRSTART and ATTRVALUE) ... 13
5.8.4 Global Tokens .. 14

6. ENCODING SEMANTICS... 17

6.1 DOCUMENT TOKENISATION .. 17
6.2 DOCUMENT STRUCTURE CONFORMANCE ... 17
6.3 ENCODING DEFAULT ATTRIBUTE VALUES.. 17
6.4 ASSOCIATING XML DOCUMENTS WITH WBXML TOKEN VALUES.. 18

7. NUMERIC CONSTANTS... 19

7.1 GLOBAL TOKENS .. 19
7.2 PUBLIC IDENTIFIERS ... 19

8. ENCODING EXAMPLES... 21

8.1 A SIMPLE XML DOCUMENT... 21
8.2 AN EXPANDED EXAMPLE.. 22

9. STATIC CONFORMANCE REQUIREMENTS.. 25

9.1 WBXML DOCUMENT... 25
9.2 WBXML ENCODER.. 25
9.3 WBXML DECODER.. 25

Version 15th May 2000 Approved Page 4 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

1. Scope
Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope of the WAP Forum is to define
a set of specifications to be used by service applications. The wireless market is growing very quickly and reaching
new customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation, WAP defines a set of protocols in transport, session and application
layers. For additional information on the WAP architecture, refer to "Wireless Application Protocol Architecture
Specification" [WAP].
This specification defines a compact binary representation of the Extensible Markup Language [XML]. The binary
XML content format is designed to reduce the transmission size of XML documents, allowing more effective use of
XML data on narrowband communication channels. Refer to the [WML] specification for one example use of the
binary XML content format.
The binary format was designed to allow for compact transmission with no loss of functionality or semantic
information. The format is designed to preserve the element structure of XML, allowing a browser to skip unknown
elements or attributes. The binary format encodes the parsed physical form of an XML document, i.e., the structure
and content of the document entities. Meta-information, including the document type definition and conditional
sections, is removed when the document is converted to the binary format.

Version 15th May 2000 Approved Page 5 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

2. Document Status
This document is available online in the following formats:
• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice
© Copyright Wireless Application Forum Ltd, 1998, 1999.
Terms and conditions of use are available from the Wireless Application Protocol Forum Ltd. web site at
http://www.wapforum.org/docs/copyright.htm.

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments
Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/.

2.4 Document History
Document ID Date Version
WAP-104 1998 04 30 1.0
WAP-135 1999 06 16 1.1
WAP-154 1999 11 04 1.2
WAP-192 and WAP-192.100 SCD 2000 02 19 and 2000 05 17 1.3 Draft and SCD
WAP-192-WBXML-20000515 2000 07 18 1.3 Approved

2.5 Changes in this version
Change 1:
The specification currently asserts that there are reserved tokens, which there are not. In addition, the comment on the
reserved code page 255 is buried in the wrong section instead.
The following section(s) is known to be impacted:
 5.8 - Token Structure: Move reserved code page discussion from 5.8.4.8 (change #1).
 5.8.5.8 - Reserved Tokens: Delete section; there are no reserved tokens. (change #2).
Change 2:
The literal tokens LITERAL_A, LITERAL_C, and LITERAL_AC are missing from the BNF and discussion.
The following section(s) is known to be impacted:
 5.3 - BNF for Document Structure: Add additional literal tags to BNF (change #1).
 5.8.2 - Tag Code Space: Add additional literal tags to discussion (change #2).
 5.8.4.5 - Literal Tag or Attribute Name: Add additional literal tags to discussion (change #3).
 7.1 - Global Tokens: Expand comments for literal tags (change #4).
Change 3:
 It may not be clear from the description what an encoder may or may not do.
The following section(s) is known to be impacted:
 6.3 Encoding Default Attribute Values: Addition of clarifying text. (change #1).
Change 4:
Because there is a context sensitivity when using switch_page in front of an
extension, its effect requires clarification.
Sections affected, and additional explanation of details of change

Version 15th May 2000 Approved Page 6 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

…5.8.4.2 Global Extension Tokens extension = [switchPage] ((EXT_I termstr)|(EXT_T index)|EXT)
Change 5:
How the XML tokenizer processes white space characters depends on the XML application. For example,
 WML has its own rules for white space handling. Another XML application may have different rules.
 The current WBXML specification says that "insignificant" white space can be "altered or removed". This is
 very misleading. The tokenizer is only allowed to remove white space if the XML applications allows for it.
 And to "alter" or change white space is probably never legal.
Change 6:
Additional clarification on the MAY MUST SHOULD definitions in section 4.1

Change 7:
CRs to add 3 new public identifiers, 2 for WTA and 1 for provisioning:
These were submitted as
CREC-WBXML-ERICSSON-14-Apr-2000.5.doc
CREC-WBXML-ERICSSON-08-MAY-2000.6.doc
CR-Provisioning-WBXML-24-Mar-2000.pdf

Change 8:
Editorial change: Added section for document history to reflect use of document ID’s

Change 9:
Document now specification at approved status. Doc name WAP-192-WBXML-20000515

Version 15th May 2000 Approved Page 7 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

3. References

3.1 Normative References
[IANACharset] IANA MIBEnum Character Set Registry,

URL: ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
[ISO10646] "Information Technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:

Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:1993.
[RFC822] "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, D. Crocker,

August 1982. URL: http://www.ietf.org/rfc/rfc822.txt
[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997.

