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SUMMARY We present a design method of the simula-
tion probability density function for a trellis-coded modulation
(TCM) in an impulsive noise environment. The upper bound
evaluation method for the TCM scheme cannot be applied to
the lognormally distributed impulsive noise, since the Chernoff
bound cannot be defined. Thus the error probability can only be
estimated by a computer simulation. For an evaluation of a low
error probability, importance sampling (IS) is an efficient tech-
nique. A design method of the simulation probability density
function, which plays an important role in IS, is proposed for the
noise. The effectivity is shown by a numerical example.
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1. Introduction

In an urban area, error probability evaluation in an im-
pulsive noise environment is more important than that
in a Gaussian noise environment. When we treat log-
normal noise [1], [2] as impulsive noise, it is impossible
to evaluate the upper bound of the error performance of
the trellis-coded modulation (TCM) scheme since the
Chernoff bound cannot be defined. The estimation can
only be made by a computer simulation.

The error probability of the TCM scheme is effec-
tively evaluated by the error event simulation method
with importance sampling (IS). The IS method is one of
the variance reduction simulation techniques, and can
reduce the simulation time as compared to the Monte-
Carlo (MC) simulation. The reduction of the simu-
lation time depends on the design of the simulation
probability density function (p.d.f.) used in IS. An ef-
ficient evaluation of the error probability in the impul-
sive noise environment is expected to include IS. In this
paper, we propose a design method of the simulation
p.d.f. for impulsive noise.

2. Importance Sampling
Let z be an i.i.d. (identically and independently dis-
tributed) random variable with the p.d.f. f(z). Con-
sider a probability P given by

P:/Ql(z)f(z) dz. (1)
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where Q is the whole space and T (-) is the indicator
function defined as

1, zeD
1 =< 2
(2) {O, otherwise, @)

where D is the subset of €.

In the IS method, the probability is calculated by
introducing another p.d.f. f* (). Equation (1) is rewrit-
ten as

f(2)
P /Ql(z) Iz (z)f (z)d=. (3)
When f*(-) # 0 is satisfied under the condition of
I(:)f(-)#0,Egs. (1) and (3) are identical. The p.d.f.
f* () is called the simulation probability density func-
tion. If the variance of Eq. (3) is less than that of
Eq. (1), the simulation time with IS may be reduced in
comparison with that with the MC method.

3. Error Event Simulation Method

The error event simulation (EES) method [3] is com-
bined with IS to evaluate the error probability of the
TCM scheme. In the EES method, the error probabil-
ity is evaluated by estimating the probability of each
error event.

The convolutional encoder without a parallel path
is assumed because we can easily extend the fol-
lowing for the case of a parallel path. Let u =
(-« ,u_1,up,u1, ) € U be a correct state sequence,
where U is the set of all correct state sequences. Fur-
thermore, let €, be a set of the error events, which are
correctly decoded at time zero and incorrectly decoded
at time one. The bit error probability (BER) P, of the
TCM scheme is expressed as

P, = % Z Z np (u,u') P (u) P (u'|w), (4)

UEU U/ €€y,

where u’ is an error event in &,, m is the number of
information bits, ny, (u, u’) is the number of error bits
under the condition of the correct state sequence u and
the error event u/, P, (u) is the probability of the cor-
rect state sequence u, and P (u/|u) is the conditional
probability of error event w’ under the condition of the
correct state sequence u. Since the set g, is an infinite
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set, the BER is approximated by the conditional prob-
abilities for the finite important set €, in the practical
simulation.

Let f(r|s (w)) and f*(r|s (u)) be the original and
simulation conditional p.d.f. of the received signal se-
quence r under the condition that the correct signal
sequence is s (u). After the Nggg simulation, the IS
estimator of the BER is expressed as

NEEs

B e 2 ()

U EE, J=1
FrD s (w)

.f* (ng)a réj)a e |S (’U,))
where r() = (rgj),réj), +--) is the jth received signal
sequence where rl(j ) is the received signal at time ¢, and
I,.w (+) is the indicator function defined as

My (r(j))

if the error event o' is
decoded under the condi-
1, tion of the correct state se-
quence u and the received
signal sequence r
0, otherwise.

