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On Optimum and Suboptimum Biasing Procedures
for Importance Sampling in Communication
Simulation
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Abstract—Importance sampling can significantly reduce simulation
run time in estimating the bit error probability of digital systems if
a suitable procedure is used. In this paper, we consider various aspects
of optimum and suboptimum biasing procedures. We show that the strict
optimum does not lead to a realistic procedure. We examine the subop-
timal variati that are r bly impl table, and for one such,
we find the interesting result that for a linear system, the biasing scheme
should have a time-varying mean proportional to the impulse response.
Aspects of implementation are also discussed.

1. INTRODUCTION

PORTANCE sampling has recently had a good deal of atten-
tion as a promising method of reducing run time in the esti-
mation of error probability of digital systems where this estimate
is obtained through simulation [1]-[9]. The essence of importance
sampling is to alter the statistical properties of the noise processes'
driving the system in such a way that many more errors occur per
unit time. Since this artificial increase in error production is done
in a known way, it can be corrected for. The net effect is to in-
duce, under the proper circumstances, a decrease in the estimator
variance or, equivalently, the run time, which can be dramatic. As-
sume, for the moment, that there is a single noise process whose
M-dimensional pdf we denote as fy(n), where in the simulation
context, n = [n(t,), n(ty),---,n(tp)] and ¢y —t,— = A, the sim-
ulation sampling interval. Implicit in this notation is the assumption
that the output at any instant depends only on these M inputs. We call
M the memory or dimensionality of the system. The altered process
has a multidimensional density denoted by fy (1), which is referred
to as the biased density. The ratio fj} /fn is called the bias By and its
reciprocal wy = By is called the weight. The process of specifying
and implementing f5 we refer to as the biasing procedure.

The most common biasing procedure, first discussed by Shanmu-
gan and Balaban [1], amounts to increasing the variance (power) of
the noise source. Recently, a variation of this approach for applica-
tion to convolutionally coded systems has been suggested [7]. And,
also quite recently, yet another approach has been offered by Lu and
Yao [9]. This latter method consists of shifting the (nominally zero)
mean of the noise distribution, while maintaining the variance at its
original value. This technique will be shown to be close in some sense
to the optimum procedure. In this context, we define the optimum
procedure to be that which yields minimum estimator variance.

Our aim in this paper is to investigate certain issues surrounding
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! One can also conceive of modifying the signal or source process. This is
discussed later.

the selection of a “good” biasing procedure. In particular, we first
seek the optimum procedure, and then explore the nature of subopti-
mum (but more readily implemented) procedures that are suggested
by the form of the optimum. What is, in fact, “‘optimum” is not
unequivocal if we go beyond the strictly mathematical conditions
that ensure minimum variance. We shall rigorously derive the form
of the optimum biased density, but as we shall discuss, the mathe-
matical optimum is, in a sense, a self-contradiction. That sense is
that the solution implies knowledge of the system behavior which
would preclude the need for simulation in the first place. If we con-
strain ourselves to a more “fuzzy” knowledge of this system, we
get another optimal solution which will, in general, still be difficult
to implement. We can, however, get an implementable suboptimum
solution by approximating this last solution in a certain way. These
various solutions imply a ‘““block” approach to simulation, each block
being the length of the system memory. Other things being equal, it
is preferable to implement a “sequential” simulation. We thus also
look at how the block approach can be implemented in a sequential
fashion, although it turns out, unfortunately, that doing so results
generally in a great loss of efficiency.

In the final section, we summarize and compare the different so-
lutions, emphasizing the practical aspects of implementation in the
simulation context.

II. PRoBLEM FORMULATION

The error probability for a large class of communication systems
can be written as

p:/ Hlg@s,n)lfs@)fn@n)ds dn (€Y}

where g is the system transfer characteristic, i.e., it specifies
the output voltage at any time #, given the signal sequence s =
[s(), s(t — A),---,s(¢ — (M — 1)A)] and the noise sequence
n = [n@®), n(t — A),---,n(t — (M —1)A)]. The system makes a
hard decision, represented by the threshold function H:

1, X € error region
Hx) =
0, otherwise.

Implicit in (1) is the conditioning upon a particular symbol (e.g.,
*“1” or *“0”’) upon which a decision is made. If different symbols are
equally susceptible to error, then p is also the average symbol error
rate.

Importance sampling is based on implementing the identity

P=/ Hlg(s,m1fs@)w@)fy(n)ds dn )

where

wn) = fnn)/fi@).
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The empirical estimator suggested by (2) is

b= S HIg6: )W)

i€d

3

where the subscript i denotes symbol-spaced instants where decisions
are made, 9 is the integer set describing the occurrences of any
symbol under observation, and N is the cardinality of 9. In other
words, (3) says to count the errors, weigh each by w, and average
the result. The experiment in which (3) is embedded is one where
[} is the operative noise source.