URL: http://www.ietf.org/rfc/rfc2119.txt
[WAP] "Wireless Application Protocol Architecture Specification", WAP Forum, 30-April-1998.

URL: http://www.wapforum.org/
[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998,

REC-xml-19980210", T. Bray, et al, February 10, 1998. URL: http://www.w3.org/TR/REC-xml

3.2 Informative References
[ISO8879] "Information Processing - Text and Office Systems - Standard Generalised Markup Language

(SGML)", ISO 8879:1986.
[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers

Press, 1996. URL: http://www.unicode.org/
[WML] "Wireless Markup Language Specification", WAP Forum, 4-November-1999.

URL: http://www.wapforum.org/

Version 15th May 2000 Approved Page 8 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

4. Definitions and Abbreviations

4.1 Definitions
The following are terms and conventions used throughout this specification.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. In
the absence of any such terms, the specification should be interpreted as "MUST".
Author - an author is a person or program that writes or generates WML, WMLScript or other content.
Content - subject matter (data) stored or generated at an origin server. Content is typically displayed or interpreted by
a user agent in response to a user request.
Resource - a network data object or service that can be identified by a URL. Resources may be available in multiple
representations (e.g., multiple languages, data formats, size and resolutions) or vary in other ways.
SGML - the Standardised Generalised Markup Language (defined in [ISO8879]) is a general-purpose language for
domain-specific markup languages.
User - a user is a person who interacts with a user agent to view, hear or otherwise use a resource.
User Agent - a user agent is any software or device that interprets the binary XML content format or other resources.
This may include textual browsers, voice browsers, search engines, etc.
XML - the Extensible Markup Language is a World Wide Web Consortium (W3C) standard for Internet markup
languages, of which WML is one such language. XML is a restricted subset of SGML.

4.2 Abbreviations
For the purposes of this specification, the following abbreviations apply.

API Application Programming Interface
BNF Backus-Naur Form
LSB Least Significant Bits
MSB Most Significant Bits
MSC Mobile Switch Centre
RFC Request For Comments
SGML Standardised Generalised Markup Language [ISO8879]
UCS-4 Universal Character Set - 4 byte [ISO10646]
URL Universal Resource Locator
UTF-8 UCS Transformation Format 8 [ISO10646]
W3C World Wide Web Consortium
WAP Wireless Application Protocol [WAP]
WML Wireless Markup Language [WML]
XML Extensible Markup Language [XML]

Version 15th May 2000 Approved Page 9 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

5. Binary XML Content Structure
The following data types are used in the specification of the XML tokenised format.

Table 1. Data types used in tokenised format
Data Type Definition
bit 1 bit of data
byte 8 bits of opaque data
u_int8 8 bit unsigned integer
mb_u_int32 32 bit unsigned integer, encoded in multi-byte integer format.

Network byte order is "big-endian". In other words, the most significant byte is transmitted on the network first,
followed by the less significant bytes. Network bit ordering within a byte is "big-endian". In other words, bit fields
described first are placed in the most significant bits of the byte.

Conformance Rules:
WBXML-1. Binary XML Structure M

5.1 Multi-byte Integers
This encoding uses a multi-byte representation for integer values. A multi-byte integer consists of a series of octets,
where the most significant bit is the continuation flag and the remaining seven bits are a scalar value. The continuation
flag indicates that an octet is not the end of the multi-byte sequence. A single integer value is encoded into a sequence
of N octets. The first N-1 octets have the continuation flag set to a value of one (1). The final octet in the series has a
continuation flag value of zero (0).
The remaining seven bits in each octet are encoded in a big-endian order, e.g., most significant bit first. The octets are
arranged in a big-endian order, e.g., the most significant seven bits are transmitted first. In the situation where the initial
octet has less than seven bits of value, all unused bits must be set to zero (0).
For example, the integer value 0xA0 would be encoded with the two-byte sequence 0x81 0x20. The integer value
0x60 would be encoded with the one-byte sequence 0x60.