4. System Model

Figure 1 shows the system model. The information
sequence is encoded and is modulated to the 8-PSK
(phase shift keying) signal sequence. The transmitted
signal is disturbed by an additive impulsive noise. As a
noise over the channel, only the additive impulsive noise
is considered [2]. The received signal is demodulated
and is decoded by the Viterbi decoder. The squared
FEuclidean distance is used as the metric in the Viterbi
decoder because the branch metric cannot be defined.

5. Noise Model

In this paper, we treat only impulsive noise, namely, we
ignore background noise. For the p.d.f. of the ampli-
tude of the impulsive noise, the lognormal distribution
is used [1],[2]. As the random variable of the p.d.f. of
the amplitude of the noise, the normalized value v de-
fined as v = T'/ (AT) is used, where T' is the area of
the impulsive noise per symbol interval T" and A is the
amplitude of the 8-PSK signal. The p.d.f. W (v) of the
lognormal noise is described as

1 _(Iny—p? S
\/%U'y P ( 202 » 720
0, v <0,

(7)
where 02 and p are the variance and mean value of In v,

respectively. The lognormal distribution is presented
by the skewness parameter B defined as

W(y) =

2

B = 201log,, j . (8)
Y
By using B, the parameters can be rewritten as
B1n10
2
= 9
and
1 — Blnl0
=—In~2 - . 1
p=gly 0 (10)

The phase of the impulsive noise is uniformly dis-
tributed and the impulsive noise occurs with probabil-
ity vT (<« 1) per symbol interval [1], [2].

The expression for the the signal-to-noise ratio
S/N used in the abscissas of the graphs deserves a brief
explanation. If we assume that the equivalent noise im-
pulses at the receiver input have times of arrival which
are Poisson-distributed and independent complex ar-
eas, the power spectrum of the real input noise process
will be white with spectral density

1—
N = -T2 (11)
2
Therefore, S/N in the information bandwidth 1/7 is
1
S/N = —. (12)
VT2

6. Proposed Simulation Probability Density
Function

Let x + 7y be an additive complex impulsive noise on a
signal space in each time instant. The noise p.d.f. over
the channel is rewritten as

fn(x7y)=(1—VT)5(x,y)+1/Tfln(x,y), (13)

where fi, (-,-) is the noise p.d.f. As noted above,
the amplitude and phase of the noise are lognormally
and uniformly distributed, respectively. Since the nth
power of the delta function ¢ (-, -) is not defined except
for n = 1, the twisted distribution [4] cannot be applied
to the design of the simulation p.d.f. Hence, instead of
the twisted distribution, the simulation p.d.f. is sepa-
rately designed as

f;: (l‘,y) = (1 - V*T)é('r7y) + V*Tfltz (x,y),
(14)
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Fig.2 Original probability density function vT - fi,, (-, -). Cor-
rect signal is at (0,0). The parameters are B = 2, vT = 0.01,
and S/N = 20[dB].
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Fig.3 Simulation probability density function v*T - f (-,-).
Correct and target signals are at (0,0) and (2,0), respectively.
The parameters are B = 2, vT = 0.01, v*T = 0.2, and S/N = 20
[dB].

where f} (-,-) is the simulation p.d.f. corresponding to
fin (-,+) and v*T is a parameter used to speed up the
simulation (vT < v*T < 1).

The simulation p.d.f. f (-) designed by the
twisted distribution [4], [5] is equal to fi, (-) since the
simulation p.d.f. cannot be derived under other con-
ditions. The simulation p.d.f. related to the Bhat-
tacharyya bound [6], which is asymptotically optimal
for the Viretbi metric, is used as f}, (-). Let f*(:])
be the simulation p.d.f. related to the Bhattacharyya
bound. The conditional simulation p.d.f. f* (-|-) is writ-
ten as

fr(rle) = KN/ f (rle) f (rle), (15)

where K is the constant required to make [, f* (r|-) dr
=1, f(:|) is the conditional p.d.f. of the noise, and ¢,
e, and r are the correct signal, the target error signal,
and the transmitted signal, respectively. Figures 2 and
3 show examples of the original and simulation p.d.f. of
the noise, respectively.