Equations (2)-(3) are based on biasing the noise source only. The
signal is not modified. In principle, one could also bias the signal,
but doing so intelligently implies knowledge of the system behavior
at a level of detail which is unrealistic and might well obviate the
need for simulation in the first place. Consider the intuitive basis
behind IS. We wish basically to throw most of the probability mass
of the input processes in a region where errors are likely to occur.
For noise processes, we can reasonably well imagine how to do
this. For example, we know that very small values of noise will
not cause errors, and sufficiently large values will. So, for example,
increasing the noise variance seems a reasonable thing to start with.
For the signal, the equivalent ideas are connected with sequences.
Particular sequences are more prone to error than others. Hence,
an importance sampling concept associated with the signal implies
generating sequences with a relative frequency proportional to the
degree of ISI. In order to do this, we would somehow have had to
obtain the ISI for every sequence. This is impractical if the system
memory is long, and if the system were linear, this knowledge would
suffice to compute BER without simulation. Thus, it is customary to
bias only the noise source(s). It is interesting to observe, however,
that in principle, one could consider biasing the noise source in a
sequence-dependent way, and this is equivalent to biasing the signal.
We shall return to this in Section III.

The goodness of the estimator (3) is captured in its
“time-reliability” product € = N¢2(p) where o%(p) is the variance
of p, and by its bias p — E(p). If the true memory of the system is
spanned by M samples, then E(p) = p; otherwise, E(p) # p 2],
[4], [6]. Obviously, for an IIR system, there will have to be trunca-
tion of the system response and some resulting estimator bias. This
is a potentially serious source of error, but we assume here that M
has been chosen to yield acceptable error, and concentrate only on
© (further discussion on estimator bias is given in Section VI). One
can show [6] that

oo
e =/ Hlg(s,m)fs@)w@n)fn@n)ds dn —p’ (C))
—0oC
when decisions are independent, and it is a good approximation (for
the random error channel and reasonably small p) when that is not
the case. We take (4) as our starting point for further development.

III. Tue OpriMuM Biasep DENsITY

We wish to minimize € given by (4) by suitable choice of f;. The
latter does not appear explicitly in (4), but of course, it is contained
in w(n). Since, by definition, > 0, it is sufficient to minimize the
integral on the RHS of (4), namely,

o0
1 =/ Hilgs,m)fs@)wn)fn@m)ds dn. 5)
— 00

There are a number of ways to approach this problem, but one ap-
proach that we find particularly appropriate in the context of digital
transmission is through the definition of an intuitively pleasing func-
tion that we call the system threshold characteristic [6] or STC. The
STC, denoted T, is simply the inner integral in (5) overs, viz.

T@) = / Hig(s,m))fs(s)ds. (6

2 Strictly speaking, the LHS should be denoted T(g; n), but for brevity,
we drop the g dependence.
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Fig. 1. Tllustration of system threshold characteristic. Conditioning upon a
symbol is implied. As drawn, Fig. 1 applies to a symbol which corresponds
to negative voltage level. The lincarity in the transition region is purely
illustrative. The abscissa represents either the value of a single dimensional
source (M = 1) or, in the case of a linear system, the output value & -n.

The threshold characteristic can be looked upon as a conditional
probability of error, given the noise vector n. It thus embodies the ISI
distribution, and even without knowing its specifics, we can visualize
its general characteristics, which must be well behaved. For example,
we must have 0 < T < 1. Of course, T also depends on g. If the latter
is linear, with impulse response A(¢), then T(n) = To(h -n); in other
words, the STC depends only on the sampled value of the noise.> As
an illustration, Fig. 1 shows a hypothetical threshold characteristic
in one dimension (or, equivalently, for a linear system). Assuming
a zero is sent, the point where T begins to be nonzero is always to
the right of the origin if the eye is open.

Fig. 1 is idealized in the sense that, for a digital system with finite
memory, the STC cannot be a continuous function (although it may
be well approximated by one). Let m be the memory of the system
in number of symbols.* If g is the number of different symbols, then
given that the first symbol is fixed (the conditioning symbol), there
are L = g™ ! possible realizations of s. Thus, for this case, we can
rewrite (6) as

L
T() =Y Higlsi,m\fss)

i=1

L
= ZT(S,-,II)
i=1

where i indexes the L possible M-dimensiohal vectors s, and f is
a discrete distribution, with weight (1/L) at each s; for a random
source. Note that 7'(s;, n) is the conditional probability of error and
symbol sequence s; given the noise vector n. Hence, for each i,
T(s;, -) is a step function in M-dimensional space, we call T'(s;, n)
the sequence threshold characteristic. Depending upon whether we
consider 7'(n) to be a single system function, as in (6), or a sum
of sequence-dependent functions, as in (7), we actually have two
distinct optimization problems.

