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1 Introduction
The ARM processor has two interrupt pins:

�

• IRQ for normal interrupts

• FIQ for fast interrupts

Application Note 25, Exception Handling on the ARM describe these pins in detail.
However, many systems have more than two interrupt sources. In these systems
interrupt sources are connected to an interrupt controller, which assert (set LOW) the
appropriate pin (normally IRQ) on the ARM when one or more interrupts are detected.�

In these multiple interrupt systems the current highest priority interrupt may be
determined either by the hardware or the software. The interrupt handling software is

�

simpler in the former case as it can read the current highest priority interrupt from the�

interrupt controller and then take the appropriate action. Application Note 25,
�

Exception Handling on the ARM, contains an example of this.	

Otherwise is left to the software to determine the current highest priority interrupt from



a set of registers within the interrupt controller� . An example of such a system is one
based around

�
ARM's Reference Peripheral Specification (RPS)

�
 (ARM DDI 0062). This

application note describes some of the methods that can be used to carry out the�

prioritization of interrupts in software, using the RPS's interrupt controller
 . All relevant
information from this specification is included within this application note, so a copy of
the specification is not necessarily required.

�

2 The RPS Interrupt Controller
The interrupt controller defined by the RPS has the following registers (for both IRQ

�

and FIQ unless otherwise stated):�

Interrupt Raw Status

This register indicates which interrupt sources are currently active, prior to masking.
Note that interrupt sources are active LOW and are inverted prior to being made
available as the source register� . Consequently a logic HIGH in a bit of the source
register indicates that a particular interrupt source is active. This register is read-only.

Interrupt Enable
�

This register is used to mask the interrupt sources and defines which active sources
generate an interrupt request to the processor� . This register is read-only.

Interrupt Status
�

This register indicates which interrupt sources are currently active after masking is
�

applied. A logic HIGH in a bit indicates that the appropriate interrupt is active and�

generates an interrupt in the processor� . This register is read-only.

Interrupt Enable Set
�

This register is used to set bits in the interrupt enable register
�

. When writing to this
register� , each data bit which is set high causes the corresponding bit in the interrupt
enable register to be set. Data bits which are set LOW have no ef� fect on the
corresponding bit in the interrupt enable register	 . This register is write-only.
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�

Interrupt Enable Clear

This register is used to clear bits in the interrupt enable register. Setting a data bit
HIGH in this register causes the corresponding bit in the interrupt enable register to be
cleared. Data bits which are set LOW have no ef	 fect on the corresponding bit in the
interrupt enable register

�
. This register is write-only.

Programmed IRQ Interrupt (IRQSoft)

A write to bit 1 of this register sets (if bit 1 is HIGH) or clears (if bit 1 is LOW) a
�

programmed interrupt. This register is write-only
 . Its value may be determined by
reading bit 1 of the IRQ raw status register. Bit 0 of this register is not used.

All of these registers are accessed by reading from an of
�

fset to a base address. This
base address is not fixed and may be dif

�
ferent on various systems. However the offset

for any particular register from the base address is fixed, as shown in
�

Table 1: Interrupt controller memory map .

The RPS also defines some of the sources to the interrupt controller
�

. The FIQ registers
are one bit wide, located on bit 0, and the source is implementation specific. The IRQ�

registers have bits 1 to 5 defined, as shown in� Table 2: Interrupt controller defined
bits  on page 4. Bit 0 is left available for the user (so that the FIQ source may also be
routed to the IRQ controller in an identical bit position), as are bits 6 - 31.

Address Read Location Write Location

IntBase + 0x00 IRQStatus Reserved

IntBase + 0x04 IRQRawStatus Reserved

IntBase + 0x08 IRQEnable IRQEnableSet

IntBase + 0x0c IRQEnableClear

IntBase + 0x10 IRQSoft

IntBase + 0x100 FIQStatus Reserved

IntBase + 0x104 FIQRawStatus Reserved

IntBase + 0x108 FIQEnable FIQEnableSet

IntBase + 0x10c FIQEnableClear

 Table 1: Interrupt controller memory map
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.

The sample code given in this application note makes use of these registers. However,
the principles illustrated may be adapted for another interrupt controller if the RPS is

�

not being followed.