The speedup parameter v*T should be selected to
minimize the simulation time under certain variances
of the estimator. The variance under fixed simulation
runs becomes large when v*T — vT and v*T — 1. The
reason for the former is that the frequency of the target
error event decoded by IS is too small. The case of the
latter is that the simulation p.d.f. is very different from
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Fig.4 Approximation of simulation probability density
qq function.

the original p.d.f. Conversely, the simulation time to
achieve a certain variance increases when v*T — vT
and v*T — 1. Therefore, an optimal v*T seems to
exist.

7. Numerical Example

Since it is very difficult to generate a random number
with arbitrary p.d.f., the simulation p.d.f. is approxi-
mated by only the rectangular region so that it includes
the correct signal and the target error signal (Fig.4).
Furthermore, it is divided into 8192 x 8192 small rect-
angular regions. In each small region, the simulation
p-d.f. is approximated by the uniform distribution.

As the encoder, the (11,2,4), Ungerboeck code [7]
with a2/3 rate was used. The natural mapping of 8-PSK
was used for signal mapping. The squared Euclidean
distance was used as the branch metric [2]. Fifty rep-
resentative error vector sequences were selected from
those with the smallest average squared Euclidean dis-
tance. The number of simulation runs for each repre-
sentative error vector sequence was 5000. As the pa-
rameters of the lognormal noise, T = 0.01 and B = 2
were used. The parameter v*T in the simulation p.d.f.
was 0.01, 0.2, 0.4, and 0.6. The rectangular region in
the approximated simulation p.d.f. was selected so that
the probability of the region of the simulation p.d.f. is
more than 0.99. The ordinary MC method was used
for comparison with the IS simulation. The simulation
continued until 200 error bits were observed.

Figure 5 shows the BER performance. The esti-
mators obtained by the IS method are almost the same
as those obtained by the MC method. The proposed
method can be used to estimate the BER, and the num-
ber of representative error vector sequences is sufficient
to evaluate the BER in this example.

The simulation time required to attain the same
estimator accuracy should be considered to clarify the
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Fig.6 Expected simulation time required to attain coefficient
of variation Cy, = 10~1.

effectiveness of the proposed method. As the measure
of the accuracy, the coefficient of variation Cy, is used.
It is defined as

o (po- (Gt o))
Cy = —I &
i 2ic1 P

where P(® is the ith sample. From the above definition,
the coefficient of variation Cy is the standard deviation
to mean ratio. The expected simulation time required
to attain Cy = 107! is shown in Fig.6. The number
of samples in the numerical example was one hundred.

, (16)

From Fig. 6, the expected simulation time at v*T = 0.2
and 0.4 is the quickest to estimate the BER. To evalu-
ate the estimator with the same coefficient of variation,
the simulation time using IS is about /1 that using the
MC method at BER = 107° (S/N = 33 [dB]). The op-
timal value of v*T in this example is around v*T = 0.2
to 0.4. The higher the S/N, the larger the difference
of the simulation time between the MC and IS meth-
ods. The expected simulation time with the same co-
efficient of variation is not sensitive to v*T since the
simulation time required to attain the same coefficient
of variation is almost constant at v*T = 0.2 and 0.4.
At v*T = 0.01 (i.e., the speed up parameter is equal
to the original probability of the impulsive noise), the
expected simulation time is almost the same as that for
the MC method.

8. Conclusion

We have proposed a design method of the simulation
probability density function for the impulsive noise in
Refs. [1],[2] for the trellis-coded modulation scheme.
The simulation time was reduced to about 1/1p in the
estimation of the bit error rate of 10~ with the same
coeflicient of variation when the parameter of impulsive
noise was v*T = 0.2 and 0.4.
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