Indeed, in the first instance, we seek a single density f*(n) which
minimizes the integral (5). In the second instance, once we allow
ourselves the possibility of sequence-dependent solutions, we must
generalize (5) appropriately. In particular, for each symbol sequence
s;, we can seek an optimal density f*(n) which minimizes the vari-
ance conditioned ons;, 02(p;) where p; is the BER estimator for the
symbol under observation, givens =s;. From (4), this conditional
variance is found from

(72)

(7b)

No*(p;) = / Hig(s,m)wi@)fn(n)dn — p? (8

3 Throughout the paper, we use the dot notation, as in & -n, to denote the
scalar or inner product of vectors.

4Since A is the simulation sampling interval, the dimensionality M is
related to m through M = mT /A where T is the symbol duration.
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where N is the number of independent observations and p; is the
true BER givens;. Then, the time-reliability product is given by the
expectation over all sequences

L

e =E{No*(p)} =Y o (bS5

i=1

9)

Now, (9) is minimized if each summand is minimized. The ith sum-
mand is evidently (8) multiplied by fs(s;), and will be minimized
if the integral portion is minimized. Using (7), each such integral is

expressible as
o)
T, di
/R (s:,n) o n

which, it is important to note, induces a set of L densities {f;*} as
the optimal solution. We now look at this case in the next subsection.

(10)

A. Optimum Solution Based on Sequence Threshold
Characteristics

Let

Q = {n e RM \HIhG;, )] = 1}
{ the set of noise vectors which, for givens;, }

are sufficient to cause an error

Then, from the preceding discussion, we wish to minimize the
functional®

3 S
* * *1 ; . d 11
JUI!fZ» 1fL] i ,/Q’.fS(S)fl (II) n ( a)
= E / T(s,-,n)fz(") dn  (11b)
; M fi*(n)
subject to the constraints
(12)

KU,*]:/ frnydn = 1.
“}I

As noted earlier, this formulation of the problem induces a set of L
biased densities as the optimum solution. For brevity, we denote each
such solution as f*(n). Hence, as discussed at the end of Section
111, our objective is to find an f;* which minimizes (10).

The solution f*(n) which minimizes (10) is based on a version of
Holder’s Inequality® that is not well known.

Theorem [10]: If f eLPt, geL9" where 0 <p <1 and
(1/p) +(1/g) =1, then

Up i/a
/f(X)g(x)dx > {/Lf(x}]" zfx] [/[g(X)]"dx] (13)

where the class of functions L”* is the class of pth power summable
nonnegative functions

1Pt = {f; @QM — R|f measurable,

S >0 and /[f(x)]"dx<oo}. (14)

5 In the following derivations, for notational simplicity, we shall suppress
the subscript N from the noise densities.

6 The same results can be obtained, although less cleanly, through the
calculus of variations. The latter yields the same extremum, but does not
show it to be the optimum, as does this approach.

7 For all integrals, starting with (13)-(17), the integration is over w®M
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To apply the theorem, we note that T'(s;,n)f2(n) € LV/D+ because

/ (650 m) 2] dn — / TG mf ) dn

< /f(n)dn =1
since T(s;,n) < 1.

We also observe that [f*(n)]~' € L{=D+ because

7 <n)“ /f mdn =1.

Also, because 1/(1/2)+1/(-1)=2-1=1,p=1/2and g = —1
arc conjugate exponents. Therefore, the theorem applied to (11b)
gives

/T(s}”()nf;(n)dn > [/\/mf(n)dn] {/f (n)dn]
2
_ [/\/Nsi,n)f(n)dn]

But the left-hand side of (15) can be made equal to the right-hand

(14)

(15)

side if
fi@) =N+/TGi,n)f@), (16)
where \; is given by
:/\/T(s,«,n)f(n)dn. a7

Note that A; also serves to properly normalize /. It can also be
shown that the solutions (16) are unique among all measurable den-
sities.

Hence, (16) is the optimum solution for every i. Equivalently, by
definition of 7', (16) is expressible as

{ N /VDf (),
fi@m) =

N elsewhere.

nc Qi
(16a)

Using the definition w; = f/f, substituting (16) into (8) can be
shown to yield No?(p;) = 0. Hence, if we were able to imple-
ment a sequence-dependent optimum biasing, the expected variance
or time-reliability product given by (9) would also be zero. This
implies that a single experiment, one for each symbol sequence,
is sufficient. Such an experiment would require running mL bits
through the simulation, i.e., L sequences m bits long. Since VL /\;
is the probability of error given sequence s;, we are presented here
with a tautology of sorts because implicit in (16) is foreknowledge
of the solution. This circularity manifests itself in two ways. First,
as just noted, the scale factor in (16a) is really the reciprocal of
Prob [errorfs;], and the set of such conditional probabilities consti-
tutes the answer we seek. Second, knowledge of the regions €; is
necessary in order to generate f;*(n). But, in principle, we could
then simply integrate (1) over these regions to obtain p and thus ob-
viate the need to generate f*(n) at all. Actually, the qualification
“in principle” should .not be taken lightly. In some cases, at least,
this integration may, in fact, be intractable so that we may, after all,
be reduced to evaluating the integral by Monte-Carlo means.