3 Simple Prioritization Example
The following sample code covers all the areas needed for prioritizing interrupts in
software. It allows for six interrupt sources, each of which has a unique priority� . The
IRQ sources are assumed to match those given in Table 2: Interrupt controller
defined bits . The method of determining the current highest priority interrupt is kept
simple to make the example as clear as possible.�

3.1
�

Example description

This example first assigns the six priority levels to a single bit, so for example the
priority 0 interrupt (the highest priority one—


B_PRI_0 ) is assigned to the source
�

mapped onto bit 5 of IRQStatus , and similarly for the other priority levels. If the
priority levels change, these bit values need to be updated. The bit values for each


priority are then used to calculate the value of the bit for each priority of interrupt. So,


for example priority 0 interrupt is assigned to bit 5, which has a value of 1 shifted left
by 5, (ie. 32), which is placed in

�
V_PRI_0 . These bit values are then used to calculate

the combined bit values for all interrupts of lower (and equal) priority than a particular
�

priority). Note that these combined values are stored in memory at the location


Lower_Priority . The values stored in memory there need updating if the priorities
change, as they are stored in bit order (0 to 5).	

The actual code starts at the routine label IRQHandler . This first subtracts four from
the link register and pushes it on the stack. This is because rather than using a

�
SUBS

pc,lr,#4  instruction to return, the handler instead pops the return address directly
of� f the stack into the program counter. Therefore the subtraction needs to be
performed before the link register is pushed onto the stack. It is necessary to store the


Bit IRQ Source

0 User defined

1 Programmed Interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2

 Table 2: Interrupt controller defined bits
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�

link register in this way because once the initial processing is carried out, interrupts will
be re-enabled. This means that another interrupt (of higher priority) could occur while

�

the current one is still being handled, causing the link register to be overwritten.
�

It is also necessary to push the SPSR onto the stack before re-enabling interrupts,
because this is also overwritten if another interrupt occurs while the current one is

�

being processed. However the SPSR must be copied into an intermediate register and
�

then pushed onto the stack. At the same time, the code also pushes some further
�

working registers onto the stack.�

At label
�

Detect_Highest  the code determines which is the highest priority bit set in
the

�
IRQStatus  register. In this example, this is done in a very simple manner (other

methods are examined later in this document). The code tests each bit, starting with
the lowest priority bit, and if it is set, stores the corresponding bit number

�
. Therefore

when the code reaches the label Disable_Lower , the bit number for the highest
priority interrupt is held in r1
 1.

The code then loads in the
�

IRQEnable  register and the value stored in
Lower_Priority  for this particular bit (the value for the bits for lower priority
interrupts than this one). These can then be logically ANDed together to give the value
to be written to

�
IRQEnableClear  to mask out the lower priority interrupts that were

previously enabled. This is necessary so that when a high priority source causes an


interrupt while a lower one is being processed, only the interrupts of priorities between
�

the two are disabled, and therefore re-enabled at the end of the processing of the
�

higher priority one. Otherwise the higher priority one might re-enable all lower priority
�

ones, meaning that a lower priority interrupt than the original might interrupt the�

original.�

Once the



IRQEnable  register is updated in this manner, the IRQ disable bit in the
CPSR can be cleared, so turning IRQs back on. When writing re-entrant interrupt

�

handlers, the aim is to do the necessary minimum processing before turning IRQs
back on. It is only when the IRQs are turned on again that the handler for the source

�

of the current highest priority interrupt is called. This is done by directly loading the�

address of the handler routine for that bit from a table of handler addresses. This table�

must be updated if the names of any of these routines changes.

The example only gives the code for the handler User_Interrupt . Other handlers
follow the same pattern:

1 All other working registers are pushed onto the stack.

2
�

The required operations needed to clear the cause of the interrupt are carried
out.�

3
�

Most of the working registers are popped off, except for r11, r12 and r14 which
are still needed.�

The final part of the handler is run with IRQs disabled, so that the SPSR can be
�

restored from the stack safely:�

4
�

The IRQ disable bit in the CPSR is set again.

5
�

The IRQEnable  register then is updated, via the IRQEnableSet  register, to
unmask those interrupts disabled at� Disable_Lower .
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Note : in order to do this, r12 must have remained uncorrupted by the handler
(or else pushed onto and popped off the stack).