5.2 Character Encoding
In the absence of information provided by an external protocol (e.g. WSP, HTTP or MIME), the WBXML document
must be presented to the application (e.g. a WML user agent) in the encoding specified in the WBXML charset field
(see section 5.6). If the value of the charset field is set to "unknown" (the value is "0") no information about the
character encoding is provided.
When a WBXML document is accompanied by external information (e.g. WSP, HTTP or MIME) there may be
multiple sources of information available to determine the character encoding. In this case, their relative priority and
the preferred method of handling conflict should be specified as part of the higher-level protocol; for example, see the
documentation of the "application/vnd.wap.wbxml" MIME media type.
The XML binary representation can support any string encoding, but requires that all strings include an encoding-
specific termination character (e.g., a NULL terminator) which can be reliably used to detect the end of a string. If a
character encoding includes a NULL (e.g., Unicode, ASCII, ISO-8859-1, etc.), the NULL character must be used as the
termination character.
If a tag name or attribute name can not be represented in the target character set, tokenisation terminates with an error.

5.3 BNF for Document Structure
A binary XML document is composed of a sequence of elements. Each element may have zero or more attributes and
may contain embedded content. This structure is very general and does not have explicit knowledge of XML element
structure or semantics. This generality allows user agents and other consumers of the binary format to skip elements
and data that are not understood.
The following is a BNF-like description of the tokenised structure. The description uses the conventions established in
[RFC822], except that the "|" character is used to designate alternatives and capitalised words indicate single-byte

Version 15th May 2000 Approved Page 10 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

tokens, which are defined later. Briefly, "(" and ")" are used to group elements, optional elements are enclosed in "["
and "]". Elements may be preceded with <N>* to specify N or more repetitions of the following element (N defaults
to zero when unspecified).

start = version publicid charset strtbl body
strtbl = length *byte
body = *pi element *pi
element = ([switchPage] stag) [1*attribute END] [*content END]

content = element | string | extension | entity | pi | opaque

stag = TAG | (literalTag index)
 literalTag = LITERAL | LITERAL_A | LITERAL_C | LITERAL_AC

attribute = attrStart *attrValue
attrStart = ([switchPage] ATTRSTART) | (LITERAL index)
attrValue = ([switchPage] ATTRVALUE) | string | extension | entity | opaque

extension = [switchPage] ((EXT_I termstr) | (EXT_T index) | EXT)

string = inline | tableref
switchPage = SWTICH_PAGE pageindex
inline = STR_I termstr
tableref = STR_T index

entity = ENTITY entcode
entcode = mb_u_int32 // UCS-4 character code

pi = PI attrStart *attrValue END

opaque = OPAQUE length *byte

version = u_int8 // WBXML version number
publicid = mb_u_int32 | (zero index)
charset = mb_u_int32
termstr = charset-dependent string with termination
index = mb_u_int32 // integer index into string table.
length = mb_u_int32 // integer length.
zero = u_int8 // containing the value zero (0)
pageindex = u_int8

5.4 Version Number
version = u_int8 // WBXML version number

All WBXML documents contain a version number in their initial byte. This version specifies the WBXML version.
The version byte contains the major version minus one in the upper four bits and the minor version in the lower four
bits. For example, the version number 2.7 would be encoded as 0x17. This document specifies WBXML version 1.2,
and will be encoded as 0x02.

5.5 Document Public Identifier
publicid = mb_u_int32 | (zero index)
zero = u_int8 // containing the value zero (0)

The binary XML format contains a representation of the XML document public identifier. This publicid is used to
identify the well-known document type contained within the WBXML entity.
The first form of publicid is a multi-byte positive integer value, greater than zero, representing a well-known XML
document type (e.g., -//WAPFORUM//DTD WML 1.0//EN).

Version 15th May 2000 Approved Page 11 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

mb_u_int32

Public identifiers may also be encoded as strings, in the situation where a pre-defined numeric identifier is not
available.

0 index

See section 7.2 for numeric constants related to public identifiers.

5.6 Charset
charset = mb_u_int32

The binary XML format contains a representation of the XML document character encoding. This is the WBXML
equivalent of the XML encoding declaration. The value of the WBXML charset field is the MIBEnum value assigned
by the IANA for the character encoding ((see [IANACharset])). For example, IANA has assigned iso-8859-1 a
MIBEnum value of 4, and shift_JIS a MIBEnum value of 17. In the case a character encoding is not registered at
IANA, and thus does not have a MIBenum value, the value of the charset field is "0"; that is, "unknown" (the charset
field does not allow textual representation of the name of the character encoding). Most character encodings are
registered at IANA and do have a MIBenum value.
It is strongly recommended that WBXML tokenisers avoid using the charset value "0". If the XML encoding
declaration is not present, the character encoding is either UTF-8 or UTF-16, and the charset field should be set to the
MIBenum value defined for the appropriate character encoding. The value "0" should not be used in this case.

5.7 String Table
strtbl = length *byte

A binary XML document must include a string table immediately after the charset. Minimally, the string table consists
of a mb_u_int32 encoding the string table length in bytes, not including the length field (e.g., a string table
containing a two-byte string is encoded with a length of two). If the length is non-zero, one or more strings follow.
The encoding of the strings should be determined by the process specified in 5.6.
Various tokens encode references to the contents of the string table. These references are encoded as scalar byte offsets
from the first byte of the first string in the string table. For example, the offset of the first string is zero (0).

