
The ARM8

• ARM8 was designed for higher performance than ARM7
through:

– an increased clock rate

• simpler logic in each pipeline stage

• a deeper pipeline

– a reduced CPI (Clocks Per Instructions)

• reducing the number of pipeline slots some
instructions take

• removing pipeline stalls

The ARM8 Pipeline

• ARM8 uses a 5-stage pipeline:

– instruction fetch

• performed by an autonomous prefetch unit

– instruction decode and register read

– execute (shift and ALU)

• optimized to fit into a single pipeline stage

– data memory access

– write-back results

The ARM8 Pipeline (2)

• The optimized ALU/shifter arrangement

– only carefully chosen shifts in series with adder

The ARM8 (2)

• Reducing the CPI

– ARM7 uses the memory on nearly every clock cycle

• for either instruction fetch or data transfer

– therefore a reduced CPI requires
more than one memory access per clock cyclemore than one memory access per clock cycle

• Possible solutions are:

– separate instruction and data memories

– double-bandwidth memory

The ARM8 (3)

• Double-bandwidth memory

– exploits the sequential nature of accesses

• instruction fetches are mainly sequential

• load and store multiples are sequential

– each clock cycle allows a random access

– the next sequential word is available half a cycle later

• lower cost than, and equivalent performance to, a
64-bit memory

ARM8 Processor Core

ARM9TDMI pipeline

• ARM7TDMI pipeline:

• ARM9TDMI pipeline:

– Thumb instructions are decoded directly

Instruction
Fetch

Thumb ARM
decompress

ARM decode
Reg Select

Reg
Read

Shift ALU Reg
Write

FETCH DECODE EXECUTE

Instruction
Fetch

Shift
+ ALU

Memory
Access

 Reg
Write

ARM or Thumb
 Inst Decode
 Reg Reg
Decode Read

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

• EmbeddedICE

– as ARM7TDMI, plus:

• hardware single-stepping

• breakpoints on exceptions

• On-chip coprocessor support:

– for floating-point, DSP, and so on

Process 0.35 µm Transistors 111.000 MIPS 220
Metal layers 3 Die area 5 mm² Power <800 mW
Vdd 3.3 V Clock 0 to 200 MHz MIPS/W >280

ARM10

• Targets multi-media digital consumer applications
– high-performance hand-held devices (organizers, smart

phones)

– set top boxes

– sophisticated UI and 2D-/3D-graphics rendering

– high performance printers

• Vector floating point Copro (VFP 10) delivering 600
MFLOPS

• Parallel instruction execution

ARM System Design

• History of ARM

• ARM Instruction Set

• Thumb Instruction Set

• ARM Cores

• ARM Cache Modeling

• ARM CPUs

• ARM Coprocessors

Cache Modeling

• Memory hierarchy

• Cache organization

• ARMulator

• Cache modeling using Cheetah

Memory hierarchy

• A typical system has several different memory subsystems:
– processor registers:~100 bytes, 2ns

• access is a small part of a clock cycle

– on-chip cache or RAM: ~10 Kbytes, 10ns
• accessed at the processor clock rate

– off-chip ROM and RAM : ~Mbytes, 100ns
• access costs several processor cycles

– backup store: ~ GBytes, 10ms

Memory hierarchy

• The objective is to approach:
– the performance of the fasted memory...

– ...at the cost/bit of the slowest memory

• Feasible because programs display:
– temporal locality

• accesses to a location are clustered in time

– spatial locality

• accesses are clustered in the address space

Cache organization

• There are many ways to arrange a cache:
– separate or mixed instructions and data?

– How much memory should be loaded on a cache miss?

– How flexible should the allocation of cache space be?

– How should writes be handled?