6
�

Finally r11, r12 and the SPSR can be popped off the stack (SPSR via an
intermediate register again) and then the original link register value popped of
�

f
into the program counter (using ^ on the LDM instruction and so causing the
required mode change by copying the SPSR into the CPSR).�
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3.2
�

 Example code

AREA IRQHandler, CODE, READONLY

   ; Match interrupt priority to bit position
; ** This will need updating for each particular system **

B_PRI_0  EQU 5 ;  Timer 2
B_PRI_1  EQU 2 ;  Comms Rx
B_PRI_2  EQU 4 ;  Timer 1
B_PRI_3  EQU 3 ;  Comms Tx
B_PRI_4  EQU 0 ;  User Defined
B_PRI_5  EQU 1 ;  Programmed Interrupt

; match interrupt priority to bit value
; This is calculated using B_PRI_x.

V_PRI_0  EQU 1: SHL:B_PRI_0
V_PRI_1  EQU 1: SHL:B_PRI_1
V_PRI_2  EQU 1: SHL:B_PRI_2
V_PRI_3  EQU 1: SHL:B_PRI_3
V_PRI_4  EQU 1: SHL:B_PRI_4
V_PRI_5  EQU 1: SHL:B_PRI_5

; Calculate, for each priority of interrupt, which interrupts
; will need masking out when this particular priority occurs.

LOW_5 EQU V_PRI_5
LOW_4 EQU LOW_5 + V_PRI_4
LOW_3 EQU LOW_4 + V_PRI_3
LOW_2 EQU LOW_3 + V_PRI_2
LOW_1 EQU LOW_2 + V_PRI_1
LOW_0 EQU LOW_1 + V_PRI_0

; Create constants for accessing IRQ Interrupt Controller
IntBase  EQU 0x80000000         ; for example
IRQStatus  EQU 0x0
IRQRaw_Status  EQU 0x4
IRQEnable  EQU 0x8
IRQEnable_Set  EQU 0x8
IRQEnable_Clear  EQU 0xC
IRQSoft  EQU 0x10

; create IRQ disable bit constant
IRQDBit  EQU 0x80

EXPORT IRQ_Handler
; ****************************************
; * Start of actual code for IRQ Handler.*
; * This is the routine that should be   *
; * branched to from the IRQ vector.     *
; ****************************************

IRQ_Handler
; first save the critical state
SUB lr, lr, #4  ; adjust the return address

; before we save it.
STMFD sp!, {lr}  ; stack return address
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MRS r14, SPSR  ; get the SPSR ...
STMFD sp!, {r10,r11,r12,r14}  ; ... and stack that plus

; working registers too.

; no w get th e priorit y leve l of th e highes t priorit y active interrupt

Detect_Highest
LDR r14, =IntBase
LDR r10, [r14,#IRQStatus]

; tes t fo r eac h vali d interrup t i n turn , lowes t - > highes t priority]

TST r10, #V_PRI_5
MOVNE r11, #B_PRI_5  ; I f Zer o fla g clear , interrup t active
TST r10, #V_PRI_4
MOVNE r11, #B_PRI_4  ; I f Zer o fla g clear , interrup t active
TST r10, #V_PRI_3
MOVNE r11, #B_PRI_3  ; I f Zer o fla g clear , interrup t active
TST r10, #V_PRI_2
MOVNE r11, #B_PRI_2  ; I f Zer o fla g clear , interrup t active
TST r10, #V_PRI_1
MOVNE r11, #B_PRI_1  ; I f Zer o fla g clear , interrup t active
TST r10, #V_PRI_0
MOVNE r11, #B_PRI_0  ; I f Zer o fla g clear , interrup t active

; Thus at this point:
; - r14 contains address of IntBase
; - r1 1 contain s th e bi t number of th e highest priority interrupt
; - r10, r12 available for use

Disable_Lower
LDR r12, [r14, #IRQEnable]  ; Get currently enabled

; interrupts

ADR r10, Lower_Priority  ; Get address of lower
; priority values

LDR r10, [r10, r11, LSL #2]  ; Get value for lower
; priority interrupts

; Clear lower priority interrupts that are currently enabled.
AND r12, r12, r10
STR r12, [r14, #IRQEnable_Clear]

