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Abstract—Importance sampling is a technique that can significantly
reduce computer run-time in the estimation of bit error rate (BER).
However, in the conventional implementation (CIS) the improvement
reduces markedly for systems with long memory. An approach to recover
the full improvement for such systems has been previously suggested, and
is called ‘“efficient’’ importance sampling (EIS). This paper reports on an
extensive series of simulation-based experiments with CIS and EIS, both
to compare theoretical predictions to experimental observations, as well
as to gain insight into the conditions of applicability, especially for EIS.

1. INTRODUCTION

MPORTANCE sampling (IS) has received attention as a

promising method for reducing run-time in Monte Carlo
(MC) simulation of digital transmission systems [1]-[7]. The
seminal paper by Shanmugan and Balaban [1] indicated the
possibility of enormous run-time improvement. However, it
was pointed out in [1], and shown more generally in [4], [6],
that the improvement decreases with increasing system mem-
ory M where memory is an indicator of the inverse BT
product. For highly bandlimited systems, in fact, the IS
improvement can become virtually nil.

In an attempt to recover the potentially high IS improvement
associated with small memory, a method called ‘‘efficient’’
importance sampling (EIS) has been proposed [6]. (Hence-
forth, we will identify the original IS formulation as ‘‘conven-
tional’’ importance sampling, or CIS, to distinguish it from the
‘‘efficient’” version.) EIS rests on a linear approximation of
the system, which is obtained empirically within the simula-
tion itself. We will briefly review EIS in Section III.

Our purpose here is to report on a series of simulation
experiments designed to develop insight into the behavior of
CIS and EIS, and to compare observed results to theoretical
predictions of the run-time improvement. Our primary goal
has been to validate and to explore conditions of IS applicabil-
ity, especially for EIS.

In spite of the theoretical activity concerning IS, there seems
to be little supporting empirical verification. This is perhaps
not too surprising, since this would imply a large expenditure
of computer time. Indeed, the results reported here required
hundreds of CPU hours. To our knowledge, the only
previously reported empirical resuits are those in [1], and
these apply to a relatively simple configuration. Our basic
system context here is a bandlimited nonlinear satellite system
with noise input on both uplink and downlink, which is
representative of a practical situation where it might be
desirable to apply importance sampling (for low BER specifi-
cation ).

This paper is organized as follows. First, the conventional
theory is very briefly reviewed to set the stage for the
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Fig. 1. Satellite system simulation block diagram for importance sampling
experiments. The ‘‘linear’’ case is the situation where the satellite nonlinear
power amplifier is replaced by the linear amplifier.

experimental results, which are then presented. Next, we
consider EIS. First, we outline the basic theory. Then we
discuss errors associated with EIS and show some experimen-
tally observed distributions of errors. Finally, we present the
BER-related experimental results.

The experiments, for CIS and EIS, have been performed
both for the basic nonlinear system mentioned above, and for a
linearized version where the satellite nonlinearity is removed
but the rest of the system is otherwise unchanged. This linear
system is important as part of the verification procedure since
we have independent, reliable means of estimating low BER
performance for this case.

In the final section, we summarize the results and indicate
some possible directions for additional work.

II. CONVENTIONAL IMPORTANCE SAMPLING (CIS)

The configuration we deal with is shown in Fig. 1. In the
linearized version of the system, we replace the satellite
nonlinearity by an ideal linear amplifier.! The input noise
sources 7,(¢) and n,(¢) are assumed Gaussian, with respective
standard deviations ¢; and o,. It is important to establish that
we are dealing with a bandpass system, which is handled
through the usual complex envelope technique. Hence, we use
the representation

Mi(8) = ngc(£) cos (wol) — Ms(t) sin (wof) k=1,2 (1)
! Notice that this linearizes the system with respect to the noise. In the

experiments, we did not linearize the transmitter nonlinearity, which
processes only signal.

© 1989 IEEE
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where wp is the (radian) center frequency and ny .(¢) and
ny s(¢) are, respectively, the in-phase and quadrature (/ and Q)
components. For symmetrical spectra, these components are
independent, and in the simulation we enforce this indepen-
dence. Furthermore, 0} = aiyc = o} .. We thus have four
independent input (equivalent) low-pass Gaussian processes,
although the in-phase and quadrature components of each
source have the same power. We should reiterate that these are
the input processes to the system (simulation), and these are
under the control of the simulator. Of course, once these are
sent through the system, their properties are no longer so
simple. Each of the four processes induces a response in the
output I and Q baseband channels. Thus, for a quadrature
system there are generally eight responses. For purposes of
discussion it is sufficient to consider only the output I channel
since identical arguments apply to the output Q channel. Thus,
for the output I channel, each of the four input processes has
associated with it a memory (or dimensionality) M, and Mg
for the 7 and Q components of n(¢), and M,c and M, for the 1
and Q components of n,(#). The dimensionality is defined to
be the number of past samples, counting from the decision
sampling instant, that have a measurable effect on the value of
the decision voltage. Since this number depends on the
simulation sampling interval. A, we prefer to call it dimen-
sionality.2