Direct-mapped cache organization
address

 data hit

 mux compare

 tag RAM data RAM

d
e
c
o
d
e
r

2-way set-
associative
cache
organization

address

 data hit

 mux compare

 tag
RAM data RAMD

e
c
o
d
e
r

 mux compare

 tag
RAM

 data RAM

D
e
c
o
d
e
r

Fully associative cache organization
address

 data

 mux

 data RAMtag CAM

hit

Cache write strategies
Write-through

• all data is written to memory; matching

cache locations are updated

Write-through with write buffer

• all data is written to memory, but the write

is performed through a buffer

Write-back

• the processor writes to the cache - main

memory is only updated on flushes.

Cache organizational options

• There are many design decisions involved in choosing the
best cache
– some of the issues are summarized below:

Organizational feature

Cache-MMU relationship

Cache contents

Associativity

Physical cache Virtual cache

Unified instruction
and data cache

Separate instruction
 and data caches

 Options

Direct-mapped
RAM-RAM

Set-associative
RAM-RAM

Fully associative
CAM-RAM

Replacement strategy Cyclic Random LRU

Write strategy Write-through Write-through with
write buffer

Write-back

Cache power-efficiency

What is influence of organization on power-
efficiency?

• a high hit rate minimizes off-chip activity
– hit rate increases with associativity (up to 4)

• set-associative caches burn more power
– due to the increased number of active sense

amplifiers

• CAM (in fully associative caches) is also
power-hungry

Cache power-efficiency
How can cache power-efficiency be

improved?

• use serial tag and data accesses in a set-

associative cache
– enable only the relevant data RAM

• segment the CAM in a fully associative

cache
– discussed further in ARM600

• exploit sequential address sequences

Sequential Access
• Accessing memory locations in same line:

bypass tag look-up
– increases access speed

– saves power

• ARM CPUs generate a signal, when next

memory access is sequential

• using current address and sequential signal:

deduce that the access will fall in same line

Cache Speed

• High associativity caches: best hit rate

• Sequential CAM-RAM access: limits cycle time

• Lower associativity: parallel tag and data access

• Beyond 4-way associativity: gains in hit rate
small

• However: Fast CAM-RAM cache is much
simpler than

4-way associative RAM-RAM Cache

Power Optimization

• Minimize overall system power!
– good hit rate necessary

• highly associative CAM-RAM or set-
associative RAM-RAM:
– strongly influenced by low-level circuit issues

• 75% of all access are sequential
• sequential access may reduce performance by 25%

and reduce cache power requirements by a factor of

2 or 3!

On-chip RAM

• System benefits of on-chip memory:
– increased performance - no wait states

– reduced power consumption

– improved EMC

• On-chip RAM is used in preference to a cache in some
embedded systems:
– it it simpler, cheaper and uses less power

– its behavior is more deterministic

– however it requires explicit management

ARMulator
• Emulates ARM processor cores

• Can be extended to model nearly any ARM

based system

• Three levels of accuracy:
– instruction accurate

– cycle-accurate

– timing-accurate

• Initial evaluation of design alternatives:
– instruction accurate model

Instruction Accurate Model

• Model of ARM processor:

not customizable, handles communication with
debugger

• Memory interface:

fully customizable memory model

• Coprocessor interface

• Operating system interface

Cache Evaluation

ARMulator Memory
model

Disk

Linker
Dump
address
trace

Cheetah
Read
trace

(University of Michigan)

ARM System Design

• History of ARM

• ARM Instruction Set

• Thumb Instruction Set

• ARM Cores

• ARM Cache Modeling

• ARM CPUs

• ARM Coprocessors

ARM600

• General features:
– ARM6 processor core

– 4 Kbytes 64-way associative cache
• mixed instruction and data

• write-through with buffered write

– MMU

– support for on- and off-chip coprocessors

– JTAG test access port

The ARM600 organization

address buffer JTAG test clocks

control

MMU ARM6
4 Kbytes

cache

write buffer
coproc
interface

address out

data I/0

coproc
data
 I/0

ARM600 cache design
The ARM600 cache was based on the

ARM3 design, where:

• extensive simulations were performed to

evaluate organizational options

• models were incrementally refined to

approach ´real´ memory timings

• start from ´perfect´ cache
– this gives an upper bound on performance

`Perfect`cache performance

Cache form Performance
No cache 1
Instruction-only cache 1.95
Instruction and data cache 2.5
Data-only cache 1.13
• assuming realistic clock rates

– 20 MHz cache operation

– 8 MHz external memory

• mixed cache gives best performance
– separate I/D cache not on option with ARM6

Cache organization

• Write-through chosen for simplicity
– allocate on write miss gave negligible

 benefits for significant complexity

• Look at size and associativity
– maximum realistic size was 4 Kbytes

• 1990 technology!