Version 15th May 2000 Approved Page 12 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

5.8 Token Structure
Tokens are split into a set of overlapping code spaces. The meaning of a particular token is dependent on the context in
which it is used. Tokens are organised in the following manner:
• There are two classifications of tokens: global tokens and application tokens.
• Global tokens are assigned a fixed set of codes in all contexts and are unambiguous in all situations. Global codes

are used to encode inline data (e.g., strings, entities, opaque data, etc.) and to encode a variety of miscellaneous
control functions.

• Application tokens have a context-dependent meaning and are split into two overlapping code spaces. These two
code spaces are the tag code space and the attribute code space. A given token value (e.g., 0x99) will have a
different meaning depending on whether it represents a token in the tag or attribute code space.

• The tag code space represents specific tag names. Each tag token is a single-byte code and represents a specific
tag name (e.g., CARD).

• The attribute code space is split into two numeric ranges representing attribute prefixes and attribute values
respectively.

Each code space is further split into a series of 256 code pages. Code pages allow for future expansion of the well-
known codes. A single token (SWITCH_PAGE) switches between the code pages. The code page 255 is reserved for
implementation-specific or experimental use. The tokens in this code page will never be used to represent standard
XML document constructs.
The definition of tag and attribute codes is document-type-specific. Global codes are divided between a generic set of
codes common to all document types and a set reserved for document-type-specific extensions.

5.8.1 Parser State Machine

The tokenised format has two states, each of which has an associated code space. The states are traversed according to
the syntax described in section 5.3. Code spaces are associated with parser states in the following manner:

Table 2. Parser states
Parser State Code Space
stag Tags
attribute Attributes

Any occurrence of code page switch tokens (SWITCH_PAGE) while in a given state changes the current code page for
that state. This new code page remains as the current code page until another SWITCH_PAGE is encountered in the
same state or the document end is reached. Each parser state maintains a separate "current code page". The initial code
page for both parser states is zero (0).
The following state machine is an alternative representation of the state transitions and is provided as a reference
model.

End of
Attributes

Attribute
Present

Attribute
State

Next
Attribute

Tag State

Next
Tag

Version 15th May 2000 Approved Page 13 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

5.8.2 Tag Code Space

Tag tokens are a single u_int8 and are structured as follows:
Table 3. Tag format

Bit(s) Description
7 (most significant) Indicates whether attributes follow the tag code. If this bit is zero, the tag contains

no attributes. If this bit is one, the tag is followed immediately by one or more
attributes. The attribute list is terminated by an END token.

6 Indicates whether this tag begins an element containing content. If this bit is zero,
the tag contains no content and no end tag. If this bit is one, the tag is followed by
any content it contains and is terminated by an END token.

5 - 0 Indicates the tag identity.
For example:
• Tag value 0xC6: indicates tag six (6), with both attributes and content following the tag, e.g.,

<TAG arg="1">foo</TAG>
• Tag value 0x46: indicates tag six (6), with content following the start tag. This element contains no attributes,

e.g.,
<TAG>test</TAG>

• Tag value 0x06: indicates tag six (6). This element contains no content and has no attributes, e.g.,
<TAG/>

The globally unique codes LITERAL, LITERAL_A, LITERAL_C, and LITERAL_AC (see section 5.8.4.5) represent
unknown tag names. (Note that the tags LITERAL_A, LITERAL_C, and LITERAL_AC are the LITERAL tag with the
appropriate combinations of bits 6 and 7 set.) An XML tokeniser should avoid the use of the literal or string
representations of a tag when a more compact form is available.
Tags containing both attributes and content always encode the attributes before the content.

5.8.3 Attribute Code Space (ATTRSTART and ATTRVALUE)

Attribute tokens are encoded as a single u_int8. The attribute code space is split into two ranges (in addition to the
global range present in all code spaces):
• Attribute Start - tokens with a value less than 128 indicate the start of an attribute. The attribute start token fully

identifies the attribute name, e.g., URL=, and may optionally specify the beginning of the attribute value, e.g.,
PUBLIC="TRUE". Unknown attribute names are encoded with the globally unique code LITERAL (see section
5.8.4.5). LITERAL must not be used to encode any portion of an attribute value.

• Attribute Value - tokens with a value of 128 or greater represent a well-known string present in an attribute value.
These tokens may only be used to represent attribute values. Unknown attribute values are encoded with string,
entity or extension codes (see section 5.8.4).