; now read-modify-write the CPSR to enable interrupts
MRS r14, CPSR  ; read the status register
BIC  r14, r14, #IRQDBit  ; clear the IRQ disable bit
MSR CPSR_c, r14                 ; write it back to

; re-enable interrupts

Goto_Handler
; jump to the correct handler
LDR PC, [PC, r11, LSL #2]  ; and jump to the correct

; handler
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; PC base address points to
; this instruction + 8

NOP ; Pad so the PC indexes
; this table

; table of handler start addresses
; ** This will thus need updating for each particular system **

DCD User_Interrupt  ; interrupt which maps to bit 0
DCD Prog_Interrupt  ; interrupt which maps to bit 1
DCD Rx_Interrupt  ; interrupt which maps to bit 2
DCD Tx_Interrupt  ; interrupt which maps to bit 3
DCD Timer1_Interrupt  ; interrupt which maps to bit 4
DCD Timer2_Interrupt  ; interrupt which maps to bit 5

; Store bit value for all lower priority interrupts.
; This is used when an interrupt occurs for a particular bit
; to disable lower priority ones, and is found by accessing
; Lower_Priority offset by (bit number) words.
; ** Thi s wil l thus need updating for each particular system **

Lower_Priority
DCD LOW_4 ; bit 0 lower priority interrupt mask
DCD LOW_5 ; bit 1 lower priority interrupt mask
DCD LOW_1 ; bit 2 lower priority interrupt mask
DCD LOW_3 ; bit 3 lower priority interrupt mask
DCD LOW_2 ; bit 4 lower priority interrupt mask
DCD LOW_0 ; bit 5 lower priority interrupt mask

User_Interrupt
STMFD sp!, {r0 - r9}  ; save other registers (only those

; needed!)
;
; Insert handler code here
; Remember that at some point the handler will need to “talk”
; directly to the interrupt source in order to clear the
; interrupt.
;
LDMFD   r13!, {r0 - r10}        ; restore most of registers

; now read-modify-write the CPSR to disable interrupts
MRS     r11, CPSR               ; read the status register
ORR     r11, r11, #IRQDBit     ; set the IRQ Disable bit
MSR     CPSR _c, r11               ; write it back to disable interrupts

; Now update IRQ Enable Register by re-enabling those lower
; priority interrupts disabled when this interrupt taken.
; Note that this relies on r12 still containing appropriate
; value. If this is not the case and the handler needs to use
; this register, then the value will need saving to and
; restoring from the stack during the handling of this particular
; interrupt.

LDR r11, =IntBase
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STR r12, [r11, #IRQEnable_Set]

; Finally restore SPSR (can only be safely done with )
; interrupts disabled) and then return.

LDMFD   sp!, {r11, r12, r14}  ; Restore rest of registers and
; get SPSR

MSR     SPSR _cf , r14            ; Restor e statu s registe r from r14
LDMFD   sp!, {pc}^  ; Return from handler using lr

; from stack, and
; restore spsr to cpsr

Prog_Interrupt
; as per User_Interrupt, but with own handler code.

Rx_Interrupt
; as per User_Interrupt, but with own handler code.

Tx_Interrupt
; as per User_Interrupt, but with own handler code.

Timer1_Interrupt
; as per User_Interrupt, but with own handler code.

Timer2_Interrupt
; as per User_Interrupt, but with own handler code.

END
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4 Other Methods of Determining the Highest Priority Interrupt
The method of determining the highest priority interrupt implemented in section 3.2 is

�

not particularly sophisticated. As the number of valid interrupt sources increases, the
number of instructions needed to find the highest priority interrupt also increases.
However, the method is simple and does not obscure the other important aspects of
the example. This also means that the time taken for interrupts to be re-enabled and

�

for the correct handler for the particular interrupt to be reached is always constant,
�

which is sometimes necessary� . However, alternative methods may be used.

4.1 Terminating the search early

Rather than testing all of the possible interrupts from lowest to highest priority, it is
possible to search down from the highest to lowest, branching out of the search once


the highest priority active interrupt is identified. The branch could take place after
�

setting the register that records the bit the interrupt is on, and could be targeted on�

Disable_Lower , meaning that only the test section has to change. However, this
delays reaching the lowest priority interrupt, because each test now consists of three

�

instructions rather than the two used in 3 Simple Prioritization Example  on page 4.