– around this size associativity has strong

 effect on hit rate

Unified cache performance as a
function of size and organization

0
0,5

1
1,5

2
2,5

16 4 1 1/4
Kbytes

cache size

associative

2-way

Direct-mapped

Cache Organization

• So, high associativity is desirable

• Replacement algorithm?
– LRU (Least Recent Used) is deal

• but expensive to implement

– cyclic replacement is simple
• but has obvious pathological cases

– random performance as well as LRU
• and is simple to implement

Cache organization

• Full associativity?
– Very large CAMs consume too much power

– line size
• a quad-word line size:

– reduces the size of the tag store (by 4x)

– has negligible impact on performance

• slightly reduced associativity
– has little effect on performance

– allows the CAM to be segmented

» only active segment uses power

The effect of associativity on
performance and bandwidth

0

0 ,5

1

1 ,5

2

2 ,5

1 2 4 8 1 6 3 2 6 4 1 28 2 56

performance

bandwidth

associativity (ways)

ARM600 cache organization

tag CAM

64 entry

tag CAM

64 entry

tag CAM

64 entry

data RAM

1024x32-bit word

tag CAM

64 entry

decode

virtual address

6 5 4 3 2 1 0

enable

user/supervisor
byte
address

[1:0]
[3:2]

[9:4]

[9:0]

hit data

31

ARM600 write buffer

• 2 address, 8 data locations
– flexible association from address to data

– only STM can generate multiple data items for

one address

 address 1
 address 2

 data 1
 data 2
 data 3
 data 4
 data 5
 data 6
 data 7
 data 8

.

.

.

.

.

.

.

The ARM610

• The ARM610 is an ARM600
– without external coprocessor support

– in a 144-pin TQFP `thin quad flat pack`

– as used in the original Apple Newton

– original on 1 µm CMOS, now on 0.6 µm

Process 0.6 µm Transistors 358.931 MIPS 30
Metal layers 2 Die area 26 mm² Power 500 mW
Vdd 5 V Clock 0 to 33 MHz MIPS/W 60

The ARM700 Cache Organization

The ARM700 and 710

• Differences from the 600 and 610
– ARM7 core

– operates at 3v3 as well as 5v

• cache is 8 Kbytes, 4-way, 8-word line
– later ARM710s have reverted to a 4-word line

• TLB has 64 entries instead of 32

• write buffer has 4 address, 8 data slots

• clock rate increased
– from 33 MHz to 40 MHz at 5v

ARM System Design

• History of ARM

• ARM Instruction Set

• Thumb Instruction Set

• ARM Cores

• ARM Cache Modeling

• ARM CPUs

• ARM Coprocessors

Design and Application of Cores

• Microprocessor Cores (ARM)

• On-chip buses

ARM Coprocessors

• Details see ARM6 organization

• No tremendous changes

AMBA

• Advanced Microprocessor Bus Architecture
– a systematic solution to assembling macrocell-

based systems

• AMBA structure:

• Advanced System Bus (ASB)
– high-performance, multi-master

• Advanced Peripheral Bus (APB)

• interface for low performance peripherals

A typical AMBA-based system

ARM
core

on-chip
RAM

external
bus

interface

test i/f ctrl

parallel i/f

timer

UART bridge

Advanced System BUS

Advanced Peripheral BUS

AMBA test interface

• VSLI production test is an economically
important issue
– macrocell based designs present problems

– how can each macrocell be systematically
tested?

• AMBA offers a standardized solution
– based on 32-bit parallel access, via the bus, to

test registers