The IS experiment is performed by ‘‘biasing’’ the noise
sources, that is, increasing the standard deviations to o, 4 and
0,4, Tespectively.® These new values may be thought of as
characterizing the IS experiment.* The measurand of the
experiment itself is the BER estimator p, given by

ﬁ_%g H@)w(n;) )

where N is the number of transmitted symbols; v; = v(¢) is the
ith of the symbol-spaced decision variables observed at # = ¢;;
H(-) is an error counter such that H(v;) = 1 if an error is
made, and zero otherwise; and w(n;) is the weighting (or
unbiasing) factor at time #;, defined as

Mic-1

w(n;) = H Sy )/ R (Mioja)
j=0

Mig—1

1 fe,Grieja)/ 5,z ja)
Jj=0

Myc—1

’ H Sy (M= ja )/ FRy (M ja)
j=0

Myg—1

© T fo, G ja)/fR, (- ja) (3)
=0

where fx,(-) and f,(-) are the probability density functions,
assumed normal, of the / and Q components of n,(¢); the
functions subscripted with 2 are the analogous quantities for

2 If the actual system memory is, say, m symbols long, and the simulation
uses K samples/symbol, then M = mK is the dimensionality. Generally, the
in-phase process has significantly greater dimensionality than the quadrature
process (implying different effective values of m).

3 That is, the processes remain Gaussian, with modified variances. This is
the simplest and most practical approach. Attempts at optimizing the input
distribution for IS purposes are emerging but were not considered in this
investigation.

41t is understood that o, , applies to the I and Q components of n,(¢), and
similarly for o, ,. Hence, as far as these quantities are concerned there is no
need to distinguish between the 7 and Q components.
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ny(t); and the asterisk superscript denotes the corresponding
biased densities. The sequence of noise values, e.g., {niija}
for the I component of n(¢), are those actually generated
during the experiment. The form of (3) implies that these
values are independent,’ and indeed, it is straightforward to
ensure that the random number generator does produce
independent normal variables at the succession of simulation
sample times separated by A.

The purpose of the experiment is to investigate the mean and
variance of p, and in particular to compare empirical and
theoretical results. The latter can be summarized as follows.
First, we define the following parameters:

’yk=0k*/0k, k=11 2 (421)
Re=yiN2?yI-1,k=1,2 (4b)
oh=lv{/@ri-Dlo}, k=1, 2. o)

It can then be shown [6] that the time-reliability® product

No?*(p) where 6%(p) is the variance of the BER estimator , is
given by

No*(p)=(R}"1 RY2)P(d3,, 03,)~p? ®)

where p is the true BER, M| = M|, + M\, M, = M,, + M,
and P(-, ‘) is the true BER characteristic expressed here as a
function of ‘‘equivalent’” noise levels oy,, 02,. As can be seen
from (4c¢), these reduce to the unbiased values 0y, 0;, when v,
= 1. Implicit in (5) is a carrier power Cy, such that Cy/al, =
px is the equivalent CNR on each link (uplink and downlink).
It can be seen from (4) and (5) that the really fundamental
parameters, insofar as the time-reliability product is con-
cerned, are the v,, which we refer to as the ‘‘o-multipliers.”’ It
may also be seen that there is an optimum value of the v,
which minimizes No?(p). However, the two-dimensional
variation that we have been dealing with would create an
inordinate complication. So, to keep things manageable, we
henceforth assume vy, = v, = ~. Then, (5) simplifies to

No*(p)=RMi+M)P(p) -~ p? (6)
where
R=y/N2y*~1 (7a)
p=lp+p; """ (7b)
px=Ci/o%, k=1,2 (Tc)
ke =[y*/Q2y* - Do} (7d)

and now, the BER characteristic P(-) has been written as a
function of the composite CNR, which is the traditional way of
expressing it.

A major difficulty with (5) or (6) is that No?(p) depends
upon the very unknown we are trying to estimate. In the
experimental investigation we do, in fact, estimate P(-)
independently, through MC simulation. But we come up
against run-time limitations for sufficiently low BER. For this
reason, we also experimented with the linearized version of
the system, for which we can estimate BER in just a few
seconds using the quasianalytical (QA) method’ [2]. These
considerations are even more important for EIS because,

> We are speaking here of independence between elements of the same
sequence. Independence between / and Q channels was discussed above, and
independence between 7,(¢) and ny(¢) is assured by physical independence.

¢ The usual measure of quality of an estimator is its variance. However,
time-reliability product is even more basic, as it contains directly the trade
between variance and number of observations.