Wang and Bhargava [8] examined the question of the optimal den-
sity by considering jointly distributed signal and noise in the prod-
uct space R x®Y = X where M 1 and M, are the dimensions
(memory) associated with signal and noise, respectively. (Obviously,
if the signal is two valued, the signal space consists of the vertices of
a hypercube.) If  C X is the region where errors occur, Wang and
Bhargava show that f*(s,n) = f(s,n)/p is the optimum solution
for (s,n) € {2 where f(s,n) is the input joint density of signal and
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noise. Note that this formulation is also sequence dependent by virtue
of the space on which it is defined. It also induces a biasing of the
signal as well as of the noise. Because the signal and noise are not
necessarily independent in this formulation, it is not clear how one
would actually implement this optimal density. If, however, the signal
and noise are taken to be independent (which is usually the case),
then one can show that f*(s,n) can be constructed from the set of
sequence-dependent densities f;*, namely,

L
Fr6.m) =Y (i /D) s6Of T i)

i=1

where I;(s) is defined as unity ifs =s; and zero otherwise and f;*is
given by (16). In other words, the sequence-dependent solutions (16)
give an explicit method of implementing f™*(s,n). It is interesting
to note that the sequence-dependent implementation is equivalent to
biasing both signal and noise. Obviously, we have the same funda-
mental obstacle as before, namely, that if p were known, we would
not need to implement IS in the first place. In order to break this
logical circle, we need to look for suboptimum solutions which do
not require the finest level of knowledge about the system that is
implied by knowledge of the error regions.

In the preceding development, we dealt with ways of modifying
the input distributions, which are those directly under the control of
the simulator. (We call this the ““input version” of IS [6].) The output
version of IS refers to properties of the decision voltage v = g(s,n),
the output of the system. We noted in [2] that if w(v) = p for v in
2() where ) is the error region in (s, n) space, then € = 0. This
solution is the mapping of (16) to the output. We also noted in [2]
the inherent contradiction in this ‘‘optimum’’ solution.

B. Optimum Solution Based on System Threshold Characteristic

The STC does not, per se, recognize individual sequences, but
represents system behavior aggregated over all sequences. For this
case, there is only one biased density f*(n), and from the preceding
development, this can be immediately written as

f*@m) =N/T@)f(n) (18)

with \ given by an obvious modification of (17). Note that 7'(n) is
nonzero over §2 = U ). Although it is possible to make reasonable
assumptions about 7, analogous to that represented in Fig. 1, we are
not much further ahead than before in constructing an easily imple-
mentable procedure. Such a procedure should have the property that,
if f(n) has independent coordinates, then f*(n7) should also. This
would allow us to generate f*(n) sequentially with an independent
generator from sample to sample, which is a great convenience. We
find, as discussed next, that (18) does lead to such a property if the
system is linear. As usual, this linear case is not as much of inter-
est in itself as it is in pointing to a procedure which may also be
useful in the nonlinear case. It is important to note that, unlike the
sequence-dependent case, C must be greater than zero. Essentially,
this is because we have averaged information about the system in
adopting a single biasing approach for all sequences.

C. The Linear Case
In the linear case, we remarked earlier that

T(n)=Toh -n) (19)

where T can be looked upon as the conditional probability of error
given z =h-n, which is the noise variable as seen at the output of the
system (input to decision device). Hence, T is the output version of
T and would look something like that shown in Fig. 1. Consequently,

from (18),
Sy =N\/Toh -n)f@n)

is the optimum M-dimensional input density. Unfortunately, as writ-
ten, even if the components of f(n) were independent, we could not
generate f*(n) with independent components since |/To(h -n) is
not factorizable in the given coordinates.

(20)
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However, if we assume certain properties for the distribution of
n, then (20) can, in fact, be expressed as a product, through an
appropriate transformation. Specifically, we assume that n is radially
distributed in the sense that f(n) = ¢(|jn||) for some density ¢.
Let {b, by, --,br} be an ordered orthonormal basis of R with
b, =h and [|h]| = 1. Let U be the M x M matrix with columns
by, - ,buy, viz. W =[h,b,,---,bpy]. Setn = Uv. Then

(W)
I =
/ﬂMT(tuu)f*(‘Uv) |det U|dv (21a)
S)
= Toth - Uv)—=
/RM Y v)fl*(u) dv (21b)

where, for simplicity, we set f*(Uv) = fF(v). Since f has radial
symmetry, f(Uv) = f(v). Also, because o -Uv = U h -v =
(1,0,---,0) -v = v, we have

o0 =] oS} 2
7= T(U)f(vl,"',UM)d d 22
[oo [oo[oo o fl*(vls""UM) o oM { )
whence, using previous results, the optimal f* is

VTaoD G, )
[ Vrstmenan

where m(v,) is the marginal density of f(vy,---,upm).

