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Structures and Its Efficiency
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SUMMARY A large scale simulation for polymer chains in
good solvent is performed. The implementation technique for
efficient parallel execution, optimization, and load-balancing are
discussed on this practical application. Finally, a simple perfor-
mance model is proposed.
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1. Introduction

Needless to say, polymers are new material of great im-
portance in a variety of practical applications. More-
over, polymers dissolved in solvents is a matter of spe-
cial interest for statistical physics because of its complex-
ity. In addition, chemists are daily creating special kinds
of polymers which have much more complicated topolo-
gies. For example, star shaped polymers (Fig. 1) which
consist of a number of chains sharing one end, have in-
teresting features and those are hardly understandable
by analytical theories. The polymer solutions, in which
many polymer chains are entangled among solutions, is
another important examples. These materials introduce
interesting theoretical problems in physics, and com-
puter simulation provides one of the powerful methods
to analyze them.

Since this type simulation requires vast amount of
computation, to exploit parallelism efficiently is quite
important for carrying out large scale simulations. In
the present paper, such simulation works we have per-
formed to estimate various physical properties of poly-
mers with complex topology is introduced, and we will
discuss their efficiency and model their performance. We
believe that the performance analysis in such an actual
application is quite important. A Connection Machine
CM-5 with 64 nodes by Thinking Machines Co. is em-
ployed to carry out the actual processing.

2. Model

The word polymer means chemical compound which
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consists of repetition of the same small molecular struc-
tures (called segments). For example, poly-ethylene is
described in chemical formula as (CHy)—(CHy)—.....—
(CH,). Since every (C H,) has several choices of relative
position to the adjacent molecule, long chain polymer
has an enormous number of possible conformation. In
their solution, what has the largest effect on their phys-
ical property is this vast degree of freedom because the
expectation value of a physical value f is given by a
formula including summations taken over all possible
conformations. The formula is
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where kp is the Boltzmann constant (1.38066 X
10% Joule/Kelvin), T the temperature of the system.
The conformations are denoted as z. The function f
can be any function of the system and complexity of
the problem has a large dependence on the form of f.
A simple example of f is the gyration radius of the
polymer as the measure of the extension of the polymer
chains,

<r >g = z(rcenter - Ti)Z (2)

where T.enter is the position of the center of gravity,
and r; the position of the each component molecule,
While in the calculation of the hydrodymanic radius
of polymer, 3(Number of the segments) + 1 linear alge-
braic equations must be solved for each samples.

In the present simulation study, the polymer chains
are discretized into jagged lines on a cubic lattice as
shown in Fig.2. In spite of coarseness of this approxi-
mation, this model represents various conformations of

Fig. 1  Star shaped polymers. They behave like particles in so-
lution (left). If two stars come nearby, complicated entanglement
effect occur (right).
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(A) (B)
Fig. 2 (A) Flexible chain. (B) Lattice representation.

flexible and continuous chains quite well, especially for
long chains.

Since a lattice model is employed, each conforma-
tion must be described as a sequence of vectors,

SL=<7”0,T1,T2...T‘L >, 3)

for single chain with L segments.

In the present work all of the F(z) are assumed to
be same and the evaluation seems tractable. However,
all conformation must satisfy following conditions

Vivj (i<jnli—j|l=1—=|rm—r;|=1) (4
{Connectivity of the chain)

Vivi (it o riF ) (5)
(Excluded volume of the chain segments)

to inhibit unphysical disconnections and collisions be-
tween segments. These conditions make the analytical
estimation of the summation quite difficult and the com-
plete enumeration of possible conformation is impossi-
ble due to the vast number of them (Roughly 5% in three
dimension).

The procedure called Monte Carlo (MC) simula-
tion which constructs sample conformations by random
number generator is useful for the present purpose.

However, another problem arises if one apply the
MC technique to the polymer chain system in primitive
manner. For example, consider the case of a polymer so-
lution which consists of 20 polymer chains each of them
having 20 segments and is confined in 10 x 10 x 10 cu-
bic cell. To construct possible conformations, 20 chains
with random conformations must be placed at random
places in the cell. At the point of installation of the fi-
nal chain, about two fifth of the lattice sites are already
occupied by precedent chains. According to such obser-
vation, success possibility of entire process is less than
(2 x 1099-400)20 — 196, Hence this process is quite
simple but hardly succeeds. By this, the computational
complexity is severely increased.