7 This is also referred to as the semianalytical method by some workers.
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Fig. 2. Ratio of time-reliability product as a function of bias for different

memories v and fixed BER (p = 1078).

there, the potential improvement is much greater.

A general method of analyzing a linear system, without the
necessity of dealing with the detailed characteristics of the
transfer function, is given in [6] where it is shown that

No?(p)=R*+*) {Bl— [6®(a) - (b))
—-a

—ﬁ—a [¢“"(b)—¢(“"(a)]+Q(b)} —p* ®

where ¢ = alo,, b = Blo.. In this model, the system is
characterized by the spread of the ISI distribution, |8 — «l.
That is, if z is the noise portion of the receiver output prior to
bit decision and p(z) denotes the probability of a bit error
conditioned upon the value of z, then, p(z) = 0 forz < «,
p(z) = 1 for z > B and p(2) increases monotonically with z
for @ = z < B. In (8), ¢©(x) is the standardized normal pdf,
¢(~(x) is the integral of ¢© from O to x, and Q(x) = 0.5 —
¢ (x). Equation (8) assumes specifically that the ISI is
uniformly distributed over |8 — «f. It is thus an approxima-
tion for other ISI distributions, but it gives us a reasonable
benchmark against which to compare our observations. The
utility of (8) is that it allows us to explicitly compute No*(p) as
a function of v, which is a necessity in order to have any
quantitative theoretical results at all, and in order to be able to
design an experiment. A typical set of results is shown in Fig.
2, which displays:

n=[No*(H)mc/[No*(H)l1s ®
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as a function of y with M = M, + M,and$ = |8 — a|/|B +
«| as parameters. The latter is indicative of the severity of ISI,
hence, the degradation. Note that the figure applies to a
specific value of p. We have developed a set of such figures,
for different p, to assist us in experimentation [8].

Before proceeding, we need to consider the bias?® of p due to
truncation [1], [8]. In practice, one must truncate the
dimensionalities if the impulse response is infinite. Even if it
were finite, it would still be desirable to reduce the dimension-
alities to minimize No2($). The tradeoff between No?(p) and
bias is discussed further in Section II.

A. CIS Experiments

1) System Identification by Regression: As was noted, we
need specific values for the dimensionalities in order to
implement CIS. Since we often deal with IIR filters, we need a
procedure to determine how to truncate the dimensionalities.
This implies that we need to ‘‘identify’’ the system, i.e.,
determine the impulse response’ for each noise source. This is
not so simple because the filtering may consist of a cascade of
elements, some of which may be specified by measured points.
The response to quadrature noise is also not simple to obtain
because it depends on the alignment of the reference 1/Q axes
at the receiver. Therefore, we have implemented a regression
procedure at the ‘‘front-end”” of the simulation. Although
higher order, or nonlinear, regressions are possible, at this
stage we have limited ourselves to a linear regression. That is,
we assume that the following expression is a satisfactory
representation for z;, the noise portion of the output voltage at
the bit-decision instant:

Mjc-! M1
=Y Cynijat D Cifiioja
=0 =0
My—1 Mas—1
+ Y Cymyijat Y, Gyfizija (10)
j=o j=o

where the {n,;_ja, Fix,i-ja} are defined as in (3) and are
directly observed in the simulation. To develop the coeffi-
cients in the above equation, it would be required that z; as
well as the {ny;_ja, fix,i-ja} be observable. This is not easily
done. We have therefore chosen to perform an equivalent
process whereby we make observations at key points in the
simulation with both signal and noise present. Fig. 3 shows the
important observable points in the simulation.

While it was not convenient to observe the output noise
component z;, we do observe signal-plus-noise v; at that point.
Furthermore, we observe complex samples {7, 7} of signal-
plus-noise 1 at the same point that noise 1 enters the system.
Thus, an equation similar to (10) may be written to character-
ize the output of the simulation as a function of these
observable random inputs, simply by replacing Z; by the output
;, and replacing (n,, A;) by (ry, 7).

We rely on regression theory [9] to provide us with a formal
procedure for estimating { Cy;, Cy;}. To proceed, we require a
sufficiently complete set of independent observations of {v;}
and the {r,, 7, n,, Ai,} which gave rise to the {v;}. Regression
analysis requires further that VAR (v;) is the same for all i, a

8 Unfortunately, we use the term bias in two different ways, each correct in
its context. It is used in the IS context in the sense of *‘biasing’’ a noise source,
which here means increasing its variance. It is also used as a statistical term,
as above, meaning the degree to which the expected value of an estimator
agrees with the true population value. These meanings are sufficiently
different, however, that no confusion should arise.

9 We use the term impulse response somewhat loosely here to apply to
either a linear or nonlinear system.
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M independent observations would be required. However,
unavoidable roundoff makes such perfect results unachiev-
able. See Section II-A for further discussion.