Now, if f(n) is Gaussian and has radial symmetry, then it has
identical independent components, f(#) = I1f;(;), with equal vari-
ance o2. By definition, f(#) = f(U,) = f(v); hence, f(v) has the
same properties. Therefore, (23) is factorizable into M independent
densities, the first of which is proportional to /To(v,)f1(v,) and
the remaining (M — 1) of which are identical to one another. A point
worthy of note is that v, is the A coordinate of v in the basis defined
by U. As will be seen, this direction is important in a suboptimum
implementation of the procedure. The optimum procedure implied
by the preceding development implies a block approach wherein M
noise values are independently generated as just described, trans-
formed through the matrix U into a new block of M values, and sent
through the system. As noted elsewhere, only one symbol decision
per block can be made.

If fi(v;) is N(0, ¢2), then p(vi) = Ny/To(v1)f1(v1) is a density
that looks something like that in Fig. 2 where T’ is taken to be of
the same form as in Fig. 1. The exact shape of p(v,) depends on
the relative values of a, and o. The peak value can be shown to
occur at z = a(l + /1 + (o /a)?) if it occurs between o and 3;
otherwise, it occurs at 8. The most significant aspect of p(v,) is the
fact that it is a density with the mode shifted away from zero. This
suggests that a practical alternative to actually attempting to gener-
ate p(v) exactly is to approximate it with a nonzero-mean Gaussian
having the same variance as vs, - - -, vs. If we do this and then trans-
form (vy, v, - -, va) back into the original coordinate system to get
(m, na,- -, np), the latter will all be normally distributed with the
same variance, but generally different means, i.e., n; = N(u;, 0?).
Indeed, if [vip(vi)dv, = a, then E(v) = U(a, 0,---,0) = ah,
and so the mean vector is a multiple of 2. This leads us, therefore,
to consider a biasing scheme where the biased density is normal
with standard deviation 62 = y?0? and a (possibly) time-varying
(or position-varying) mean y;, i = 1,2,---,M. This approach is
discussed in more detail below.

f1*(U1."'

(23)

sUM) =

IV. Biasing witH Nonzero-MEAN GaussiaN DENSITIES

We assume here that the input noise samples are independent.®
At each time sample (coordinate), a normal r.v. is generated with

& This assumption is not central. If the initial coordinates were correlated,
one could find an orthogonal transformation that would yield independent
coordinates. However, the assumption simplifies the presentation. In addi-
tion, in the simulation context, one can, and usually does, generate initially
independent variates.
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f(vy)

L4E+01 4

To(vy)

L3E+01T

L 2E+01+4

PROBABILITY DENSITY FUNCTION p(vq)

.1E+01 ¢

.0E+00 t t 1 +

.
+ +
LOE+00 | . SE+00 -15E+01

1E+01
V1
Fig. 2. Probability density function p(v1) of component of biased density

in the ““direction” of the impulse response. For this figure, p = 10 dB [see
definitions of p and 8 following (27)].

distribution N(g;, 62),i =1, 2,---,M where 02 = y*¢? and ¢? is
the variance corresponding to the operating point of interest. Else-
where [6], we referred to vy as the ¢ multiplier. The case where p;
is nonzero but ¥ = 1 was originally considered by Lu and Yao {9].
For the conditions given (keeping in mind the linear assumptions),
we can show that (7) can be expressed as

) M
I(r,C) = ! elicifart~uye?
2rz —1
. * To(x) —le—(1 =20 OF 20°F o 24)
—oo V2mo?2r?
where (for notational convenience) we define
=y /2y -1 (252)
C = (1, p2, 5 M) (25b)

and T is the STC. For the case C = 0, (24) reduces to the traditional
method of biasing where only the noise variance is modified.

We are looking for the minimum of I. It turns out that the ex-
pression for the optimum (r, C) is uninstructively complicated. It is
more illuminating to ask what is the optimum C, given a value of r.
In the Appendix, we show that for any r and 7, I(r, C) is minimized
if C = ch where c is a scalar constant. In other words, the mean p;
at each instant is proportional to the value of the impulse response
at that instant. In geometrical terms, this means that C is in the “di-
rection” of & in ®" . This can be heuristically illustrated, as in the
sketch of Fig. 3. We note that in a linear system T'(n) = To(h -n).
Hence, T is constant on hyperplanes perpendicular toh. If T =0
forh -n <o and T =1 for h -n > 3, then the corresponding hy-
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Fig. 3. Illustration of M-dimensional threshold characteristic. Impulse re-
sponseh is perpendicular to hyperplanes Ly at distance « and L, at distance
B from the origin.

perplanes Lo, L; bound the transition region in a manner analogous
to the one-dimensional view of Fig. 1.

It is significant to note that if »r = 1 (i.e., the noise variance is
unchanged) and C = ch, then I(r, C) becomes independent of M
irrespective of the form of 7. It is interesting to observe that the
direction of k is also optimal in a different sense. Davis [4] has
shown that in the conventional implementation (u; = 0, all i), an
orthogonal transformation (¢.g., the matrix U earlier defined) with
the first column equal to & creates an equivalent linear system with
unit memory, which is the best situation in that case. We might
perhaps coin a “‘matched filtering” principle in this context!