TST r10, #V_PRI_0
MOVNE r11, #B_PRI_0 ; I f Zero flag clear, interrupt active.
BNE Disable_Lower ; Skip rest of tests.

The test for the lowest priority interrupt could be replaced by simply setting the register
�

(r11 in this case) as appropriate and falling through into Disable_Lower . If a test
consisting of three instructions proves too slow (due to the time taken to detect the	

lowest priority interrupt) a slight variation on the above method could be implemented
that branches to a further piece of code which sets the bit register and then branches

�

onto�
Disable_Lower .

A further development of this method uses a BL instruction after each TST instruction.
If the program counter's value is stored before the first TST instruction, when the
program reaches


Disable_Lower the dif
�

ference between the stored program
counter value and the current link register can be used to determine the highest priority	

interrupt in the following way
�

. Another table in memory, Table_B_PRI , stores the bit
value for each priority of interrupt (the table need only be a byte table as the values it!

stores lie between 0 and 31). The program counter value stored is the address of the�

first BL instruction. When Disable_Lower is reached, subtracting LR from this gives
interrupt priority * 8 (as the difference between BLs is two instructions, or eight bytes).
This value can then be divided by eight to give the offset which must be added to the
address of T� able_B_PRI in order to load in the appropriate bit number.

; Set up constants to obtain bit position given priority
Table_B_PRI

DCB B_PRI_0,B_PRI_1,B_PRI_2,B_PRI_2,B_PRI_4,B_PRI_5
ALIGN
    :
    :

Detect_Highest



Application Note 30
ARM DAI 0030A

12

; now get the priority level of the highest priority
; active interrupt
LDR r14, =IntBase
LDR r10, [r14,#IRQStatus]
MOV r11, pc ; pc points to first BLNE
TST r10, #V_PRI_0
BLNE Disable_Lower ; Skip rest of tests.
TST r10, #V_PRI_1
BLNE Disable_Lower ; Skip rest of tests.
 :
 :
; Thus at this point:
; - r14 contains link address from BL
; - r11 contains stored pc
; - r10, r12 available for use

Disable_Lower

SUB r11, r11, lr ; r11 = (priority of interrupt) * 8
LDR r12, = Table_B_PRI ; Get address of (byte) table
LDRB r11, [r12, r11, LSR #3] ; Load bit number of the

; highest priority interrupt
ADR r10, Lower_Priority ; Get address of lower

; priority values
LDR r10, [r10, r11, LSL #2] ; Get value for lower priority

; interrupts

LDR r14, =IntBase ; Get base address of interrupt
; controller

; now continue with rest of Disable_Lower as before

An alternative approach would be to branch directly to the required interrupt routine.
�

However, each interrupt routine would need to include the interrupt masking and
interrupt re-enable code that was included in Disable_Lower  in 3.2 Example code
on page� 7. It is also necessary for each routine to know which bit its interrupt is
mapped onto. This can be done using another set of constants. Note, however, that
this method will increase the code size of the application because it duplicates the

�

masking and re-enabling code.

; Set up constants for bit in IRQStatus register that each
; interrupt is mapped onto.

User_Interrupt_Bit EQU 0 ;  interrupt which maps to bit 0
Prog_Interrupt_Bit EQU 1 ;  interrupt which maps to bit 1
Rx_Interrupt_Bit EQU 2 ;  interrupt which maps to bit 2
Tx_Interrupt_Bit EQU 3 ;  interrupt which maps to bit 3
Timer1_Interrupt_Bit EQU 4 ;  interrupt which maps to bit 4
Timer2_Interrupt_Bit EQU 5 ;  interrupt which maps to bit 5

Detect_Highest
; now get the priority level of the highest priority active

interrupt
LDR r14, =IntBase
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LDR r10, [r14,#IRQStatus]