Consequently, a larger number of observations (16 500
typically, while M is on the order of 100 or less) are used to
generate regression data. It was determined experimentally
that increasing the number of observations beyond this number
produced no useful increase in model accuracy.

2) Experimental Results:

a) Determination of Dimensionality: The regression
procedure described above was applied, and the four impulse
responses for n,.(¢), ny(t), ny(¢), and n,,(¢), were obtained.
Since in CIS it is essential to minimize the dimensionality, we
performed a short side experiment wherein we successively
removed from consideration the smaller values of the impulse
responses. At each value of M = M, + M,, seven runs were
made in order to provide a relationship between E (5), which
is the average of these seven runs, and ¢2(5). In order to keep
these runs relatively short, the target BER was set at 10~ and
the number of bits in each of the 7 runs was set at N =
100,650 bits per (Z or Q) channel. The results are shown in
Fig. 4, which indicates that for M as low as 20, the BER is not
measurably biased but the variance is considerably less than at
the higher values of M. Consequently, M = 20 was chosen as
a reasonable value for M. Note that this does not imply that the
impulse responses are finite, but only that this many values
have a significant effect on the decision voltage. M is the
dimensionality only in the weighting procedure that yields the
BER estimate. The memory of the system in the actual
simulation run has not been tampered with.

b) Determination of & and ~: In running IS, it is
necessary to choose a value for v. It is desirable to choose that

Eg/No (DB)

Fig. 5. CIS results—linear and nonlinear.

v which maximizes . Hence, we use curves like those of Fig.
2, and deduce that for M = 20, ¥ = 1.2 yields close to the
optimum 5. Notice that » also depends on 8. The latter, as
indicative of the degradation, cannot be ascertained until after
the fact although it can be estimated initially with a short run.
In any case, for present purposes, it is not essential that the
optimum vy was chosen, but only that we properly estimate the
correct value of % for the chosen v and 8. The value of 5 is
used to size the length of run needed for the IS experiments.
(Additional discussion on how to set up an IS simulation run is
given in [5]).

¢) Experimental Results: For the system of Fig. 1, runs
were made both for the nonlinear and linearized system. The
resulting BER curves are shown in Fig. 5. The lower set of
curves applies to the linearized system, for which MC, CIS,
QA estimates were made. One purpose of these runs was to
calibrate the QA curve with respect to the MC result. This was
necessary since we use the QA method to compute the BER in
a range where it cannot easily be corroborated by other means.
Fig. 5 shows that for the linearized system the MC and QA
results track very closely, while the MC and CIS results were
indistinguishable. For the nonlinear system only slight differ-
ences were observed between MC and CIS results.

Table I shows the runtime improvement observed on this
series of CIS experiments. These compare favorably to the
analytical estimates using the curves derived from (8). The
values of y used for the experiment are shown in the table.
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TABLE I
RUNTIME IMPROVEMENT FOR CONVENTIONAL IMPORTANCE SAMPLING
M = 20)
SYSTEM RUNTIME IMPROVEMENT, n
L = LINEAR Ep/N, @ ANALYTICAL
NL_ = NONLIN (dB) BER s Y ESTIMATE EXPERIMENTAL
L 10.0 1.4E - 3 0.2 1.20 ~ 2 2.3
L 12.0 1.0E - 4 0.2 1.20 ~ 2 2.0
L 14.1 1.0E -5 0.2 1.20 ~ 3 1.9
L 15.1 7.0E -7 0.2 1.20 ~ &4 2.9
NL 14.0 1.4E - 4 0.65 1.20 ~ 2 2.1
NL 19.0 7.5E - 7 0.65 1.35 ~ 4.5 3.65
NL 21.0 3.5E - 8 0.65 1.35 ~ 15 12.7

¢ Experimental BER and Target (MC/QA). BER in such close agreement
that common value was considered correct for both measurements.

1I1I. EFFICIENT IMPORTANCE SAMPLING

As was seen in the previous section, even with a very
diligent effort to reduce dimensionality, we still have M on the
order of 20. And for such an M, the IS Improvement 7 is very
modest, especially when compared to the maximum possible
improvement shown in Fig. 2, which occurs for M = 1. In
fact, for a linear system it is possible to reformulate IS in such
a way that, theoretically, an improvement corresponding to M
= 1 is obtained [6]. It was also postulated [6] that the same
approach could be reasonably applied to ‘‘mildly’’ nonlinear
systems. We shall se that the system we are dealing with is in
fact more than ‘‘mildly’’ nonlinear. Nevertheless, we were
able to obtain substantial improvements with respect to CIS.
We shall later discuss the limitations of EIS as currently
implemented and suggest some possibilities for improving the
process.

If we have a linear system, with input Gaussian noises, it is
clear that their combined effect could be replaced by a single
equivalent output noise sample at the decision instant. Hence,
if we can characterize this equivalent output noise sample, the
IS problem reduces to one of unit dimensionality.