The best value of the scalar ¢ that multiplies /# is a function of T
and can be found from the equation 9I /Oc(r, ch) = 0. However,
the solution is not obvious, and it is more instructive to look at a
particular case, which we shall do presently. A point to be made in
this regard is that, as in the formulation of the optimum, we can
interpret T as a single system function or as a sum of sequence-
dependent functions as in (9). In the former instance, the scalar ¢ is
a single number, while in the latter case, there is a different scalar
corresponding to each distinct sequence. This last approach, using
a sequence-dependent mean for the biased density, is considered by
Lu and Yao [9].

In either of these two approaches, a block implementation is clearly
implied since the sequence of means is not constant. If, in addition,
the sequence of means is the set {c;h} where ¢; is the scalar cor-
responding to the ith sequence, there is a further implication con-
cerning the complexity of implementation as well as the realism of
the approach. The complexity issue is not overriding. But we would
certainly have to know the sampled signal value for each possible
sequence—this is implied by knowledge of 7. For a 10 bit memory,
say, this means knowing 2'® values. Aside from the effort in gathering
(computing) these values, once we knew them, there would be no
point in proceeding with the simulation. We could directly compute
the error probability! We are thus in the same kind of logical impasse
as in the sequence-dependent optimal formulation.

From an implementation standpoint, it would certainly be sim-
pler if the sequence of means were constant. Among other things, it
would permit a sequential implementation, which is generally more
desirable. We thus look into this case in the next section.

A. Biasing with Fixed-Mean Gaussian Densities: Linear STC

We now assume C =c(1, 1,---,1) i.e., the mean at each sample
time is a fixed amount. Clearly, there is then no need to block the
data. Further, in order to obtain computable results, we need to
make a specific assumption concerning 7. We shall assume that we
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Fig. 4. Importance sampling improvement versus { = ¢ /o where c is the
mean of the Gaussian distribution; M is the system memory and p = 1078,

do not have knowledge of sequence-level detail. Hence, T is the
system threshold characteristic, and we assume it to be “linear,”
i.e., a straight line in the transition region, as shown in Fig. 1. This
assumption is for computational ease, and has no connection with
the linearity of the system. Thus,

0, x <o
To(x) = E:g a<x<B (26)
1, x> 8.
Given arbitrary C € @M, (24) now takes the form
2\ leirar -
r e r=ie
I(r,c¢) =
r.e) (,/2,2—_1) B-A
-[BQ(B) — AQ(A) + ¢(A) — o(B)] (27)

where

NG

¢ -O)Q2r* -1
NG

b=B-a)/B+)

2
A=@[l-5+w}

B=YP

%

{1—{-5-{-

p =[0.5(8 + a))? /o> =SNR
Qx) = / &(»)dy

o(x) = (V21) ! exp(—x?/2)

and in the preceding, > 47 = 1is implicit. WhenC =c¢(1, 1,---,1),
(27) and the subsequent definitions apply simply by replacing 4 -C
by ¢y where 9 = Y h;, and [|C||? becomes Mc?.

In the case that a system is characterizable as an I&D filter, (27)
becomes independent of M if r = 1. This can be seen from the fact
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that S"h? = 1 implies h; = 1/v/M, whence n = /M. Hence,
setting x = ¢ VM, say, we see that (27) depends only on the variable
x; hence, the maximum value of I will be independent of M. For
p = 1078, Fig. 4 shows the ratio € in the Monte-Carlo case to that
in the present (I&D) case with 7 = 1 and 8 = 0.° The ordinate gives
the run time improvement directly for the same estimator variance
(roughly, the same confidence). The abscissa { = ¢/o. As can be
seen, tremendous improvement is potentially available, independent
of M. Although this improvement must be somewhat dependent on
Ty, it is not likely that the 7'y in any system would depart radically
from (26); hence, Fig. 4 is probably representative. (This is also sup-
ported by the numerical results presented in [9].) Unfortunately, this
improvement will rarely be attained in practice (using the approach
of this section). This is because practical systems generally do not
have an A corresponding to an I&D filter. There may be an 1&D
filter in the receiver, but the overall transfer function represented
by A will not be so idealized. If, for example, we take the family
of Butterworth filters as more representative of reality, we compute
(for two-six poles) a maximum improvement of about 2!

It may seem surprising that the improvement is so sensitive to
the nature of & when we use a constant mean shift. This is really a
manifestation of a more general property of I(r, C), namely, that the
improvement decreases exponentially with the difference between C
and k. (This statement is made more precise in the Appendix.)