Recently, a new kind of MC simulation named en-
richment algorithm for lattice polymers has been pro-
posed by Ohno and Binder{1]. This method signifi-
cantly reduces computational complexity, to the level
which can be finished on supercomputers in reasonable
durations.
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3. Implementation

The CMS5 parallel supercomputer system is physically
a combination of a large number of SPARC RISC
MPU chips with vector arithmetic units loosely cou-
pled by FAT-Tree network, and provides both MIMD
and SIMD programming styles. Thus we decided to
employ node level C language and used the CMMD
message passing library, to carry out the entire simula-
tion in MIMD mode of CMS3. Since in this usage of
CMS5, automatic vectorization is not available, the vec-
tor arithmetic unit in each node is utilized directly by
CDPEAC macro library. Extensive attention was paid
to keep high vector efficiency in the collision checking
part of the code, because in this part over 90 percent of
the computing time is spent. For example, if distance
of some chains at initial condition is grater than two
times of the maximum length of the chain, check of the
collision between them is automatically skipped. Even
if vector length is decreased by this method, it is auto-
matically recovered by changing way of strip-mining. In
other words, we used CMS5 as loosely coupled 64 small
VECtOr processors.

The present algorithm is described basically as fol-
lows for the case of a polymer solution of f chains:

(1) Prepare initial n samples of L = 1.
81 = <r10,0,71,0,72,0---Tf,0 > (6)

All of r90,71,0,72,0 - .. must be chosen randomly. Oth-
erwise we lose possibility of obtaining some conforma-
tions of the solution.

(2) Make « candidates of sample of | = 2

Sy = < T9,0,T0,1,T1,05 - -T§,0,Tf,1 > (7

for each of I = 1 samples. The value of « is set so
that enough number of samples are available in Phase
4. By choosing the displacements between ;o and 750
by random number generator as one of unit vectors,
the connectivity condition of the chains is automatically
satisfied.

(3) Check all candidates under the excluded volume
condition; If any newly added segments occupy the same
position as other segments in a sample candidate, the
candidate is eliminated.

We found a new algorithm for the checking.

While i < L {
Ifl Ri = Rpew | =0
Then { Return with FALSE}
Else{ i+ =|Ri — Rpew | }
} Return with TRUE (8)
When all R; are connected, this is a very fast and ef-

ficient algorithm to guarantee that no R; is the same
as R,.,. However, in actual code we employed usual
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Fig. 3 Schematic explanation of entire simulation. In the real
simulation, these sample configurations are distributed among
Processors.
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“one-by-one” algorithm which is more suitable for vec-
tor arithmetic units in the nodes of CM5.

(4) Evaluate f(’f'(),(), 70,1,71,0,71,1,-- - Tf,0, Tfyl) for each
of sample conformations and calculate the average of
the results. It is written in the files as physical results.
(5) Repeat phases 3 and 4 until the arm length reaches
the arbitrary goal.

Figure 3 shows schematic explanation of the entire
simulation. It is obvious from above-mentioned algo-
rithm that enrichment algorithm is suitable for parallel
processing. The reason is that all processings except
for taking average in Phase 4 is independent. we can
postulate that computational time of each processor for
each simulation step is linear to the number of sample
conformations they have. Hence the number of the con-
figuration samples in each processor will be used later
as a measure of load balancing.

4. Results

We performed parallelized simulations for star polymers
under various conditions and the physical results have
been given elsewhere[2],[3]. Here we will discuss only
efficiency of the simulation as a parallel code.

As a typical condition for the efficiency evaluation,
conformations of star polymer with 6-arms which are
50 monomers long are generated without any dynamic
load balancing. The number of samples to be generated

1S
100L when L < 10,
64 x {900 +10L when L 2 10. ©)

When distribution of samples is never changed dur-
ing simulation, The progress of number of sample con-
formations in each processor, behaves as presented in
Fig.4. Since load of processors diverged as arms are
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elongated, this simulation is obviously inefficient, al-
though the distribution of sample has no effect on the
statistics of the physical data. Therefore, dynamic load
balancing has turned out to be necessary for this kind
of simulation.

A dynamic load balancing is added to the code by
moving samples among processors after each monomer
elongation phase has done. This means frequent inter-
processor communication is also needed. To carry out
this task by fast two-body message-passing, all process-
ing nodes are sorted in the order of number of samples
they have, and processor pairs are made simply like 1st
and 64th, 2nd and 63rd, and so on, and excess config-
urations are transported between each pair. This load
balancing scheme is very easy to be implemented, but
apparently sometimes does not give sufficient balance by
one trial, because the average load of the Ist and 64th is
usually different from average load of all processors. To
overcome this problem, the same procedure is repeated
after each monomer elongation if it is necessary.