The output of a linear system at the ith decision instant ¢; is
given by

v(t;) £ vi=s(t)+z(). a1n

Namely, the sum of signal plus noise, and we are specifically
interested in characterizing the output noise portion z(%;) = z;.
But the estimator for z; is the expression developed earlier in
(10).

We may now use the empirical estimator given by

Z

1
N ¢

1

H@)w(z)

1

b= (12)

where

w(Z) =1/ f¥ &) (13)

and Z; is the value computed from (10). The densities f,(-),
f:‘(') are zero-mean normal, with variances a2, oi, respec-
tively, given by

2 Mk,c'l Mg s—1 -
w3 s gy Gl
j=0

k=1 j=0

(14)

with an identical definition for o2, but using o, instead of .
It is clear from (12) and (13) that the IS estimate
corresponds to one of unit dimensionality. Notice that we still

need to keep track of the number of noise samples correspond-
ing to the true dimensionalities in order to compute Z;, but they
do not affect the ‘effective’” dimensionality of the IS process,
which remains at unity. For this reason, we can afford to take
account of a much longer span of the impulse response, than in
CIS, and thus reduce errors due to truncation.

It can also be seen that it is virtually mandatory to estimate
the impulse responses within the simulation itself, for two
reasons. First, this will be considerably simpler, and probably
more accurate, than to analytically determine individual filter
responses (especially if they are given as measured frequency
domain data), and then convolve those responses. Second,
impulse responses are not invariant; they depend upon the
phase alignment of the I and Q phasors at the receiver. It is
therefore sensible and practical to have a simulation-based
‘“measurement’’ procedure as a ‘‘front-end’’ to an IS run, to
produce a set of estimated coefficients { Cy;}, {C,;}. This we
do through the regression procedure mentioned earlier. This
procedure is even more important in EIS because the estimated
coefficients are central to EIS, while in CIS the procedure is
used only to estimate the memory. Hence, it is essential to
have a sense of the variability of these estimated coefficients.
This we shall review in Section III-A.

Implicit in our discussion of EIS has been the assumption of
a linear system. We maintaini that for a mildly nonlinear
system (admittedly a fuzzy concept) the procedure described
ought to be reasonably good. As is evident in Fig. 5, the
nonlinear system we deal with is more than mildly nonlinear.
As we show later, this means that we must limit + to relatively
small values, hence limiting ourselves to a smaller improve-
ment.

A. Errors in EIS

There are three main sources of errors in EIS, all of which
may apply to the nonlinear system, but only two of which
could apply to the linearized system. The first comes from
truncation of the impulse response. The second arises from
imperfect estimation of the impulse response coefficients. In
general, this secorid type is coupled to the first. We call this
second type ‘‘representation’” error. The third, which we call
‘“lack-of-fit’’ error, stems from the degree to which the true
decision-instant noise voltage pdf departs from Gaussian. The
principal effect of these errors is to induce estimator bias.

It can be shown [8] that the bias error due to truncation is
given by the same formulation as that for CIS. However, this
error can be made much smaller in EIS because we can afford
to include much more of the ‘‘tail’’ of an impulse response
since this will not have an adverse effect on runtime
improvement. Truncation error implies that while impulse
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response coefficients beyond a certain duration are truncated,
those that are not are known accurately. In actuality, this is not
the case, as all coefficients that are retained must be estimated.
In EIS we represent the system by the estimated coefficients.
Erroneously ignoring coefficients (truncation) or misestimat-
ing them produces the same effect. There is no separately
identifiable truncation error. Rather, the consequence of
truncation is manifested in what we call the representation
error.

The representation error is z; — %; where z; is the true
decision-instant noise voltage and Z; is the value obtained by
applying the linear equivalent model using coefficient esti-
mated by the regression. This error is thus attributable to the
degree to which the regression coefficients are unable to
account for the true output value. This may be due to roundoff,
statistical factors, or, inherently, the limitations in approxi-
mating nonlinear system response to noise. The ultimate effect
of representation error depends on its distribution, as well as

on the nature of the system itself, i.e, the way a given error
biases the BER.

Actually, since it is only the noise that is being biased and
unbiased, the representation error of interest is ¢; = z; — 2,
namely, the difference between the true value of noise at the
bit-decision instant and the value computed via the regression.
As a rough way of trying to understand the effect of this error,
we have developed expressions for E (p) based on the
assumption that ¢; and z; are jointly normally distributed. An
example calculation is shown in Fig. 6 for the set of conditions
indicated, namely, unbiased SNR = 9 dB, cov (¢;, z;) = O,
and several values of é [defined following (8)].

The abscissa is the standard deviation of ¢, the error
normalized to the mean sampled voltage. It can be seen that
E(p) = p, hence, the bias is always in a conservative
direction.