V. MuLtirLE NoOISE SOURCES

In perhaps most problems of interest, we have to deal with more
than one noise source. Certainly, for bandpass systems, even if there
is only one physical noise source, the simulation of such a source
necessitates the activation of two (in-phase and quadrature) sources.
If there are multiple independent sources, all that we have said ear-
lier carries over in a natural way. The optimal formulations are just
as (if not less) unrealizable as in the single-source case. The most
interesting generalization of the single-source case is when the kth
source is M -dimensional zero-mean Gaussian, and we bias by shift-
ing the mean of each source. If each source has impulse response
h, associated with it, then one can show that the optimal (block)
procedure consists of shifting the (position-dependent) mean of the
kth source by cihx where ¢ is a constant.

SuMMARY AND DiscussionN

A good biasing procedure for importance sampling should provide
a usefully large run-time improvement and (generally less important)
should be relatively straightforward to implement. By this, we do
not mean (necessarily) fewer lines of code. Rather, we believe it is
preferable for a biasing procedure to entail no change in the simula-
tion structure that would be used for a Monte-Carlo simulation. One
would simply “turn on” the biased noise generator(s). Generally, a
Monte-Carlo simulation is ‘‘sequential,” i.e., it evolves in time. The
implementation can be “‘time domain’” where a new sample is gener-
ated at every simulation clock tick at every node or it can use blocks
of samples for FFT processing. However, provided the blocks are
properly spliced, this is equivalent to sequential processing. The main
desirability of sequential time is the ability to simulate long-memory
feedback devices such as phase-locked loops. We should point out,
however, that there are many cases where explicit simulation of such
devices need not be done. In such cases, the appeal of a sequen-
tial simulation is perhaps more esthetic than substantive because it
mirrors reality, but-after all, analytic techniques do not generally
emulate reality and can still provide perfectly good results. Hence,
although we favor a sequential procedure, a nonsequential one can
be applicable, and may even be the method of choice if it provides
superior run time improvement.

The optimum and suboptimum procedures (except for the one of
Section IV-A) all imply a nonsequential implementation. We called
these “block” approaches, but with a different sense than that used

° The condition 5 = 0 is necessary in order to be consistent with the 1&D
assumption.
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just above. Here, the blocks must be m bits long where m is the
memory. The choice of m presents a tradeoff between estimator bias
and run time improvement (equivalently, variance). This is because
only one bit decision is valid in any block, namely, that for the most
recent bit since it is the only one in the block that has experienced
the full effect of the past. Thus, the run-time improvement for these
methods must be reduced by the factor (1/m). If the system were
IIR, there would, of course, be no choice but to truncate the re-
sponse, but even if the system response were truly time limited, we
might still wish to truncate it so as to make m not overly large. In
either case, the truncation implies estimator bias, but the manner in
which this bias arises is quite different in the block processing case
than in the sequential implementation. In the latter situation, the sys-
tem response itself is not (or need not be) truncated when running the
simulation. What is truncated in conventional importance sampling is
the extent of the past taken into account in the weighting procedure
of (3). Such truncation can be shown to yield an estimate p such
that E(p) > p [6], but quantitative evaluation of E(p) — p generally
cannot be done without specific and simplifying assumptions on the
system. For the block implementation, on the other hand, trunca-
tion of the system response results in bias, even without importance
sampling. The extent of this bias can be set up symbolically using
(1), but again, cannot be evaluated without rather specific assump-
tions on the system. Unlike the sequential case, however, this bias
can be either positive or negative. The biasing scheme for IIS-type
importance sampling specifies that the mean of the noise density be
proportional to the system response. The scheme, in effect, requires
that the weighting not be truncated, and in fact, there is nothing to
be gained by doing so. If we adhere to this requirement, IIS, per se,
does not additionally bias the estimator beyond what may already
exist by virtue of the block implementation. In order to choose an m
which effects a good balance between run-time and estimator bias,
it may be necessary for the simulator to do a side experiment in or-
der to see what is the smallest m that can be used without inducing
unacceptable bias.

Another point to remember in the implementation is that the initial
formulation was conditioned upon the decisioning of a given symbol.
If the error probability is different for different symbols, as it will
often be due to asymmetries in the waveform, then the procedure
must be replicated for each type of symbol as the most recent one
in the sequence. The effect of the symbol to be detected on the
procedure is to specify a different region of R™ as the error region.
The net effect on the procedures of Section IV is that the sign of ¢
must be coupled with the symbol. The procedure of Section IV-A
is sequential, and hence does not suffer from the (1/m) reduction.
However, it too is symbol sensitive, which implies that when a given
value of ¢ is used, symbols of the “opposite” type must be ignored.
On the average, then, a factor of two reduction in efficiency would
be experienced by this technique. Unfortunately, even though this
method (of Section IV-A) is sequential, it cannot be relied upon to
yield appreciable improvement for arbitrary 4 . It should be noted that
the conventional technique of increasing the noise variance maintains
the noise pdf symmetry with respect to the symbols, and hence is
symbol neutral.