ADR r12, table_interrupts
; test for each valid interrupt in turn, highest -> lowest priority
; branch when found
TST r10, #V_PRI_0  ; Test priority 0 interrupt
LDRNE pc, [r12,#B_PRI_0,LSL #2]  ; Active if Zero flag clear
TST r10, #V_PRI_1  ; Test priority 1 interrupt
LDRNE pc, [r12,#B_PRI_1,LSL #2]  ; Active if Zero flag clear
TST r10, #V_PRI_2  ; Test priority 2 interrupt
LDRNE pc, [r12,#B_PRI_2,LSL #2]  ; Active if Zero flag clear
TST r10, #V_PRI_3  ; Test priority 3 interrupt
LDRNE pc, [r12,#B_PRI_3,LSL #2]  ; Active if Zero flag clear
TST r10, #V_PRI_4  ; Test priority 4 interrupt
LDRNE pc, [r12,#B_PRI_4,LSL #2]  ; Active if Zero flag clear
TST r10, #V_PRI_5  ; Test priority 5 interrupt
LDRNE pc, [r12,#B_PRI_5,LSL #2]  ; Active if Zero flag clear

; table of handler start addresses

table_interrupts
DCD User_Interrupt  ; interrupt which maps to bit 0
DCD Prog_Interrupt  ; interrupt which maps to bit 1
DCD Rx_Interrupt  ; interrupt which maps to bit 2
DCD Tx_Interrupt  ; interrupt which maps to bit 3
DCD Timer1_Interrup t ; interrupt which maps to bit 4
DCD Timer2_Interrup t ; interrupt which maps to bit 5

User_Interrupt
; Move bit number for this interrupt into r11.  Note that you would
; need to change this to appropriate constant for handlers for other
; sources.
MOV r11, #User_Interrupt_Bit

; Thus at this point:
; - r14 contains address of IntBase
; - r11 contains the bit number of the highest priority interrupt
; - r10, r12 available for use

LDR r12, [r14, #IRQEnable ] ; Get currently enabled interrupts
ADR r10, Lower_Priority  ; Get address of lower priority values
LDR r10, [r10, r11, LSL #2 ] ; Ge t valu e fo r lowe r priorit y interrupts

; Clear lower priority interrupts that are currently enabled.
AND r12, r12, r10
STR r12, [r14, #IRQEnable_Clear]

; now read-modify-write the CPSR to enable interrupts
MRS     r14, CPSR  ; read the status register
BIC     r14, r14, #IRQDBit  ; clear the IRQ disable bit
MSR     CPSR _c, r14                 ; writ e  i t   bac k t o re-enabl e  interrupts

; Now continue with main body of handler which remains as before
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4.2
"

Priority groups

In some instances it is more useful to have groups of interrupts of the same priority
than it is to grade interrupts individually by priority

�
. For instance all interrupts caused

by timers might have the same priority
�

. In such a case, when several interrupts are
active at one time within a group, the order of servicing is implementation-specific.�

As with the previous examples, there are several ways of implementing this. The
following example covers the important points.

For a particular system, the interrupt sources are grouped as follows (highest to lowest
priority):


• Group 1 : Timer 1, Timer 2

• Group 2 : Comms Rx, Comms Tx

• Group 3 : User defined, Programmed Interrupt

The following program implements an interrupt handler for these groups. It does this
by simply masking the

�
IRQStatus  register with each group mask, and storing the

result. Once the result is non-zero, the following masks are ignored using conditional�

execution�

The result from these mask instructions is then passed through Find_LSB  which
identifies the least significant bit in the result. The interrupt that maps onto this bit is
handled during this iteration of the

�
IRQHandler . The algorithm used relies on a binary

search combined with a table lookup. The binary searches are used to reduce the�

table lookup index to four bits. The search proceeds down from identifying which
�

halfword, byte or nibble contains the LSB. In each case, if it is the upper half, the
�

lowest bit position of the upper half is added to the bit counter, and the upper half is
shifted into the lower half. The search then continues by splitting the lower half into two�

in the same manner. Once there are only four bits left, the table lookup is used, and
the value from the table to the bit counter

�
. This then contains the bit position of the LSB

of the currently active interrupts, and thus the bit position of the interrupt that this�

invocation of the handler will deal with.
�

The binary searches are actually only needed for interrupt sources mapped to more
than four bits, with additional instructions required once interrupt sources are mapped

�

on to more than four� , eight and 16 bits. Thus, in this example, the halfword and byte
identification parts of the search are commented out, as there are only six valid

�

interrupts.
�

The code for
�

Disable_Lower  and the handlers themselves then remains the same
as in the example in� 3.2 Example code  on page 7.

AREA IRQHandler, CODE, READONLY

; Set up constants for bit in IRQStatus register that each ...
; ...interrupt is mapped onto.