It is instructive to look at the actual (empirical) distribution
of €. Fig. 7 shows three empirically obtained distributions of
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Fig. 8. Results of Efficient importance sampling experiments for linear
case.

€0, using a run of 33 000 bits for each. The narrowest of these
distributions applies to a linear system in which we imposed a
finite impulse response. The dimension of the regression was
chosen large enough not to incur truncation. Hence, in
principle, one could have obtained a perfect representation of
the system. The fact that we did not reflects roundoff and
quantization errors in the process. While these errors are
reasonably small, they are not negligible. For the linear
system, the additional spread in the distribution stems from
truncation of the impulse response. Still, the standard devia-
tion is small enough that it leads to manageable estimator bias,
except perhaps for large v. Finally, the distribution for the
nonlinear system is seen to be considerably more spread out,
which accounts for the observed larger estimator bias than for
the other two systems.

Fig. 6 may be applied to a nonlinear system to the extent
that we use a value of § that matches approximately that in the
system. However, also embedded in this figure is the
assumption that the output noise is Gaussian, which is
generally not the case. This latter assumption leads to what we
called ‘‘lack-of-fit’’ error in EIS, which would add to the
representation error reflected in Fig. 6.

B. EIS Experiments

1) Linearized System: Fig. 8 shows BER curves for the
linear system. The ‘‘true’’ performance curve was obtained
using the QA method. This curve is identical to the corres-
ponding curve shown in Fig. 5.

The three other curves on Fig. 8 are EIS results for y = 2,
3, and 4, as indicated. These cases correspond to extrapola-
tions (along the SNR axis) of 6, 9.5, and 12 dB, respectively.
It can be seen that there is a bias in the BER, although even for
an extrapolation as great as that corresponding to v = 4, the
bias along the horizontal axis is still a modest 0.5 dB. Aty =
2, the bias reduces to less than 0.2 dB. As discussed
previously, this bias is due to representation error and is
reasonably well explained by curves such as those in Fig. 4.
The increasing bias with v is a consequence of the fact that
representation errors become magnified with increasing y. As
v becomes small, the ratio of the densities that constitutes the
weighting is less affected by errors in the value of the variable.
In fact when v = 1, the weighting is unaffected, regardless of
the size of the error. It should also be noted that the bias is
predictably to the right of the BER curve, and it may thus be
possible in practice to partially compensate for it.

The goal of EIS, of course, is to reduce runtime further than

is possible with CIS. The results relevant to this are shown in
Table II, along with other relevant conditions. The runtime
improvement 7 is defined by (9). The variance corresponding
to the IS runs was experimentally computed from the number
of runs shown in the rightmost column. The ‘‘analytical
estimate”’ is the value of 5 obtained from figures such as Fig.
2, based on the model of (8), using the value 6 = 0.20. These
analytical estimates are intended only to give an idea of the
actual improvement, but are not expected to be precise
predictions because the model on which they are based will not
conform exactly with the systemn under study. Table II
basically confirms the large anticipated EIS improvements for
the linear case.

2) Nonlinear System. Results for the nonlinear system are
shown on Fig. 9. The linear system BER curve is also shown,
along with some associated EIS estimated points (from the
previous figure). One reason for showing the two sets of
results together is that it shows the effect of the satellite
amplifier nonlinearity. Apart from this one amplifier, the
systems are identical. Therefore, considerable degradation is
induced by the nonlinearity, and there is some question as to
whether one could regard it as ‘‘mild,’’ a qualitative condition
that, intuitively, appears to be necessary for the applicability
of EIS. In fact, the nonlinearity is mild enough for EIS to yield
substantial improvement with moderately small estimator bias,
but strong enough to prevent the large improvements obtained
with the linear system. Equivalently, we are restricted to lower
values of v, say ¥ < 2; higher values lead to unacceptably
large estimator bias as detailed below. The reason for this bias
appears to be the difficulty in faithfully representing a
nonlinear characteristic with a linear equivalent, over a large
operating range of the device. Recall that, given a target BER,
a larger value of v means that the IS (Monte Carlo) run takes
place at a lower value of SNR, which implies that the noise
sweeps a larger segment of the transfer characteristic. The
reverse is true when v is small and the target BER occurs at a
moderately large SNR. Also, as v becomes smaller the lack-
of-fit error reduces.