All tokenised attributes must begin with a single attribute start token and may be followed by zero or more attribute
value, string, entity, opaque, or extension tokens. An attribute start token, a LITERAL token or the END token
indicates the end of an attribute value. This allows a compact encoding of strings containing well-known sub-strings
and entities.
For example, if the attribute start token TOKEN_URL represents the attribute name "URL", the attribute value token
TOKEN_COM represents the string ".com" and the attribute value token TOKEN_HTTP represents the string
"http://", the attribute URL="http://foo.com/x" might be encoded with the following sequence:

TOKEN_URL TOKEN_HTTP STR_I "foo" TOKEN_COM STR_I "/x"
In another example, if the attribute start token TOKEN_PUBLIC_TRUE represents the attribute name "PUBLIC" and
the value prefix "TRUE", the attribute PUBLIC="TRUE" might be encoded with the following sequence:

TOKEN_PUBLIC_TRUE
An XML tokeniser should avoid the use of the LITERAL or string representations of an attribute name when a more
compact form is available. An XML tokeniser should avoid the use of string representations of a value when a more
compact form is available.

Version 15th May 2000 Approved Page 14 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

5.8.4 Global Tokens

Global tokens have the same meaning and structure in all code spaces and in all code pages. The classes of global
tokens are:
• Strings - inline and table string references
• Extension - document-type-specific extension tokens
• Opaque - inline opaque data
• Entity - character entities
• Processing Instruction - XML PIs
• Literal - unknown tag or attribute name
• Control codes - miscellaneous global control tokens

5.8.4.1 Strings

string = inline | tableref
inline = STR_I termstr
tableref = STR_T index

Strings encode inline character data or references into a string table. The string table is a concatenation of individual
strings. String termination is dependent on the character document encoding and should not be presumed to include
NULL termination. References to each string include an offset into the table, indicating the string being referenced.
Inline string references have the following format:

STR_I … char data …

String table references have the following format:

STR_T mb_u_int32

The string table offset is from the first byte of the first string in the table (i.e., not a character offset). An empty string
("") must be explicitly encoded as string termination byte sequence for the string’s character data. For example, an
inlined null-terminated UTF8 empty string would be encoded as the byte sequence "03 00". Empty string encoding
rules only apply to attribute values where there is no encoding defined by the application.

Version 15th May 2000 Approved Page 15 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

5.8.4.2 Global Extension Tokens

extension = [switchPage] ((EXT_I termstr) | (EXT_T index) | EXT)
The global extension tokens are available for document-specific use. The semantics of the tokens are defined only
within the context of a particular document type, but the format is well defined across all documents. There are three
classes of global extension tokens: single-byte extension tokens, inline string extension tokens and inline integer
extension tokens.
Inline string extension tokens (EXT_I*) have the following format:

EXT_I* … char data …

Inline integer extension tokens (EXT_T*) have the following format:

EXT_T* mb_u_int32

Single-byte extension tokens (EXT*) have the following format:

EXT*

The effect of a switchPage preceding an extension will depend upon where the extension appears. If switchPage
appears in content, it will change the tag code page. If switchPage appears in an attribute list, it will change the
attribute code page.

5.8.4.3 Character Entity

entity = ENTITY entcode
entcode = mb_u_int32 // UCS-4 character code

The character entity token (ENTITY) encodes a numeric character entity. This has the same semantics as an XML
numeric character entity (e.g.,). The mb_u_int32 refers to a character in the UCS-4 character encoding. All
entities in the source XML document must be represented using either a string token (e.g., STR_I) or the ENTITY
token.
The format of the character entity is:

ENTITY mb_u_int32

5.8.4.4 Processing Instruction

pi = PI attrStart *attrValue END
The processing instruction (PI) token encodes an XML processing instruction. The encoded PI has identical semantics
to an XML PI. The attrStart encodes the PITarget and the attrValue encodes the PI's optional value. For
more details on processing instructions, see [XML].
The format of the PI tag is:

PI attrStart attrValue END

PIs without a value are encoded as:

PI attrStart END

5.8.4.5 Literal Tag or Attribute Name

The LITERAL token encodes a tag or attribute name that does not have a well-known token code. The actual meaning
of the token (i.e., tag versus attribute name) is determined by the token parsing state. The tokens LITERAL_A,
LITERAL_C, and LITERAL_AC are used when the tag posesses respectively attributes, content, or both. All literal
tokens indicate a reference into the string table, which contains the actual name.
The format of the literal tags are:

Version 15th May 2000 Approved Page 16 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

LITERAL* mb_u_int32

5.8.4.6 Opaque Data

opaque = OPAQUE length *byte
The opaque token (OPAQUE) encodes application-specific data. A length field and zero or more bytes of data follow
the token. The length field encodes the number of bytes of data, excluding the OPAQUE token and the length field.

OPAQUE mb_u_int32 … bytes …

5.8.4.7 Miscellaneous Control Codes

5.8.4.7.1 END Token

The END token is used to terminate attribute lists and elements. END is a single-byte token.