User_Interrupt_Bit EQU 0 ;  interrupt which maps to bit 0
Prog_Interrupt_Bit EQU 1 ;  interrupt which maps to bit 1
Rx_Interrupt_Bit EQU 2 ;  interrupt which maps to bit 2
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Tx_Interrupt_Bit EQU 3 ;  interrupt which maps to bit 3
Timer1_Interrupt_Bit EQU 4 ;  interrupt which maps to bit 4
Timer2_Interrupt_Bit EQU 5 ;  interrupt which maps to bit 5

; match interrupts to bit value
; This is calculated using bit value set above.

User_Interrupt_Value EQU 1:LSL:User_Interrupt_Bit
Prog_Interrupt_Value EQU 1:LSL:Prog_Interrupt_Bit
Rx_Interrupt_Value EQU 1:LSL:Rx_Interrupt_Bit
Tx_Interrupt_Value EQU 1:LSL:Tx_Interrupt_Bit
Timer1_Interrupt_Value EQU 1:LSL:Timer1_Interrupt_Bit
Timer2_Interrupt_Value EQU 1:LSL:Timer2_Interrupt_Bit

; Calculate masks for each priority group
Pri_Group_1 EQU Timer1_Interrupt_Value + Timer2_Interrupt_Value
Pri_Group_2 EQU Rx_Interrupt_Value + Tx_Interrupt_Value
Pri_Group_3 EQU User_Interrupt_Value + Prog_Interrupt_Value

; Calculate, for each priority group, which interrupts will
; need masking out when an interrupt in this particular priority
; group occurs.

LOW_3 EQU Pri_Group_3
LOW_2 EQU LOW_3 + Pri_Group_2
LOW_1 EQU LOW_2 + Pri_Group_1

User_Interrupt_Low EQU     Low_3
Prog_Interrupt_Low EQU     Low_3
Rx_Interrupt_Low EQU     Low_2
Tx_Interrupt_Low EQU     Low_2
Timer1_Interrupt_Low EQU     Low_1
Timer2_Interrupt_Low EQU     Low_1

; Create constants for accessing IRQ Interrupt Controller
IntBase EQU 0x80000000         ; for example
IRQStatus EQU 0x0
IRQRaw_Status EQU 0x4
IRQEnable EQU 0x8
IRQEnable_Set EQU 0x8
IRQEnable_Clear EQU 0xC
IRQSoft EQU 0x10

; create IRQ disable bit constant
IRQDBit EQU 0x80

EXPORT IRQHandler
; ****************************************
; * Start of actual code for IRQ Handler.*
; * This is the routine that should be   *
; * branched to from the IRQ vector.     *
; ****************************************

IRQHandler
; first save the critical state
SUB     lr, lr, #4 ; adjust the return address

; before we save it.
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STMFD   sp!, {lr} ; stack return address
MRS     r14, SPSR ; get the SPSR ...
STMFD   sp!, {r10,r11,r12,r14}; ... and stack that plus

; working registers too.

; now get the priority group of the highest priority active
; interrupt

Detect_Highest
LDR r14, =IntBase
LDR r10, [r14,#IRQStatus]

; test for each valid interrupt in turn, lowest -> highest priority]
AND r11, r10, #Pri_Group_1
ANDEQSr11, r10, #Pri_Group_2
ANDEQSr11, r10, #Pri_Group_3

Find_LSB
MOV r12, #0  ; Initialise bit counter

 ; The next three instructions
 ; are only needed in cases where
 ; there are more than 16 interrupts.

MOVS r10, r11, LSL #16  ; Find most significant half word
 ; containing a nonzero bit (either
 ; 0-15 or 16-31).

ADDEQ r12, r12, #16  ; If lsb is one of bits 16-31,
 ; then increment the bit counter

MOVEQ r11, r11, LSR #16  ; and shift it into lower half of word.

; Now the top 16 bits of r11 are of no interest as the lsb will
; be located in bottom 16 bits.
; The next three instructions are only needed in cases where there
; are more than 8 interrupts.
MOVS r10, r11, LSL #24  ; Find most significant byte

 ; containing a nonzero bit
 ; (either 0-7 or 8-15).

ADDEQ r12, r12, #8  ; If lsb is one of bits 8-15,
 ; then increment the bit counter...