The solid BER curve for the nonlinear system is the MC
curve shown in Fig. 5. In the latter figure, we also saw that the
MC curve was essentially reproduced by CIS, and as a
remainder, the CIS label also appears. The last point on the
curve is impractical to obtain by MC means and was therefore
obtained using CIS only, with v = 1.35. It can be seen that for
v = 1.4, EIS is only slightly biased, but for vy = 2, the
estimator bias is too large to be generally acceptable.
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TABLE II
EIS—LINEAR (BER PREDICTION ACCURACY—RUNTIME IMPROVEMENT)

RUNTIME IMPROVEMENT, n

BER ANALYTICAL NO. OF
SNR Y TARGET MEASURED ESTIMATE MEASURED  EXPERIMENTS
14.0 DB 2.0 0.6 X 105 0.6 X 1075 160 233 60
14.0 DB 3.0 0.6 X 105 1.1 X 10~ 320 482 60
14.0 DB 4.0 0.6 X 105 2.8 X 10-5 350 757 60
15.0 DB 2.0 0.8 X10® 1.0 X 10°% 600 400 14
15.0 bB 3.0 0.8 X 10® 1.3 x 106 1,500 1,490 14
15.0 DB 4.0 0.8 X 10 2.7 x 10°% 1,800 1,840 14
16.0 DB 2.0 0.8X10°7 1.1x 1077 2,800 819 20
16.0 0B 3.0 0.8 X107 1.9 X 1077 8,800 3,053 20
16.0 DB 4.0 0.8 X107 3.9 x 1077 11,500 4,055 24
16.8 DB 2.0 1.0X 108 1.5 x 108 11,500 4,360 20
16.8 DB 3.0 1.0X 108 2.8 x 108 46,000 17,030 20
16.8 DB 4.0 1.0Xx 108 6.0x 108 65,000 19,030 20
TABLE III
EFFICIENT IMPORTANCE SAMPLING, NONLINEAR (BER PREDICTION
ACCURACY—RUNTIME IMPROVEMENT)
RUNTIME IMPROVEMENT, n
BER ANALYTICAL NO. OF
SNR Y TARGET MEASURED ESTIMATE MEASURED  EXPERIMENTS

16.0 4B 1.4 2.5X10°5 3.6 x 1073 4 10 14
16.0 48 2.0 1.5X 103 5.8 X 10°5 46 140 14
19.0d8 1.4 0.8 X106 1.1 x 1076 62 20 14
19.0 B 2.0 0.8 X 1076 2.6 X 10-6 420 133 18
21.0d8 1.4 5.0X 108 6.4 x 1078 200 35 14
21,048 2.0 5.0x108 1.8x107 2,50 67 10

Nevertheless, even for y = 1.4, we can get very useful
improvements, as can be seen from Table III, which shows the
relevant experimental data.

IV. CONCLUDING REMARKS

We have performed an extensive series of experiments to
look into the properties of ‘‘conventional’’ and ‘‘efficient”’
importance sampling. We verified that CIS virtually repro-
duces the Monte Carlo result when the dimensionality M is
chosen so as to avoid estimator bias. That choice is facilitated
by a built-in simulation measurement of the impulse response,
which we opted to do via regression. Even with careful
““‘trimming’’ M will typically be large enough to severely limit
improvement. (See Table 1.) We also observed CIS runtime
improvements to be closely predicted by our approximate
analytical model.

For very low BER, say 107° or less, much larger
improvement than is generally afforded by CIS is highly
desirable. This is the objective of EIS, which attempts to
represent a system by a linearized equivalent, which in turn
permits the system to be equated to one of unit sample memory

for IS purposes. We have described the types of errors in this
process, including the obvious one of approximating a
nonlinearity by a linear equivalent. Nevertheless, we have
seen dramatic improvement due to EIS when applied to a
linear system, and still substantial improvement in the nonlin-
ear case.

Our results, though encouraging, must still be considered of
a preliminary nature in terms of our ultimate goal, which is to
implement an ‘‘expert system’’ to assist a simulation user in
the application of importance sampling in particular, and
extrapolative methods in general. Regarding IS specifically,
more work is needed in several areas, some of which is in
progress. The system identification procedure must be refined
so that the representation error is eliminated when there should
be none. Higher order regressions should be considered so as
to reduce representation error in the nonlinear case. Also in
the latter case, work needs to be done to better understand the
effect of the lack-of-fit error. Fig. 6 suggests that estimator
bias may be predictable, hence, consideration should be given
to finding means for automatically compensating for it. In the
experiments reported, additive noise was the only external
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Fig. 9. Results of Efficient importance sampling experiments for nonlinear
and linear cases.

source of errors. In actual digital systems, phase jitter in the
carrier synchronization process and timing jitter in the clock
recovery process are potentially important noise sources.
There is thus a need to extend the biasing/unbiasing procedure
to properly take account of these (and perhaps other) possible
impairments.