5.8.4.7.2 Code Page Switch Token

switchPage = SWTICH_PAGE pageindex
pageindex = u_int8

The code-page switch token (SWITCH_PAGE) indicates a switch in the current code page for the current token state.
The code-page switch is encoded as a two-byte sequence:

SWITCH u_int8

Version 15th May 2000 Approved Page 17 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

6. Encoding Semantics

6.1 Document Tokenisation
The process of tokenising an XML document must convert all markup and XML syntax (i.e., entities, tags, attributes,
etc.) into their corresponding tokenised format. All comments must be removed. Processing directives intended for the
tokeniser may be removed. Other meta-information, such as the document type definition and unnecessary conditional
sections must be removed. All text and character entities must be converted to string (e.g., STR_I) or entity (ENTITY)
tokens. Character entities in the textual markup (e.g., &) must be converted to string form when tokenised, if the
target character encoding can represent the entity. Characters present in the textual form may be encoded using the
ENTITY token when they can not be represented in the target character encoding. XML parsed entities (both internal
and external) must be resolved before tokenisation. XML notations and unparsed entities are resolved on an application
basis (e.g., using inline opaque data). Attribute names must be converted to an attribute start token or must be
represented by a single LITERAL token. Attribute values may not be represented by a LITERAL token.
It is illegal to encode markup constructs as strings. The user agent must treat all text tokens (e.g., STR_I and
ENTITY) as CDATA, i.e., text with no embedded markup.

To process white space characters correctly, the tokenizer must be aware of the white space rules for the particular
XML application being tokenized. If the tokenizer does not recognize the application, all white space must be
preserved. In elements with the "xml:space" attribute set to "preserve", white space must be left alone. To determine
the value of the "xml:space" attribute, the tokenizer must read the DTD.
For example, white space characters may be removed from a WML document, if removal is done according to the
white space processing rules in the WML specification.

Conformance Rules:
WBXML-2. Conversion of all XML mark-up, excluding unparsed entities, into tokens M
WBXML-3. Removal of Processor Instructions O
WBXML-4. Removal of all information not covered in SC16, and SC17 M
WBXML-5. Conversion of all text into String or Entity tokens M
WBXML-6. Conversion of all XML parsed entities into string or entity tokens M
WBXML-7. Conversion of all XML unparsed entities into string or entity tokens O

6.2 Document Structure Conformance
The tokenised XML document must accurately represent the logical structure, as defined by [XML], and semantics of
the textual source document. This implies that the source document must be well-formed, as defined in [XML].
Document tokenisation may validate the document as specified in [XML], but this is not required. If the semantics of a
particular DOCTYPE are well known, additional semantic checks may be applied during the tokenisation process.

Conformance Rules:
WBXML-8. Checking that document is well-formed M
WBXML-9. Document validation O

6.3 Encoding Default Attribute Values
The tokenised representation of an XML document may omit any attributes whose values match the default or implied
value. For example,
 given the following DTD

 <!ELEMENT alpha EMPTY>
 <!ATTLIST alpha

Version 15th May 2000 Approved Page 18 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

 init (true|false) "false"
 xml:space CDATA #FIXED "preserve"
 xml:lang NMTOKEN #IMPLIED
 >

 A tokenized representation of a document containing the element <alpha init="false" xml:space="preserve"
 xml:lang="en"/> may omit the init and xml:space attributes. The tokenized representation may omit the
 xml:lang attribute if the implied value is "en".
 This implies that a user agent implementation must be aware of the attribute defaults of a given version of the DTD.
This information can be inferred from the version number in the tokenised data format.

Conformance Rules:
WBXML-10. Encoding default attribute values O

6.4 Associating XML Documents with WBXML Token Values
An external typing system must be used to associate XML documents with WBXML token values.
If the document is transported by WSP, HTTP, or SMTP, the MIME media type must be used. Since the token values
are associated with the media type, and not a particular version of the document type definition, the tokeniser is
independent of the document type version; and can tokenise any version of the document type. To ensure compatibility
between different versions of user-agents and tokenisers, the user-agent must support both the binary token value and
the literal value for all tags, attribute names, and attribute values.

Conformance Rules:
WBXML-11. Support both the binary token value and the literal value for all tags,

attribute names, and attribute values.
M

Version 15th May 2000 Approved Page 19 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

7. Numeric Constants

7.1 Global Tokens
The following token codes are common across all document types and are present in all code spaces and all code pages.
All numbers are in hexadecimal.

Table 4. Global tokens
Token Name Token Description
SWITCH_PAGE 0 Change the code page for the current token state. Followed by a

single u_int8 indicating the new code page number.
END 1 Indicates the end of an attribute list or the end of an element.
ENTITY 2 A character entity. Followed by a mb_u_int32 encoding the

character entity number.
STR_I 3 Inline string. Followed by a termstr.
LITERAL 4 An unknown attribute name, or unknown tag posessing no

attributes or content.Followed by a mb_u_int32 that encodes
an offset into the string table.

EXT_I_0 40 Inline string document-type-specific extension token. Token is
followed by a termstr.

EXT_I_1 41 Inline string document-type-specific extension token. Token is
followed by a termstr.