This scheme is tested with the same condition
as above. In this case, repeating the procedure is
not needed to achieve a sufficiently nice load balance
(Fig.5). The number of samples in each processor is
converged within a few percent of their target value.

To evaluate how communication overhead caused
by automatic load balancing affects the performance,
and how well the presented automatic load balanc-
ing scheme works for simulations for conditions with
larger complexity, time for communication for the load
balancing scheme is measured in four complicated ini-
tial conditions for various numbers of iteration of the
procedure. The initial conditions are named Disc,
Graft, Hollow, and Threestars according to their phys-
ical shapes. All of them mimic the situation interest-
ing in terms of polymer physics and we are planning
some of them to be our future research subjects. More-
over, since they will require far more computation than
present work, efficient parallelization of them will be
more important. The result is presented in Table 1. The
leftmost column is the number of iteration of load bal-
ancing procedure. In each case, the first column is entire
processing time, the second column percentage of com-
munication time only for transferring samples to adjust
load balance. Other kind of communication, e.g. gath-
ering physical data, global synchronization, and initial-
ization of simulation (broadcasting object code to pro-
cessors), are not included because to measure these com-
munication time correctly is difficult in the current CM35
operating system. Generally, iterative load balancing
with 4 to 5 times is sufficient to obtain enough perfor-
mance. Although the time for communication slightly
increases as iteration increases, they remain acceptable.

As a conventonal measure to show how effectively
parallelization is done. Achieved speedups as functions
of the number of processors is presented in Fig. 6.

To discuss this result, it must be taken into account
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Fig. 5 Progress of load in each processors with dynamic balancing. The procedure pre-
sented is performed after each monomer elongation. Results for processors 1 to 16 among
64 are shown.
Table 1 Entire processing time, communication time and its 70 : T . y . .
percentage, for various number of repetitions of auto balancing 6chains, 64000samples —
scheme (at the leftmost column) after each elongation. 60 - 6chains, 6000samples, - k
_ 12chains, 6000samples -~
Disc Graft 50 - Ideal Speedup J
1 [| 95.13Sec. | 3.28% || 119.93Sec. | 3.16% -
2 || 80.60Sec. | 4.26% 95.04 Sec. | 3.85% _gf 40 + 1
3 || 76.63Sec. | 4.78% 90.52Sec. | 4.68% o
4 || 75.97Sec. | 5.64% 89.14Sec. | 5.43% & 30 1
5 1| 75.47Sec. | 5.80% 88.34Sec. | 5.70%
6 || 75.71Sec. | 6.36% || 87.63Sec. | 5.712% 20 1
Hollow Threestars 10 | i
1 || 66.08Sec. | 3.03% 92.998ec. | 3.10% s T
2 || 56.20Sec. | 4.43% 83.31Sec. | 4.55% ‘ 0 A . . . . .
3 || 53.02Sec. | 484% 80.43Sec. | 5.38% 0 10 20 30 40 50 60 70
4 || 52.248ec. | 5.60% 78.85Sec. | 5.60% Number of PEs
S || 51.72Sec. | 5.85% 78.60Sec. | 6.26%
6 15141 Szz. 5.829;; 78.37 SZ(C:. 6.38%? Fig. 6 Achieved speedup as a function of the number of pro-

cessors for various conditions.
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that the enrichment algorithm needs a large amount of
memory because positions of every monomer in every
sample conformations must be stored. This makes full
size and practical simulation on one processing node of
CMS5 impossible. By this reason, speedup of large scale
simulation was estimated by speedup of smaller scale
simulation and elapsed time of both scale. The perfor-
mance deviation from the ideal speedup in Fig. 6 for the
case of full simulation (64,000 samples) can be due to
such a way of estimation. Another possible reasons are
the remaining imbalance of samples and several inher-
ent parallel overheads come from CMS5 environment.

Despite of that, it seems that an acceptable speedup
and efficiency is obtained in parallel processing by 64
processors for the full simulation. On the other hand, in
the reduced version, efficiency is significantly degraded
and speedup is saturated at about 50 processors. Since
precise physical result needs as many samples as possi-
ble, performance saturation at such a small number of
processors is not a serious problem. In other words, the
condition

O(Time for parallel part)
S(Number of the processors)

0, (10)

which is required by the Gustafson’s Law[5] for high
parallel efficiency, can be satisfied for any number of
processors by making the size of the probrem sufficiently
large.