REFERENCES
[11 K. S. Shanmugan and P. Balaban, ‘“A modified Monte Carlo
Simulation technique for the evaluation of error rate in digital
communications systems,’’ IEEE Trans. Commun., vol. COM-28,
Nov. 1980.
M. C. Jeruchim, ‘‘Techniques for estimating the bit error rate in the
simulation of digital communications system,”” IEEE J. Select. Areas
Commun., vol. SAC-2, pp. 153-170, Jan. 1984.
M. C. Jeruchim, ‘‘On the application of importance sampling to the
simulation of digital satellite and multi-hop links,”” IEEE Trans.
Commun., vol. COM-32, Oct. 1984.
B. R. Davis, ‘‘An improved importance sampling method for digital
communication system simulations,”’ IEEE Trans. Commun., vol.
COM-34, pp. 715-719, July 1986.
P. M. Hahn, M. C. Jeruchim, and T. J. Klandrud, ‘‘Implementation of
importance sampling in multi-hop communication simulation,” in
Proc. GLOBECOM ’86, vol. 1, Houston, TX, Dec. 1-4, 1986, pp.
4.1.14.1.5.
——, ‘“‘Developments in the theory and application of importance
sampling,”” IEEE Trans. Commun., vol. COM-35, pp. 706-714, July
1987.
D. Lu and K. Yao, ‘‘Improved importance sampling technique for
efficient simulation of digital communication systems,”” IEEE J.
Selected Areas Commun., vol. SAC-6, Jan. 1988.

2]

[3}

4]

(51

[6)

{71

[8] M. C. Jeruchim et al., “‘Technical final report for IR&D project:
*‘Implementation of importance sampling in communication system
simulation,”’ General Electric Co. Tech. Inform. Series 875SDS020,
Mar. 31, 1987.

C. R. Rao, Advanced Statistical Methods in Biometrics.
Wiley, 1952.

191 New York:

*

Michel C. Jeruchim (S’60-M’61-SM’81-F’86)
was born in Paris, France, in 1937. He received the
B.E.E. degree (cum laude) from the City College of
New York, New York, NY, in 1961 and the
M.S.E.E. and Ph.D. degrees from the University of
Pennsylvania, Philadelphia, in 1963 and 1967,
respectively.

Since 1961, he has been with General Electric
Acrospace, King of Prussia, PA, working in a
variety of communication-related disciplines, as
applied to satellite communications. One of his main
activities has been the development of simulation tools for the performance
evaluation of digital satellite communication systems.

Dr. Jeruchim has published or presented more than two dozen papers on
various topics in communications and is coauthor of the book Communica-
tion Satellites in the Geostationary Orbit (Artech, 2nd ed., 1987). He has
served as a member of a number of U.S. delegations to international technical
standards and radio regulatory conferences. He is currently Vice-Chairman of
the Communications Society’s Subcommittee on Computer-Aided Modeling,
Analysis and Design of Communication Systems.



JERUCHIM et al.: CONVENTIONAL AND EFFICIENT IMPORTANCE SAMPLING

0 Peter M. Hahn (M’60-SM’71) was born in Vi-
enna, Austria, in 1937. In 1958, he received the
B.E.E. degree from the City College of New York,
New York, NY, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Penn-
sylvania, Philadelphia, in 1962 and 1968, respec-
tively.

He is Manager of Communication Analysis and
Simulation at General Electric Aerospace, King of
Prussia, PA. He is responsible for the development
of computer models for performance analysis of
satellite communication systems. His current interest is in the improvement of
such models using statistical and artificial intelligence techniques. After
graduation in 1958, he was employed by Philco Research for 3 years, attended
graduate school and worked at RCA until 1967. From 1967 to 1976, he
worked on communication and postal systems at Philco-Ford Corporation
(later Ford Aerospace and Communications Corporation). His last position at
Ford was an Engineering Section Head for packet and message switching
systems. From 1976 to 1985, he worked at RCA Government Systems
Division as an advanced programs manager and as a staff technical advisor.
Since 1985, he has supervised communications systems analysis and simula-
tion at General Electric. In addition, he is an Adjunct Assistant Professor at
the University of Pennsylvania, and an Adjunct Professor at Drexel
University, Philadelphia, PA.

Dr. Hahn has published 14 papers in IEEE Transactions or conference
proceedings and has been appointed by the IEEE Educational Activities board
as an ABET program accreditor. Also, he is a member of the IEEE
Technology Transfer Committee.

587

Kevin P. Smyntek (S'83-M’85) received the B.S.
in electrical engineering from the University of
Rochester, Rochester, NY, in 1985 and is presently
pursuing an advanced degree from Saint Joseph's
University, Philadelphia, PA.

He is a Communications Engineer employed by
General Electric Aerospace, King of Prussia, PA.
where he is involved in the analysis and simulation
of Communications Systems.

*

Robert T. Ray received the B.S. and M.S. degrees
in electrical engineering from the University of
Nebraska, Lincoln, in 1981 and 1983, respectively.

Since 1983, he has been with General Electric in
Schenectady, NY, and King of Prussia, PA, where
he has been involved in Receiver Design and
Communications Link Simulation. Current interests
include signal processing, tracking loops, and sys-
tem modeling.