EXT_I_2 42 Inline string document-type-specific extension token. Token is
followed by a termstr.

PI 43 Processing instruction.
LITERAL_C 44 An unknown tag posessing content but no attributes.
EXT_T_0 80 Inline integer document-type-specific extension token. Token is

followed by a mb_u_int32.
EXT_T_1 81 Inline integer document-type-specific extension token. Token is

followed by a mb_u_int32.
EXT_T_2 82 Inline integer document-type-specific extension token. Token is

followed by a mb_u_int32.
STR_T 83 String table reference. Followed by a mb_u_int32 encoding a

byte offset from the beginning of the string table.
LITERAL_A 84 An unknown tag posessing attributes but no content.
EXT_0 C0 Single-byte document-type-specific extension token.
EXT_1 C1 Single-byte document-type-specific extension token.
EXT_2 C2 Single-byte document-type-specific extension token.
OPAQUE C3 Opaque document-type-specific data.
LITERAL_AC C4 An unknown tag posessing both attributes and content.

7.2 Public Identifiers
The following values represent well-known document type public identifiers. The first 128 values are reserved for use
in future WAP specifications. All numbers are in hexadecimal.

Table 5. Public Identifiers
Value Public Identifier
0 String table index follows; public identifier is encoded as a literal in the string

table.
1 Unknown or missing public identifier.
2 "-//WAPFORUM//DTD WML 1.0//EN" (WML 1.0)
3 DEPRECATED "-//WAPFORUM//DTD WTA 1.0//EN" (WTA Event 1.0)
4 "-//WAPFORUM//DTD WML 1.1//EN" (WML 1.1)

Version 15th May 2000 Approved Page 20 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

Value Public Identifier
5 "-//WAPFORUM//DTD SI 1.0//EN" (Service Indication 1.0)
6 "-//WAPFORUM//DTD SL 1.0//EN" (Service Loading 1.0)
7 "-//WAPFORUM//DTD CO 1.0//EN" (Cache Operation 1.0)
8 "-//WAPFORUM//DTD CHANNEL 1.1//EN" (Channel 1.1)
9 "-//WAPFORUM//DTD WML 1.2//EN" (WML 1.2)
A “-//WAPFORUM//DTD WML 1.3//EN” (WML 1.3)
B “-//WAPFORUM//DTD PROV 1.0//EN” (Provisioning 1.0)
C “-//WAPFORUM//DTD WTA-WML 1.2//EN” (WTA-WML 1.2)
D “-//WAPFORUM//DTD CHANNEL 1.2//EN” (Channel 1.2)
E- 7F Reserved

Version 15th May 2000 Approved Page 21 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

8. Encoding Examples
The following example encodings are for demonstration purposes only, and do not necessarily represent an optimal
WBXML encoding.

8.1 A Simple XML Document
The following is an example of a simple tokenised XML document. It demonstrates basic element, string and entity
encoding. Source document:
<?xml version="1.0"?>
<!DOCTYPE XYZ [
<!ELEMENT XYZ (CARD)+>
<!ELEMENT CARD (#PCDATA | BR)*>
<!ELEMENT BR EMPTY>
<!ENTITY nbsp " ">
]>
<XYZ>

<CARD>
X & Y

X = 1

</CARD>
</XYZ>
The following tokens are defined for the tag code space:

Tag Name Token
BR 5
CARD 6
XYZ 7

Tokenised form (numbers in hexadecimal) follows. This example uses only inline strings and assumes that the
character encoding uses a NULL terminated string format. It also assumes that the transport character encoding is US-
ASCII. This encoding is incapable of supporting some of the characters in the deck (e.g.,), forcing the use of
the ENTITY token.
03 01 03 00 47 46 03 ’ ’ ’X’ ’ ’ ’&’ ’ ’ ’Y’ 00 05 03 ’ ’
’X’ 00 02 81 20 03 ’=’ 00 02 81 20 03 ’1’ ’ ’ 00 01 01
In an expanded and annotated form:

Table 6. Example tokenised deck
Token Stream Description
03 Version number - WBXML version 1.3.
01 Unknown public identifier
03 charset=US-ASCII (MIBEnum is 3)
00 String table length
47 XYZ, with content
46 CARD, with content
03 Inline string follows
’ ’, ’X’, ’ ’, ’&’, ’ ’, ’Y’, 00 String
05 BR
03 Inline string follows
’ ’, ’X’, 00 String
02 ENTITY
81 20 Entity value (160)
03 Inline string follows
’=’, 00 String
02 ENTITY
81 20 Entity value (160)
03 Inline string follows

Version 15th May 2000 Approved Page 22 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

Token Stream Description
’1’, ’ ’, 00 String
01 END (of CARD element)
01 END (of XYZ element)