5. Efficiency Analysis

In the previous chapters, our discussion is based on
a prospect that the procedure consists of many inde-
pendent tasks like our simulation is suitable for simple
task-wise parallelization and must exhibit quite high
efficiency by such way. In this last chapter we will dis-
cuss the point by creating a model of the procedure and
estimating the elapsed time for them.

Single step of Phase3 and 4 in the description in
Chapter 3 is simplified to a model procedure:

(A) Do N4, times of certain processing. They will
succeed only in probability p. If succeeds each will
produce a sample data set for the next phase.

(B) Evaluate certain function f for each of produced
data set.

Between Phase A and B, no data is moved among
processors, in other words an owner computing rule on
task is employed in the model. It is assumed that elapsed
time of Phase A and B do not depend on the samples
and they are denoted as T4 and T, respectively.

The size of the problem must be defined by Nigsk.
Because what we need is the evaluation of the function
on samples as many as possible for precise Monte Carlo
evaluation. When we need Ny cguired times sample eval-
uation, Nigsr must be Nyequirea X (1/p).
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Since there is no way to say which task will suc-
ceed in Phase A, the execution time of the model can be
defined only as an expectation value. The expectation
value of the time taken by a serial computer for entire
process is

< Tserial > = TANtask +p X TBNtask' (1 l)

Since T4 and T work as merely prefactors in this anal-
ysis, and in our formulation general tendency does not
depend on the values of them, we assume that T4 = 0,
Tg = 1. This extreme situation corresponds to the case
of f with quite large complexity like the hydrodynamic
radius mentioned in Chapter 2.

For a parallel computer with N, processors,
elapsed time Tporauer is calculated as follows, noting
that Tperaiter is decided by the slowest processor. A
processor finishes its Phase B in nT's second at proba-
bility

Ntask
o(%

Nigsk
,")P"(l—p) Mee (12)

By this, the probability of all processor finish their
Phase B within nTs and at least one processor finish
it exactly in nTp is gtven by

P(n) - P(n - 1), (13)
where P(n) is

Npe
{ZC(N“”" z’)p"(l—p)%*‘i} .4

1=0

The probability distribution of the parallel effi-
ciency is obtained by this. We will use arbitrary val-
ues (0.5 and 0.1) of p as examples instead of that from
actual simulations, because p is a complicated function
of physical conditions. Small values of p are related to
dense polymer solutions and we believe the hypothet-
ical value p = 0.1 is typical or even too large in such
cases. The result is given in Fig. 7 for several conditions.
Smaller value of p gives rise to smaller number of tasks
in Phase B on average, and larger variance of them com-
pared to their average in this model. This model study

0.5 A: P=0.5,6000 Sample(64PE)
> B: P=0.1,6000 Sample(64PE)
= 04 C: P=0.1,6000 Sample(128PE)
T 03 B
£ 02 c & s AA
* 0.1 C B AA AA
.o B c B K

0.5 0.6 0.7 0.8 0.9

Efficiency

Fig. 7 Probability distribution of the efficiency for several con-
ditions.
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Fig. 8 The expectation value of the parallel efficiency as a func-
tion of problem size and the number of processors.

clearly shows that the efficiency can be quite small if
p is small, despite of large inherent parallelism of the
problem. The degradation of the efficiency is obviously
comes from the fluctuations of the loads among pro-
cessors, thus it become worse as p or Ny.q; decreases.
The result is partly consistent with the actual speedups
presented in Fig. 6.
Finally, the value of parallel efficiency

< Tserial > /Npe
< Tparallel >

(15)

at p = 0.5 is calculated as a function of problem size
and Ny, and the result is given in Fig.8.

This data will be useful in the new framework
recently proposed for evaluating efficiency and scala-
bility of parallel algorithm[7]. We may obtain their
“isoefficiency-function” which is a size of a problem
enough to keep the parallel efficiency constant as a func-
tion of the number of processors. The p-dependence of
the isoefficiency-function of this algorithm will be quite
interesting matter to discuss. However, we will keep
this for our future theme and here confine ourselves to
just mention the efficiency can be small, nevertheless
the scalability of enrichment algorithm seems to be very
nice.

6. Conclusion

Numerical simulations of complicated polymer struc-
tures have been carried out. Result of parallel process-
ing shows that in this application, what most affects
the parallel efficiency is not the communication time,
but the fluctuation of the randomly changing load. To
improve the load balancing, a simple scheme based on
the average load of each processor was introduced. A
satisfactory efficiency was achieved by this scheme. We
introduced a simple performance model for our code
and analyze efficiency of the model. The model study
made it clear that parallel efficiency depends on the fluc-
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tuation of the load and scalability of the algorithm is
quite nice.
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