Within the set of block approaches, we also noted that there is,
in principle, an option to make the procedure sequence dependent
or not. However, as noted earlier, the sequence-dependent approach
may not be practical for systems with large M, but there is still a
very large improvement obtainable, even if we restrict ourselves to
using a system threshold characteristic, as implied by the example of
Section IV-A.

It has been pointed out that the optimum solution requires an unre-
alistically detailed level of knowledge about the system. The subop-
timum solutions also imply some knowledge, but of a more readily
obtainable form. In particular, the method of Section IV stipulates
knowledge of i, the system “‘impulse response.” It appears that any
refined approach to IS requires some form of system identification.
The method proposed by Davis [4] also requires knowledge of &,
as does another form of “‘efficient”” IS suggested by the authors {6]
which can be sequentially implemented. This is obtainable by dif-
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ferent means within the simulation itself. The very definition of h
implies a linear system or a linear approximation of a nonlinear sys-
tem. What we cannot answer at present is the sensitivity of various
approaches to the linear equivalent embodied in A. The answer to
this question may have a significant influence on the biasing proce-
dure of choice. Otherwise, the preferred technique is not necessarily
obvious, as some balance between ease of implementation and run
time improvement must be struck, and this may well be application
dependent.

APPENDIX

We first show that 7(r, C) given by (24) is minimized when C =
ch for some ¢ € R. Let

ht =K cR"ph K =0)

be the orthogonal complement of i .
Lemma A.1: EveryC € R admits a unique decomposition C =
ah +K where a € R and K €h1. Moreover,

h-C
a=-—r (A.D)
12
and
h-C)h
K=C- (A2)
(il
The proof is straightforward and is omitted.
Let
v RY Ssp) & (st € R) (A3)

be the orthogonal projection of & onto the subspace spanned by & .
By the lemma above,
W(C) =k -C)h (A4)

if ||| = 1, which we assume.
Theorem A.1:'° For C gsph), r > V2/2,

I(Y(C) < 1(O).

Remark: The theorem says that variance is always reduced by
projecting onto the subspace spanned by &, i.e., minimum variance
occurs by translation along /.

The proof depends on a simple lemma.

Lemma A.2: 1(ah+K) = exp[|K|*(2r*—1)/01(ah) fora € R
andK €ht.

Proof of Lemma A.2: By definition [from (24)]

_ 7 To(x)
I(ah +K) =G(g,r,ah +K)/_m—\/27m__—27
_ _ 2 h12
exp (_[x (a-2r )2(a2h +K) -h) ) dx (AS)
20°r

r2

M
\/—Qﬂ—j) exp (||Cl|2(2r? — 1)/a?).

where G(o,r,C) = <

Now,

(ah +k)-h =ath -h)+K -h =a (A.6)
since (K -h) =0 and [|h|| = 1. Also,
flah +K|* = (ah +K) - (ah +K) =a* + |K|?. (A7)

10 For notational simplicity, we henceforth suppress the explicit dependence
of Tonr.
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Substituting (A.6) and (A.7) into (A.5) yields
I(ah +K) = elX1’e7 =002 gy, Q.E.D.

Proof of Theorem: From Lemma A.1 and the definition of v,
it follows that we can write

C =y(C)+K.
Furthermore, Lemma A.2 shows that
1(©) = el¥ e =0/ [y
Since C ¢sp (h) implies K # 0, we have
I(C) > I(Y(C)). Q.E.D.

Now, we compare the variance in the 1 direction to the optimal
translation (along &).
Let1 £ (1,1,---,1), whence c1 =(c, c,---,c), and write

cl=(cl-hr +(c1—(c1-h))

=nch +K since n = Zh,-. (A.8)
Then, since |h|| =1,
I(c1) = e’ 1t=m1*ar* =0/’ epny (A9)
But
M
> —nh) =M —n? = |1 —5h|? (A.10)
i=1
hence,
I(c1) = e M=10C" =1/0" [ (cnp) (A.11)
or

[(Cl) - eMcl(2r2—l)sin6/uzl(Cnh)

where 8, 0 < 0 < « is the angle between 1 and &, and we see from
(A.11) that (even with r = 1) the variance is exponentially increasing
with M, unless M = 2. But this is precisely the case for an I&D
filter for which the normalization Y_A? = 1 holds. In other words,
for this filter, the 1’s direction is the direction of . Otherwise, as
noted in the body, the exponential dependence on M induces a major
degrading effect on the improvement.

To see how system identification can affect variance, let C be an
approximation to &, the true finite-dimensional impulse response.
Then we can write

C =yC)+K
as before and apply Lemma A.2 to find that for any r > v/2/2

I(r, C) = exp(|K||2(2r* — 1)/a®I(r, ¥(C))

> prexp(IK|122r* - 1)/o?).

But ||K|| is the distance between C and the subspace sp (h) defined
in (A.3), and so variance grows exponentially in the distance be-
tween sp (k) and the approximation C. Therefore, careful and accu-
rate system identification needs to be implemented for the technique
to achieve full potential.
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