8.2 An Expanded Example
The following is another example of a tokenised XML document. It demonstrates attribute encoding and the use of the
string table. Source document:
<?xml version="1.0"?>
<!DOCTYPE XYZ [
<!ELEMENT XYZ (CARD)+ >
<!ELEMENT CARD (#PCDATA | INPUT | DO)*>
<!ATTLIST CARD NAME NMTOKEN #IMPLIED>
<!ATTLIST CARD STYLE (LIST|SET) ’LIST’>
<!ELEMENT DO EMPTY>
<!ATTLIST DO TYPE CDATA #REQUIRED>
<!ATTLIST DO URL CDATA #IMPLIED>
<!ELEMENT INPUT EMPTY>
<!ATTLIST INPUT TYPE (TEXT|PASSWORD)’TEXT’>
<!ATTLIST INPUT KEY NMTOKEN #IMPLIED>
<!ENTITY nbsp " ">
]>
<!-- This is a comment -->
<XYZ>

<CARD NAME="abc" STYLE="LIST">
<DO TYPE="ACCEPT" URL="http://xyz.org/s"/>
Enter name: <INPUT TYPE="TEXT" KEY="N"/>

</CARD>
</XYZ>

Version 15th May 2000 Approved Page 23 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

The following tokens are defined for the tag code space:
Tag Name Token
CARD 5
INPUT 6
XYZ 7
DO 8

The following attribute start tokens are defined:
Attribute Name Attribute

Value Prefix
Token

STYLE LIST 5
TYPE 6
TYPE TEXT 7
URL http:// 8
NAME 9
KEY A

The following attribute value tokens are defined:
Attribute Value Token
.org 85
ACCEPT 86

Tokenised form (numbers in hexadecimal) follows. This example assumes an UTF-8 character encoding and NULL
terminated strings:
03 01 6A 12 ’a’ ’b’ ’c’ 00 ’ ’ ’E’ ’n’ ’t’ ’e’ ’r’ ’ ’ ’n’
’a’ ’m’ ’e’ ’:’ ’ ’ 00 47 C5 09 03 00 05 01 88 06
86 08 03 ’x’ ’y’ ’z’ 00 85 03 ’/’ ’s’ 00 01 83 04
86 07 0A 03 ’N’ 00 01 01 01
In an expanded and annotated form:

Table 7. Example tokenised deck
Token Stream Description
03 Version number - WBXML version 1.3
01 Unknown public identifier
6A charset=UTF-8 (MIBEnum is 106)
12 String table length
’a’, ’b’, ’c’, 00, ’ ’, ’E’, ’n’, ’t’,
’e’, ’r’, ’ ’, ’n’, ’a’, ’m’, ’e’, ’:’,
’ ’, 00

String table

47 XYZ, with content
C5 CARD, with content and attributes
09 NAME=
83 String table reference follows
00 String table index
05 STYLE="LIST"
01 END (of CARD attribute list)
88 DO, with attributes
06 TYPE=
86 ACCEPT
08 URL="http://"
03 Inline string follows
’x’, ’y’, ’z’, 00 string
85 ".org"
03 Inline string follows
’/’, ’s’, 00 string
01 END (of DO attribute list)
83 String table reference follows
04 String table index
86 INPUT, with attributes

Version 15th May 2000 Approved Page 24 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

Token Stream Description
07 TYPE="TEXT"
0A KEY=
03 Inline string follows
’N’, 00 String
01 END (of INPUT attribute list)
01 END (of CARD element)
01 END (of XYZ element)

Version 15th May 2000 Approved Page 25 (25)

  Copyright Wireless Application Protocol Forum, Ltd, 1998, 1999, 2000
All rights reserved

9. Static Conformance Requirements
This section defines static conformance requirements for WBXML documents, encoder, and decoder. The encoder is
producing WBXML documents. The decoder is reading WBXML documents.

9.1 WBXML Document

Identifier Structure Reference Mandatory/
Optional

WBXML-1. Binary XML Structure 5 M

9.2 WBXML Encoder

If a WBXML encoder does not support an optional feature, the token stream produced may not be optimal, but any
WBXML decoder will be able to interpret the tokens without errors.

Identifier Encoding semantics Reference Mandatory/
Optional

WBXML-2. Conversion of all XML mark-up, excluding unparsed entities, into
tokens

6.1 M

WBXML-3. Removal of Processor Instructions 6.1 O
WBXML-4. Removal of all information not covered in SC16, and SC17 6.1 M
WBXML-5. Conversion of all text into String or Entity tokens 6.1 M
WBXML-6. Conversion of all XML parsed entities into string or entity tokens 6.1 M
WBXML-7. Conversion of all XML unparsed entities into string or entity

tokens
6.1 O

WBXML-8. Checking that document is well-formed 6.2 M
WBXML-9. Document validation 6.2 O
WBXML-10. Encoding default attribute values 6.3 O

9.3 WBXML Decoder

Identifier Decoding semantics Reference Mandatory/
Optional

WBXML-11. Support both the binary token value and the literal value for all
tags, attribute names, and attribute values.

6.4 M