MOVEQ r11, r11, LSR #8  ; and shift it into lower byte of word.

; Now the top 24 bits of r11 are of no interest as the lsb will be
; located in bottom 8 bits.

MOVS r10, r11, LSL #28  ; Find the most significant nibble
 ; containing a nonzero bit(either
 ; 0-3 or 4-7).

ADDEQ r12, r12, #4  ; If lsb is one of bits 4-7,
 ; then increment the bit counter

MOVEQ r11, r11, LSR #4  ; and shift it into lower nibble
 ; of word.

; Now the top 28 bits of r11 are of no interest as the lsb will be
; located in bottom 4 bits. So we can use lookup table to find which
; of those bits is the lsb set. Then we can add that to the
; current bit counter.
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AND r10, r11, #0xf    ; Mask off bits 4-31.
ADR r11, LSB_Table    ; Generate address of the table.
LDRB r11, [r11, r10]   ; Load the bit value of lsb of bits 0-3
ADD r11, r11, r12     ; Add value to bit counter
B Disable_Lower LSB_Table
; The 0xff value should never be accessed as to reach this routine
; an interrupt must have occured and so one of the bits will be
; set.
DCB 0xff, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0

; Thus at this point:
; - r14 contains address of IntBase
; - r11 contains the LSB from the highest priority active interrupts
; - r10, r12 available for use

Disable_Lower
LDR r12, [r14, #IRQEnable ] ; Get currently enabled interrupts
ADR r10 , Lower_Priority  ; Ge t addres s of lower priority values
LDR r10, [r10, r11, LSL #2 ] ; Get value for lower priority

; interrupts

; Clear lower priority interrupts that are currently enabled.
AND r12, r12, r10
STR r12, [r14, #IRQEnable_Clear]

; now read-modify-write the CPSR to enable interrupts
MRS     r14, CPSR   ; read the status register
BIC     r14, r14, #IRQDBit  ; clear the IRQ disable bit
MSR     CPSR_c, r14            ; write it back to re-enable interrupts

Goto_Handler
; jump to the correct handler
LDR     PC, [PC, r11, LSL #2] ; and jump to the correct handler

; PC base address points to this
; instruction + 8

NOP ; Pad so the PC indexes this table

; table of handler start addresses
DCD User_Interrupt  ; interrupt which maps to bit 0
DCD Prog_Interrupt  ; interrupt which maps to bit 1
DCD Rx_Interrupt  ; interrupt which maps to bit 2
DCD Tx_Interrupt  ; interrupt which maps to bit 3
DCD Timer1_Interrupt  ; interrupt which maps to bit 4
DCD Timer2_Interrupt  ; interrupt which maps to bit 5

; Store bit value for all lower priority interrupts. This is used
; when an interrupt occurs for a particular bit to disable lower
; priority ones, and is found by accessing Lower_Priority offset by
; (bit number) words.

Lower_Priority
DCD User_Interrupt_Low
DCD Prog_Interrupt_Low
DCD Rx_Interrupt_Low
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DCD Tx_Interrupt_Low
DCD Timer1_Interrupt_Low
DCD Timer2_Interrupt_Low

User_Interrupt
; and other handlers as before

END

The code given in Find_LSB  could equally be replaced by other methods of handling
the highest priority active interrupt(s). For instance, each mask instruction could be

�

followed by a branch instruction in a similar way to the methods described in 4.1
Terminating the search early  on page 11. It would also be possible to have a branch
to a handler for each priority of interrupt, which could then deal with the source as

�

appropriate. In some cases it might not even be necessary for such a priority handler�

to know which source caused the interrupt.
�

5 Conclusion
This application note aims to illustrate the general principles needed for handling the

�

prioritization of interrupts in software. The methods discussed for identifying which


source actually generated an interrupt have been kept general so that they will work�

in any system, but it should be possible for them to be optimized for the particular
�

system specification being used.�

One particular optimization that may be possible is in the production of the addresses



of the tables used in the examples. In the examples given here, a mixture of LDRs and�

ADRs have been used. Depending upon the amount of code in the actual handler
�

produced for a system, it may be possible to replace all the table address generating


LDRs with ADRs. See the ARM Software Development Programming Techniques
guide (ARM DUI 0021) for further details of when to use ADRs as opposed to LDRs.�
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